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Abstract

Southeastern Tibet is a key region for studying the tectonic evolution of Tibetan Plateau. The region is characterized by

distributed faults, localized low-velocity zones (LVZs) in the mid-lower crust, and prominent clockwise rotation of GPS velocity

field. End-member models have been proposed to explain the origin of this deformation pattern, including the block extrusion

model highlighting the role of faulted shear zones, and the crustal flow model emphasizing the effect of a weak lower crust. Here

we use a 3D visco-elasto-plastic finite element model to reproduce the instantaneous horizontal surface velocity and investigate

the effects of active faults and LVZs on that. The results show that when only faults are included, the residual surface velocities

between modeled and observed values are large at some locations overlying the LVZs; when only LVZs are included, the residual

surface velocities along the Xianshuihe-Xiaojiang and Lijiang-Xiaojinhe faults, two major faults with relatively high slip rates,

are significant. However, when both faults and LVZs are considered, the modeled surface velocities fit well with observed GPS

velocities. Our results therefore demonstrate that a combination of fault-bounding block extrusion and crustal flow type of

continuous deformation is required to explain the surface deformation. The model yields a high-resolution strain rate map which

provides an improved understanding of Quaternary tectonics and seismic hazards. In order to reduce the residual velocities,

the viscosity of LVZs is constrained as ˜10-10 Pa·s. Our study also suggests that LVZs are probably partially molten, which

explains the rheology, seismological, and magnetotelluric data.
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Abstract  20 

 Southeastern Tibet is a key region for studying the tectonic evolution of Tibetan 21 

Plateau. The region is characterized by distributed faults, localized low-velocity zones 22 

(LVZs) in the mid-lower crust, and prominent clockwise rotation of GPS velocity 23 

field. End-member models have been proposed to explain the origin of this 24 

deformation pattern, including the block extrusion model highlighting the role of 25 

faulted shear zones, and the crustal flow model emphasizing the effect of a weak 26 

lower crust. Here we use a 3D visco-elasto-plastic finite element model to reproduce 27 

the instantaneous horizontal surface velocity and investigate the effects of active 28 

faults and LVZs on that. The results show that when only faults are included, the 29 

residual surface velocities between modeled and observed values are large at some 30 

locations overlying the LVZs; when only LVZs are included, the residual surface 31 

velocities along the Xianshuihe-Xiaojiang and Lijiang-Xiaojinhe faults, two major 32 

faults with relatively high slip rates, are significant. However, when both faults and 33 

LVZs are considered, the modeled surface velocities fit well with observed GPS 34 

velocities. Our results therefore demonstrate that a combination of fault-bounding 35 

block extrusion and crustal flow type of continuous deformation is required to explain 36 

the surface deformation. The model yields a high-resolution strain rate map which 37 

provides an improved understanding of Quaternary tectonics and seismic hazards. In 38 

order to reduce the residual velocities, the viscosity of LVZs is constrained as ~10
20

-39 

10
21

 Pa·s. Our study also suggests that LVZs are probably partially molten, which 40 

explains the rheology, seismological, and magnetotelluric data.  41 

42 
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1. Introduction 43 

 Southeast Tibet, a mosaic of the Songpan-Ganzi Terrane, Sichuan Basin, 44 

Chuandian block, Shan-Thai Plateau, and the northern part of the Indochina block, is 45 

located on the southeastern borderland of the Tibetan Plateau, situated between the 46 

Burma subduction zone, Yangtze block and Sunda plate (Yin & Harrison, 2000; Pan 47 

et al., 2004). SE Tibet is often regarded as one of the most tectonically-active regions 48 

in the Asian continent (Figure 1a; Tapponnier et al., 1982, 2001; Wang, 1998; Deng et 49 

al., 2003; Zhang et al., 2003). A large topographic relief has been formed with a 50 

complex network of faults (Figure 1b; Clark & Royden, 2000; Liu‐Zeng et al., 2008; 51 

Tapponnier et al., 2001; Taylor & Yin, 2009). Large earthquakes (Mw 7 or 8) have 52 

occurred in the region (Zhang & Liu, 1978; Chen & Wu, 1989; Xu et al., 2009; Xu et 53 

al., 2013; Yin et al., 2019). In addition, Tertiary-Quaternary magmatic activities have 54 

occurred in Tengchong (Wang et al., 2007), along the Red River fault (Wang et al., 55 

2001) and in other areas, accompanied by high heat flux in much of Yunnan Province 56 

(Hu et al., 2000; Wang, 2001). As a result, the region has attracted much attention 57 

from researchers in terms of the study of seismic hazards, and because of the 58 

complexity of the geological systems.           59 

 A remarkable pattern of clockwise rotation of the horizontal velocity field around 60 

the eastern Himalayan syntaxis (EHS) has been observed in SE Tibet from modern 61 

geodetic measurements during the last few decades (Shen et al., 2005; Gan et al., 62 

2007; Wang et al., 2016; Zheng et al., 2017). The GPS velocities decrease roughly 63 

with increasing radial distance from the EHS, and there are several large deformation 64 

centers along several major active faults and inside the blocks. The dynamic 65 
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mechanism of this surface deformation is still debated. And its relationships with 66 

geological structures, lithospheric rheology, and earthquake hazards are poorly 67 

understood.  68 

Two main models have been proposed to explain the origin of this deformation 69 

pattern in SE Tibet: the block extrusion model (Tapponnier et al., 1982, 2001; Peltzer 70 

& Tapponnier, 1988; Avouac & Tapponnier, 1993) and the lower crustal flow model 71 

(Royden et al., 1997; Clark & Royden, 2000). In the extrusion model, the Shan-Thai, 72 

Indochina, Chuandian and Songpan blocks are extruded outwards, step by step, 73 

following the indention of the Indian Plate into the Eurasian Plate (Tapponnier et al., 74 

1982; Peltzer & Tapponnier, 1988). The clockwise eastward extrusion results from 75 

the south-north shortening of central Tibet and the advance of the strong EHS (Panda 76 

et al., 2018). Specifically, the “bookshelf” model (England & Molnar, 1990) 77 

suggested that the deformation is conducted from the eastward extrusion to SE Tibet, 78 

via block rotation and fault slipping. The Shan-Thai block perhaps exemplifies a 79 

classic case of the “bookshelf” model (Wang, 1998; Tapponnier et al., 2001; Shi et al., 80 

2018), with a nearly parallel series of left-lateral faults and two right-lateral faults (the 81 

Red River and Sagaing faults) on both sides (Figure 1b). Explicitly, the book-like 82 

blocks rotate clockwise when the Red River and Sagaing faults slip dextrally. 83 

 In order to explain both the simultaneous extension and uplift of Tibet and the 84 

surrounding highlands, such as the Songpan-Ganzi Terrane in SE Tibet (Liang et al., 85 

2013), several researchers have emphasized the flow of the low viscosity lower crust 86 

as a channel, driven by Himalayan collision and the high-elevation topography of 87 
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Tibetan Plateau (Shen et al., 2005; Royden et al., 2008). In order to explain the 88 

northeastern and southeastern shunting of extrusion, the lower crustal flow is thought 89 

to be blocked by the strong Sichuan Basin (Clark and Royden, 2000; Cook & Royden, 90 

2007). A lower crustal Poiseuille flow which is faster than the surface velocity can 91 

explain the gentle slope of the topography across the Chuandian block but a steeper 92 

slope across the margin of the Sichuan Basin (Clark & Royden, 2000; Clark et al., 93 

2005; Burchfiel et al, 2008). Furthermore, from recent high-resolution seismic 94 

imaging (Yao et al., 2010; Bao et al., 2015), two low S-wave velocity zones (LVZs) 95 

are observed at depths from 10 km to 40 km, which are interpreted as two localized 96 

mid-lower crustal channel flows.  97 

In addition to the block extrusion model and the lower crustal flow model, an 98 

asthenospheric flow model has also been proposed to explain the clockwise rotation 99 

(Becker & Faccenna, 2011; Magni et al. 2014; Huang et al., 2015; Sternai et al., 2016). 100 

However, the perturbation of surface deformation of a smaller scale triggered by 101 

asthenospheric flow may be much less than that triggered by faulted shear zones or 102 

crustal flow, due to the greater depth of the asthenosphere and the possible decoupling 103 

of lithosphere and asthenosphere (~100-200 km; Bendick & Flesch, 2013; Flesch et 104 

al., 2018).   105 

High-accuracy long-term horizontal GPS data can be used as the constraint to 106 

evaluate the effects on the surface deformation pattern of either the fault network or 107 

the crustal flow. Several previous geodynamic models have been proposed to explain 108 

the velocity field in SE Tibet or across the whole of Tibet. The evolutionary models of 109 
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Tibet driven by the India-Eurasia convergence reproduce the clockwise rotation of the 110 

horizontal velocity field in SE Tibet (Cook & Royden, 2008; Yang & Liu, 2009; Chen 111 

& Gerya, 2016; Chen et al., 2017a). In order to obtain improved modeled velocity 112 

profiles for comparison with observed GPS data, geodynamic models for SE Tibet (Li 113 

et al., 2014; Zhu et al., 2016; Li et al., 2017b; Luo & Liu, 2018; Li et al., 2019b), or a 114 

larger region (Chen et al., 2016; Tunini et al., 2017; Bischoff & Flesch, 2018, 2019; 115 

Flesch et al., 2018) have been designed with imposed velocity boundary conditions. 116 

These models include one or more key factors, such as faults, weak lower crust, 117 

topographic gravitational energy, and block strength heterogeneities. In particular, Li 118 

et al. (2017b) regarded the lower crust as a viscous sheet for the entire region with an 119 

imposed fast velocity; however, this is contradicted by the localized LVZs revealed 120 

by seismic tomography (Bao et al., 2015). In addition, the model of Bischoff & Flesch 121 

(2018) includes the lower crustal flow in central Tibet constrained by seismic 122 

tomography, and it provides a better fit to the GPS velocity data, except for SE Tibet. 123 

Li et al. (2019b) suggested that gravitational spreading is the major cause of the 124 

horizontal velocity field, but the viscosity of the upper crust  used in their model is 125 

relatively low (~0.8-4×10
21

 Pa·s). Therefore, a high resolution model of SE Tibet with 126 

a more accurate structure of faults and LVZs is needed to determine a more precise 127 

mechanism for the observed deformation pattern.     128 

2. Model setup 129 

2.1. Geodynamic model  130 

 We used a 3D visco-elasto-plastic finite element model (Figure 2a; Moresi et al., 131 



manuscript submitted to JGR Solid Earth 

1996, 2003; Leng & Gurnis, 2011, 2015), including crustal and lithospheric 132 

heterogeneities, faults, and LVZs, to reproduce the instantaneous horizontal surface 133 

velocity and examine the effects of faulted shear zones and LVZs on that. The model 134 

solves the three conservative equations of mass, momentum and energy, with 135 

Boussinesq approximation and the infinite Prandtl number: 136 

𝑣𝑖,𝑖 = 0(1) 

−𝑝,𝑗𝛿𝑖𝑗 + 𝜏𝑖𝑗,𝑗 = 𝛥𝜌𝑔𝛿𝑖3(2) 

𝜌𝐶𝑝(�̇� + 𝑣𝑖𝑇,𝑖) = (𝑘𝑇,𝑖),𝑖
(3) 

Here, 𝑣𝑖 , 𝑝, 𝜏𝑖𝑗 , 𝛥𝜌, 𝑔, 𝜌, 𝐶𝑝, 𝑇, 𝑘, and 𝛿𝑖𝑗 are respectively the velocity vector, pressure, 137 

deviatoric stress tensor, density anomaly, gravitational acceleration, density, specific 138 

heat capacity at constant pressure, temperature, thermal conductivity, and the 139 

Kronecker function. For simulation of viscoelastic deformation, we considered the 140 

crust and mantle as a Maxwell fluid, as follows:  141 

휀̇𝑖𝑗 =
1

2𝐺
�̇�𝑖𝑗 +

1

2𝜂
𝜏𝑖𝑗(4) 

where 휀̇, �̇�, 𝜏, 𝐺, and 𝜂 are respectively the tensors of strain rate, stress rate, stress, 142 

shear modulus, dynamic viscosity, and i, j represent spatial indices.  143 

 We used a power law relation to describe the temperature-dependent viscosity of 144 

the lithosphere (Karato & Wu, 1993), as follows:  145 

𝜂 = 𝜂0 (
휀̇𝐼𝐼
휀̇0
)
(
1
𝑛
−1)

𝑒𝑥𝑝 (
𝐸

𝑛𝑅
(
1

𝑇
−

1

𝑇0
)) (5) 

where 𝜂0, 휀̇𝐼𝐼, 휀̇0, n, E, R, T, and 𝑇0 are respectively the reference viscosity, second 146 

invariant of the deviatoric strain rate tensor, reference strain rate, strain exponent, 147 

activation energy, gas constant, and absolute and reference temperatures (Table 1). 148 

For diffusion creep within the asthenosphere (Karato, 2010), we used a constant 149 
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viscosity of 10
19

 Pa·s. In addition, the transition from viscous creep to failure can be 150 

reproduced by strain weakening effects. The strain weakening and strain-rate 151 

weakening effect (non-Newtonian creep) both lubricate the shear zones (Tackley, 152 

2000), and may promote the change of deformation from a brittle to ductile style 153 

within the fault zone (Niemeijer et al., 2010). In our model, the effect of plastic strain 154 

weakening was incorporated by decreasing the yielding stress with the accumulation 155 

of plastic strain (Poliakov & Buck, 1998; Leng & Gurnis, 2011, 2015), as follows: 156 

𝜏𝑓 = 𝜇𝑃 + 𝐶(6) 

𝜇 = 𝜇0 − 𝜇0𝑚𝑖𝑛 (1,
휀𝑝
휀𝑓
) (7) 

𝐶 = 𝐶0 − (𝐶0 − 𝐶𝑓)𝑚𝑖𝑛 (1,
휀𝑝
휀𝑓
) (8) 

Here, 𝜏𝑓, 𝑃, 𝜇, 𝜇0, 휀𝑝, 휀𝑓, 𝐶0, 𝐶𝑓, and 𝐶 are respectively the yield stress, pressure, 157 

coefficient of friction, initial coefficient of friction, accumulated plastic strain, 158 

reference plastic strain, initial cohesion, minimum cohesion, and cohesion (Table 1). 159 

 Different rheology profiles were set for the faulted shear zones and continental 160 

lithosphere with or without a weaker mid-lower crust (Figure 2b). The strength profile 161 

of the lithosphere without LVZs follows the crème‐brûlée model (Kohlstedt et al., 162 

1995), and the initial frictional coefficient, initial and minimum cohesion of friction 163 

(𝜇0, 𝐶0, and 𝐶𝑓) were set to 0.5, 40 MPa and 0.6 MPa, respectively (Table 1). For the 164 

strength profile of the faulted shear zones, only the yield stress was changed (𝜇0, 𝐶0 165 

and 𝐶𝑓 were set to 0.001, 4 MPa and 0.6 MPa, respectively), suggesting a pre-existing 166 

fracture zone, or the occurrence of fluid, partial melting or weak minerals within the 167 

fault zone (Collettini et al., 2009; Niemeijer et al., 2010; Carpenter et al., 2011; 168 

Lockner et al., 2011; Gao & Wang, 2014). Notably, the variation of viscosity with 169 
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depth for faulted shear zones is still temperature- and stress-dependent and therefore it 170 

varies between faults. The strength profile for the lithosphere with LVZs follows the 171 

jelly sandwich model (Kohlstedt et al., 1995), with a lower constant viscosity for the 172 

LVZ (Figure 2b).  173 

 The 3D Cartesian model (Figure 2a; Table 1) covers the area of the rectangle 174 

shown in Figure 3a by transverse Mercator mapping. We used 120×82×28 elements 175 

with 108 particles initially deployed in each element for tracking the material 176 

properties and strain history (Leng & Gurnis, 2011, 2015). Vertically, it is divided 177 

into four layers: a sticky air layer of 20 km, crust layer, mantle lithosphere, and 178 

asthenosphere layer down to the depth of 282 km. The density of the crust and mantle 179 

was set to 2.7 g/cm
3 

and 3.3 g/cm
3
, respectively. The initial thermal structure is 180 

controlled mainly by lithosphere thickness, as a linearized distribution of temperature 181 

varying with depth within the lithosphere, and a constant temperature for the 182 

asthenosphere.  183 

 The high topography of Songpan-Ganzi terrane can be reproduced by including 184 

different depths of Moho and LAB (see section 2.2.1 for the details) and the sticky air 185 

layer after the model reaches isostacy. Therefore, the lithospheric deformation can be 186 

driven by the gravitational potential energy. 187 

 Since the tectonic force of continental plates is derived from within the 188 

lithosphere rather than from the asthenosphere, we applied driving forces in the model 189 

via imposed lateral boundary velocities in the lithosphere (see section 2.2.2 for an 190 

explanation of how we obtained the imposed lateral boundary velocities from GPS 191 
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data). The boundary condition of horizontal velocities was applied to lithospheric 192 

sections on the four lateral walls of the box, which are constant with depth due to the 193 

large viscosity of the lithosphere. Free-slip boundary conditions were used at 194 

asthenospheric sections.  195 

2.2. Input data from observations 196 

2.2.1. Crustal and lithospheric thickness 197 

 The Moho depth map used in our model is from Yang et al. (2020) (Figure 2c). 198 

And the lithospheric thickness is from Litho 1.0 (Figure 2d; Pasyanos et al., 2014), 199 

which were obtained by iterating to fit the surface wave dispersion curves; it is well 200 

correlated with the distribution of elastic thickness (Audet & Bürgmann, 2011). 201 

2.2.2. GPS data  202 

 396 interseismic GPS data from SE Tibet (black arrows in the rectangle in Figure 203 

3a; Zheng et al., 2017) for 1991 to 2015 were used as the observed surface velocities 204 

and were compared with the modeled surface velocities. Furthermore, the laterally 205 

imposed velocity boundary condition in the lithosphere is a key factor influencing the 206 

surface deformation pattern. Previous geodynamic models typically interpolated the 207 

GPS data to predefined meshes on the lateral boundaries; however, the GPS stations 208 

are sparsely distributed on the box boundaries (Figure 3a) which reduces the accuracy 209 

of the interpolation. Therefore, we computed the lateral boundary velocities based on 210 

the “Blocks” model (Meade & Loveless, 2009), by this method which considers more 211 

geological structural information. In this way, we first constructed a closed block and 212 

fault network (the thin black lines in Figure 3a) based on the fault system collected by 213 
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Taylor & Yin (2009) (purple lines in Figure 3b). We then used 2576 GPS data from 214 

Zheng et al. (2017) to invert for the rotating rate of each block and backslip rate of 215 

each fault. From these two sets of parameters, the lateral boundary velocities on the 216 

margin of the study area were calculated and are shown in Figure 3b.  217 

2.2.3. Faults  218 

 Our fault model for SE Tibet was constructed based on fault traces, earthquake 219 

locations, and focal mechanisms (Figure 4a, 4b and 4c). Active faults in the Holocene 220 

were compiled as a combination of several studies (Zhang et al., 2003; Taylor & Yin, 221 

2009; Wu et al., 2018; Shi et al., 2018), and earthquake locations were used to 222 

supplement the recognition of fault traces. Several faults with changes in strike were 223 

simplified with segmented straight lines.  224 

 The dip angle of faults was inferred from seismic reflection profiles (Li et al., 225 

2010) and the focal mechanisms of recorded earthquakes occurring on the faults. 226 

Records of focal mechanisms were collected from the Global CMT 227 

(https://www.globalcmt.org; Ekström et al., 2012) and the China Earthquake Data 228 

Center (http://data.earthquake.cn; Figure 4a), for 1966 to 2017. For each segment of a 229 

fault, the dip angle was represented by the average rupture plane of adjacent 230 

earthquake (distance < 20 km) and nearly parallel to the fault strike direction 231 

(intersecting angle < 30).     232 

 The fault locking depth was calculated following the method for determining the 233 

seismogenic zone (Smith‐Konter et al., 2011), which includes 95% of the total 234 

earthquakes nearby (< 5 km), defining the boundary of seismic and aseismic zones. 235 
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Earthquake logs (Figure 4b) were downloaded from IRIS (http://ds.iris.edu/wilber3/, 236 

from 1968 to 2018, with magnitude > 4) and the China Earthquake Data Center 237 

(http://data.earthquake.cn, from 1968 to 2019, with magnitude > 2).  238 

 We used a finite-thickness weak zone to simulate the faulted shear zone, 239 

following the examples of Hearn et al. (2002; 2009) and Johnson & Segall (2004). 240 

Our fault model consists of a thin faulted shear zone of 11 km thickness above the 241 

locking depth, and a thicker shear zone from the locking depth to the Moho, 242 

representing the plastic creeping zone (Figure 4d). With regard to the upper part of the 243 

faulted shear zone (i.e. above the locking depth), we set the dip angle as discussed 244 

above; for the lower part (i.e. beneath the locking depth), we assumed that the dip 245 

angle equals 90(Figure 4d).   246 

2.2.4. Tomography of the LVZs 247 

 Numerous studies of the seismic tomography of the crust and mantle structure in 248 

SE Tibet have been conducted over the last decade, using different inversion methods 249 

such as P waves (Wei et al., 2013; Yang et al., 2014; Huang et al., 2018), surface 250 

waves (Chen et al., 2014; Wang et al., 2014; Bao et al., 2015; Wu et al., 2016; Shen et 251 

al., 2016), and full waveforms (Chen et al., 2017b; Tao et al., 2018). With the 252 

improved resolution of seismic imaging, two LVZs of both P and S waves in the crust 253 

are illustrated in all models, although there are differences in detail between different 254 

models. In general, one LVZ spreads from the Songpang-Ganzi Terrane, across the 255 

Lijiang and Dali basins, to Western Yunnan; and the other extends along the 256 

Xiaojiang fault and across the Red River fault to the Simao Terrane (Figure 5). These 257 



manuscript submitted to JGR Solid Earth 

two LVZs are spatially divided by the inner core of the Emeishan large igneous 258 

province in Panzhihua-Xichang region (Chen et al., 2015).                      259 

 Considering scale and resolution, we chose two models of S-wave tomography 260 

for application in the study: Tao_2018 by full waveform inversion (Tao et al., 2018, 261 

Figure 5a), and Shen_2016 by ambient noise inversion (Shen et al., 2016, Figure 5b). 262 

The shapes of LVZs were contoured according to S-wave velocity anomalies. For 263 

each depth, if the S-wave velocity anomaly was lower than a threshold, as 𝑑𝑉𝑠 𝑉𝑠⁄ <264 

−𝑟 ∗ 𝜎, where r and 𝜎 are the ratio and standard deviation of velocity anomaly, it was 265 

defined as an LVZ (Figure 5c and 5d). In addition, the low S-wave velocity layer 266 

from 0 to 10 km provides information about the sediment layer within the Sichuan 267 

Basin and therefore it was excluded from the model. Geophysical observations show 268 

that these LVZs are characterized by low electrical resistivity (Bai et al., 2010), high 269 

attenuation (Zhao et al., 2013), high Poisson’s ratio (Chen et al., 2013; Sun et al., 270 

2014; Tao et al., 2018), and high heat flow (Hu et al., 2000). Low S-wave velocity 271 

and a higher Poisson’s ratio may indicate the presence of partial melting and the 272 

reduction of viscosity (Takei, 2002; Brantut & David, 2018), and therefore in the 273 

model we used the prescription that LVZs had a uniform lower viscosity, which was 274 

later optimized in the modeling.  275 

3. Results 276 

3.1. Impacts of faults and LVZs on surface deformation 277 

 Both faulted shear zones and LVZs are regarded as “defects” in continents. The 278 

strain resulting from screw dislocation of the planar “defect” is proportional to 1/r
3
, 279 
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where r is the distance from the “defect” to the observation location (Savage & 280 

Burford, 1973; Okada, 1985; Landau & Lifshitz, 1986); therefore, we infer that the 281 

impacts of faults and LVZs are limited to the area surrounding them. After applying 282 

the velocity boundary conditions and gravitational potential energy, these “defects” 283 

can be detected in GPS measurements by examining the residual velocity, which is 284 

equal to the modeled velocity minus the observed velocity. We attempted to minimize 285 

the residual velocity by testing scenarios of various geological settings in the 286 

modeling, and the parameterizations with the best degree of fit were considered to be 287 

estimates of the properties of the underground structure.  288 

 The residual velocity fields were computed when the model reached topographic 289 

isostacy after stress relaxation. The distributions of the values of the root mean square 290 

(RMS) of the residual velocity in five models are illustrated in Figure 6 and their 291 

settings are specified in Table 2. In Figure 6a, the reference case (case_ref) without 292 

faults and LVZs was unable to produce sufficient clockwise rotation at the Chuandian, 293 

Western Yunnan and Simao Blocks, and there were relatively large residual velocities 294 

across the entire area. When only faults were included into the model (case_fault, 295 

Figure 6b), the residual velocities decreased significantly, but there were still some 296 

areas with relatively large residual velocities. It is interesting to note that the 297 

distribution of large residual velocities is similar to the distribution of two LVZs 298 

(Ganzi, Lijiang, and Tengchong; Kunming, Chuxiong, and Simao). On the other hand, 299 

when only LVZs with a viscosity of 10
20

 Pa·s were included into the model 300 

(case_LVZs, Figure 6c), the remaining part with large velocity misfits occurred along 301 
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the Xianshuihe-Xiaojiang fault and Lijiang-Xiaojinhe fault, which are two active 302 

shear zones with large slip rates. When both faults and LVZs were included in the 303 

model, two cases (case_both1 and case_both2) where the LVZs are respectively 304 

constrained by two different tomography models (Tao_2018 and Shen_2016 in Table 305 

2) provide better fits of the surface motion in most locations (Figure 6d and 6e). The 306 

results clearly demonstrate that faulted shear zones and localized LVZs are the two 307 

most important factors, which jointly influence the velocity field in SE Tibet. Notably, 308 

the model with only one factor exhibits poor GPS fitting at the location of the other 309 

(Figure 6b and 6c). 310 

3.2. Estimating the structure and rheology of faults and LVZs  311 

 We tried to provide a rough estimate of the thickness of the lower faulted zones, 312 

using the model of faulted shear zones described above (section 2.2.3; Figure 4d). 313 

Seismic and magnetotelluric data across the faults show that there are related weak 314 

zones below the surface, but the thickness of these lower faulted zones are not well 315 

constrained due to the low resolution and smearing effects of tomographic maps (Li et 316 

al, 2019a; Yang & Duan, 2019). In case_fault (Table 2), when the thickness of the 317 

lower faulted zone was increased from 11 km to 45 km, the RMS of the residual 318 

velocity decreased rapidly at first, and then more slowly when the thickness of the 319 

lower faulted zone reached ~22 km (Figure 7a). Therefore we estimate that the 320 

thickness of the lower part of the faulted shear zone may be around 22 km for our 321 

model, which reproduced the observed surface ground motion. Admittedly, There is 322 

trade-off between the rheology and the thickness of faulted shear zones, and the yield 323 
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stress is not well constrained. Thus, this estimation may not indicate the actual 324 

thickness of faulted shear zones. 325 

 In a similar way, we estimated the size and viscosity of LVZs, since they are 326 

important to understand how the mid-lower crust deforms in response to tectonic 327 

forces. Specifically, whether the LVZs (Figure 5a and 5b) are connected to each other 328 

is greatly debated, due to the small-scale differences between the seismic tomography 329 

results for SE Tibet (Wei et al., 2013; Bao et al., 2015; Shen et al., 2016; Huang et al., 330 

2018).  331 

 In case_both1 and case_both2, we first fixed the viscosity of the LVZs to 10
20

 332 

Pa·s and adjusted their size by changing the ratio r (defined in section 2.2.4). In 333 

Figure 7b, the RMS of the residual velocity reaches a minimum value with the 334 

volume of ~1.4-1.6×10
7
 km

3
. The resulting best fit models for Tao_2018 and 335 

Shen_2016 are illustrated in Figure 5c and 5d, respectively. The RMS became very 336 

large, as the size increased, two LVZs merged into one and the connections were wide 337 

enough to conduct flow. Therefore, two LVZs are generally isolated, and it is unlikely 338 

for the northwestern LVZ to flow southeastward to the other LVZ. Both best-fitting 339 

results show a narrow connection between LVZs below the Chuxiong fault in the 340 

southwest, but there is no connection at the shallow part (~10-km depth) at Xichang 341 

in the northeast. Whether or not there is a connection in the lower part below Xichang 342 

remains unclear, due to the difference in these two tomography models. With the size 343 

of LVZs obtained in Figure 7b, the results of the RMS of the residual velocity versus 344 

viscosity are illustrated in Figure 7c. It can be observed that in order to obtain the 345 
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minimum residual velocity, the viscosity for the LVZs needs to be within the range of 346 

~10
20

-10
21

 Pa·s. 347 

3.3. Map of the strain rate 348 

 In order to analyze the local tectonic processes in SE Tibet, we chose the ideal 349 

model (case_both1, Figure 6d) and computed the first-order derivative of the velocity 350 

field in order to obtain maps of the strain rate tensor, maximum shear strain rate, 351 

extension strain rate, and vorticity (rotational strain rate) (Figure 8a, 8c, 9a and 9c, 352 

respectively). They are compared with the corresponding strain maps (Figure 8b, 8d, 353 

9b and 9d) which are smoothed by meshes of 0.2
o
 (latitudinal) by 0.25

o
 (longitudinal) 354 

from the observed GPS data (Kreemer et al., 2014; lacking for the Sichuan Basin). 355 

Essentially, our modeled strain rate maps successfully reproduced the observed 356 

deformation pattern. The magnitude and direction of the strain rates approximate the 357 

observed rates (Figure 8a and 8b), and the sense of strike-slip fault is consistent with 358 

geological observations (Figure 9c and 9d).   359 

 Based on the magnitude of the clockwise rotation, SE Tibet can be divided into 360 

three sub-regions (Figure 9c and 9d): (i)Northern Myanmar, the Sanjiang region, and 361 

Western Yunnan; (ii) the Songpan-Ganzi Terrane, Chuandian Block, and the Simao 362 

Terrane; (iii) the Sichuan Basin, South China, and the Sunda plate. The vorticity 363 

decreases from the interior to the outside, bounded by the Litang-Chenghai-Longling-364 

Ruili fault and the Xianshuihe-Xiaojiang fault. The clockwise rotation of regions (i) 365 

and (ii) is probably due to the east- to southeast-ward extrusion from Tibet, and the 366 

anti-clockwise rotation of region (iii) may be due to extension resulting from the 367 
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Sunda or Pacific subduction (Shen et al., 2005).   368 

 In the extension strain rate map (Figure 9a and 9b), the model reveals extension 369 

in the Chuandian block and compression in the Longmenshan region. It also 370 

demonstrates staggered grids of extension and compression along several active faults, 371 

such as the Xianshuihe-Xiaojiang fault, which possibly result from variable slip rate 372 

along the fault. Several localized extensional zones may explain the formation of 373 

basins such as the Tengchong, Dayingjiang and Ruili basins in Western Yunnan, 374 

Lijiang, Jianchuan, Eryuan, Binchuan, and the Chenghai basins around the diamond-375 

shaped Lijiang-Dali block, Zhongdian and Litang basins (green outlines; Fgiure 9a 376 

and 9b).  377 

 Distinct shear strain rates are evident along two chains of active faults in the 378 

model (Figure 8c) and they match the observations (Figure 8d). One is the arcuate 379 

Xianshuihe-Xiaojiang and Dien Bien Phu faults, and the other is the Lijiang-380 

Xiaojinhe, Longling-Ruili and Dayingjiang faults. In addition, in the Simao Basin, a 381 

“tail” of shear deformation is evident extending westward from the curved 382 

Xianshuihe-Xiaojiang fault (Figure 9c). Since no NE-trending faults coincide with the 383 

high shear strain zone, it is possibly caused by the underlying LVZ. 384 

 Admittedly, the modeled maps do not exactly match the observed maps, 385 

especially in terms of the magnitude of the maximum shear strain rate (Figure 8c). 386 

This may be attributed to the smearing problem during the interpolation of the still 387 

sparse GPS data (Figure 8d). For example, the modeled shear strain rates of the 388 

Longriba, Litang and Nantinghe faults are much higher than the observed rates from 389 
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GPS. However, the higher shear strain rates shown by the model appear to be 390 

compatible with geologic observations. For instance, the geological average slip rate 391 

of the Longriba fault is 7.5 mm/yr during the latest Pleistocene and 2.1 mm/yr in the 392 

Holocene (Ren et al., 2013); the slip rate on the Litang fault is 2.3 mm/yr during the 393 

last 173 kyr (Chevalier et al., 2016) and 4 mm/yr in the last 14 kyr (Xu et al., 2005); 394 

the Nantinghe fault slips is 4 mm/yr (Shi, 2014). 395 

4. Discussion 396 

 Compared with previous models which simulate continental deformation, our 397 

high-resolution model considers combined effects of different thicknesses of crust and 398 

lithosphere, temperature-dependent non-Newtonian rheology, a realistic 3D fault 399 

network, and tomography-based LVZs. Specifically, the heterogeneity of the strength 400 

of different blocks can be reproduced by different thicknesses and temperature-401 

dependent rheology. The boundary condition is applied to the entire lithosphere using 402 

horizontal velocities inverted from interseismic GPS data, and the isostatic 403 

topography can be produced with a sticky air layer in our model. Therefore, our 404 

lithosphere model is driven by both tectonic forces and topographic gravitational 405 

potential energy. Admittedly, the boundary and initial conditions are still over 406 

simplified; plus, the rheology, temperature, and density of the lithosphere are largely 407 

unclear; and the structure and depth of faulted shear zones at greater depths are not 408 

well constrained. Thus it was difficult to use the model to study the deformation of 409 

deeper structure in detail. Notably, a perfect fit of GPS data is impossible and 410 

therefore our intention is to study the major features in tectonics with the focus on the 411 
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factors controlling deformation.   412 

4.1. Block extrusion model vs. lower crust flow model 413 

     The two prevailing models of the geodynamics of SE Tibet, the rigid block 414 

extrusion model and the lower crustal flow model, both are able to explain parts of the 415 

history of regional tectonic evolution, together with geophysical observations. The 416 

rigid block extrusion model emphasizes localized strike-slip deformation along active 417 

faults and oblique convergence at the plateau margin, while the lower crustal flow 418 

model suggests more continuous deformation driven by viscous lower crustal flow. 419 

From our perspective, since the deformation in the upper crust is unarguably 420 

dominated by faults, the key point of the debate is, whether deformation of the lower 421 

crust is dominated by localized shear zones or by regionally distributed lower crustal 422 

flow. Since the LVZs and faulted shear zones can be observed by seismological and 423 

magnetotelluric tomography, accompanied by the GPS modeling in this study (section 424 

3.1; Figure 6), we argue that the rigid block extrusion model and lower crustal flow 425 

model may be both required for SE Tibet. 426 

4.1.1. Geodynamic implications: faults and LVZs 427 

 First, our interpretation is supported by several observations from the strain rate 428 

maps and tectonics. One proof is the NE-trending “tail” (Figure 9c) in the Simao 429 

Terrane, which might be the result of left-lateral shear deformation of the LVZ at 430 

depth extending from the Xiaojiang fault across the Red River fault. This indicates 431 

that deformation occurs in the mid-lower crust where no NE-trending faults have 432 

developed, and a similar example is the “tail” extending from the Lijiang-Xiaojinhe 433 
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fault at Baoshan. Second, our arguments are supported by the low slip rate and 434 

inactive seismicity at the Red River fault, but the higher slip rate and greater 435 

seismicity at the parallel Chuxiong fault (Figure 4b and 8d). This is probably because 436 

the connection between the two LVZs is localized beneath the Chuxiong fault (Figure 437 

5a and 5b), and because the right-lateral shear rate shifts from the Red River fault to 438 

the adjacent Chuxiong fault.    439 

 At a larger scale, two localized channel flows cause rapid southwestward motion: 440 

one is from Songpan-Ganzi Terrane, along the Lijiang-Xiaojinhe fault to Baoshan city; 441 

and the other is from the Xiaojiang fault to the Simao Terrane (Figure 6b and 9c). The 442 

existence of these two channel flows is also verified by the southwestern bulge of the 443 

Lancang River at Baoshan (Socquet & Pubellier, 2005) and the Red River, 444 

Babianjiang and Wuliangshan faults in the Simao Terrane (Schoenbohm et al., 2006). 445 

Due to these two LVZs branch from the arcuate Xianshuihe-Xiaojiang-Dien Bien Phu 446 

fault, the slip rate of these three faults decreases from north to south (~15, 10, 3 447 

mm/yr). In addition, the direction of flow motion is largely determined by the 448 

structure of the LVZs, since they are isolated by the bounding strong terranes. Due to 449 

the very limited connection between the two LVZs and the terminus of the LVZ at the 450 

boundary of the South China and Chuandian Blocks, the crustal flow migrates to the 451 

southwest but not to the southeast. 452 

4.1.2. The bookshelf model 453 

 The well-known bookshelf model in the Shan-Thai Plateau was previously 454 

described as a series of rotating parallel rectangular blocks confined by two right-455 
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lateral strike slip faults (the Red River and Sagaing faults) (Leloup et al., 1995; 456 

Lacassin et al., 1997, 1998; Tapponnier et al., 2001). However, this model cannot 457 

explain the absence of obvious northward motion of the blocks driven by the large 458 

slip rate of the Sagaing fault (~18 mm/yr; Maurin et al., 2010) and rather slow slip 459 

rate of the Red River fault (~1-2 mm/yr; Shen et al., 2005) (Figure 3a). Therefore, the 460 

left-lateral strike-slip faults in the bookshelf model may be driven by the paralleling 461 

shear from the northwestern LVZ on the northern margin (Tengchong). 462 

 The actual tectonic map may be more complex than the model. At the 463 

northeastern side of the Lancang-Mengzhe fault in the Simao Terrane, there are 464 

several NW-trending right-lateral faults, but few NE-trending, left-lateral faults 465 

(Figure 1b). This can be explained by localized deformation in the underlying LVZ 466 

(discussed in the section 4.1.1), which may transfer the localized left-lateral 467 

deformation along the Xiaojiang fault southwestward to the more distributed faults 468 

(Figure 9c and 9d).  469 

4.2. Revision on crustal flow: rheology and partial melting 470 

 The lower crustal layer in the crustal flow model is typically regarded as a 471 

widespread weak sheet in the jelly sandwich model. However, Jackson (2002) argued 472 

that the presence of the weak crustal layer can only be ascribed to additional partial 473 

melt or fluid. In addition, small-scale low anomalies in the seismic tomography of 474 

Tibetan crust are often thought to be the result of this type of chemical anomaly 475 

(Hacker et al., 2014). Therefore, an alternative means can be used to define the lower 476 

crustal flow: as the localized LVZs constrained by seismic tomography. In this 477 
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approach, the crustal flow is at a much shallower depth of the middle crust (~10-40 478 

km) and does not reach the Moho discontinuity. The absence of LVZs beneath the 479 

Sichuan Basin and Panzhihua-Xichang (Figure 5) may account for the large 480 

topographic relief at their northwestern periphery (Figure 1a; Clark et al., 2005). 481 

Therefore the localized LVZs blocked by the surrounding strong terranes may not 482 

flow as was once believed (Clark & Royden, 2000). They may be only able to migrate 483 

with the assistance of the relative motions of the blocks and the deformation in the 484 

faulted shear zones. 485 

 The viscosity of the mid-lower crustal flow is an important parameter that 486 

determines how the entire lithosphere deforms in response to gravitational loading 487 

and tectonic forces. Our estimation of viscosity (~10
20

-10
21

 Pa·s; section 3.2; Figure 488 

7c) suggested that LVZs may not be as weak as researchers once thought (Figure 10a; 489 

~10
18

 Pa·s, Clark & Royden, 2000). However, there are significant differences 490 

between the results obtained by different geodynamic models (Figure 10a; Clark & 491 

Royden, 2000; Flesch et al., 2001; Jiménez‐Munt & Platt, 2006; Zhang et al., 2009; 492 

Shao et al., 2011; Yin & Taylor, 2011; Zhu & Zhang, 2013; Huang et al., 2014; Xu et 493 

al., 2014; Shi et al., 2015; Xu et al., 2016; Diao et al., 2018; Bischoff & Flesch, 2018; 494 

Panda et al., 2019; Wang et al., 2019). It is worth noting that, the models may give 495 

larger values for viscosity with a smaller strain rate (larger timescale), from post-496 

seismic (decades), lake-shoreline rebound (thousands of years), to geodynamics 497 

(millions of years). Therefore, it suggests that mid-lower crust could be regarded as 498 

non-Newtonian fluid, and the deformation of that may be dominated by dislocation 499 
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creep. This rate-dependent rheology may be the major reason for the differences of 500 

viscosity estimations.  501 

 In order to know the current status of LVZs, we evaluated whether partial melting 502 

is required to explain the estimated viscosity in this study. First, the temperature 503 

profiles for the crust of the Sichuan Basin, Panzhihua-Xichang, Dali (northwestern 504 

LVZ), and Kunming (southeastern LVZ) were calculated as a two-layer model 505 

constrained by two sets of data, heat flow and thermal conductivity from the 506 

International Heat Flow Commission (IHFC; http://www.ihfc-507 

iugg.org/products/global-heat-flow-database; Wang & Huang, 1987; Hu et al., 2000; 508 

Wang, 2001), and were constrained by the depth of the Curie surface as well (Figure 509 

10b; Hemant & Mitchell, 2009; Gao et al., 2015). As seen in Figure 10b, the 510 

temperature for dehydration melting is reached for the middle crust of LVZs.  511 

 Second, the viscosity profiles for wet quartzite, wet feldspar and partially molten 512 

wet granite were illustrated in Figure 10c according to the temperature profiles of two 513 

LVZs (Hirth et al., 2001; Rutter & Brodie, 2004; Rutter et al., 2006; Rybacki et al., 514 

2006; Bürgmann & Dresen, 2008). Thus the viscosity of the mid-lower crust beneath 515 

wet solidus is too low to be explained by structural water and is likely to be partially 516 

molten.  517 

 In addition, partial melting is needed to explain the low electrical resistivity of the 518 

LVZs (~3-10 Ω·m; Bai et al., 2010; Rippe & Unsworth, 2010; Zhao et al., 2012; 519 

Dong et al., 2016; Cheng et al., 2019; Li et al., 2019a; Xue et al., 2019; Zhao et al., 520 

2019), based on the measurements of hydrous peraluminous granitic melt (Guo et al., 521 
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2018). The high Poisson’s ratio of the LVZs (Li et al., 2017a; Deng et al., 2018; Tao 522 

et al., 2018) indicates partial melting as well (Takei, 2002; Brantut & David, 2018). In 523 

conclusion, the LVZs in the mid-lower crust are partially molten, which possibly 524 

results from both the high temperature and dehydration of hydrous minerals.   525 

5. Conclusions  526 

 We presented a 3D geodynamic model of Chuandian region to reproduce the 527 

instantaneous horizontal surface velocity driven by tectonic forces and topographic 528 

gravitational energy. The detailed GPS velocity pattern may represent a joint 529 

contribution from both faulted shear zones and two localized LVZs. This result may 530 

indicate that the block extrusion model and lower crustal flow model are not mutually 531 

exclusive and both required for explaining the SE Tibetan tectonics. We provided 532 

additional constraints on the size and viscosity of tomography-based LVZs. These 533 

results suggest that weak LVZs are bounded by surrounding strong terranes, flow 534 

southwestward and possibly contribute to the clockwise movement of upper crust. 535 

The strain rate maps from the best-fit model could give some clues into complex 536 

deformation of strike-slip faults and extensional basins in SE Tibet. In addition, the 537 

estimation of the viscosity of LVZs (10
20

-10
21

 Pa·s) suggests that rocks are probably 538 

partially molten, due to the high temperature and dehydration. 539 
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 1059 

Figure 1. (a) Topography (ETOPO5, National Geophysical Data Center, 1993) of SE 1060 

Tibet, with the cities by the black dots and the volcano indicated by the red 1061 

triangle. (b) Faults and blocks in southeastern Tibet. The purple lines indicate the 1062 

map of geological fault segments (Zhang et al., 2003; Taylor & Yin, 2009; Wu et 1063 

al., 2018; Shi et al., 2018) and basins (green shading, provided by the Earth 1064 

Observation from Space Data Sub-center, http://data.cea-ies.ac.cn). The name 1065 

and Abbreviations are listed below. ANHf—Anninghe fault; BBJf—Babianjiang 1066 

fault; BTf—Batang fault; CHf—Chenghai fault; CXf—Chuxiong fault; DBPf—1067 

Dien Bien Phu fault; DLSf—Daliangshan fault; DYJf—Dayingjiang fault; 1068 

DZf—Deqing-Zhongdian fault; EEf—Erhai-Eryuan fault; JGf—Jinggu fault; 1069 

JHf—Jinghong fault; JSJf—Jinshajiang fault; LRBf—Longriba fault; LCMZf—1070 
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Lancang-Mengzhe fault; LRf—Longling-Ruili fault; LTf—Litang fault; LZJf—1071 

Lvzhijiang fault; MNf—Manao fault; MXf—Mengxing fault; NJf—Nujiang 1072 

fault; NMf—Nam Ma fault; NTHf—Nantinghe fault; PGf—Pengguan fault; 1073 

RRf—Red River fault; WDf—Wanding fault; WLSf—Wuliangshan fault; 1074 

WMf—Wenchuan-Maowen fault; WQf—Weixi-Qiaohou fault; XJf—Xiaojiang 1075 

fault; XLf—Xiaojinhe-Lijiang fault; XSHf—Xianshuihe fault; YBf—Yingxiu-1076 

Beichuan fault; YLXf—Yulongxi fault. 1077 

 1078 
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Figure 2. (a) The geodynamic model of SE Tibet with faulted shear zones (red), 1079 

Moho (yellow), LAB (green), and imposed velocity boundary conditions at the 1080 

surrounding margin of the entire lithosphere (blue). Axis x: south; axis y: east; 1081 

axis z: upwards. (b) Sketches of strength vs. depth. The blue solid line shows the 1082 

profile for areas without faulted shear zone or an LVZ layer; the red dashed-1083 

dotted line shows the profile for areas with faulted shear zones down to the 1084 

Moho; the green dashed line shows the profile for areas with an extra LVZ layer 1085 

from 15 km to 35 km, with a viscosity of 10
20

 Pa·s. The Moho depth is set to be 1086 

40 km; the frictional coefficient, initial cohesion of friction, µ and C0, are set to 1087 

0.5 and 40 MPa, respectively. The other parameters for rheology are listed in 1088 

Table 1. For all depths, the reference strain rate is constant at 10
-15

 s
-1

. (c) Moho 1089 

depth, from Yang et al. (2020). (d) Lithosphere thickness, from Litho 1.0 1090 

(Pasyanos et al., 2014). 1091 
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 1092 

Figure 3. (a) Interseismic (25 years) GPS data (black vectors), from Zheng et al. 1093 

(2017), in the reference frame of stable Eurasian Plate. The black rectangle 1094 

indicates the study area. (b) The lateral velocity boundary conditions used in the 1095 

model, which are computed based on the Blocks model of Meade & Loveless 1096 

(2009), in which we used a fault-block network (thin solid black lines in a) based 1097 

on the fault traces from Taylor & Yin (2009) (purple lines in b).  1098 
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 1099 

Figure 4. (a) Map of the focal mechanism in SE Tibet from the China Earthquake 1100 

Data Center, from 1966 to 2015, which was used to estimate the dip angle of the 1101 

adjacent faults. The magnitudes and depth ranges of earthquakes are given in the 1102 

legend. (b) Map of earthquake locations from IRIS (http://ds.iris.edu/wilber3/), 1103 

from 1968 to 2018, with magnitude > 4. The magnitude and depth are scaled in 1104 

the colored map and legend. (c) 3D fault model (upper part only) in SE Tibet 1105 



manuscript submitted to JGR Solid Earth 

used in this study, constrained by earthquake locations, focal mechanisms, and 1106 

geological studies of faults, with strike, dip angle, and locking depth (scaled by 1107 

the colored map). The selected faults were all active in the Holocene. (d) Sketch 1108 

of the structure of the faulted shear zone. The upper part of faulted shear zone 1109 

has a thickness of 11 km and 𝜃 represents the dip angle; a thicker faulted shear 1110 

zone is shown from the locking depth to Moho depth. 1111 

 1112 

Figure 5. S-wave tomography at the depth of 15 km, from Tao et al. (2018) (a) and 1113 
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Shen et al. (2016) (b). 3D illustration of crustal LVZs outlined, based on Tao et 1114 

al. (2018) (c) and Shen et al. (2016) (d). The shallow part (~0-10 km) of the low 1115 

S-wave velocity zone in the Sichuan Basin is the sediment layer and was 1116 

removed in our geodynamic model.   1117 

 1118 

Figure 6. Maps of the distribution of the RMS (root mean square) of residual 1119 

velocities in SE Tibet resulting from the five models in Table 2. For each GPS 1120 



manuscript submitted to JGR Solid Earth 

station, the residual velocity (yellow arrows) equals the modeled velocity minus 1121 

the observed velocity. The distribution of the scale of residual velocity is 1122 

smoothed, mapped, and colored for each figure. (a) Model without faults and 1123 

LVZs (case_ref); the RMS of the residual velocity is ~4.3 mm/yr. (b) Model 1124 

with faults (case_fault); the RMS of the residual velocity is ~3.1 mm/yr. The 1125 

area with anomalous velocities in (b) coincides with the approximate regime of 1126 

the LVZs from seismic tomography. (c) Model with LVZs only (case_LVZs); 1127 

the RMS of the residual velocity is ~3.2 mm/yr. The area with anomalous 1128 

velocities in (c) coincides with the area of the Xianshuihe-Xiaojiang fault (XSHf 1129 

and XJf) and the Xiaojinhe-Lijiang fault (XLf), which have large slip rates. (d) 1130 

Model with both faults and LVZs (case_both1) based on Tao et al. (2018); the 1131 

RMS of the residual velocity is ~2.5 mm/yr. (e) Model with both faults and 1132 

LVZs (case_both2) based on Shen et al. (2016); the RMS of the residual velocity 1133 

is ~2.5 mm/yr. 1134 
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 1135 

Figure 7. (a) RMS of residual velocity vs. the thickness of the lower faulted shear 1136 

zones for case_fault. (b) RMS of the residual velocity vs. the volume of LVZs 1137 

for case_both1 (Tao et al., 2018) and case_both2 (Shen et al., 2016). (c) RMS of 1138 

residual velocity vs. viscosity of LVZs for case_both1 and case_both2. 1139 



manuscript submitted to JGR Solid Earth 

 1140 
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Figure 8. Distributions of the strain rate tensor (a) and maximum shear strain rate (c) 1141 

for case_both1 with faults and LVZs; maps of strain rate tensor (b) and 1142 

maximum shear strain rate (d) calculated from smoothed observed GPS data for 1143 

SE Tibet (Kreemer et al., 2014). In (a) and (b), red represents extensional and 1144 

green represents compressional strain rate. In (c) and (d),  CXf—Chuxiong fault; 1145 

DYJf—Dayingjiang fault; LRf—Longling-Ruili fault; LRBf—Longriba fault; 1146 

LTf—Litang fault; NTHf—Nantinghe fault; RRf—Red River fault; XLf—1147 

Xiaojinhe-Lijiang fault; XJf—Xiaojiang fault;  XSHf—Xianshuihe fault. 1148 
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manuscript submitted to JGR Solid Earth 

Figure 9. Distribution of expansion strain rate (a) and vorticity (c) for case_both1 1150 

with faults and LVZs; maps of expansion strain rate (b) and vorticity (d) 1151 

calculated from smoothed observed GPS data for SE Tibet (Kreemer et al., 2014). 1152 

In (a) and (b), most basins (green outlines; available through http://data.cea-1153 

ies.ac.cn) are under an extensional environment except for the Sichuan Basin 1154 

(expansion: red, compression: blue). In (c) and (d), the strike-slip senses of all 1155 

faults agree with geological records (Clockwise/right lateral: red, anti-1156 

clockwise/left lateral: blue). Two channel flows occur in the LVZs, the directions 1157 

of which are represented by black arrows. BBJf—Babianjiang fault; CHf—1158 

Chenghai fault; DBPf—Dien Bien Phu fault; DZf—Deqing-Zhongdian fault; 1159 

DYJf—Dayingjiang fault; LCMZf—Lancang-Mengzhe fault; LRf—Longling-1160 

Ruili fault; LRBf—Longriba fault; LTf—Litang fault; NTHf—Nantinghe fault; 1161 

RRf—Red River fault; WLSf—Wuliangshan fault; XLf—Xiaojinhe-Lijiang fault; 1162 

XJf—Xiaojiang fault; XSHf—Xianshuihe fault. 1163 
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Figure 10. (a) Viscosity of mid-lower crust (gray) or entire lithosphere (yellow) in SE 1165 

Tibet constrained by previous geodynamic modeling over different timescales 1166 

(based on Huang et al. (2014) and Panda et al. (2019)). Postseismic: a-Shao et al. 1167 

(2011); b-Huang et al. (2014); c-Xu et al. (2014); d-Wang et al. (2019); e-Diao et 1168 

al. (2018); f-Zhang et al. (2009); Earthquake cycle: g-Zhu & Zhang (2013); 1169 

Lake-shoreline rebound: h-Shi et al. (2015); i-England et al. (2013); Geodynamic: 1170 

j-Yin & Taylor (2011); k-Flesch et al. (2001); l-Panda et al. (2019); m-Bischoff 1171 

& Flesch (2018); Topographic: n-Jiménez‐Munt & Platt (2006); o-Clark & 1172 

Royden (2000) and Xu et al. (2016). (b) Temperature profiles for the area with 1173 

LVZs (Kunming and Dali) and without LVZs (the Sichuan Basin and Panzhihua-1174 

Xichang). Squares indicate the depth of the Curie surface (Gao et al., 2015). Thin 1175 

light blue and black lines represent curves of wet granite solidus and ultrahigh 1176 

temperature metamorphism, respectively. (c) Viscosity profiles based on the 1177 

temperature of two LVZs from the temperature profiles (b), of wet quartzite 1178 

(deep blue/wet quartz 1: Hirth et al., 2001; light blue/wet quartz 2: Rutter & 1179 

Brodie, 2004), wet feldspar (yellow: Rybacki et al., 2006), and partially molten 1180 

wet granite (Rutter et al., 2006) with a melt fraction of 10wt% (orange) and 25wt% 1181 

(pink). Nonlinear flow laws are used and the reference strain rate is 1×10
-15

 s
-1

. 1182 

 1183 

 1184 

 1185 

 1186 
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Table 1. Constants used in the model. 1187 

X length 1294 km 

Y width 884 km 

Z depth 302 km 

Dair air layer thickness 20 km 

G shear modulus 3×10
10

 Pa 

Ra Rayleigh number 5×10
7
 

α thermal expansion coefficient 3×10
-5

 K
-1

 

η0 reference mantle viscosity 1×10
19

 Pa·s 

𝜅0 reference thermal diffusivity 1×10
-6  

W/m·K 

C0 initial plastic yield stress  40 MPa 

Cf minimum plastic yield stress 0.6 MPa 

휀𝑓 reference plastic strain 0.3 

T0 reference temperature 1500 K 

R gas constant 8.31 J·K
-1

 mol
-1

 

E activation energy 540 kJ/mol 

μ coefficient of friction 0.5 

n strain exponent 3.5 

휀̇0 reference strain rate 1×10
-15

 s
-1

 

 1188 

Table 2. Cases in Figure 6 and parameters used in these cases. 1189 

Name Fault 

included 

LVZs 

included 

LVZs 

model  

thickness of 

weak zone 

below the  

fault (km) 

Ratio r 

of LVZs 

Viscosity 

of LVZs 

(Pa·s) 

RMS of 

residual 

velocity 

(mm/yr) 

case_ref no no     ~4.3 

case_fault yes no  22   ~3.1 

case_LVZs no yes Tao_2018  0.7 10
20 

~3.2 

case_both1 yes yes Tao_2018 22 0.7 10
20

 ~2.5 

case_both2 yes yes Shen_2016 22 0.4 10
20

 ~2.5 

 1190 


