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Abstract

The well recognized constraint of non-linear and non-Gaussian distribution of rainfall observation limits its assimilation in

the high-dimensional numerical weather prediction (NWP) model. In this study, rain-gauges’ observed rainfall from Indian

Meteorological Department (IMD) over Indian landmass is assimilated in the Weather Research and Forecasting (WRF) model

using particle filter. In the framework of imperfect weather model, particles (or ensembles) for rainfall predictions are created

with various combinations of model physics (viz. cumulus parameterization, micro-physics, planetary boundary layer schemes).

With the help of IMD observed rainfall, weights are provided to various particles using multiple hypotheses, and this is the step

in which IMD rainfall observations are used for assimilation. Further, a resampling step is performed to generate new particle

from high weight particle using stochastic kinetic-energy backscatter scheme (SKEBS) method in which dynamical variables

are perturbed into the model physics. Results based on rainfall verification scores suggest that assimilation of the rain-gauges

observed rainfall using particle filter improved prediction of rainfall over CNT runs (unweighted particle; without assimilation).

Moreover, surface and vertical profile of temperature, water vapour mixing ratio (WVMR) and wind speed are also improved

in 24 h forecasts.
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1. Introduction 26 

 Accurate rainfall prediction from the numerical weather prediction (NWP) model is 27 

one of the most challenging concerns for weather modelling society. The rainfall assimilation 28 

has large impact on weather forecast mainly over tropics, in which moist convection plays a 29 

prominent role, and links directly or indirectly to humidity, cloud cover, latent heating, and 30 

the divergent component of the large-scale circulation (Marecal and Mahfouf, 2003; 31 

Hou.et.al, 2004). Various efforts have been attempted to assimilate rainfall information in the 32 

NWP model using nudging method, variational assimilation and Kalman filter in last decades 33 

(Kumar et al., 2014; Kumar and Varma, 2016; Kumar and Kishtawal, 2017 and references 34 

therein). It is well studied that assimilation of satellite derived rainfall in the NWP model 35 

helps to improve the analyses and subsequent short range weather forecasts (Donner, 1988; 36 

Krishnamurti et al., 1984, 1991, 1993; Heckley et al., 1990; Puri and Miller, 1990; Mathur et 37 

al., 1992; Kasahara et al., 1994; Manobianco et al., 1994; Van Tuyl, 1996; Peng and Chang, 38 

1996; Treadon, 1996;  Tsuyuki, 1997; Benedetti et al., 2005; Bauer et al., 2011; Lopez, 2011; 39 

Kumar and Varma, 2016; Kumar et al., 2014; Kumar and Kishtawal, 2017; Lien et al., 2013, 40 

2016a,b). Kumar and Varma (2016) found that assimilation of satellite retrieved rainfall in 41 

the NWP model improved the forecast for unprecedented heavy rainfall, which is not able to 42 

predict from operational centres. Moreover, Kumar and Kishtawal (2017) showed that 43 

variational assimilation of both rain and no-rain information from satellite has positive impact 44 

on short range weather forecasts. 45 

 46 

Errico et al. (2007) suggested that rainfall assimilation is more complex problem compared to 47 

assimilation of conventional or clear-sky satellite radiance. Due to non-linear and non-48 

Gaussian characteristics of rainfall, still assimilation of rainfall in the NWP model is a 49 

challenging problem. Few studies (Bauer et al., 2011; Kumar and Varma, 2016; Kotsuki et 50 
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al., 2017) are mentioned common difficulties in the rainfall assimilation mainly due to the 51 

strong nonlinearity of moist process and non-Gaussian characteristics of precipitation. Most 52 

of the previous studies based on variational method and ensemble Kalman filter (EnKF) 53 

assume/convert non-Gaussian distribution of rainfall to Gaussian error statistics which lead to 54 

suboptimal analysis (e.g., Van Leeuwen 2009, 2010; Posselt and Bishop 2012; Posselt et al. 55 

2014). One well-known weakness of EnKF is that it commences the prediction and filtering 56 

probability distribution functions (PDF) to be Gaussian (Mattern et al., 2013; Ratheesh et al., 57 

2016; Kumar and Shukla, 2019). Kumar et al. (2014) discussed importance of quality control 58 

on rainfall assimilation, and showed that with strict quality control generally difficult to 59 

improve forecasts beyond a few hours due to the non-Gaussian nature of rainfall data. Also, 60 

due to limitations of the realistic representation of the non-linear model physics as tangent 61 

linear model, numerical models are not able to assimilate rainfall precisely using 4D-Var.  62 

 63 

The objective of this study is to assimilate the Indian Meteorological Department (IMD)’s 64 

rain-gauge observed rainfall in the Weather Research and Forecasting (WRF) model using 65 

particle filter, a non-linear filter which take care of non-Gaussian nature of rainfall 66 

observations. Details of the particle filter and design of experiment are given in section 2, and 67 

section 3 is discussing about data used. Results and discussions are provided in section 4, and 68 

are concluded in last section.  69 

 70 

2. Particle Filter    71 

 Particle filter can be used in various fields of science e.g., meteorology, 72 

oceanography, etc. in which one wants to estimate the best state of a system from an 73 

imperfect model with noisy and inadequate data (Chorin et al., 2013). This method is 74 

computationally costly compared to traditional methods like optimal interpolation (OI), 75 
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3D/4D-Var and Ensemble Kalman filters (EnKF). These traditional methods are highly 76 

depending on accuracy of the first guess and accurate representation of the error covariances 77 

(Van Leeuwen, 2009). In particle filter, tangent linear and adjoint model of the non-linear 78 

model are not requisite, which have a large uncertainty over tropical region. Moreover, 79 

estimation of background error covariance matrices is also not needed which also contributed 80 

large errors in traditional data assimilation methods. However, the issue of flow dependent 81 

background error is resolved with some extent in EnKF method. Artificial tricks like 82 

covariance inflation and localisation are needed in EnKF to get good results in high 83 

dimensional systems (Van Leeuwen, 2009). Particle filter do not have these difficulties, and 84 

particles (or ensembles) are not adjusted which do not destroy the dynamical balances in the 85 

analysis. The issue in the particle filter implementation is that the particles are not modified, 86 

so that after a few analysis steps, only one particle has all the weights against observations, 87 

and all other particles are move away from the observations. It means that the statistical 88 

information in the ensemble becomes too low to be meaningful and known as filter 89 

degeneracy (Ades and van Leeuwen, 2015). Details of the mathematical formulation of 90 

particle filters are discussed in previous studies (Doucet et al. 2001; Maskell and Gordon 91 

2001; chen 2003; Ristic et al. 2004; Van Leeuwen 2009, 2010; Ades and van Leeuwen 2015; 92 

Kumar and Shukla, 2019 and references therein).  93 

 94 

In present study, initially rainfall forecasts are simulated from the WRF model with total 90 95 

different combinations of model physics viz. cumulus physics, micro-physics and planetary 96 

boundary layer (PBL) schemes (Figure 1). Nine different cumulus parameterization schemes 97 

available in the WRF model are selected named as new Kain-Fritsch (CP1), Betts-Miller-98 

Janjic (CP2), Grell-Freitas (CP3), Simplied Arakawa Schubert (CP4), Grell-3D ensemble 99 

(CP5), Tiedtke (CP6), New SAS (CP14), Grell-Devenyi (CP93), and old Kain-Fritsch (CP99) 100 
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schemes. Five different microphysics schemes available in the WRF model named as Lin 101 

(Purdue; MP2), WSM3 (WRF Single Moment; MP3), Eta (Ferrier; MP5), WSM6 (MP6) and 102 

Thompson (MP8) are used to generate particles. These micro-physics are selected based on 103 

complexity from simple WSM3 scheme which consider only rain and cloud as hydrometer to 104 

WSM6 or Thompson scheme in which other hydrometers e.g., ice, snow, graupel are also 105 

considered. The YSU (PBL1) and MYNN2 (PBL5) two different planetary boundary layer 106 

schemes are selected to generate particles. Details of these physics schemes are given in the 107 

WRF user guide (Skamarock et al., 2008). Each cumulus physics (9), micro-physics (5) and 108 

PBL (2) schemes are used to generate 10, 18 and 45 particles, respectively (Figure 1) on 01 109 

August 2015. These choices of physics options are considering to perform reference 110 

experiments (unweighted particles or CNT runs). This is the forecast step of the algorithm.  111 

 112 

In general, the particle filter considers a PDF of a state, and the PDF is approximating by 113 

particles consisting of large number of discrete samples (here choice of physics options) to 114 

represent and approximate posteriori by a weighted sample. The selected particles based on 115 

different physics options (p) represent a sample from its priori PDF, and are assumed to be of 116 

the form 117 

        111, ,  kk

p

kkp vxfx  for 0k      (1) 118 

Here, 
kpx ,

  is the set of state vector with  p different physics options to be estimated at time 119 

step k , and 
p

kf 1  is a known imperfect non-linear model (here WRF) with p  different 120 

physics options, 1kx   is the best state taken from global model analysis having noise of 1kv  121 

at time step 1k . The idea is to represent the prior pdf by a set of particles 
kpx ,
, which are 122 

delta functions centred around state vectors. If one represents the prior pdf by a number of 123 

particles, like in the Ensemble Kalman Filter, so 124 
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      



N

p

kpxxxp
1

,        (2) 125 

Where, N is number of particles (which are 90 here). Then, from Bayes theorem 126 

      



N

p

kpp xxwyxp
1

,       (3) 127 

in which weights pw are given by 128 

    
 

 



N

q

q

p

p

xyp

xyp
w

1

       (4) 129 

The density  
pxyp  is the probability density of the observations (y) given the model state 130 

px in forecast time step at which IMD observed rainfall is available over Indian landmass 131 

grids. 132 

 133 

In the analysis step, observed rainfall from IMD are used to determine weight  
pw  for each 134 

particles. This step involves weighting to each particle and subsequent weight-based 135 

resampling. The weights for each particle depend on IMD rainfall observation, and this is the 136 

step in which rainfall observation use for assimilation process. Assimilation in particle 137 

filtering amounts to sequential importance resampling (SIR) weighting of particles. The 138 

weights, in principle, should be proportional to likelihoods or conditional probabilities 139 

(Ratheesh et al., 2016). In this study, the likelihood is depending on multiple hypotheses 140 

(Dubuisson, 2015). The first hypothesis is the value of variance in rainfall forecast should be 141 

less, and the next hypothesis is the value of mean equitable threat score (ETS; section 4) 142 

should be high for different rainfall thresholds (like 5 mm/24 h, 10 mm/24 h, etc.). In first 143 

hypothesis, likelihood is inversely related to a suitable distance between model simulated 144 

rainfall and IMD observed rainfall. The distance is taken to be usual variance between 145 

simulations and observations for daily accumulated rainfall at observation grids. First, the 146 
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distances pd  is computed between the accumulated rainfall from p  particle at time k  and 147 

IMD observed rainfall valid for same time period, with p  varying from 1 to N, which is the 148 

total number of particles. Now, we calculate the raw weights as inverses of these distances. 149 

Intermediate weights are calculated by dividing the raw weights by the maximum weight and 150 

by raising the ratio to a power a, which is an adjustable parameter. The intermediate weights 151 

are then normalized so that their sum is unity. Finally, a median filter is used to select first 45 152 

particles having higher weights. Next 45 particles are selected for which likelihood is directly 153 

related to a suitable mean ETS between models simulated rainfall and IMD observed rainfall 154 

for different rainfall thresholds. In this way, total numbers of particle (here 90 particles) are 155 

same for all time steps, whereas, few combination of model physics receive high weights 156 

(duplicate). In this process, observation uncertainty is not considering which may be a scope 157 

for future. Particles having large variance and less mean ETS values are rejected which 158 

contribute very little to the approximation of the target PDF.  159 

 160 

Due to imperfect model physics (no scheme is perfect), diverse combination of model physics 161 

are matches well with IMD observed rainfall at different time steps, whereas, few 162 

combinations of model physics are completely rejected which are not performed well over 163 

tropical regions in this study (Figure 1). Moreover, rainfall prediction from the NWP model is 164 

a complicated process based on different meteorological parameters (e.g., temperature, 165 

moisture, winds, fluxes, cloud, etc.), surface characteristics (e.g., vegetation, roughness, 166 

albedo, land type, etc.) and model physics (e.g., cumulus, micro-physics, etc.). It is important 167 

to note that dimension of the NWP model is very high (~10
9
). So, a sub-space (here rainfall; 168 

dimension of ~10
5
) from high-dimensional model space is used for particle filter 169 

implementation, and changes in sub-space modifies full state of the high-dimensional model.  170 

 171 
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Finally, in the resampling step, particles having higher weights are resampled at the 172 

observation time, whose distribution forms a weak approximation of the target PDF. In this 173 

step, new particles are generated from large weight particles (selected physics option) using 174 

stochastic kinetic-energy backscatter scheme (SKEBS; Berner et al., 2009, 2011). The 175 

advantage of SKEBS scheme is that it perturbs the dynamic state directly, and the perturb 176 

dynamical variables are then fed into the physical parameterizations (model physics). The 177 

SKEBS scheme is very different from perturbing the physical tendencies directly which can 178 

introduce inconsistencies between the physics and dynamics. So, the tendency of the model 179 

might be to readjust any such inconsistencies, possibly leading to erroneous phenomena (e.g., 180 

spurious gravity waves) (Berner et al., 2011). In this way, the total numbers of particles are 181 

same again at observation time step. The idea is to focus the particles towards high 182 

probability regions of the target PDF, so that the number of particles required for a good 183 

approximation of target PDF remains manageable within sub-space having very less 184 

dimension as compared to actual model space.  185 

 186 

2.1. Design of Experiment 187 

 In this study, two different set of experiments are performed with (EXP; weighted 188 

particles) and without (CNT; unweighted particles) assimilation of IMD observed rainfall 189 

using particle filter during August 1-9, 2015. For the comparison purpose, accumulated 190 

rainfall forecast predicted from the WRF model are interpolated to IMD observation grids 191 

using bilinear interpolation for the same time period (here 24 hours). The National Centers 192 

for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) global 193 

model analysis is used to prepare initial and lateral boundary condition for the WRF model. 194 

The WRF model simulations are performed at 25 km spatial resolution using different 195 

physics options and SKEBS perturbations. The details of the selected WRF model 196 
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configurations are given in Kumar and Varma (2016). The NCEP GDAS analysis is the final 197 

analysis from NCEP which assimilated various kinds of observations available from ground 198 

and satellites, and also including late arriving observations. Here, the objective is to estimate 199 

target PDF from an imperfect model with different model physics and dynamic variable 200 

perturbation in the physical parameterization using the best initial state (assume here) 201 

available from the NCEP analysis. The selection of different model physics after rainfall 202 

assimilation during 1-9 August 2015 are shown in Figure 1, which shows that few model 203 

physics which are not very appropriate over this part of world are rejected, and provide the 204 

higher weight to model physics which are more suitable over this region. To avoid rapid filter 205 

degeneracy where it approaches to single model physics, a dynamic variable perturbation in 206 

model physics is included using SKEBS method. The choice of the NCEP GDAS analysis as 207 

input in CNT runs is mainly to assess the superiority of rainfall assimilation using particle 208 

filter.  209 

 210 

3. Data used 211 

 In this study, the IMD observed rainfall, the TRMM (Tropical Rainfall Measuring 212 

Mission) 3B42 merged rainfall product, and the NCEP GDAS global model analysis are used 213 

in different stages. The NCEP GDAS global model analysis is used to create initial and 214 

lateral boundary conditions for the WRF model during 1-10 August 2015. Further, forecasts 215 

of surface and vertical profile of temperature, moisture and wind speed are compared with the 216 

NCEP GDAS analysis on 10 August 2015. The IMD observed rainfall is used majorly for 217 

assimilation by particle filter (EXP runs) during 1-9 August 2015, and TRMM 3B42 merged 218 

rainfall product are used to assess the skill of rainfall prediction on 10 August 2015. Details 219 

of these datasets are given below: 220 

 221 
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3.1. IMD Rainfall 222 

 Daily gridded rainfall data over the Indian landmass is available since January 1901 at 223 

a spatial resolution of 0.25° latitude/longitude. This data set is prepared from daily recorded 224 

information from about 7000 SRG (Surface Rain Gauge) stations well-spread across the 225 

country after incorporating the necessary quality control (Pai et al., 2014). The quality control 226 

test involves verification of the location information of the gauge station, eliminating the 227 

missing data, eliminating the coding errors, extreme value check, etc. These data are 228 

interpolated using Shepard interpolation method into a regular grid (Pai et al., 2014). The 229 

distribution of gauges over India is satisfactory in terms of number and regional distribution, 230 

except some small regions of Jammu and Kashmir (J&K) and extreme northwest parts of 231 

India.  232 

 233 

3.2. NCEP GDAS analysis 234 

 The NCEP implemented operationally a series of numerical models for the generation 235 

of global model analyses and forecasts. One of the operational system is GDAS (Kanamitsu, 236 

1989), which uses the spectral Medium Range Forecast (MRF) model. The GDAS analysis is 237 

the final run in a series of the NCEP operational model; therefore, it is also known as the 238 

Final Run at the NCEP which also includes the late arriving conventional and satellite 239 

observations. It is run four times a day, i.e., at 0000, 0600, 1200, and 1800 UTC. Model 240 

output at analysis time and a 6 hours forecast are available from the National Oceanic and 241 

Atmospheric Administration (NOAA) National Operational Model Archive & Distribution 242 

System (NOMADS; http://nomads.ncdc.noaa.gov/) server. After post-processing of the 243 

NCEP GDAS, data from spectral coefficient form converts to 1° latitude-longitude (360 by 244 

181) grids, and from sigma levels to mandatory pressure levels. It uses three-dimensional 245 
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variational data assimilation (3D-Var) method for data assimilation. Details of the GDAS 246 

analysis are described by Kalnay et al. (1996). 247 

 248 

3.3. TRMM 3B42 Rainfall  249 

 The TRMM is a joint US-Japan satellite mission to monitor tropical and subtropical 250 

precipitation. It was launched in late November 1997 in to a near circular orbit approximately 251 

at 350 km altitude (raised to 403 km since 2001) at 35° inclinations from the equatorial plane. 252 

The complete description of sensor package of TRMM is given by Kummerow et al. (1998). 253 

The operational TRMM dataset used in the present study is TRMM 3B42, which is a merged 254 

product from Geostationary InfraRed (IR) and Microwave data (Huffman et al., 2003, 2007). 255 

The TRMM 3B42 estimates are produced in four stages; (1) the microwave precipitation 256 

estimates are calibrated and combined, (2) infrared precipitation estimates are created using 257 

the calibrated microwave precipitation, (3) the microwave and IR estimates are combined, 258 

and (4) rescaling to monthly data is applied. This rainfall product has been downloaded from 259 

TRMM Online Visualization and Archive System (TOVAS) at spatial resolution of 0.25° 260 

latitude/longitude. 261 

 262 

4. Results and Discussions  263 

 The two different set of experiments are performed in this study during 1-10 August 264 

2015. The collection of unweighted particles is considered as “CNT runs”, and collection of 265 

particles with sequential importance resampling is considered as “EXP runs”, in which IMD 266 

observed rainfall is used to select appropriate model physics and resample high weight 267 

particles using dynamic variable perturbations using SKEBS method. These particle filtering 268 

steps are performed during 1-9 August 2015, and selected model physics options on 9 August 269 

2015 are used for forecast verification on 10 August 2015. The choice of the NCEP GDAS 270 
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analysis as input is mainly to assess the superiority of rainfall assimilation using particle filter 271 

over CNT runs, where initial conditions are taken from the NCEP GDAS analysis which 272 

assimilated various kind of observations and one of the final analysis available from the 273 

NCEP. In verification step, the WRF model predicted accumulated rainfall, initialized from 274 

selected model physics are validate against accumulated rainfall from TRMM 3B42 rainfall 275 

valid for same time. The surface and vertical profile of temperature, moisture and wind speed 276 

forecasts are verified against NCEP final analysis. 277 

 278 

The mean difference (Bias), RMSD, and rainfall verification scores are used as standard 279 

parameter for statistical evaluation. Various rainfall verification scores based on contingency 280 

table (Table 1) viz. ETS, extremal dependency score (EDS), probability of detection (POD), 281 

and false alarm rate (FAR) over a wide range of rainfall thresholds (1 mm/day to 80 mm/day) 282 

are used to measure the impact of rainfall assimilation on rainfall predictions for grid wise 283 

evaluation. The POD measures the fraction of observed events that were correctly diagnosed, 284 

and is sometimes called the “hit rate”. The FAR gives the fraction of diagnosed events that 285 

were actually non-events. Perfect values for these scores are POD=1, and FAR=0. The ETS 286 

was formulated to account for the hits that would occur purely due to random chance. The 287 

ETS, though not a true skill score, is often interpreted that way since it has a value of 1 for 288 

perfect correspondence, and 0 for no skill. It penalizes misses and false alarms equally, and 289 

for this reason it is commonly used in the NWP rainfall verification. The new score EDS is 290 

used mainly for determining skill at higher value of rainfall thresholds. This score has 291 

advantage that it can converge to different values for different forecasting systems and 292 

furthermore, it does not explicitly depend upon the bias of the forecasting system 293 

(Stephenson et al. 2008). 294 

 295 
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Table 1: Schematic 2 x 2 contingency table for the definition of scores. (a+b+c+d=n) 296 

 Observation ≥ Threshold Observation < Threshold 

Forecast ≥ Threshold a=Hits b=False alarms 

Forecast < Threshold c= Misses d=Correct rejections 

 𝐸𝑇𝑆 =
(𝑎−𝑒)

(𝑎+𝑏+𝑐−𝑒)
                         (5)                             𝐸𝐷𝑆 = 2 ∗

𝑙𝑜𝑔
(𝑎+𝑐)

𝑛

𝑙𝑜𝑔
𝑎

𝑛

− 1                        (6) 297 

𝑃𝑂𝐷 =  
𝑎

𝑎 + 𝑐
                               (7)                            𝐹𝐴𝑅 =  

𝑏

(𝑎 + 𝑏)
                                    (8) 

where 𝑒 =
(𝑎+𝑏)∗(𝑎+𝑐)

(𝑎+𝑏+𝑐+𝑑)
  refers to the expected number of correct forecasts above a rain 298 

threshold with a random forecast. 299 

 300 

Figure 2 shows mean (line) and median (dash line) value of POD (eq. 7) and FAR (eq. 8) for 301 

CNT (blue) and EXP (red) runs. The POD for CNT runs are shown as light blue lines valid 302 

on 10 August 2015. The POD for EXP runs which assimilate IMD observed rainfall using 303 

particle filter are shown as light red lines. Figure 2a shows that slightly more mean POD is 304 

found in EXP compared to CNT for less rainfall threshold. This positive impact of rainfall 305 

assimilation is more for high rainfall threshold (> 35 mm/day). It suggests that rainfall 306 

assimilation using particle filter improve skill of rainfall forecast for heavy rainfall. It is also 307 

important to mention here that slightly less value of median POD is found for high rainfall 308 

threshold (> 40 mm/day), which indicate that forecasts from CNT show reduce skill for 309 

heavy rainfall. Moreover, median value of POD for EXP runs is slightly higher than mean 310 

POD for high rainfall threshold. It is also found that different model physics are predicting 311 

similar values of low rainfall (less spread for low rainfall threshold), whereas, this 312 

distribution is more for high rainfall threshold. Moreover, most of the particles are predicting 313 

better POD values after rainfall assimilation (light red lines) compared to CNT run (light blue 314 

lines). Similar to POD, mean and median value of FAR also show less number of false alarm 315 
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in rainfall assimilation experiments (EXP) compared to CNT experiments. Better FAR score 316 

is seen for high rainfall threshold compared to low rainfall threshold which shows that all 317 

particles are able to predict low rainfall precisely, and large uncertainty are seen for heavy 318 

rainfall. Overall, these results show that assimilation of IMD observed rainfall using particle 319 

filter improve rainfall predictions for higher rainfall values. The accurate prediction of heavy 320 

rainfall has large societal benefits which obtained with the help of particle filter over CNT 321 

runs. 322 

 323 

The ETS (eq. 5) is one of the most widely used skill score for rainfall verification, and EDS 324 

(eq. 6) score is normally used for high rainfall threshold (Stephenson et al. 2008). Figure 3 325 

shows mean and median value of ETS and EDS rainfall verification score for CNT and EXP 326 

runs. Figure 3a shows that skill of rainfall prediction is improved for low and high rainfall 327 

threshold after rainfall assimilation. It is also seen that ETS predicted from the WRF model is 328 

~0.35 for low rainfall threshold which represent a very high skill of prediction. This high skill 329 

score is mainly due to initialization of the WRF model from the NCEP final analysis (best 330 

state) which is generally not a situation in operational weather forecasts. Moreover, it is 331 

noticed from figure 3a that model predictions have more uncertainty for high rainfall values, 332 

and after rainfall assimilation skill of the rainfall forecasts are improved for high rainfall 333 

threshold (>40 mm/day). Similar to ETS, value of EDS rainfall score is also improved after 334 

rainfall assimilation. Around 0.2 value of EDS is found for >40 mm/day rainfall threshold, 335 

whereas, value of ETS is less than 0.1 for same rainfall threshold. It is important to note here 336 

that these improvements in rainfall prediction are over CNT runs which are performed using 337 

NCEP GDAS analysis as initial condition. Large number of satellite and conventional 338 

observations are assimilated in this analysis. So, observed advances in EXP runs after rainfall 339 

assimilation have noteworthy improvement over CNT runs. 340 
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 341 

Results discussed above support that assimilation of IMD observed rainfall using particle 342 

filter improved rainfall forecasts compared to CNT runs. The further interest is to evaluate 343 

the impact of assimilation in sub-space (here rainfall) on the prediction of other model sub-344 

spaces (like temperature, moisture, winds) due to non-linear coupling of rainfall with these 345 

meteorological parameters. The WRF model predicted temperature, moisture and wind speed 346 

are verified against the NCEP GDAS analysis valid at same time. Figure 4 shows RMSD in 347 

2-meter air temperature and water vapour mixing ratio (WVMR), and 10-meter wind speed 348 

for CNT and EXP runs. Figure 4a shows that assimilation of rainfall improved temperature 349 

forecasts for all forecast lengths (at 3-hour interval on 10 August 2015), except 9 hours’ 350 

forecasts (a local maximum temperature is occurred at this time). Moreover, some particles 351 

having large RMSD in CNT runs are rejected in EXP runs after rainfall assimilation. Similar 352 

kind of positive impact can be seen in WVMR (Figure 4b) and wind speed (Figure 4c) 353 

forecasts. It is important to mention here that assimilation of IMD observed rainfall improved 354 

other basic meteorological parameters. These findings are similar to variational method in 355 

which due to multi-variate nature of data assimilation, assimilation of particular control 356 

parameter also modifies other control parameters (Kumar et al., 2014). Overall, we found that 357 

rainfall assimilation using particle filter improved surface temperature, WVMR, and wind 358 

speed forecasts. Further, we want to focus that these improvements are over CNT runs where 359 

the WRF model is initialized from the NCEP final analysis which assimilated all kind of 360 

observations including late arriving observations to prepare final analysis.   361 

 362 

Further, vertical profiles of 24 h temperature, WVMR and wind speed forecasts valid on 10 363 

August 2015 are also verified against NCEP GDAS analysis valid at same time (Figure 5). 364 

Results suggest that assimilation of IMD rainfall in EXP runs improve temperature profile 365 
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(Figure 5a) at different vertical levels compared to CNT runs. Slightly higher positive impact 366 

can be seen at upper levels (above 300 hPa) in EXP runs. Mixed impact is found in WVMR 367 

profile from surface to 900 hPa (Figure 5b), and depicts improve prediction of WVMR above 368 

900 hPa in EXP runs. Assimilation of IMD rainfall also improves vertical profile of wind 369 

speed with maximum improvements at mid and upper vertical levels.  370 

 371 

Overall, these preliminary results suggest that assimilation of rainfall using particle filter 372 

improve prediction of basic meteorological parameters (like temperature, moisture, and 373 

winds) at surface and vertically. These improvements in basic meteorological parameters are 374 

mainly due to rainfall which indirectly coupled with these basic parameters. Generally, in 375 

most of the previous rainfall assimilation studies (Kumar and Varma, 2016 and references 376 

therein), major objectives are to improve initial model states (like temperature, moisture, and 377 

winds) using rainfall observation either through indirect (like latent heat nudging, 1D+4D 378 

Var, etc.) or direct (4D Var, LETKF) assimilation of rainfall. But in this study, particle filter 379 

is used to select appropriate model physics with perturbation in dynamic variables in model 380 

physics using IMD rainfall observations, whereas, no changes are performed in the initial 381 

model state like traditional methods. Moreover, rainfall sub-space is indirectly coupled with 382 

other model sub-spaces (like temperature, moisture, and winds), so any modification in 383 

rainfall sub-space changes other sub-spaces also in forecasts. The another important point to 384 

note that less distribution is observed in EXP runs compared to CNT runs in short forecasts 385 

(mainly 3-hour forecasts; Figure 4). Since, all particles are initialized from same model state 386 

(here NCEP GDAS for initial state), the differences are mainly due to selection of model 387 

physics and dynamic variable perturbation in model physics using SKEBS. So, in short 388 

forecasts (3 hours) all selected particles are not able to represent true PDF, and it is the step 389 

where this filter may not be able to produce appropriate PDF. The possible solution may be to 390 
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use local particle filter (Poterjoy, 2015) or Equivalent-weight particle filter (Ades and van 391 

Leeuwen 2015; Browne 2016) which consider proposal density to generate distribution of 392 

initial state in place of deterministic initial state opt in present study. 393 

 394 

5. Conclusion 395 

 In this study, IMD observed rainfall is assimilated using particle filter. Two different 396 

set of experiments are performed with and without rainfall assimilation using different model 397 

physics options during August 1-10, 2015. Particle filter is implemented in rainfall sub-space 398 

(having less dimension) compared to full high dimensional model space with multiple 399 

hypothesis (based on less variance and large value of mean ETS) to produce new particles in 400 

resampling step. Rainfall is one of diagnostic parameters from the weather model which non-401 

linearly depends on various parameters (like initial model state, terrestrial data, model 402 

physics, dynamical variables into parameterizations, etc.). Further, the dynamic variable 403 

perturbation through SKEBS method is used to generate new particles from high weight 404 

particles such that total number of particles (here 90) should be same. Ratheesh et al. (2016) 405 

also used this approach to change two dynamical parameters in guided particle filter to 406 

assimilate satellite measurements. The uses of SKEBS method to generate new particles in 407 

resampling step provide additional guidance to the particle towards future observations. 408 

Results based on different rainfall verification scores suggest that skill of rainfall forecast is 409 

improved with the assimilation of rainfall using particle filter compared to CNT runs. 410 

Moreover, rainfall assimilation also improves temperature, WVMR and wind speed forecasts 411 

at surface and different vertical levels. These results support that implementation of rainfall 412 

assimilation using particle filter, which consider non-linear and non-Gaussian distribution, 413 

improve prediction from the WRF model. In the case of the EnKF, the same configuration of 414 

physics parameterizations is kept for each ensemble member and all that changes at analysis 415 
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time is the model state 
kpx ,
 itself. In this study, particles are targeting towards best suited 416 

model physics with assimilation of rainfall. 417 

 418 

In present study, all particles are initialized from same model state (here NCEP GDAS 419 

analysis), and the differences are mainly due to selection of model physics and dynamic 420 

variable perturbation in model physics using SKEBS. So, in short forecasts (3 h forecast; 421 

Figure 4) all selected particles are not able to represent true PDF, and it is the step where this 422 

filter may not be able to produce appropriate PDF. The possible solution may be to use local 423 

particle filter (Poterjoy, 2015) or Equivalent-weight particle filter (Ades and van Leeuwen 424 

2015; Browne 2016) which consider proposal density to generate distribution of initial state 425 

in place of deterministic initial state. Since, objective of this study is to understand the role of 426 

model physics in an imperfect model using initial state (best) from the NCEP GDAS analysis. 427 

This work motivates to use Equivalent-weight particle filter proposed by Ades and van 428 

Leeuwen (2015) for a high-dimensional non-linear weather model to produce distribution of 429 

initial model states, and further select the appropriate model physics for imperfect (weak) 430 

model using particle filter and develop an “efficient particle filter” for the NWP model. This 431 

may be a scope for future research in fast developing field of non-linear data assimilation.      432 
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 3 

Figure 1: Schematic of rainfall assimilation using particle filter to estimate target PDF from 4 

an imperfect model using initial state from the NCEP analysis in the WRF model using 5 

different model physics and dynamic variable perturbation in the physical parametrization 6 

during 1-9 August 2015. The numbers in the boxes represent the number of particles using 7 

that particular scheme. 8 
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 19 

Figure 2: (a) POD and (b) FAR verification scores for the CNT (blue) and EXP (red) runs 20 

predicted daily accumulated rainfall at different rainfall thresholds valid on 10 August 2015. 21 

Individual particles are shown by light blue and red lines for CNT and EXP run, respectively. 22 

Mean and median are plotted using dark line and dark dash lines respectively. 23 
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 33 

Figure 3: (a) ETS and (b) EDS verification scores for the CNT (blue) and EXP (red) runs 34 

predicted daily accumulated rainfall at different rainfall thresholds valid on 10 August 2015. 35 

Individual particles are shown by light blue and red lines for CNT and EXP run, respectively. 36 

Mean and median are plotted using dark line and dark dash lines respectively. 37 
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 46 

Figure 4: Temporal distribution of RMSD in surface (a) temperature, (b) WVMR, and (c) 47 

wind speed forecasts at 3 hours’ interval from CNT (blue) and EXP (red) run against NCEP 48 

final analysis. Individual particles are shown by light blue and red lines for CNT and EXP 49 

run, respectively. Mean is plotted by dark line. 50 

 51 

 52 



5 
 

 53 

Figure 5: Vertical profile of RMSD in 24 hour (a) temperature, (b) WVMR, and (c) wind 54 

speed forecasts from CNT (blue) and EXP (red) run against NCEP final analysis.  55 
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