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Abstract

Consecutive Rainfall Events (CREs) are important triggers of geological hazards like landslide downhill and mudslide in the

Three Gorges Reservoir area (TGR), China. These hazards are not only potential risks for the effective storage capacity of the

reservoir but also threats of the safety of the reservoir’s Great Dam. The future changes of CREs’ occurrence and intensity

are analyzed by using the projection experiments from twenty models attending the Coupled Model Inter-comparison Project

phase 5 (CMIP5) under three different representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5). Spring and fall

are focused on, during which CREs are most frequent. Considering a common overestimate of rainy days number in the state-

of-the-art models, a new approach is developed to define CREs based on the percentile of rainfall distribution in observations.

The approach yields a similar CREs climatology in models to that in observations, and thus is used to identify CREs in models.

The results based on multiple model ensemble (MME) and model spread comparison suggest a significant increase in spring and

an overall decrease in fall in CREs’ occurrence under all three scenarios. As for the intensity, it is projected to intensify both

in spring and fall. Particularly, the higher the emission scenario, the greater the spring accumulated rainfall amount during a

single CRE. These results imply an increasing risk of geological hazards in the TGR in the future.
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 29 

Abstract 30 

 31 

Consecutive Rainfall Events (CREs) are important triggers of geological hazards 32 

like landslide downhill and mudslide in the Three Gorges Reservoir area (TGR), 33 

China. These hazards are not only potential risks for the effective storage capacity of 34 

the reservoir but also threats of the safety of the reservoir’s Great Dam. The future 35 

changes of CREs’ occurrence and intensity are analyzed by using the projection 36 

experiments from twenty models attending the Coupled Model Inter-comparison 37 

Project phase 5 (CMIP5) under three different representative concentration pathways 38 

(RCP2.6, RCP4.5 and RCP8.5). Spring and fall are focused on, during which CREs 39 

are most frequent. Considering a common overestimate of rainy days number in the 40 

state-of-the-art models, a new approach is developed to define CREs based on the 41 

percentile of rainfall distribution in observations. The approach yields a similar CREs 42 

climatology in models to that in observations, and thus is used to identify CREs in 43 

models. The results based on multiple model ensemble (MME) and model spread 44 

comparison suggest a significant increase in spring and an overall decrease in fall in 45 

CREs’ occurrence under all three scenarios. As for the intensity, it is projected to 46 

intensify both in spring and fall. Particularly, the higher the emission scenario, the 47 

greater the spring accumulated rainfall amount during a single CRE. These results 48 

imply an increasing risk of geological hazards in the TGR in the future. 49 

 50 

51 
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1. Introduction 52 

The Three Gorges Reservoir area (TGR), spanning 28-32°N latitudinally and 53 

105-112°E longitudinally (see Figure 1), is a mountainous, highly populated region 54 

locating in the middle reach of the Yangtze River basin, central China. It often suffers 55 

from geological disasters like landslide and mudslide (Chen et al., 2012; Ma et al., 56 

2006). These disasters result in tremendous damages to the lives and properties. One 57 

example is the landslide occurring in 1998, which caused a direct economic loss of 58 

610 million RMB (Ma et al., 2005). In addition, they cause rockfall, mud and debris 59 

flows, which block the rivers running to the reservoir, reduce the effective storage of 60 

the reservoir (Zhang et al., 2016), even threaten the safety of the reservoir’s Great 61 

Dam. Therefore, predicting, warning and preventing geological hazards are an 62 

important national demand in China. 63 

Synoptic processes, especially Consecutive Rainfall Events (CREs), during 64 

which it rains for one week and even longer with a gentle and moderate intensity, are 65 

a substantial trigger to geological hazards, although other factors like short-duration 66 

heavy rainfall or earthquake can be also important (Guzzetti et al., 2007; Ye et al., 67 

2009). Corominas and Moya (1999) illustrated that the risk of landslide increases 68 

substantially when it rains persistently for several weeks with the moderate 69 

accumulated rainfall amount over 200 mm. The size of the landslide may be 70 

positively proportional to the duration of CREs (Jibson, 2006). One recent case is the 71 

severe landslide occurring in Lishui (28.6°N, 119.9°E), Zhejiang Province on 13 72 

November 2015, which resulted in 38 deaths (Liu, 2015). Prior to the landslide, it 73 
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rained lightly or moderately for nearly one month, with an intensity of only 6-8 mm 74 

per day. No precursor was found and no warning was issued before the disaster. In 75 

addition to trigger geological disasters, CREs adversely influence agricultural 76 

production, cause local pooling or freezing rain during chilling weather, and affect 77 

human health (Ding et al., 2008; Li et al., 1977; Sun et al., 2016). Therefore, 78 

understanding the future trend of CREs is of substantial importance.  79 

Previous analyses based on instrumental records suggest a decreasing trend in 80 

spring CREs’ occurrence, duration and accumulated rainfall amount, but an increase 81 

in the mean daily rainfall during the past decades (Zheng et al., 2018; Zou, 2005). In 82 

fall the trend is somewhat similar, with a decrease in occurrence despite an increase in 83 

intensity (Sun et al., 2016; Wang and Zou, 2015). Whether such a trend persists into 84 

the future is unclear. 85 

Under the context of global warming, rainfall features change including its 86 

occurrence frequency, duration, and intensity (Scoccimarro and Gualdi, 2013; 87 

Trenberth, 1998; Zhai, 1999). Of particular importance is that rainfall becomes 88 

regionalized and intensified, as far as one individual rainy event is concerned (Giorgi 89 

et al., 2001; Lau et al., 2013; Sun et al., 2006). This inevitably leads to changes of 90 

CREs. Thus, projecting the future trend of CREs in TGR consists of the preliminary 91 

aim of the present study.  92 

The reminder of this paper is organized as follows. Section 2 describes data and 93 

methods. The projection experiments from the models attending the Coupled Model 94 

Inter-comparison Project phase 5 (CMIP5) under three different representative 95 
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concentration pathways (RCP2.6, RCP 4.5 and RCP8.5) are used (Li et al., 2016; 96 

Sillmann et al., 2013). Because of one common bias with too many rainy days in the 97 

state-of-the-art models, the canonical method used to identify observational CREs 98 

appears inappropriate for modeled precipitation. Thus a new approach is developed 99 

for the models. Section 3 compares the CREs in the historical experiments with those 100 

in observations. Since not all models reproduce the observed CREs well, just those 101 

“good” models are selected to project the future trend. Section 4 gives the projection 102 

results based on the multiple-model ensemble mean (MME) and an assessment of 103 

result diversity in the individual models under different emission scenarios, with the 104 

focus on the accumulated rainfall amount and daily rainfall intensity in CREs. Finally, 105 

a summary and discussions are given in section 5. 106 

 107 

2. Datasets and methods 108 

2.1 Datasets 109 

Gridded daily precipitation outputs from twenty models participating in CMIP5 110 

are employed (Table 1). In order to treat all the models equally, only their first run 111 

(r1i1p1) is analyzed. The experiments include the historical run with historically 112 

evolving forcing for 1961-2005 and the projection runs with prescribed forcing of 113 

RCP2.6, RCP4.5 and RCP8.5 for 2006-2099 (Taylor et al., 2012). RCP2.6 is a low, 114 

peak-and-decay scenario in which radiative forcing reaches the maximum near the 115 

middle of the 21st century before decreasing to an eventual nominal level of 2.6 W/m2. 116 

RCP4.5 is a medium stabilization scenario that follows a rising radiative forcing 117 
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pathway leading to 4.5 W/m2 in 2100, while RCP8.5 is a high, business-as-usual 118 

emissions scenario with radiative forcing increase to 8.5 W/m2 by 2100. Details on 119 

the CMIP5 models and their configurations are described at 120 

http://www-pcmdi.llnl.gov/. 121 

To assess the CMIP5 models’ ability in reproducing the observed CREs, the daily 122 

gauged grid precipitation dataset, referred to as CN05.1, is employed. CN05.1 was 123 

produced by data from high-resolution stations across China during the period from 124 

1961 to 2015. It uses thin-plate smoothing splines interpolation for climatology and 125 

angular distance weighting interpolation for daily deviation before merging into the 126 

full 0.25° × 0.25° grids (Xu et al., 2009; Wu and Gao, 2013). This methodology 127 

follows the method by which the CRU dataset was created (New et al. 2000). More 128 

details about validation information of CN05.1 are given in Wu and Gao (2013). It has 129 

been used by a lot of previous studies (e.g. Chen et al., 2014; Li et al., 2020; Pan et al., 130 

2020; Sui et al., 2015). In view of the possible mismatch in horizontal resolutions, 131 

both the simulated precipitation and CN05.1 are re-gridded to a 1.0° × 1.0° grid by 132 

using a bilinear interpolation algorithm. 133 

 134 

2.2 Methods 135 

a) Definition of CREs  136 

In observational studies (e.g. Li, et al., 1977; Zou, 2005), one CRE is isolated 137 

when there are five or more consecutive rainy days. One rainy day is defined when 138 

the accumulated amount is greater than or equal to 0.1 mm within 24 hours from 139 
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00UTC to the next 00UTC. For CN05.1, because of the rain intensity diffusion and 140 

extended rainy days caused by interpolation, one elevated threshold, 1 mm per day, is 141 

used to define rainy days. One similar threshold was used in previous studies (Giorgi 142 

et al., 2011; Mohan and Rajeevan, 2017; Salinger and Griffiths, 2001). Here one CRE 143 

is defined to begin if any one of the following four cases: (1) it has at least 5 144 

consecutive rainy days; (2) it has 6 or 7 rainy days within 7 or 8 consecutive days, 145 

despite no 5 consecutive rainy days; (3) it has 7 or 8 rainy days within 9 to 10 146 

consecutive days but has at least one rainy day within any two consecutive days, 147 

although it does not meet (1) or (2) above; (4) it has more than 9 rainy days but has at 148 

least one rainy day within any two consecutive days, although it does not meet (1) (2) 149 

and (3) above (Sun et al., 2016; Zheng et al., 2018). The CRE termination is defined if 150 

there are two consecutive non-rainy days following CRE, and the duration is the day 151 

number from the beginning date until the ending date. 152 

For the model outputs, the above definition is inappropriate because models 153 

generally overestimate rainy day number but underestimate precipitation intensity 154 

(Dai and Trenberth, 2004; Sun et al., 2007). It will cause much-more-than-observed 155 

CREs if a same 1 mm threshold is used. Previous studies developed various 156 

calibration methods to correct the bias. The first one is the simplest unbiasing method 157 

which simply overlaps the models’ climatological mean bias into the simulations 158 

(Déqué, 2007). It is straightforward, but has an implicit, unrealistic assumption that 159 

the modeled mean rainfall follows the observed regardless of the variance. The second 160 

is a combination of local intensity scaling with power transformation. It scales the 161 
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modeled precipitation within the observations, and corrects both the climatological 162 

mean and variance (Fang et al., 2015; Schmidli et al., 2006; Teutschbein and Seibert, 163 

2012). In details, modeled raw precipitation is calibrated by multiplying the ratio of 164 

the observed mean precipitation to the modeled. The method will cause unmatched 165 

successive days and weakened rainfall extremes. The third one is probability quantile 166 

mapping (Semenov et al., 2010; Themeßl et al., 2012). It adjusts the climatological 167 

mean, variance, and probability quantiles distribution of modeled precipitation and 168 

has no influences on the extremes of the modeled rainfall. But it fails to correct the 169 

temporal autocorrelation properties intrinsic to series, and neglects the physical 170 

connection between variables (Boé et al., 2007). The fourth is the Artificial Neural 171 

Networks (ANNs) technique. It efficiently handles the noisy and unstable data that are 172 

typical in weather station observation, and maps highly nonlinear relationships 173 

between a set of inputs and the corresponding outputs (Luk et al., 2000). The rainfall 174 

estimates from ANNs are even more accurate than those based on statistical or 175 

dynamic downscaling approaches (Mendes and Marengo, 2010; Skamarock et al., 176 

2008). But this technique is highly sensitive to the quantity and distance of 177 

neighbouring gauges, and to the local hydrologic system as well (Hung et al., 2009). 178 

In the present study, the long-term trend and future projection of CREs is 179 

focused on, so the rainfall intensity in a single day is relatively less important than 180 

whether it rains or not on that day. Since rainy day number may be subjective to 181 

change in all the above calibration methods, we develop a new approach to defining 182 

CREs instead. It is based on the Cumulative probability Distribution Function (CDF) 183 
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of daily rainy amount. The CDF in models is assumed to follow the observed, which 184 

is calculated based on the threshold of 1.0 mm per day. Thus for the models the 185 

threshold to define rainy days can be derived. Subsequently, rainy days number and 186 

the CREs can be easily calculated at each grid points.  187 

 188 

b) Variable to quantify CREs 189 

A total of four variables are used to quantify the CREs, including occurrence 190 

frequency (OCF), total rainy days (TRD), accumulated rainfall amount (ACR) and 191 

mean daily rainfall intensity (INT). The first, OCF, describes the occurrence 192 

climatology of CREs, while the latter three describe the duration and strength of one 193 

single CRE. INT is not independent of ACR and TRD, but equal to ACR divided by 194 

TRD. Previous studies suggest that all the four variables are linked to geological 195 

hazards (Corominas and Moya, 1999; Jibson, 2006), thus they are used for the present 196 

analysis. Since CREs occur most frequently in spring and fall in TGR, just these two 197 

seasons are focused on. Spring is referred to as 25 February to 4 June, while fall is 198 

referred to as 28 August to 4 December considering the possibility that CRE 199 

occurrence is not contained strictly in a whole calendar season. 200 

 201 

c) Sen's slope estimate 202 

Due to non-normal characteristics of probability distributions, trends of daily 203 

precipitation amount and subsequently CREs cannot be estimated by the least squared 204 

fitting. As Santos and Fragoso (2013) and Mohan and Rajeevan (2017), here the 205 
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trends are estimated by the Kendall’s tau-based slop estimator (Sen's slope Q; Sen, 206 

1968) as follows 207 

                          Q = median ( Xi - Xj

ti - tj
)                        (1). 208 

Specially, for one time series with the length of L, at one time point (say ti, 209 

i=2,…, L), slope can be calculated by using values (Xi) and (Xj) at time points ti and tj , 210 

respectively. Here tj precedes ti by at least one unit (j=1,…, i-1). As such, a total 211 

number of (L-1)! slopes can be obtained, and the median among all the slopes is the 212 

best estimate of the trend. According to Yue et al. (2002), the Sen’s slope is better than 213 

the least squared fitting when estimating precipitation trend. Then, we use the least 214 

squared fitting to estimate the intercept of the trend-dominated series (Wang and 215 

Swail, 2001). Non-parametric Mann-Kendall test is used for significance validation, 216 

since it is reliable for both monotonic linear and nonlinear trends in non-normal 217 

distributed series (Gotway, 1992).  218 

 219 

d) Metrics for model performance and selection 220 

To assess model’s ability in reproducing spatial pattern of CREs, the Taylor 221 

Diagram (Taylor, 2001) is employed, which provides a statistical comparison of 222 

simulated and observed CREs, in terms of spatial correlation coefficient, 223 

root-mean-square (RMS) difference, and standard deviation. The RMS difference and 224 

the standard deviation of various indices in the models are normalized by the 225 

observed. Thus a perfect model has the RMS difference equal to 0, and the spatial 226 

correlation and the ratio of spatial standard deviations both close to 1. 227 
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Because of no initialization for the oceanic model component in these CMIP5, 228 

one should not expect that their historical runs have the ability to reproduce the 229 

observed CREs evolution. Thus we compromise to assess their normalized temporal 230 

standard deviation δm/δo (Han et al., 2014; Santer et al., 2009). Here δm and δo denote 231 

the inter-annual standard deviation of model simulated and observed seasonal mean 232 

CREs variables, respectively. The closer to 1 the value, the better the agreement 233 

between simulation and observation is. 234 

Considering the substantial importance of CRE occurrences, just OCF and TRD 235 

are used to select “good” models. Three criterions are used based on Taylor diagram: 236 

(1) the spatial correlation coefficient of models’ CRE occurrences with the observed is 237 

above 0.31 (significant at the 95% level), (2) the normalized spatial RMS of CREs’ 238 

occurrences is less than 1.5, and (3) the normalized deviation of modeled spatial 239 

CREs’ occurrences is smaller than 1.5 but great than 0.5. Besides, another more 240 

criterion is considered: the normalized temporal standard deviation of simulated 241 

occurrences is smaller than 1.5 but great than 0.5.  242 

 243 

3. Models’ simulation on CREs in the historical experiments 244 

The threshold for rainy days is derived before we evaluate the ability of the 245 

models in reproducing the observed OCF and TRD. Figure 2 compares the CDFs 246 

from the observations and the models. From it, the percentile with the cumulative 247 

probability in the observed rainy days below the threshold (1.0 mm per day) is 60.49% 248 

in spring (64.17% in fall) in all grid points. Correspondent to the same percentile, the 249 
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threshold is different from model to model. For example, for MRI-CGCM3 and 250 

CSIRO-Mk3.6.0, the threshold is 2.1 mm per day in spring, 1.0 and 0.5 mm per day in 251 

fall, respectively. The closer to 1.0 mm the derived threshold, the better the model is 252 

in capturing the observed rainy days. A higher or lower threshold indicates an 253 

overestimate or underestimate in modeled rainy days. Column 3 in table 2 gives the 254 

derived threshold for the individual models. 255 

After the threshold is derived, simulated CREs can be calculated subsequently. 256 

Figure 3 is the Taylor diagram which compares the simulated and observed spatial 257 

distribution of CREs. About one half of the models fail to reproduce the spatial 258 

pattern of spring CREs, with the correlation less than 0.31. For fall, only a quarter of 259 

the models exhibit a significant skill. MME of all twenty models (refer to as MME_A; 260 

the character “A” means “all”, refer to Table 2 and Figure 3) shows a pronounced bias. 261 

In spring, the spatial correlation coefficient in observed and MME_A OCF (TRD) is 262 

0.74 (0.72), and the standard deviations in MME_A is underestimated relative to the 263 

observed. In fall the modeled standardized deviations are close to the observed, but 264 

the correlation coefficient is 0.38 (0.33) for the observed and model MME_A OCF 265 

(TRD), even lower than that in spring. 266 

By applying the criterions in section 2.2d, for spring a total of 11 models 267 

(FGOALS-g2, IPSL-CM5A-LR, IPSL-CM5A-MR, CNRM-CM5, CanESM2, 268 

HadGEM2-AO, HadGEM2-ES, MIROC5, MPI-ESM-LR, MRI-CGCM3, 269 

CSIRO-Mk3.6.0) outstand as “good” models. For fall, a total of 5 models 270 

(IPSL-CM5A-LR, IPSL-CM5A-MR, CNRM-CM5, MRI-CGCM3, CSIRO-Mk3.6.0) 271 

12 
 



are selected. MME of these “good” models (refer to as MME_G; the character “G” 272 

mean “good” in Table 2 and Figure 3) exhibits an evident improvement in 273 

reproducing the observed CREs, with the spatial correlation coefficient in the 274 

observed and simulated OCF and TRD above 0.84 in spring (0.75 in fall) from these 275 

“good” models. Also, the standardized deviations in these “good” models are closer to 276 

the observed. Hereafter just the results from these “good” models are analyzed, and 277 

for brevity MME is used to represent MME_G unless it is clarified specially. 278 

Table 2 compares the performances of these “good” models along with their 279 

MME and the observations. The seasonal mean accumulated rainfall amount (column 280 

4) in observations in spring and fall is 328.1 and 250.3 mm, respectively, while this 281 

value in models varies from 274 to 463 mm in spring (from 163 to 256 mm in fall). 282 

The overall consistence in the models’ and the observed CREs climatology indicates a 283 

qualitative reasonability of this derived threshold. The climatological OCF in 284 

individual models and in MME is close to the observation (column 5) in both spring 285 

and fall. As for trend, in spring, the OCF in observation (column 6) exhibits a 286 

reduction, albeit a lack of significance. About a half of the models yield a same 287 

negative trend as the observed, but no significant trend is seen in the models else. The 288 

spring trend in MME is nearly neutral (0.01 times per decade), in contrast with a 289 

reduction in observations (-0.10 times per decade). In fall the trend in models bears an 290 

overall similarity to the observed, which is consistently negative among all the five 291 

“good” models albeit being less significant. Also, their MME shows a significant 292 

reduction, which is consistent with observations. 293 
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For TRD (column 7 and 8), the observed climatology is 18.1 and 18.6 days in 294 

spring and fall, respectively. This value in most of the models is slightly greater both 295 

in spring (from 18.4 to 20.5 days, except for MIROC in which it is 17.7 days) and fall 296 

(from 21 to 25.2 days). As for trend, seven models among the eleven “good” for 297 

spring and all the five “good” models for fall yield a reduction consistent with the 298 

observed (column 8). Not surprisingly, MME yields a reduction both in spring and fall, 299 

in agreement with a major of the models.  300 

Above the models’ occurrence of CREs climatology and trends have been 301 

analyzed. The interannual variability of CREs in these models is also compared with 302 

the observations. Figure 4 (left panels to the black dashed vertical line) displays the 303 

modeled and observed OCF and TRD evolutions. From it, the uncertainty (model 304 

spread) within the models generally conforms to the observed, although the variability 305 

is less evident. These analyses suggest that the occurrence of CREs in models is 306 

overall comparable to the observed.  307 

Based on OCF and TRD, the intensity of CREs (ACR and INT) is further 308 

investigated. The observed ACR (column 9 and 10) is 143.1 and 148.6 mm in spring 309 

and fall, respectively. The modeled value in spring is greater in most of models except 310 

for IPSL (122.3 and 125.3 mm, respectively). Six models simulate a reduction trend, 311 

consistent with the observation (-11.82 mm per 10 year). However, MME suggests an 312 

increase trend. It may be not realistic, because it is dominated by CanESM2. In fall it 313 

is less unanimous, with two models with a higher value and the three else with a 314 

lower value. All five models and their MME show a reduction trend, consistent with 315 
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observation.  316 

The observed INT (column 11) is 7.8 and 7.9 mm per day in spring and fall, 317 

respectively. The value in spring in most of models (8.0 to 12.2 mm per day, except 318 

for two IPSL models) is slightly greater, but somewhat smaller in fall (4.8 to 7.0 mm 319 

per day). The observed INT trend exhibits negative in both the seasons. Only a small 320 

fraction of models in spring (three out of eleven models) reproduces the observed 321 

trend, but so do a major of models in fall (three out of five models) (column 12). 322 

Figure 7 (left half to the vertical black dashed line) displays the modeled ACR and 323 

INT evolutions in historical runs along with the observations. Although a comparison 324 

of the evolutions itself does not yield much meaning due to no initialization as 325 

mentioned in the above section, it can still provide insights into the interannual 326 

variability. From it, the simulated inter-model spread conforms to the observed. These 327 

analyses suggest an overall consistence of CREs in these selected models with the 328 

observed. This lays a basis for projecting CREs’ future change by using these “good” 329 

models. 330 

 331 

4. Future projections of CREs 332 

4.1 Occurrence 333 

Figure 4 (right to the black vertical dashed line) shows the projected occurrence 334 

of CREs (OCF and TRD) averaged over TGR under three emission scenarios. In 335 

spring (Figs. 4a and 4b), MME shows a significant increase in OCF and TRD under 336 

all the three RCPs. The increase is most evident under RCP4.5. Most of the individual 337 
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models yield a consistent result with MME. For OFC, seven, eight and six models 338 

among all the eleven models project the result consistent with MME under RCP2.6, 339 

RCP4.5 and RCP8.5, respectively. The numbers are eight, eight and six for TRD. 340 

In fall (Figs. 4c and 4d), a significantly reversed decrease trend is projected in 341 

OFC and TRD. The higher the emission, the more obvious the decrease is. As for 342 

individual models, for OFC, a total of three, three and five models among all the five 343 

“good” models project a decrease under RCP2.6, RCP4.5 and RCP8.5, respectively. 344 

The number is two, three and five for TRD. 345 

In view of regional difference in CREs within TGR from south to north (Zheng 346 

et al., 2018), whether the CREs trends vary in different subregions is intriguing. 347 

Figure 5a shows the distribution of projected spring OFC and TRD trend in MME. A 348 

resemblance is seen between them. First there is an overall increase in the whole 349 

region, particularly its plain western section. Second, the increase is more visible 350 

under the lower emissions (RCP2.6 and RCP4.5) than the higher emission (RCP8.5). 351 

This has been seen in the area mean above. 352 

Since the result from one single model may dominate MME, this causes 353 

uncertainty of projected results. To assess the uncertainty, we analyze the agreement 354 

of the models’ results. Figure 5b displays the spatial distribution of model number 355 

projecting an increase in occurrence of CREs. From it, most of models show a 356 

positive trend in OFC and TRD (warm yellow corresponds to an upward trend) in 357 

spring. Also, more models are in agreement with MME in the western section. This 358 

indicates a larger reliability in the CRE increase there (Fig. 5a). 359 
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The distribution of projected trend in occurrence MME in fall is displayed in 360 

figure 6a. A decrease both in OFC and TRD is seen across the area, particularly over 361 

the southwestern section. The decrease is even obvious under the higher emission 362 

scenario. This is also seen from the distribution of the number of model (Fig. 6b). The 363 

number of models is represented with deeper blue when they project an overall 364 

downward trend in OFC and TRD (Figs. 4c and 4d). The southwestern section of 365 

TGR projects a consistent decrease under all three scenarios, where CREs occur most 366 

frequently in fall (Zou, 2005). Besides, the models’ agreement increases along with 367 

the enhancement of emissions. Almost all the five “good” models project a reduction 368 

trend in occurrence across the region under RCP8.5, and the reduction in about one 369 

half of the models is significant in these grid points. 370 

 371 

4.2 Intensity 372 

Strong precipitation increases the risk of geological hazards (Corominas and 373 

Moya, 1999; Guzzetti et al., 2007; Jibson, 2006). Here we analyze the projected 374 

intensity of CREs expressed as ACR and INT. From figure 7 (right to the vertical 375 

black dashed line), a significant increase in ACR and INT in spring is seen under all 376 

three RCP scenarios. The higher the emission, the more evident the increase is. 377 

During 2070-2099, ACR is projects to increase by 19.4%, 29.2% and 30.8% under 378 

RCP2.6, RCP4.5 and RCP8.5, respectively, relative to 1970-1999. The values for INT 379 

are 11.9%, 16.6% and 25.7 %. Also, most of the model bear a consistent projection 380 

with MME. The number of the models is nine, ten and eight for ACR under RCP2.6, 381 
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RCP4.5 and RCP8.5 respectively. This number is eight, eleven and eleven for INT, 382 

respectively. 383 

In fall (Figs. 7c and 7d), a negative trend in ACR is projected, being significant 384 

under RCP4.5 and RCP8.5. There is (are) one, three and three model(s) among the 385 

five “good” models projecting the result consistent with MME under RCP2.6, RCP4.5 386 

and RCP8.5, respectively. That only one model bears a similar projection to MME 387 

implies substantial uncertainty under RCP2.6. For INT, one opposite result is 388 

projected, but it may be robust since four, three and five models among all the five 389 

“good” models yield a result similar to MME. 390 

Figure 8a shows the spatial distribution of projected spring ACR and INT trend 391 

in MME. ACR under all three scenarios shows an increase from north to south, while 392 

INT increases in different sections under different emissions. Under the lower 393 

scenario, the increase is located in the highly-populated southwestern section, but in 394 

the northeastern closer to the Great Dam under the higher emissions. The model’s 395 

spread is checked in Figure 8b. For ACR, almost all models project a positive trend 396 

under all the three scenarios, particularly in the southwestern section. A greater spatial 397 

homogeneity is seen in INT under RCP4.5 and RCP8.5 than that under RCP2.6. 398 

The spatial distribution of projected fall ACR and INT trend in MME is 399 

displayed in Figure 9a. Similar to occurrence (Figure 6a), a decrease in ACR is 400 

located in the southwestern area, and it is more pronounced under the higher scenario. 401 

INT shows an increase in the western section under RCP2.6 and RCP8.5, but a 402 

decrease across the area under RCP4.5. Similar to the previous analyses, the model 403 
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number projecting a same trend as MME is presented in figure 9b. From it, the 404 

models’ agreement is relatively higher in ACR under higher than lower emissions.  405 

Both the accumulated amount and short-duration rainstorm intensity are crucial 406 

triggering geological hazards (Corominas and Moya, 1999; Jibson, 2006). Thus, an 407 

in-depth analysis on ACR and INT in individual models is conducted below. Figure 408 

10 shows the frequency distribution of spring ACR bins for different decades under 409 

RCP 4.5. In spite of an in-between difference, most of the models yield a visible 410 

increase in the future. For example, there is an increased frequency of heavy ACR 411 

(exceeding 80 mm) during 2070 to 2099 in CNRM-CM5, HadGEM2-AO, 412 

HadGEM2-ES and MRI-CGCM3. Also, the increase in spring under different 413 

scenarios is similar to one another, but with a greater amplitude under RCP8.5 than 414 

RCP2.6. In fall, the individual models project a regional non-unanimous result except 415 

for CNRM-CM5, which projects increased grids with ACR exceeding 200 mm during 416 

the late 21st century. There is no significant change in the two models from IPSL but 417 

a slight decrease from the two models else.  418 

The increase in evaporation resulted by warming is greater than the atmospheric 419 

capacity in holding moisture, this imbalance implicates a decrease in light to moderate 420 

precipitation events (Sun, 2006; Trenberth, 1998). The light to moderate precipitation 421 

events consiste of a fraction of CREs. To obtain the projection of precipitation 422 

intensity in CREs (i.e. INT) in the future, the 90th, 95th and 99th percentiles obtained 423 

by aggregating daily rainfall intensity from all CREs are used to classify four major 424 

categories: light rainy (LR), moderate rainy (MR), heavy rainy (HR), and extreme 425 
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rainy (ER) days. Figure 11 compares the projected change in the individual models in 426 

2020-2049 (near-future) and 2070-2099 (far-future) relative to 1970-1999. In 427 

far-future, for spring LR (Fig. 11b) there is about a half of the models projecting a 428 

reduction but an increase by the remaining models. For spring MR, more models 429 

project an increase with a higher model agreement. Also, almost all models project an 430 

increased HR and ER, and this is particularly evident by HadGEM2-ES, 431 

HadGEM2-AO, and MRI-CGCM3. Besides, the increase is most significant under 432 

high emissions. In fall, for LR, MR and HR, most models project weakening in daily 433 

rainfall intensity, and the weakening is most prominent under all three scenarios in 434 

MRI-CGCM3. In contrast, all the models display an enhanced daily intensity in ER 435 

under RCP 2.6 and RCP 8.5. 436 

In near-future the projected changes (Fig. 11a) are qualitatively similar to the 437 

far-future but weaker. This indicates a gradual increase in spring daily rainfall 438 

intensity during CREs in the future (Fig. 7b). In fall an overall increase is projected 439 

(Fig. 7d), although it is not so unanimous in different categories. This increase may be 440 

attributed to the growth of ER events. This seems reasonable because the precipitable 441 

water within the atmosphere increases under a warming context, and it is easier to 442 

form bigger particles and rain drops. 443 

 444 

5. Summary and discussions 445 

The Three Gorges Reservoir area (TGR) in China suffers from geological 446 

hazards like landslide downhill and mudslide. Consecutive rainfall event (CRE) is a 447 
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substantial trigger. In this study we used the IPCC CMIP5 outputs to project the future 448 

trends of CREs’ occurrence and intensity. Just the “good” models are chosen to 449 

project based on their historical simulations on the observed CREs. 450 

Considering the common systemic bias with more rainy days in most of the 451 

state-of-the-art models, a new approach to defining model’s rainy days has been 452 

developed based on the Cumulative probability Distribution Function of the observed 453 

daily rainfall amount. Then, models’ rainy days number has been derived to identify 454 

CREs. A total of eleven /five models have been selected as “good” models to project 455 

the future trends for spring /fall. These models have exhibited a relatively higher skill 456 

in reproducing observed CREs’ spatial patterns and interannual variability of 457 

occurrence.  458 

The results suggest an increase of the occurrence of CREs in spring, being most 459 

significant under RCP4.5, but a reduction in fall, being more evident under higher 460 

scenarios. The projected change in occurrence is more prone in the southern and 461 

western sections of the area. The projected change in accumulated rainfall amount is 462 

similar to the occurrence in both seasons. In contrast to difference in occurrence 463 

between the two seasons, the projected daily rainfall intensity in CREs increases 464 

overall in both spring and fall. The projected increase in occurrence and/or 465 

intensifying in daily rainfall intensity imply a higher risk of geological hazards in 466 

TGR in future.  467 

It has been well known that CREs occur under a more stable and 468 

longitudinally-oriented circulation pattern dominated with blocking at mid-high 469 
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latitudes (Ding et al., 2008; Luo et al., 2013). In the recent decades, the Arctic warms 470 

much faster than the mid-lower latitudes, the weakening of the north-south 471 

temperature gradient causes a reduction in the atmospheric baroclinicty and 472 

subsequently weakens the mid-latitudinal westerly and a much broader meridional 473 

meanders in mid-high latitudes (Liu et al., 2012; Outten and Esau, 2012). The change 474 

might affect the atmospheric pattern pattern related to CREs. From figure 12, the 475 

spring geopotential height has increased obviously in east Siberia but not in the Ural 476 

region through 1960-2018. In fall, a prominent increase occurs in the Barents Sea 477 

region. Such a difference in atmospheric circulation trend between the two seasons 478 

may have contributed their opposite trend in CREs’ occurrence.  479 

Here just the statistical downscaling scheme based on GCM outputs is used. In 480 

addition to the statistical downscaling, the dynamical downscaling with regional 481 

climate models is also an effective approach. It bears more physical meaning. 482 

Projecting the future trend of CREs in regional climate model like WRF consists of 483 

our future work. 484 

There exists some uncertainty in the present study. First, climate simulations 485 

have larger uncertainty over mountainous areas like TGR than over plain basins 486 

(Palazzi et al., 2013, 2015). Precipitation is much more poorly simulated than other 487 

variables such as air temperature, due to its strong localization, relatively sparse 488 

instrument samples as well as the weaker physical constraints (Allen and Ingram, 489 

2002). Also, the observational gridded dataset used here, CN05.1, embraces 490 

uncertainty due to the adapted interpolation. Besides, the coarse spatial resolution of 491 
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the CMIP5 models is also one major source of uncertainties (Birkinshaw et al., 2017). 492 

Finally, just several models (IPSL-CM5A-LR, IPSL-CM5A-MR, CNRM-CM5, 493 

MRI-CGCM3, CSIRO-Mk3.6.0) analyzed here incorporate the direct effects and the 494 

first indirect effects of aerosols, this affects definitely the identification and projection 495 

of CREs since aerosols are essential for precipitation frequency (Jing et al., 2017). 496 

This is another source of uncertainty.  497 

  498 
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Appendix: Abbreviation in the context 510 

 511 

Abbreviated Index Full name 

CREs Consecutive Rainfall Events 

TGR The Three Gorges Reservoir area 

RCP Representative Concentration Pathways 

MME Multiple-model ensemble mean 

OCF Occurrence frequency 

TRD Total rainy days 

ACR Accumulated rainfall amount 

INT Mean rainfall intensity 

 512 
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Table 1 Details of the 20 CMIP5 models 724 

ID Model name Institute (Institude ID) Lat×Lon(degrees) 

1 BCC-CSM1.1 
Beijing Climate Center, China Meteorological 
Administration (BCC) 

~2.8×~2.8 

2 BNU-ESM College of Global Change and Earth System Science, Beijing 
Normal University (GCESS) ~2.8×~2.8 

3 FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of 
Sciences (LASG-IAP) ~2.8×~2.8 

4 IPSL-CM5A-LR 
Institut Pierre Simon Laplace (IPSL) 

~1.9×3.75 

5 IPSL-CM5A-MR ~1.25×2.5 

6 CNRM-CM5 
Centre National de Recherches Meteorologiques-Centre 
Europeen de Recherche et Formation Avancees en Calcul 
Scientifique (CNRM- CERFACS) 

~1.4×~1.4 

7 CanESM2 Canadian Center for Climate Modelling and Analysis (CCCMA) ~2.8×~2.8 

8 GFDL-CM3 

NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL) 

~2×2.5 

9 GFDL-ESM2G ~2×2.5 

10 GFDL-ESM2M ~2×2.5 

11 HadGEM2-AO 
Met Office Hadley Centre (MOHC) 

1.25×~1.9 

12 HadGEM2-ES 1.25×~1.9 

13 MIROC-ESM 
National Institute for Environmental Studies,The University 
of Tokyo (MIROC) 

~2.8×~2.8 

14 MIROC-ESM-CHEM ~2.8×~2.8 

15 MIROC5 ~1.4×~1.4 

16 MPI-ESM-LR 
Max Planck Institute for Meteorology (MPI-M) 

~1.9×~1.9 

17 MPI-ESM-MR ~1.9×~1.9 

18 MRI-CGCM3 Meteorological Research Institute (MRI) ~1.1×~1.1 

19 NorESM1-M Norwegian Climate Centre (NCC) ~1.9×2.5 

20 CSIRO-Mk3.6.0 
Commonwealth Scientific and Industrial Research 
Organization in collaboration with Queensland Climate 
Change Centre of Excellence (CSIRO-QCCCE) 

~1.9×~1.9 
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Table 2 One comparison of the threshold, modeled seasonal rainfall, averaged 728 

magnitude and trend (per decade) of CREs in the historical runs of the “good” models 729 

with those in observation. The four variables (OCF, TRD, ACR and INT) are used to 730 

describe CREs, and CREs are identified by threshold based on the new approach. “ * ” 731 

indicates significant at the 95% confidence level. See the context. 732 

ID Models  Spring 

  
Thres. Seasonal 

Rainfall OCF TRD ACR INT 

    Mag. Trend Mag. Trend Mag. Trend Mag. Trend 

 
CN05.1 1 328.1 2.0 -0.10 18.1 -0.83 143.1 -11.82 7.8 -0.28* 

3 FGOALS-g2 3.5 352.6 1.9 0.03 19.3 0.21 157.5 4.93 8.1 0.10 
4 IPSL-CM5A-LR 1 276.2 2.1 0.01 18.9 -0.78 122.3 -3.42 6.5 0.05 
5 IPSL-CM5A-MR 0.7 274.0 2.0 0.00 19.1 0.01 125.3 -1.37 6.6 -0.07 
6 CNRM-CM5 3.1 379.4 2.0 -0.03 20.3 0.64 187.5 5.15 9.2 0.02 
7 CanESM2 3 444.0 2.0 0.07 20.5 1.21 221.3 15.30 10.8 0.07 
11 HadGEM2-AO 3.7 455.7 2.0 -0.02 18.9 -0.43 229.7 -5.61 12.2 -0.08 
12 HadGEM2-ES 3.7 421.3 2.1 -0.09 18.4 -0.54 203.3 5.83 11.1 0.33* 
15 MIROC5 3 462.8 2.0 -0.05 17.7 -0.68 192.5 -5.61 10.8 0.18 
16 MPI-ESM-LR 3.2 454.8 2.0 0.05 18.4 0.02 195.9 5.12 10.6 0.38* 
18 MRI-CGCM3 2.1 355.7 2.0 -0.09 19.9 -0.77 161.9 -8.65 8.0 -0.05 
20 CSIRO-Mk3.6.0 2.1 375.0 2.0 -0.02 20.0 -0.08 176.9 -1.36 8.9 0.05 
G MME_G   2.0 0.01 19.2 -0.02 179.5 1.13 7.9 0.03 
A MME_A   2.1 0.00 19.7 -0.03 190.7 0.43 8.6 -0.02 

  
Fall 

  
Thres. Seasonal 

Rainfall OCF TRD ACR INT 

  
  Mag. Trend Mag. Trend Mag. Trend Mag. Trend 

 CN05.1 1 250.3 2.0 -0.24* 18.6 -2.90* 148.6 -27.42* 7.9 -0.18 
4 IPSL-CM5A-LR 0.7 227.9 2.3 -0.20* 22.2 -1.92 155.8 -13.78 6.9 -0.10 
5 IPSL-CM5A-MR 0.1 163.0 2.4 -0.16 25.2 -2.45 121.6 -14.2* 4.8 -0.04 
6 CNRM-CM5 1.7 255.5 2.4 -0.04 22.0 -0.82 154.5 -2.73 7.0 0.06 

18 MRI-CGCM3 1 239.2 2.2 -0.09 21.0 -1.19 137.5 -4.49 6.4 0.10 
20 CSIRO-Mk3.6.0 0.5 190.4 2.3 -0.32* 22.1 -3.22* 129.6 -20.78* 5.7 -0.01 
G MME_G 

  
2.3 -0.14* 22.5 -1.40* 139.8 -9.38* 5.8 -0.09 

A MME_A   2.2 -0.08* 21.9 -0.97* 167.8 -7.13* 7.0 -0.08 
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 735 

Figure 1 The topography distribution of the TGR. The west and east sections to TGR 736 

are the Sichuan Basin and the Jianghan Plain, and the north and south sections to TGR 737 

are the Daba Mountains and the Wuling Mountains, respectively. The red dot of 738 

upstream is Chongqing City, which is a provincial capital with a population of 30 739 

million, and the purple dot of the downstream indicates the location of the Great Dam 740 

of TGR. 741 
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 744 

Figure 2 The CDF of daily rainfall amount in (a) spring and (b) fall based on CN05.1 745 

and twenty CMIP5 models. The colorful curves represent different models and the 746 

black curve represents the observation (CN05.1). The black horizontal dashed line 747 

represents the CDF of observed daily rainfall with the amount over 1 mm threshold, 748 

and the color vertical dashed lines correspond to the model threshold at horizontal 749 

axis.  750 
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 752 

Figure 3 Taylor diagram displaying normalized pattern statistics of climatological 753 

seasonal mean (a) OCF and (b) TRD (models with a negative correlation coefficient, 754 

large root-mean-square difference or large standard deviation are not shown). Each 755 

number represents a model ID (see Table 1). The reference (REF) indicates 756 

observation from CN05.1. Red and blue denote the spring and fall, respectively. The 757 

correlation coefficient between a model and the CN05.1 is given by the azimuthal 758 

position, with oblique dotted lines showing the 95% confidence level. The normalized 759 

standard deviation of a model is the radial distance from the origin, with cambered 760 

thick dashed lines showing the value of 1.0 and cambered thin dashed lines showing 761 

the value of 0.5 and 1.5, respectively. The normalized centered RSM difference 762 

between a model and the reference is their distance apart, with cambered solid lines at 763 

intervals of 0.5. 764 
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 766 

Figure 4 Temporal evolution of simulated OCF and TRD in spring ((a) and (b)) and 767 

fall ((c) and (d)) in CMIP5 historical runs (left to the vertical black line in each panel) 768 

and projected runs (right to the vertical black line). For the historical period 769 

(1961-2005), yellow and black lines represent the observed and MME simulated, 770 

respectively. For the projection period (2006-2099) blue, green and red lines represent 771 

three emission scenarios (RCP 2.6, RCP 4.5, RCP 8.5), respectively, with the 772 

correspondent linear fitting indicated with dashed lines. Shading with grey, light-blue, 773 

light-green and pink denotes the 95% confidence intervals of standard deviation for 774 

the “good” models in historical runs and projected runs (RCP 2.6, RCP 4.5, RCP 8.5, 775 

respectively). The anomalies are relative to 1961-2005.  776 
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 778 

Figure 5 a) Spatial change trend (per decade) of projected spring occurrence of CREs 779 

from 2006 to 2099. b) Number of models among all the 11 models projecting a 780 

positive trend of occurrence of CREs (warmer orange corresponding to a positive 781 

trend). Left to right correspond to the OCF and TRD describing occurrence of CREs, 782 

and upper to lower corresponds to the three emission scenarios from RCP 2.6 to RCP 783 

8.5. Colored shading in b) represents the number of models, and dots and hatches 784 

shading indicate the number of models with significant trend. 785 
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 787 

Figure 6 a) As Fig. 5a but for fall, and b) exhibits the number of models among all the 788 

5 models projecting a negative trend of occurrence of fall CREs (cooler blue 789 

corresponding to a negative trend). 790 
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 792 

Figure 7 As Fig. 4 but for ACR and INT. 793 
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 795 

Figure 8 As Fig. 5 but for ACR and INT describing intensity of spring CREs. 796 
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 798 

Figure 9 As Fig.6 but for ACR and INT describing intensity of fall CREs. 799 

 800 

  801 

46 
 



 802 

Figure 10 Frequency distribution of spring ACR in the single CRE for different 803 

rainfall bins during different decades of the future derived from “good” CMIP5 804 

models under RCP4.5. 805 
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 807 

Figure 11 The change rate of daily rainfall intensity at different categories during 808 

CREs. The increments are a) 2070-2099 or b) 2020-2049 relative to the reference 809 

period 1970-1999. Response of each “good” CMIP5 models is denoted by different 810 

color marks. Different categories of rainfall are shown as L(light rain), M(moderate 811 

rain), H(heavy rain), E(exterme rain). Part of models’ mark in b) (the ER growth of 812 

MRI-CGCM3 are 422%, 526%, 638% from RCP 2.6 to RCP 8.5 respectively, and the 813 

ER growth of HadGEM2-ES is the 235% under RCP 8.5) is not shown due to the 814 

oversized change rate.   815 
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 816 

Figure 12 Change trend of geopotential height at 500hPa level (units: m) in a) spring 817 

and b) fall during 1960 - 2018 in the National Center for Environmental Prediction 818 

reanalysis I. Regions within shaded in denote the trend or the differences at 99% 819 

confidence level. 820 
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