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Abstract

To prepare for implementation of a new aerosol retrieval specifically designed for dust aerosol over ocean in the operational Dark

Target (DT) algorithms for the Moderate-resolution Imaging Spectrometer (MODIS) and Visible Infrared Imaging Radiometer

Suite (VIIRS) satellite sensors, we focus on the challenge of detecting dust. We first survey the literature on existing dust

detection algorithms and then develop an innovative algorithm that combines near-UV (deep blue), visible, and thermal infrared

(TIR) wavelength spectral tests. The new detection algorithm is applied to Terra and Aqua MODIS granules and compared with

other dust detection possibilities from existing MODIS products. Quantitative evaluation of the new dust detection algorithm is

conducted using both a collocated AERONET - MODIS dataset and collocated CALIPSO – MODIS dataset. From comparison

with both AERONET and CALIOP measurements, we estimate the new dust detection algorithm detects about 30% of weakly

dusty pixels and more than 80% of heavily dusty pixels, with false detections in the range of 1-2%. The very low false detection

rate is particularly noteworthy in comparison with existing literature. Compared with the dust flag currently available as part

of the MODIS cloud mask product (MOD35/MYD35), and dust classification based on commonly used thresholds with AOD

and AE, the new dust detection algorithm finds more dusty pixels and fewer false detections.

1



 1 

Dust Aerosol Retrieval Over the Oceans with the MODIS/VIIRS 

Dark Target algorithm. Part I: Dust Detection 

 

Yaping Zhou1,2, Robert C. Levy 2, Lorraine A. Remer1,  

Shana Mattoo2,3, Yingxi Shi1,2, Chenxi Wang1,2 

1University of Maryland Baltimore County, 2 NASA Goddard Flight Center, 3Science 

Systems and Applications, Inc. Center,  

 

 

Abstract 

To prepare for implementation of a new aerosol retrieval specifically designed for dust 

aerosol over ocean in the operational Dark Target (DT) algorithms for the Moderate-

resolution Imaging Spectrometer (MODIS) and Visible Infrared Imaging Radiometer 

Suite (VIIRS) satellite sensors, we focus on the challenge of detecting dust. We first 

survey the literature on existing dust detection algorithms and then develop an innovative 

algorithm that combines near-UV (deep blue), visible, and thermal infrared (TIR) 

wavelength spectral tests. The new detection algorithm is applied to Terra and Aqua 

MODIS granules and compared with other dust detection possibilities from existing 

MODIS products. Quantitative evaluation of the new dust detection algorithm is 

conducted using both a collocated AERONET - MODIS dataset and collocated 

CALIPSO – MODIS dataset. From comparison with both AERONET and CALIOP 

measurements, we estimate the new dust detection algorithm detects about 30% of 

weakly dusty pixels and more than 80% of heavily dusty pixels, with false detections in 

the range of 1-2%. The very low false detection rate is particularly noteworthy in 

comparison with existing literature. Compared with the dust flag currently available as 

part of the MODIS cloud mask product (MOD35/MYD35), and dust classification based 

on commonly used thresholds with AOD and AE, the new dust detection algorithm finds 

more dusty pixels and fewer false detections. 
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1. Introduction 

 

Mineral dust aerosols arise from windblown soils, and have a multitude of 

impacts on weather and climate, air quality, public health, and ecosystems. Dust aerosol 

affects global and regional climate through direct radiative forcing and indirect 

interaction with cloud and precipitation processes (Miller & Tegen, 1998; Harrison et al., 

2001; Kaufman et al., 2002; Yu et al., 2006; Shell & Somerville 2007; Rosenfeld et al., 

2011; Zhao et al., 2011; Kok et al., 2018).  Dust aerosols can significantly impact air 

quality and the human respiratory system (Griffin 2007; Goudie 2013). Heavy dust 

storms can impair local transportation and cause damage to infrastructure and crops 

(Prospero et al., 2003; Goudie & Middleton, 2006; Weinzierl et al., 2012). Mineral dust 

originating from one region can be transported thousands of kilometers downwind, 

impacting air quality and ecosystems far beyond its source region (Kaufman et al., 2005; 

Hsu et a. 2006; Gassó et al., 2010; Yu et al., 2013; 2015; Gaiero et al., 2013; Prospero et 

al., 2014; Kim et al.,  2014). Characterizing global dust distribution is thus very important 

for climate studies as well as air quality monitoring. Dust aerosol is particularly complex 

as these particles have a wide range of sizes, shapes and mineralogical compositions, 

depending on the source region and meteorological conditions.  Dust entrained into the 

atmosphere from a source region is subject to many changes during its thousands of 

kilometers transit as mixing, humidification and deposition of large particles takes place.  

 

As dust is so complex, satellite remote sensing provides the global observations 

for characterizing global dust distribution. Remote sensing of dust or other aerosol 

particles is commonly performed by using the spectral signatures in observed radiances 

that arise from the interactions between the light and the atmospheric particulates.  The 

size, shape and chemical compositions of particles determine their absorption and 

scattering properties and the radiances received by a remote sensing instrument. These 

measurements, when converted into either reflectance in the UV, visible, Near IR 

channels or brightness temperature in the infrared, are used to infer the columnar 

integrated mass and optical properties of the particles. However in addition to the dust we 

are trying to observe, factors such as surface reflectivity, clouds, and other types of 

https://www.sciencedirect.com/science/article/pii/S0034425714005021?via%3Dihub#bb0185
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=10653
https://www.sciencedirect.com/science/article/pii/S0034425714005021?via%3Dihub#bbb0275
https://www.sciencedirect.com/science/article/pii/S0034425714005021?via%3Dihub#bbb0275
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aerosols and molecular scattering contribute to the spectral signatures received by the 

sensors.  Thus, identifying dust and retrieving its optical properties is a great challenge.  

 

The Moderate-resolution Imaging Spectrometer (MODIS) instruments on board 

the Terra and Aqua satellites have been observing the earth’s cloud, aerosol and surface 

since their launches in 2000 and 2002, respectively.  MODIS comprises 36 spectral 

channels from 0.41 μm to 15 μm with a nominal (nadir) resolution of 250, 500, or 1000 

m at nadir depending on band, and has a swath width of approximately 2300 km.  For 

aerosol retrievals, currently there are three operational retrieval algorithms, namely, 

Dark-Target (DT; Levy et al., 2013), Deep Blue (DB; Hsu et al., 2019) and Multi-angle 

Implementation of Atmospheric Correction (MAIAC; Lyapustin et al., 2018), all 

developed at NASA’s Goddard Space Flight Center.   

 

The DT aerosol retrieval algorithm consists of two independent components, one 

for ocean (DT-O; Tanré et al.,1997; Remer et al., 2005; Levy et al., 2013), and one for 

the dark land surfaces such as vegetation (DT-L; Levy et al., 2007a,b; Levy et al., 2010, 

Levy et al., 2013).  The DT algorithm relies on observing the contrast (and spectral 

dependence) of aerosol reflectance over dark surfaces and oceans. The algorithm (both 

land and ocean) follows a lookup table (LUT) approach, i.e., the Top-of-atmosphere 

(TOA) spectral reflectance is pre-calculated using scattering and radiative transfer (RT) 

codes (Wiscombe, 1980; Dubovik et al., 2002; Evans & Stephens, 1991; Ahmad & 

Fraser, 1982) for predefined aerosol, surface and atmospheric properties.  The ocean 

LUTs contain four fine aerosol models and five coarse models, in an effort to represent 

all aerosol types.  The DT-O retrieval algorithm selects one fine mode and one coarse 

mode aerosol with an adjustable fraction that minimizes the difference between the LUT 

reflectance and observed TOA reflectance in six wavelengths (0.55, 0.65, 0.86, 1.2, 1.6 

and 2.13 μm). The retrieved quantities include total aerosol optical depth (AOD at 0.55 

μm), Angstrom Exponent (AE1) derived from the AOD at 0.55 μm and 0.86 μm and a 

Fine Mode Fraction (FMF) that estimates the relative mixing between the fine mode and 

coarse mode aerosols.  
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Dust aerosols are predominantly non-spherical in shape (Chou et al., 2008).  The 

DT-land has incorporated a non-spherical dust model (Levy et al., 2007a). However, the 

current MODIS DT-O algorithm still does not have a non-spherical dust model, which 

creates bias in the retrieved AOD, FMF and AE (shown in Section 5.2).  While it may be 

tempting to simply replace the DT-O algorithm’s current spherical coarse models with 

new models corresponding to non-spherical particles (without changing the rest of the 

algorithm), it does not work.  Choosing the right dust model is not trivial as dust particles 

can take on different sizes, shapes and chemical compositions and an ill-represented dust 

model may make the retrieval worse. Additionally, there is no guarantee that the 

algorithm would reliably choose non-spherical models for dust and spherical models for 

non-dust aerosol, possibly further degrading the results of the retrieval.  

 

Therefore our strategy is to use two steps, first identify likely dust pixels, and then 

retrieve the AOD, AE and FMF using an appropriate dust model.  In this Part I paper, we 

focus on dust detection, and organize as follows.  Section 2 describes the data used in this 

work. Section 3 reviews dust detection in the current literature and summarizes our new 

dust identification algorithm. Section 4 evaluates the new dust detection algorithm with 

sample granules, by collocating and comparing to ground-based sun photometer and 

satellite-based lidar data. Section 5 shows the global dust distribution in two dust heavy 

months. A brief summary and discussion is provided in Section 6. 

 

2. Data  

 

The primary data used in the study are MODIS Level 1B calibrated TOA 

reflectance products (MxD02) (http://mcst.gsfc.nasa.gov/content/l1b-documents) and 

Collection C6 Level 2 aerosol products MxD04 (Levy et al., 2013) (where x is substituted 

by O for Terra and Y for Aqua). The MxD02 contains reflectance and radiance data at 

three native resolutions (i.e., 0.25 km, 0.5 km or 1.0 km at nadir, depending on band). 

whereas the dark-target algorithm aggregates these observations into 3x3 or 10x10 boxes 

as retrieval units.  The MxD04_L2 products used here include Aerosol Optical Depth 

(AOD), Angstrom Exponent (AE), and Fine Mode Fraction (FMF) reported at 10x10 km 

http://mcst.gsfc.nasa.gov/content/l1b-documents
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(nadir) resolution.  In addition to the retrieved aerosol properties, a MxD04 data point 

contains the clear-sky reflectance values used in the retrieval, quality assurance 

(confidence) estimates, as well as other ancillary information such as 2-meter surface 

wind speed from National Centers for Environmental Prediction (NCEP) re-analysis. We 

also use many of the individual cloud tests and especially the dust flag from the standard 

MODIS cloud mask product MxD35 (reported at 1 km resolution).  

 

Aerosol measurements from the ground-based Aerosol Robotic Network 

(AERONET) sun photometers are commonly used for validating satellite aerosol 

retrievals. AERONET is a global network of Cimel Electronique CE-318 sun-sky 

radiometers with between 4 and 9 spectral channels. AOD is obtained from direct sun 

measurements most often at 0.34, 0.38, 0.44, 0.50, 0.67, 0.87, and 1.02 μm with 

frequency of every 15 min; The high accuracy of AERONET AOD (estimated errors of 

~0.01–0.02) makes it widely popular (Eck et al., 1999; Holben et al., 1998).  In addition 

to direct sun measurements, the instruments measure the sky radiance in four spectral 

bands (0.44, 0.67, 0.87 and 1.02 μm) along the solar principal plane up to nine times a 

day and along the solar almucantar up to eight times a day. Measurements from 

almucantar scans are used to retrieve aerosol particle size distribution, spectral complex 

refractive index and single scattering albedo (SSA) (Dubovik & King, 2000; Dubovik et 

al., 2001). The majority of traditional AERONET stations are situated inland, with some 

located near the coast, and very few at small islands in the middle of the ocean. In this 

work, we use the latest Version 3 products, which provides improved cloud screening and 

better identification of heavy aerosol events (Giles et al., 2019).  

 

To match the MODIS retrievals with the AERONET measurements, AERONET 

measurements within ±30 min of the MODIS overpass time are averaged and compared 

against the values for all the MODIS retrieved pixels located within 0.3° of AERONET 

stations (Shi et al., 2019). In this way there are many collocations reported at each 

AERONET or MAN location at every overpass opportunity, since the AERONET or 

MAN observations are averaged to a single value but the many MODIS retrieved pixels 

within the match-up circle are not. The MODIS (both Aqua and Terra) - AERONET 
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collocation data from 2011 will be used for evaluation of the new dust detection 

algorithm. AERONET AOD measurements at 0.44 μm and 0.67 μm are linearly 

interpolated in log-log space (i.e. fit by Angstrom exponent) to be compared with 

MODIS AOD at 0.55 μm. We use the AERONET AOD and AE measurements to 

identify likely dust situations and compare with the result of the new dust detection 

algorithm applied to MODIS pixels in near proximity to the AERONET station.   

Aerosol measurements from space-borne active sensors such the Cloud-Aerosol 

Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observation (CALIPSO) (Winker et al., 2013) are frequently 

used to evaluate the performance of dust detection algorithm designed for passive sensors 

(Stubenrauch et al., 2013; Ciren & Kondragunta, 2014). CALIPSO was a key member of 

the Afternoon Constellation of satellites (A-Train) from 2006 to 2018, measuring 

backscattering profiles at a 30-meter vertical and 333 m along-track resolution at 

wavelengths of 532 nm and 1064 nm (Winker et al., 2013). CALIOP also measures the 

perpendicular and parallel signals at 532 nm, along with the depolarization ratio at 532 nm 

that is frequently used in aerosol/cloud phase discrimination algorithms because of its 

strong particle shape dependence. The CALIOP Version 4 Level 2 5-km Cloud/Aerosol 

Layer products not only provide cloud aerosol type information, but a qualitative 

assignment of aerosol type in each vertical layer, i.e., ‘dust’, ‘smoke’, ‘polluted dust’ or 

‘marine dust’.  A MODIS-Aqua / CALIOP collocated dataset is generated with a strict 

algorithm that fully considers the spatial differences between the two instruments and 

parallax effects, as described in Holz et al. (2008).   We consider various numbers of 

CALIOP-identified pure dust aerosol layers in the vertical column to identify dusty pixels 

that should be detected by the new algorithm applied to MODIS measurements.  Note that 

when we say that a pixel or a scene is ‘dusty’, we mean that it has been identified as likely 

containing dust aerosol somewhere within the horizontal or vertical domain.  

 

3.0 Developing a dust detection algorithm for MODIS 

3.1 Current dust detection techniques  
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Many dust detection algorithms have been developed utilizing specific optical 

properties of dust in the ultraviolet (UV) (Herman et al., 1997), visible (Miller, 2003; 

Jankowiak & Tanré, 1992; Martins et al., 2002; Kaufman et al., 1997) and infrared (IR) 

(Evan et al., 2006; Xie, 2009; Zhao et al., 2010; Cho et al., 2013) spectral regions.  The 

absorption Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer 

(TOMS) and Ozone Monitoring Instruments (OMI) instruments is a UV-based technique 

that utilizes the strong absorption of dust and smoke and low-surface reflectivity in UV 

spectral regions (Herman et al., 1997; Torres et al., 1998, 2007).  The AAI relies on the 

relatively small spectral variations in two UV channels (0.354 μm and 0.388 μm) in the 

presence of absorbing aerosols as compared to rapid change of Rayleigh scattering in 

these channels.  A Dust Aerosol Index (DAI) computed from slightly longer wavelength 

in deep blue and blue channels (0.412 μm and 0.490 μm) is employed by the DB aerosol 

retrieval algorithm for SeaWiFS and MODIS instruments to screen cloud scenes over 

bright surface (Hsu et al., 2004). Setting a higher threshold for DAI prevents 

misidentification of dust scenes and cloud.  A recent NOAA dust detection algorithm 

utilizes DAI as a first step to separate absorbing aerosols (dust and smoke) from non-

absorbing aerosols (Ciren & Kondragunta, 2014).  NOAA’s DAI is computed from two 

close channels in 0.412 μm and 0.440 μm to minimize reflectance changes in surface.  

Neither AAI or DAI can separate dust from other absorbing aerosols such as smoke.  

Hence NOAA’s dust detection algorithm further uses a NonDust Absorbing Aerosol 

Index (NDAI), computed from the spectral ratio of 0.412 μm and 2.13 μm channels to 

separate dust from smoke.  The NDAI capitalizes on the fact that dust particles have 

higher reflectivity in the 2.13 μm band than smoke particles as a result of their larger size.  

However, the differences in surface reflectance between the two wavelengths are not 

taken into consideration.  

 In the visible and NIR wavelengths, since dust is visually brighter than most dark 

surfaces, i.e., ocean and vegetation, but darker than cloud and sometimes desert, 

reflectance in visible channels (0.47m, 0.65m and 0.87m) make good first order tests 

for dust scenes in locations where dust is expected (Tanré  & Legrand 1991; Kaufman et 

al., 2000; Jankowiak & Tanré, 1992; Miller 2003). More sophisticated techniques use the 
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different spectral variations of dust absorption and scattering in contrast to surface and 

cloud, and reflectance ratios between blue, red and green channels (i.e., 0.47m / 

0.65m, 0.65m / 0.55m, and 0.55m / 0.47m) or normalized reflectance difference 

such as NDVI have been used for dust detection (Jankowiak & Tanré,1992; Miller 2003; 

Zhao et al., 2010).  A step further in this application is combining a visible channel with a 

SWIR channel (i.e., the NDAI from Ciren & Kondragunta (2014) uses the ratio of 

0.47m and 2.13 m and Qu et al., 2006 uses normalized spectral difference between 

2.13 m and 0.47m) to maximize the difference in spectral contrasts.  

In the IR window region, the different refractive indices of dust in 11m and 12 

m are used as the basis for brightness temperature difference (BTD) test to distinguish 

dust from clouds (Shenk & Curran 1974; Wald et al., 1998; Sokolik, 2002; Legrand et al., 

2001; Bullard et al., 2008).  Both the real and imaginary refractive indices of dust are 

higher in 11m than in 12m, while it is the opposite for an ice cloud. Thus, the 

difference BTD11m -12m is expected to be negative for dust and positive for ice 

cloud.  For the water clouds, the differences in real and imaginary refractive indices are 

such that they cancel out, leaving BTD11m -12m close to zero.  Some algorithms use 

8.5 μm in addition to 10 μm and 11 μm (tri-spectral) differencing for dust detection (Hu 

et al., 2008; Ackerman, 1989, 1997; Ashpole & Washington, 2012; Strabala et al., 1994; 

Hansell et al., 2007; Schepanski et al., 2007).  Since brightness temperature not only 

depends on the optical properties of aerosols, but also on surface emissivity, vertical 

profiles of atmosphere, aerosol distribution and water vapor, the infrared technique is 

found to be highly dependent on regions (Hansell et al., 2007).   

In addition to single pixel tests, spatial and temporal features of dust have also 

been used to separate dust from clouds and surface (Jankowiak & Tanré, 1992; Martins et 

al., 2002; Darmenov & Sokolik, 2009). For example, spatial variability (i.e. pixel-to-

pixel) tests in 0.86 m or 0.64 m are often used to separate dust from clouds as dust 

appears more spatially homogenous than clouds. The Infrared differential dust index 

(IDDI) uses temporal and spatial difference of IR temperature in dusty pixels and clear 

pixels (Legrand et al., 2001) to detect dust. A summary of dust detection algorithms is 
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listed in Table 1. Not all of the tests are available for every instrument since each 

instrument has a limited number of spectral channels.  

 

Since MODIS provides many spectral channels ranging from deep blue, visible to 

NIR and TIR, there are numerous spectral choices for dust detection.  Previous efforts in 

combining multiple visible and infrared spectral tests have led to many multi-channel 

dust detection algorithms (e.g., Lee, 1989; Roskovensky & Liou, 2005; Evan et al., 2006; 

Xie, 2009; Hansell et al., 2007; Zhao et al., 2010; and Cho et al., 2013). Among these, 

Zhao et al. (2010) is implemented with the standard MODIS cloud mask (MOD35) to 

detect heavy dust that could potentially be identified as cloud and a dust flag is reported 

along with other cloud mask tests.  The algorithm combines multiple visible and infrared 

channels and spatial variability in the reflectance at 0.86 μm to detect heavy dust. Initial 

evaluation of the algorithm shows that the algorithm succeeds in detecting heavy dust 

plumes near the source regions but misses thin dust far away from source regions (Zhao 

et al., 2010; Cho et al., 2013). In addition, the algorithm miss identifies many dusty pixels 

in high latitude oceans. 

 

Dust detection accuracy from major existing algorithms ranges from 60% to 84% 

depending on regions with false detection rate of about 20% when compared to dust 

detection from CALIPSO (Ciren & Kondragunta, 2014, Cho et al., 2013). These studies 

show that current dust detection algorithms could be good at detecting either thick dust, 

but when faced with thin dust, they allow a large number of false detections.  

 

As an alternative method for MODIS, we might use retrieved parameters from the 

DT aerosol algorithm (AOD, AE and FMF) to identify pixels that are likely ‘dusty’. In 

general, dust aerosols can be distinguished from background marine aerosol and other 

pollution and smoke aerosols by their large AOD, small AE and small FMF due to the 

larger particle sizes, if the retrieval is done correctly. A simple evaluation of the approach 

is done by comparing the collocated AERONET and MODIS DT retrievals over oceans 

from all stations in Terra (2000-2014) and Aqua (2002-2014), and applying the same 

AOD and AE thresholds (AOD>0.5 and AE <0.5) to both AERONET and MODIS DT 
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retrievals. We find that the AOD retrieval-based dust detection rate is about 67% to 79%. 

This is not significantly higher than the existing algorithms, and to implement this 

methodology, it would require an iterative retrieval to apply a dust model. 

 

 In summary, dust detection accuracy from major existing algorithms ranges from 

60% to 84% with false detection rate of about 20-30% when compared to dust detection 

from other sensors, including CALIPSO (Ciren & Kondragunta, 2014, Cho et al., 2013). 

These studies show that current dust detection algorithms have to make a choice between 

focusing on heavy dust and ignoring thin dust, or accepting large false detection rates in 

order to identify dust at smaller aerosol loadings. Here we will reevaluate these spectral 

tests and find a better combination of tests to improve the performance of dust detection 

for MODIS algorithms.  

  

3.2 Evaluation of dust tests 

 

One of the major difficulties in developing dust detection algorithms is the lack of 

ground truth.  Some algorithms are developed based on a handful of visually selected 

dusty images (Zhao et al., 2010), while others use retrieved aerosol products such as 

AOD and AE for dust selection (Ciren & Kondragunta, 2014).  The former often fails to 

represent the diversity of dust properties present across different regions.  The latter is 

sensitive to algorithm deficiencies ranging from inaccurate cloud screening to 

imperfections in the aerosol models used in the retrieval algorithm.  

 

In this study, we start by carefully assembling a training dataset that has both 

dusty granules and granules without dust. To represent different scene types, we picked 

19 granules which the scene types were visually identifiable, and were from different 

regions and seasons (Table 2). In addition to dusty scenes, we have included several 

granules with heavy smoke because separating dust from smoke tends to be a major 

challenge for both dust and smoke detection algorithms. For each granule, we have 

manually drawn one or two boxes, and we have grouped the pixels (in 1 km resolution) 

from these boxes into 5 scene types: dusty, smoky, cloudy, clear over ocean, and 
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snow/ice surface (Figure 1).   The cloud mask from the DT algorithm (based on 3x3 pixel 

variability and 1.38 mm channel brightness) is used to screen out possible cloud 

contamination in the smoke and dust samples. This method ensures that the correct scene 

type is assigned to each 1 km resolution pixel, independent of the retrieved AOD and AE 

products, which have the potential to be biased.  

 

We then applied spectral tests, including both single channel tests and multi-

channel tests to the carefully selected and screened sample pixels.  Figure 2 shows 

probability distribution functions (PDF) of reflectance or brightness temperature from all 

collected pixels as a function of scene type, for 14 wavelengths commonly used in single 

channel dust tests. As expected, the clear ocean surfaces have the lowest reflectance in all 

examined shortwave channels. A quick inspection of the other scene types shows that the 

reflectance of cloud and snow are generally higher than the dust and smoke scenes in the 

visible and 0.86 μm channels but the PDFs begin to overlap significantly at wavelengths 

longer than 1 μm. Among the longwave bands examined, the mid-IR wavelength of 3.9 

m—a region of the spectrum where the brightness temperature signal is dominated by 

the temperature of the underlying surface and atmosphere—showed the least ability to 

distinguish the different scene types.  The 1.37m channel is often used to detect thin 

cirrus clouds because strong water vapor absorption in this region of the spectrum masks 

radiation from the surface and lower level clouds that could complicate the scene (Gao & 

Kaufman 1995).  The large reflectance seen in this channel for some smoke scenes may 

be due to rising of smoke to very high altitudes. The cutoff values at 5% and 95% of 

cumulated PDFs (figures not shown) are listed in Table 3. These values can be used as 

initial thresholds for each of the tests.  

 

We have identified fifteen tests that combine multiple wavelengths, either as 

differences, ratios or normalized difference ratios to identify dust. The multi-channel tests 

(Table 4) manipulate the spectral measurements to minimize the surface’s impact on the 

spectral variations (Figure 3). However, none of the individual multi-channel tests could 

distinctively separate dust from all other scene types, especially smoke. 
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A scatter plot of two tests can generally delineate different scene types better as 

more spectral signals can be used simultaneously to constrain the scenes.  We paid 

special attention to the two indices used in the NOAA’s dust detection algorithm (Ciren 

& Kondragunta, 2014), the dust aerosol index (DAI) and nondust absorbing aerosol index 

(NDAI): 

 

𝐷𝐴𝐼 = −100[𝑙𝑜𝑔10 (
𝑅0.41

𝑅0.44
) − 𝑙𝑜𝑔10 (

𝑅0.41
′

𝑅0.44
′ )]              (1) 

𝑁𝐷𝐴𝐼 = −10𝑙𝑜𝑔10 (
𝑅0.41

𝑅2.13
)                                          (2) 

 

Where R is the observed reflectance and R' refers to the reflectance due to 

Rayleigh scattering.  After careful inspection of all one-tests and 2-test combinations, we 

notice that the DAI test which uses the ratio of two deep blue channels subtract the ratio 

of reflectance from Rayleigh scattering, is less predictive either by itself or combined 

with other tests than a single deep blue channel. 

 

However, we find the NDAI to be quite useful when combined with a reflectance 

test in 0.41 μm (Figure 4a).  The 0.41 μm channel is selected to take the advantage of the 

absorption properties of dust in the deep blue range of the spectrum. This channel has the 

shortest wavelength of all MODIS channels and separates absorbing dust and smoke from 

the brighter cloud and snow surface. The NDAI uses the ratio of reflectance at 0.41 μm 

and 2.13 µm channel to make a distinct separation between the smoke and dust as 

reported in Ciren & Kondragunta (2014).  Because the 2.13 µm channel is very sensitive 

to particle size (Kaufman et al., 1997) and because dust and smoke are dominated by 

particles that differ in size by an order of magnitude, reflectance at 2.13 µm has the most 

promise of separating these two types of aerosol. Thus, by using both 0.41 µm and 2.13 

µm, NDAI combines information that should identify aerosol spectral absorption in the 

shortwave typical of dust and smoke, and then separate the two types of aerosol by size.  

NDAI alone begins to make that separation, although imperfectly. However, we find that 

a combination of the 0.41 μm reflectance and NDAI is able to separate dust from most of 

the other scene types (Figure 4a).  We notice the existence of some smoke pixels in 
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bottom right side of Figure 4a. These smoke pixels come from a thick smoke plume off 

the Californian coast.   

 

In Figure 4b, the narrow range of dust BTD between 8.7m and 11m effectively 

removes these smoke pixels from dust.  In addition to these tests, we also include a 

spatial variability test in 0.86 µm and reflectance ratio tests in three visible channels 

(R0.47/R0.65, R0.65/R0.55 and R0.55/R0.47) for initial cloud screening and identifying 

some particularly heavy dust cases. Our final algorithm combines dust signatures from 

deep blue, VIS, NIR, SWIR, and TIR spectral regions as follows: 

 

9-pixel 𝑠𝑡𝑑𝑒𝑣(𝑅0.86) < 0.02;  

0.06 < 𝑅0.41 < 0.35; 

𝑖𝑓
𝑅0.47

𝑅0.65
< 0.9 ⇒ 𝑑𝑢𝑠𝑡; 

𝑖𝑓
𝑅0.47

𝑅0.65
< 0.2 𝑡ℎ𝑒𝑛 

𝑖𝑓
𝑅0.65

𝑅0.55
≥ 1.15 𝑎𝑛𝑑

𝑅0.55

𝑅0.47
≥ 1.15 ⇒ 𝑑𝑢𝑠𝑡; 

𝑁𝐷𝐴𝐼 > −2.8 𝑜𝑟 

−10 < 𝑁𝐷𝐴𝐼 < −2.8 𝑎𝑛𝑑 − 3.5 < 𝐵𝑇𝐷8.6 − 11 < 1.0 ⇒ 𝑑𝑢𝑠𝑡; 

 

  

4. Validation of combined dust detection algorithm 

 

4.1 Sample granules 

 

The new dust detection algorithm is tested with the training granules as well as 

over 50 additional visually identifiable dust and smoke granules.  In most cases, the 

algorithm successfully detects regions of dust in the dusty granules while avoiding 

misidentifying smoke as dust. In the following, we show a few of such examples. Figure 

5 shows dust detections for two heavy dust granules. Under the RGB images, from left to 

right,  we show the dust flags detected with the Zhao et al.(2010) algorithm implemented 



 14 

within the MODIS cloud mask, the ‘likely dust pixels’ based on the MODIS DT aerosol 

retrieval (MxD04) with thresholds set at AOD>0.5 and AE<0.6, and the dust detection 

flags using the new algorithm. In the first granule, the MYD35 dust algorithm failed to 

detect the heavy dust over the Red Sea and the Gulf. Meanwhile, the MYD04 dust index 

indicates most regions as dusty. The new algorithm identifies contiguous regions of dust 

and non-dust. In the second granule, all three methods identified a heavy dust plume 

blown off the Australian east coast. The majority of the observed dust appears over the 

sunglint region in this granule. While the DT algorithm normally does not retrieve in the 

glint region, it will retrieve dust and assign zero quality confidence if a heavy dust test 

(R0.47/R0.65<0.95) is satisfied. The new dust detection algorithm also successfully 

detects the dust even though this particular heavy dust test is not built into the algorithm. 

 

The first granule in Figure 6 shows a large dust and cloud mixed plume over the 

Atlantic Ocean off the coast of Northwest Africa. In the middle of the granule is a large 

strip of glint, which prevents the DT algorithm from retrieving any aerosol properties. 

The new algorithm is able to identify dust pixels continuously from the coast all the way 

to the western edge of the granule, including over the glint region.  The second granule 

shows two trails of smoke over the South Atlantic Ocean. The AOD and AE criteria 

confirm that this is not dust, but the Zhao et al. (2010) algorithm mistakenly identifies 

some pixels as dusty. The new dust algorithm successfully avoided this misidentification.  

 

4.2 AERONET dust pixels  

 

For a more quantitative evaluation of the new dust detection algorithm, we 

compare with AERONET. The dust detection algorithm is applied to ocean MODIS 

pixels collocated spatially and temporally with AERONET measurements, as described 

in Section 2. One year of data is analyzed, 2011, which consists of 44900 and 45551 10-

km pixels from Aqua-AERONET and Terra-AERONET collocations, respectively. The 

collocation uses the 10-km MxD04 output, but the dust detection algorithm uses 

reflectance and brightness temperature inputs at 1 km resolution. Therefore, for each 10-

km aerosol retrieval pixel, we go back to the MxD02 in order to input the corresponding 
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10x10 1-km L1B reflectance and BT data and apply the dust detection tests to each of 

these 1-km pixels.  We consider the entire 10-km retrieval pixel as dusty if at least 3 1-

km pixels are identified as dusty by the new dust detection algorithm. 

 

 Thresholds have to be set to determine dust in the AERONET observations.  

Because we want to understand how our dust detection algorithm works across a range of 

aerosol loadings, unlike previous validations of such algorithms, we introduce a set of 

dynamic thresholds for AERONET pixels from weakest to strongest loadings: 

 

{
𝐴𝑂𝐷
𝐴𝐸

}
≥
≤

{(
0.3
0.8

) ; (
0.4
0.7

) ; (
0.5
0.6

) ; (
0.6
0.5

) ; (
0.7
0.4

) ; (
0.8
0.4

)} 

 

As the aerosol loading increases, we demand AE to decrease for the observation or 

scene to be declared dusty. This assumes the background aerosol to consist of more fine 

mode aerosol and increasing aerosol loading is due to more coarse mode dust. 

  

To provide more quantitative match up statistics, we computed the accuracy, 

probability of correct detection (POCD) and probability of false detection rate (POFD) 

assuming AERONET dust detection as truth. Successful retrievals consist of TP (True 

Positive) and TN (True Negative) cases, in which both algorithms identify the pixel as 

dusty and no dust, respectively, and unsuccessful retrievals consist of FN (False 

Negative) and FP (False Positive) – where the new algorithm identifies a pixel as no dust 

and dust respectively, opposite to what AERONET defines. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
× 100%      (3) 

𝑃𝑂𝐶𝐷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  × 100%                                (4) 

𝑃𝑂𝐹𝐷 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
   × 100%                               (5) 
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The POCD and POFD here depend on the AERONET dust criteria (Fig. 7a, c). 

For example, if a weak criterion is used, i.e., AOD > 0.3 and AE < 0.8, more dusty pixels 

would be identified by AERONET and the new dust detection reports a low 27% and 

30% of POCD from collocated Aqua and Terra dataset, respectively. If a strong criterion 

is used, i.e., AERONET AOD > 0.6 and AE < 0.5, the POCD from the new algorithm is 

more than 90% and 82% for Aqua and Terra, respectively. For a commonly used 

threshold criterion with AOD > 0.5 and AE < 0.6 (Ciren & Kondragunta 2014), POCD is 

about 70%.  

 

The POFD in all cases are low, varying from 0.6% to 1.3% from weakest to 

strongest AERONET criteria due to the large number of TN pixels (Fig. 7b, 7d). For 

comparison, we plotted POCD and POFD if an alternative dust detection method is used 

with DT retrieved AOD and AE (i.e., AOD > 0.5 and AE < 0.6).   The new algorithm 

detects 1.5 to 3 times more dusty pixels with only an insignificant increase in false 

positives than would the old standard DT algorithm as the first step in an iterative 

procedure.   

 

4.3 Dust Validation with CALIPSO aerosol layer type 

 

The aerosol layer feature from CALIOP has been used as benchmark for many 

dust detection algorithms (Ciren & Kondragunta, 2014). Here we used a 5-km CALIOP 

aerosol layer product collocated with a MODIS Aqua product from January, April, July 

and October 2010. Only pixels with no cloud layers are selected.  Again, the new 

algorithm is applied to 10x10 1-km pixels centered at the CALIOP pixel.  The MODIS 

10-km pixel is defined as dusty if more than 3 1-km pixels are classified as dusty.  The 

CALIOP aerosol layer has up to 8 aerosol layers, and dust-related aerosol layers can be 

denoted as ‘dust’, ‘polluted dust’ or ‘marine dust’. For a CALIOP horizontal pixel to be 

classified as dusty in a total column sense for comparison with MODIS, we require the 

AOD from 532nm CALIOP backscattering AOD retrieval to be greater than 0.3 and vary 

the number of required pure dust layers. The dust detection validation statistics are 

computed as a function of the number of required dust layers. We did not include marine 
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dust and polluted dust because optical properties of these dust are different than pure dust 

(in the CALIPSO detection algorithm).  

 

Figure 8 shows the dusty pixel counts in 1° x 1° grid boxes when requiring 

different number of minimum dust layers in the CALIOP data: for a minimum of 1 dust-

layer (Fig.8a) or 3 dust-layers (Fig. 8b). The corresponding MODIS dusty pixel counts 

from the new dust detection algorithm is shown in Fig. 8c. Requiring only one dust-layer 

leads to many more identified dusty pixels than requiring three or more dust layers.  In 

fact, CALIOP 1-dust-layer detections could appear anywhere on the globe, unless also 

accompanied by backscatter AOD restrictions (figure not shown). Hence, requiring more 

dusty layers is necessary to guarantee enough dust in the column to merit a revised 

MODIS retrieval.  The new dust algorithm shows similar regional distributions as the 3-

dust-layer case, albeit the total number is still less than the 3-dust-layer case. 

 

Table 5 shows the match metrics for dusty pixels defined using different number 

of dust layers, respectively. With 1-dust-layer as the dusty criteria for CALIOP, the new 

algorithm’s POCD is only 30.7%. As the number of dust layers increases, POCD 

increases. The POCD is 40.2% and 74.6% for 3-dust-layer and 5-dust-layer criteria, 

respectively. In all cases, the POFD is less than 1%. Since our purpose of dust detection 

is to identify pixels for the aerosol retrieval algorithm to confidently assign a non-

spherical dust model, our new dust algorithm serves this purpose. It captures the heavy 

dusty pixels while the false classification rate is extremely low.  

 

5.  Global dusty pixel distribution 

 

The dust detection algorithm is applied globally to Aqua MODIS from Apr. 12 to 

May 11, 2011 (Figure 9) and July 1 to July 31, 2011 (Figure 10). The two periods are 

selected to capture dust prevalence in northwest Asia in April (spread over Northwest 

Pacific, Yu et al., 2012) and the heaviest period of Africa dust occurring in July (Huang 

et al., 2010).  Figure 9 shows that MxD35 dust flag captures many dusty pixels in the 

northwest Pacific and a small amount of the dusty pixels in north Atlantic off west 
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Africa. But there are a lot of miss identified dusty pixels in the high latitude Southern 

Ocean and North Atlantic.  Using the DT-retrieved AOD and AE values for dusty 

identification identifies only a few dusty pixels in subtropical North Atlantic, 

Mediterranean, Persian Gulf and Northwest Pacific regions. The new dust algorithm 

returns more dusty pixels across north Atlantic, Mediterranean, Persian Gulf and 

northwest Pacific. The small number of dusty pixels across the north Pacific may be 

transported dust from east Asia. Interestingly, all detection algorithms find dusty pixels in 

the north Atlantic off New England.  With no obvious sources of dust, this is likely a case 

where turbid water and/or fog may be causing false dust detection.  

 

For July 2011, we notice that the new dust algorithm detects more dust pixels 

over the subtropical north Atlantic, Mediterranean, Persian Gulf, and especially the 

Arabian Sea, but fewer dust pixels off east Asia. This appears to match the expected 

seasonal variation of dust events in these regions (Voss and Evan, 2020).  Compared with 

dust detection from the MxD35 dust flag and the AOD- AE-based dust flag, the new dust 

detection algorithm captures more of the heavy dusty pixels, and reduces false dust 

detection in the southern oceans.   

 

6. Summary and discussion 

 

The Dark-target (DT) aerosol retrieval is an operational algorithm of the MODIS 

instruments that retrieves spectral aerosol optical depth (AOD) over land and ocean.  

Over the ocean, the DT algorithm is known to produce biased retrievals of AOD, AE, and 

FMF, in pixels containing significant dust aerosol because the current version of DT-O 

does not have an aerosol model capable of faithfully representing these non-spherical 

dust particles. In this work, we designed and evaluated a two-step dust aerosol retrieval 

strategy in which we first detect dust pixels and then utilize a new non-spherical dust 

model in the retrieval of the detected dusty pixels.  Here, in Part I of the series, we 

reported on a dust detection algorithm that combines near-UV (deep blue), visible, and 

thermal infrared (TIR) wavelength spectral tests based on a survey of existing dust 

detection algorithms. 
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The new dust detection algorithm was tested extensively with manually selected 

dusty granules.  Quantitative evaluation of the dust detection algorithm is conducted with 

collocated AERONET-MODIS detections as well as CALIPSO – MODIS collocations. 

Instead of using one set of arbitrary threshold criteria, we used progressively changing 

criteria from weakest to strongest aerosol loading so that the full nature of the dust 

detection algorithm could be evaluated, from detecting weakly to heavy dust situations. 

From comparison with both AERONET and CALIOP products, we estimate the new dust 

detection algorithm detects about 30% of dusty pixels in weak aerosol loading and above 

80% of heavy dust pixels. Compared with the dust flag currently implemented inMxD35, 

and a dust classification scheme based on commonly used thresholds with AOD and AE, 

the new dust detection algorithm finds more dusty pixels with much fewer false dust 

detections over high-latitude oceans. 

 

We should point out that the dust detection algorithm developed in this work is 

not comprehensive due to the extreme complexity of dust’s varying physical sizes and 

chemical compositions in any given region and time. Even though our searching for dust 

detection tests is guided by physical principals, our method still relies on manually tuning 

the thresholds which is very difficult for decision trees that involve many layers of 

nonlinear processes. We expect that a machine learning algorithm might be able to 

determine better thresholds and an improved decision procedure (Wang et al., 2019). 

Such work is underway, however, it is guided by the knowledge accumulated through 

physical-based experiment and discovery.  The impact of the dust detection scheme 

developed and reported here on aerosol retrievals in the DT algorithm will be explored in 

Part II of the series as we describe the development and testing of new dust aerosol 

models for the algorithm. 

 

Although Terra and Aqua will be out of orbit in a few years after providing nearly 

two decades of high-quality observations, the DT algorithms have recently been ported to 

the VIIRS instruments onboard the Suomi-NPP because of their similar orbital and 

spectral characteristics as MODIS (Sawyer et al., 2019). In addition, the DT algorithm is 
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being adapted to the next generation geostationary satellites such as the Advanced 

Baseline Imager (ABI) on GOES-East and GOES-West and the Advanced Himawari 

Imager (AHI) on Himawari (Gupta et al., 2019).  The dust detection algorithm developed 

for MODIS would require slight adjustments of thresholds for the VIIRS instrument 

because of its slightly different spatial resolution and spectral channels than the MODIS 

and possibly more substantial adjustments for the ABI and AHI instruments because their 

lack of deep blue channels.  It is important to implement a proper non-spherical dust 

model in the DT-O retrieval algorithm to provide better quality dusty retrievals for both 

climate studies and air quality monitoring.  
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Sinyuk, A., and Lopatin, A. (2011), Statistically optimized inversion algorithm for 

en- hanced retrieval of aerosol properties from spectral multi-angle polarimetric satel- 

lite observations, Atmospheric Measurement Techniques, 4(5), 975–1018, 

doi:10.5194/ amt-4-975-2011. 

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, 

I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass 

burning, urban, and desert dust aerosols, J. Geophys. Res.-Atmos., 104, 31333–

31349, https://doi.org/10.1029/1999JD900923. 

Evans, K. F., & Stephens, G. L. (1991). A new polarized atmospheric radiative transfer 

model, J. Quant. Spectrosc. Ra., 46, 413–42.  

Evan, A. T., Heidinger, A. K., & Pavolonis, M. J. (2006). Development of a new over-

water advanced very high resolution radiometer dust detection algorithm, Int. J. 

Remote Sens., 27, 3903–3924, doi:10.1080/01431160600646359. 

Gaiero, D., Gassó, S., Simonella, L., & Stein. A. F., (2013). Ground/satellite observations 

and atmospheric modeling of dust storms originating in the high Puna-Altiplano 

deserts (South America): Implications for the interpretation of paleo-climatic 

archives. J. Geophys. Res. Atmos. 118 (9): 3817–3831 [10.1002/jgrd.50036] 

Gao, B. C., & Y. J. Kaufman, Y.J. (1995). Selection of the 1.375 /am MODIS channel for 

remote sensing of cirrus cloudsand stratospheric aero- sols from space, J. Atmos. Sci., 

52, 4231-4237. 

Gassó, S., Stein, A., Marino, F. et al., (2010). A combined observational and modeling 

approach to study modern dust transport from the Patagonia desert to East 

Antarctica. Atmos. Chem. Phys. 10 (17): 8287-8303 [10.5194/acp-10-8287-2010] 

Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. 

F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., & 

Lyapustin, A. I.(2019). Advancements in the Aerosol Robotic Network (AERONET) 

https://doi.org/10.1029/1999JD900923
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=10653
https://urldefense.proofpoint.com/v2/url?u=http-3A__dx.doi.org_10.1002_jgrd.50036&d=DwMFaQ&c=ApwzowJNAKKw3xye91w7BE1XMRKi2LN9kiMk5Csz9Zk&r=3TpGvJssdreePWQGAawtfLITy1I3gxqDgcpvH4uivzM&m=otONH0v1eY96U7xhGpXa_-0CUZdvtMLnuXG0EDuk-2M&s=BYGxVytgRsWsxTDZR6xzwsAYIe-CpJFrZ2G7zEG1P3I&e=
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=10653
https://urldefense.proofpoint.com/v2/url?u=http-3A__dx.doi.org_10.5194_acp-2D10-2D8287-2D2010&d=DwMFaQ&c=ApwzowJNAKKw3xye91w7BE1XMRKi2LN9kiMk5Csz9Zk&r=3TpGvJssdreePWQGAawtfLITy1I3gxqDgcpvH4uivzM&m=otONH0v1eY96U7xhGpXa_-0CUZdvtMLnuXG0EDuk-2M&s=X7xbkeXPDmgBEU_PPvzkVh1do95_HTsGZaCtyPZRkQc&e=


 23 

Version 3 database – automated near-real-time quality control algorithm with 

improved cloud screening for Sun photometer aerosol optical depth (AOD) 

measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-

169-2019. 

Goudie, A.S., & Middleton, N.J. (2006) Desert Dust in the Global System. Springer. 

Goudie, A.S., Deseart dust and human health disorders. Envion. Int., 63, 101-103, 

doi:10.1016/j.envint.2013.10.011. 

Griffin, D. W. (2007). Atmospheric Movement of Microorganisms in Clouds of Desert 

Dust and Implications for Human Health, Clinical Microbiology Reviews. 20 (3): 

459–77, doi:10.1128/CMR.00039-06. 

Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., Holz, R. E., & Heidinger, A. K. (2019). 

Applying the Dark Target aerosol algorithm with Advanced Himawari Imager 

observations during the KORUS-AQ field campaign, Atmos. Meas. Tech., 12, 6557–

6577, https://doi.org/10.5194/amt-12-6557-2019. 

Hansell R. A., Ou, S.C., Liou, K.N., Roskovensky, J. K., Tsay, S.C., Hsu, C., & Ji, Q. 

(2007). Simultaneous detection/separation of mineral dust and cirrus clouds using 

MODIS thermal infrared window data, Geophys. Res. Lett., 34, L13802, 

doi:10.1029/2007GL031035. 

Harrison, S.P., Kohfeld, K.E., Roelandt, C. , & Claquin, T. (2001). The role of dust in 

climate changes today, at the last glacial maximum and in the future. Earth-Science 

Reviews, 54(1), pp.43-80. 

Hao, X., & Qu, J. J. (2007), Saharan dust storm detection using Moderate Resolution 

Imaging Spectroradiometer thermal infrared bands. J. Appl. Remote Sens., 1, 013510, 

doi:10.1117/1.2740039.  

Herman, J. R., Bhartia, P. K., Torres, O., Hsu, N.C., Seftor, C. J., & Celarier, 

E. (1997). Global distribution of UV‐absorbing aerosols from Nimbus 7/TOMS 

data, J. Geophys. Res., 102(D14), 16,911–16,921. 

Holben, B. N. (1998). AERONET—A federated instrument network and data archive for 

aerosol characterization, Remote Sens. Environ., 66, 1–16. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932751
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932751
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1128%2FCMR.00039-06


 24 

Hsu, N.-Y. C., Tsay, S.-C., King, M. D., &. J. R. (2004). Aerosol properties over bright-

reflecting source regions. IEEE Trans Geosci Remote Sens, 42 (3): 557-569 

[10.1109/TGRS.2004.824067] 

Hsu, N. C., Tsay, S. -C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of 

Asian aerosol properties during ACE‐Asia, IEEE Trans. Geosci. Remote 

Sens., 44(11), 3180–3195, doi:10.1109/TGRS.2006.879540. 

Hsu, N. C.,  Lee, J., Sayer, A.M. , et al., (2019). VIIRS Deep Blue Aerosol Products Over 

Land: Extending the EOS Long‐Term Aerosol Data Records. Journal of Geophysical 

Research: Atmospheres 124 (7): 4026-4053  

Hu, X. Q., Lu, N. M., Niu, T., & Zhang, P. (2008). Operational retrieval of Asian sand and 

dust storm from FY-2C geostationary meteorological satellite and its application to real 

time forecast in Asia, Atmos. Chem. Phys., 8, 1649–1659. 

Huang, J., Zhang, C., & Prospero, J. M. (2010). African dust outbreaks: A satellite 

perspective of temporal and spatial variability over the tropical Atlantic Ocean, J. 

Geophys. Res., 115, D05202, doi:10.1029/2009JD012516. 

Jankowiak, I., & Tanré, D. (1992). Satellite climatology of Saharan dust outbreaks: 

Method and preliminary results, J. Clim., 5, 646–656. 

Kaufman, Y. J., Tanré, D., Remer, L., Vermote, E., Chu, A., & Holben, 

B.N. (1997). Remote sensing of tropospheric aerosol from EOS‐MODIS over the land 

using dark targets and dynamic aerosol models, J. Geophys. Res., 102(D14), 17,051–

17,067. 

Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E.F., Chu, A., & Holben, 

B.N. (1997). Operational remote sensing of tropospheric aerosol over land from EOS 

moderate resolution imaging spectroradiometer, J. Geophys. Res., 102(D14), 17051–

17067, doi:10.1029/96JD03988.  

Kaufman, Y. J., Karnieli, A.  & Tanré, D. (2000). Detection of dust over deserts using 

satellite data in the solar wavelengths, IEEE Geosci. Remote Sens., 38(1), 525–531. 

Kaufman, Y. J., Tanre, D. & Boucher, O. (2002). A satellite view of aerosols in the 

climate system, Nature, 419, 215–223. 

Kaufman, Y. J.,  Koren, I.,  Remer, L. A.,  Tanré, D.,  Ginoux, P., &  Fan, 

S. ( 2005). Dust transport and deposition observed from the Terra‐Moderate 

https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=12759
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=13227
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=13900
http://dx.doi.org/10.1109/TGRS.2004.824067
https://doi.org/10.1109/TGRS.2006.879540
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=12759
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=39610
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=23816
http://dx.doi.org/10.1029/2009JD012516
http://dx.doi.org/10.1029/96JD03988


 25 

Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic 

Ocean, J. Geophys. Res.,  110, D10S12, doi:10.1029/2003JD004436. 

Kim, D., et al. (2014). Sources, sinks, and transatlantic transport of North African dust 

aerosol: A multimodel analysis and comparison with remote sensing data, J. Geophys. 

Res. Atmos.,  119,  6259– 6277, doi:10.1002/2013JD021099. 

Kok, J. F., Ward, D.S., Mahowald, N.M., & Evan, A.T. (2018). Global and regional 

importance of the direct dust-climate feedback, Nature Communications, 9, 241. 

Lee, T. F. (1989). Dust tracking using composite visible/IR images: A case study, Weath. 

Forecast., 4, 258–262. 

Legrand, M., Nertrand, J. J., Desbois, M., Menenger, L., & Y. Fouquart, Y. (1989). The 

potential of infrared satellite data for the retrieval of Saharan dust optical depth over 

Africa. J. Climate Appl. Meteor., 28, 309–318.  

Legrand, M., Plana‐Fattori, A., & N'doume, C. (2001). Satellite detection of dust using 

the IR imagery of Meteosat: 1. Infrared differences dust index, J. Geophys. 

Res., 106(D16), 18,251–18,274. 

Levy, R.C., Remer, L.A., & Dubovik, O. (2007a). Global aerosol optical properties and 

application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over 

land. Journal of Geophysical Research: Atmospheres, 112(D13). 

Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F., & Kaufman, Y.J., (2007b). Second‐

generation operational algorithm: Retrieval of aerosol properties over land from 

inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. 

Journal of Geophysical Research: Atmospheres, 112(D13). 

Levy, R. C., Remer, L. A., Kleidman, R. G., et al., (2010). Global evaluation of the 

Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. 

Phys., 10 (21): 10399-10420 [10.5194/acp-10-10399-2010] 

Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Patadia, F., & Hsu, 

N.C. (2013). The collection 6 modis aerosol products over land and ocean. Atmos. 

Meas. Tech., 6, 2989–3034. 

Lyapustin, A., Wang, Y., Korkin,S., & Huang, D. (2018). MODIS Collection 6 MAIAC 

algorithm. Atmospheric Measurement Techniques 11 (10): 5741-5765 [10.5194/amt-

11-5741-2018] 

https://doi.org/10.1029/2003JD004436
https://doi.org/10.1002/2013JD021099
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=17712
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=1955
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=11945
http://dx.doi.org/10.5194/acp-10-10399-2010
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=22109
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=4186
https://science.gsfc.nasa.gov/sed/index.cfm?fuseAction=people.jumpBio&iphonebookid=23259
http://dx.doi.org/10.5194/amt-11-5741-2018
http://dx.doi.org/10.5194/amt-11-5741-2018


 26 

Martins, J. V., Tanré, D., Remer, L., Kaufman, Y., Mattoo, S. & R. Levy, 

R. (2002). MODIS Cloud screening for remote sensing of aerosol over oceans using 

spatial variability, Geophys. Res. Lett., 29(12), 1619, doi:10.1029/2001GL013252. 

Miller, R.L., & Tegen, I. (1998). Climate response to soil dust aerosols. J. Climate, 11, 

3247-3267, doi:10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2. 

Miller, S. D. (2003). A consolidated technique for enhancing desert dust storms with 

MODIS, Geophys. Res. Lett., 30(20), 2071, doi:10.1029/2003GL018279. 

Prospero, J. M., & Lamb, P.J. (2003). African droughts and dust transport to the 

Caribbean: Climate change implications, Science, 302, 1024–1027. 

Prospero, J. M., Collard, F.‐X., Molinié, J., & Jeannot, A. ( 2014).  Characterizing the 

annual cycle of African dust transport to the Caribbean Basin and South America and 

its impact on the environment and air quality, Global Biogeochem. 

Cycles,  29,  757– 773, doi:10.1002/2013GB004802. 

Qu, J. J., Hao, X., Kafatos, M. &Wang, L. (2006). Asian dust storm monitoring 

combining Terra and Aqua MODIS SRB mea- surements. IEEE Geosci. Remote 

Sens. Lett., 3, 484–486.  

Remer, L. A., & Coauthors, (2005). The MODIS aerosol algorithm, products, and 

validation. J. Atmos. Sci., 62, 947–973.  

Rosenfeld, D., Clavner,M., & Nirel,R. (2011), Pollution and dust aerosols modulating 

tropical cyclones intensities, Atmospheric Research,102, 66-76, 

doi.org/10.1016/j.atmosres.2011.06.006. 

Roskovensky, J. K., & Liou, K.N. (2005). Differentiating airborne dust from cirrus 

clouds using MODIS data. Geophys. Res. Lett., 32, L12809, 

doi:10.1029/2005GL022798.  

Sawyer, V.; Levy, R.C.; Mattoo, S.; Cureton, G.; Shi, Y.; Remer, L.A. Continuing the 

MODIS Dark Target Aerosol Time Series with VIIRS. Remote Sens. 2020, 12.  

Schepanski, K., Tegen, I. Laurent, B. Heinold, B. & Macke, A. (2007). A new Saharan 

dust source activation frequency map derived from MSG–SEVIRI IR‐

channels, Geophys. Res. Lett., 34, L18803, doi:10.1029/2007GL030168. 

https://doi.org/10.1029/2001GL013252
https://doi.org/10.1029/2003GL018279
https://doi.org/10.1002/2013GB004802
https://doi.org/10.1029/2007GL030168


 27 

Shell, K. M., & Somerville, R.C.J. (2007). Sensitivity of climate forcing and response to 

dust optical properties in an idealized model, J. Geophys. Res., 112, D03206, 

doi:10.1029/2006JD007198. 

Shenk, W. E., &Curran, R.J. (1974), The detection of dust storms over land and water 

with satellite visible and infrared measurements, Mon. Wea. Rev., 102, 830–837. 

Shi, Y. R., Levy, R. C. Eck, T.F., et al., 2019. Characterizing the 2015 Indonesia fire 

event using modified MODIS aerosol retrievals. Atmospheric Chemistry and 

Physics, 19 (1): 259-274 [10.5194/acp-19-259-2019] 

Sokolik, I. N. (2002). The spectral radiative signature of wind‐blown mineral dust: 

Implications for remote sensing in the thermal IR region, Geophys. Res. Lett., 29(24), 

2154, doi:10.1029/2002GL015910. 

Strabala, K. I., Ackerman, S.A., & Menzel, W. P. (1994). Cloud properties inferred from 

8–12 mm data, J. Appl. Meteorol., 33, 212–229.  

Tanré, D., & Legrand, M. (1991). On the satellite retrieval of Saharan dust optical 

thickness over land: Two different approaches, J. Geophys. Res., 96(D3), 5221–5227, 

doi:10.1029/90JD02607. 

Tanré, D., Kaufman, Y. .J., Herman, M., & Mattoo, S. (1997). Remote sensing of aerosol 

properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. 

Res., 102, (D14),. 16971–16988. 

Torres, O., Bhartia, P., Herman, J. R., Ahmad, Z., &. J.F. (1998). Derivation of aerosol 

properties from satellite measurements of backscattered ultraviolet radiation. 

Theoretical basis. J Geophys Res, 103 (D14): 17099-17110 [10.1029/98JD00900] 

Torres, O., A. Tanskanen, B. Veihelman,  et al., (2007). Aerosols and Surface UV 

Products from OMI Observations: An Overview. J. Geophys. 

Res., 112 (D24): D24S47 [10.1029/2007JD008809]. 

Verge-Depre, G., Legrand, M., Moulin, C., Alias, A., Francois, P. (2006). 

Improvement of the detection of desert dust over the Sahel using METEOSAT IR 

imagery. Ann. Geophys. , 24, 2065–2073.  

Voss, K.K., & Evan, A.T. (2020). A New Satellite-Based Global Climatology of Dust 

Aerosol Optical Depth. J. Appl. Meteor. Climatol., 59, 83–

102,https://doi.org/10.1175/JAMC-D-19-0194.1  

https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=12838
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=17712
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=4807
http://dx.doi.org/10.5194/acp-19-259-2019
https://doi.org/10.1029/2002GL015910
http://dx.doi.org/10.1029/90JD02607
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=7819
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=14416
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=14854
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=1382
http://dx.doi.org/10.1029/98JD00900
https://science.gsfc.nasa.gov/sed/bio/index.cfm?fuseAction=people.jumpBio&iphonebookid=7819
http://dx.doi.org/10.1029/2007JD008809
https://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-19-0194.1
https://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-19-0194.1
https://doi.org/10.1175/JAMC-D-19-0194.1


 28 

Wald, A. E., Kaufman, Y.J., Tanré, D. &  Gao, B.‐C. (1998). Daytime and nighttime 

detection of mineral dust over desert using infrared spectral contrast, J. Geophys. 

Res., 103, 32,307–32,313. 

Wang, C., Platnick, S., Meyer, K., Zhang, Z., and Zhou, Y. (2019). A Machine Learning-

Based Cloud Detection and Thermodynamic Phase Classification Algorithm using 

Passive Spectral Observations, Atmos. Meas. Tech. Discuss., 

https://doi.org/10.5194/amt-2019-409, in review. 

Weinzierl, B., & Coauthors, (2012). On the visibility of airborne volcanic ash and 

mineral dust from the pilot’s perspective in flight. Phys. Chem. Earth, 45–46, 87–102, 

doi:https://doi.org/10.1016/j.pce.2012.04.003. 

Winker, D. M., Tackett, J. L., Getzewich, B.J., Liu, Z., Vaughan, M. A. & Rogers, R. R.  

(2013). The global 3-D distribution of tropospheric aerosols as characterized by 

CALIOP. Atmos. Chem. Phys., 13, 3345-3361, doi:10.5194/acp-13-3345-2013. 

Wiscombe, W. J. (1980). Improved Mie scattering algorithms, Appl. Optics, 19, 1505–

1509, https://doi.org/10.1364/AO.19.001505. 

Wyser, K. (1998). The effective radius in ice clouds.  Journal of Climate. 11, 7,  1793-

1802. 

Yu, H., et al., (2006), A review of measurement based assessments of the aerosol direct 

radiative effect and forcing, Atmos. Chem. Phys., 6, 613–656. 

Yu, H., Remer, L.A., Kahn, R. A., Chin, M., Zhang, Y. (2012). Satellite perspective of 

aerosol intercontinental transport: From qualitative tracking to quantitative 

characterization Atmospheric Research, 124 (2013), pp. 73-

100, 10.1016/j.atmosres.2012.12.013. 

Yu, H., et al., (2006), A review of measurement based assessments of the aerosol direct 

radiative effect and forcing, Atmos. Chem. Phys., 6, 613–656. 

Zhao, C., Liu, X.,  Leung, L. R., & S. Hagos, S. (2011). Radiative impact of mineral dust 

on monsoon precipitation variability over West Africa, Atmos. Chem. 

Phys., 11, 1879–1893, doi:10.5194/acp‐11‐1879‐2011. 

Zhao, T. X.‐P., Ackerman, S., & Guo, W. (2010), Dust and smoke detection for multi‐

channel imagers, Remote Sens., 2, 2347–2368, doi:10.3390/rs2102347. 

  

https://doi.org/10.1364/AO.19.001505
https://doi.org/10.1016/j.atmosres.2012.12.013
https://doi.org/10.5194/acp-11-1879-2011
https://doi.org/10.3390/rs2102347


 29 

Table 1: Review of plausible dust optical properties from previous works. 

Names Tests References 

IR split window BTD11 m - 12 m;  

BTD8.7 m -11 m 

Shenk and Curran 1974;   

Strabala et al., 1994;  

Ackerman 1989, 1997;  

Legrand et al., 1989, 2001; 

Wald et al., 1998;  

Legrand et al., 2001;  

Sokolik, 2002;  

Darmenov & Sokolik 2005;  

Roskovensky & Liou, 2005; 

Evan et al., 2006; Schepanski et 

al., 2007; 

Hao & Qu 2007;  

Hansell et al., 2007; 

Hu et al., 2008;  

Bullard et al., 2008;  

Ashpole & Washington, 2012  

SWIR 3.76 m;  

3.76 m -11m 

Legrand et al., 2001;  

NIR 1.64um, 2.13 m Qu et al., 2006;  

Ciren & Kondragunta, 2014 

Visible  at 0.47m, 0.55 m, 

0.67m, 0.86m; 

2-channel ratio: 1/2; 

Normalized difference 

ratio: (1-2)/( 1+2) 

Tanré & Legrand 1991;  

Kaufman et al., 2000;  

Miller 2003;  

Qu et al., 2006;  

Jankowiak & Tanré, 1992; 

Zhao et al., 2010 
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Deep blue, UV -10*[Log (0.41/0.47) 

-log(0.41/0.47)r); 

-10*[Log (0.41/0.44) 

-log(0.41/0.44)r) 

Herman et al., 1997; 

Torres et al., 1998, 2007;  

Hsu et al., 2004;  

Ciren & Kondragunta, 2014 

Spatial variability 

Spatial/temporal 

contrast with clear 

sky 

 at 0.87m, 0.64 m  Tanré & Legrand, 1991 

Jankowiak & Tanré,1992;  

Martins et al., 2002 

Darmenov & Sokolik, 2009 

 

 

 

 

Table 2: Training granules for dust detection. 

Satellite Granule  

(year, day, hhmm) 

Location Scene 

Aqua 2009,196,1015 Red Sea and 

Persian Gulf 

Dust over ocean  

Aqua 2014,113,1110 Mediterranean dust over ocean 

Aqua 2014,162,1505 Off west Africa dust over ocean 

Aqua 2010,048,1150 Mediterranean dust over ocean 

thin 

Aqua 2013,053,1115 Mediterranean mixed over ocean 

 

Aqua 

2015,032,1135 Mediterranean dust over ocean 

Terra 2009,188,0750 Persian Gulf thick dust over 

ocean 

Terra 2009,266,0005 Off East Australia dust storm 

Terra 2009,115,0300 Southeast China Dust mixed with 

cloud 

Aqua 2013,018,0550 Northern China Sea Dust 

https://journals.ametsoc.org/doi/full/10.1175/JTECH-D-12-00079.1
https://journals.ametsoc.org/doi/full/10.1175/JTECH-D-12-00079.1
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003GL018279#grl17451-bib-0013
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Aqua 2011,131,0515 Northern China Sea Dust 

Aqua 2007,296,2140 Coast off California Smoke  

 

Aqua 

2011,157,1525 South Atlantic 

Ocean 

smoke over ocean 

Terra 2003,301,1825 Off California coast Smoke over ocean 

Aqua 2015,115,0720 Arctic Snow surface 

Aqua 2011,157,1345 South Atlantic 

Ocean 

cloud over ocean 

clear ocean 

Terra 2009,115,0300 Southern  China dust blown 

from west to sea 

Aqua 2018,030,1850 South Atlantic 

Ocean 

Dust blown off 

Patagonia 

Terra 2017,318,2115 Gulf of Alaska Dust blown off 

Alaska 

 

 

Table 3.  Single channel tests and cutoff values at 5% and 95% accumulated PDF.  “R” 

means ‘reflectance’, and “BT” means brightness temperature. 

 

MODIS Channel Wavelength Dusty range  

M08 R0.41 [0.20, 0.29] 

M09 R0.44 [0.18, 0.29]       

M03 R0.47 [0.17, 0.29] 

M04 R0.55 [0.13, 0.34] 

M01 R0.65 [0.10, 0.39] 

M02 R0.86 [0.08, 0.44] 

M05 R1.26 [0.06, 0.42] 

M26 R1.37 <0.03 for all cases 

M07 R2.13 [0.03, 0.35] 

M20 BT3.7 [292.5, 314.3] 

M21 BT3.9 [287.0, 303.2] 
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M29 BT8.7 [279.5, 296.2] 

M31 BT11 [279.0, 298.4] 

M32 BT12 [280.1, 298.2] 

 

 

Table 4.  Multi-channel tests and cutoff values at 5% and 95% accumulated PDF. 

 Test Dusty range 

1 BT11-12 [-1.34, 0.48] 

2 BT11-3.7 or 

(BT3.9-11) 

[-31.5, -6.51] 

3 BT8.7-11 [-3.16, -0.01] 

4 R0.55/R0.47 [0.72, 1.17] 

5 R0.65/R0.55 [0.80, 1.16] 

6 R0.47/R0.65 [0.63, 1.54] 

7 NDSI snow index 

(R0.65-R2.13)/(R0.65+R2.13); 

[-0.0, 0.39] 

8 NDDI 

(R2.13-R.47)/(R2.13+R0.47) 

[-0.64, 0.09] 

9 NDVI  

(R0.86-R0.65)/(R0.86+R0.65) 

[-0.12, 0.28] 

10 SNDVI  

(R0.47-R0.65)/(R0.47+R0.65) 

[-0.20, 0.20] 

11 DAI  

(R0.412/R0.440) 

[6.24, 14.05] 

12 NDAI  

(R0.410/R2.110) 

[-7.33, 0.77] 

13 B8-7-1 slope  

(R0.41-R2.13)/(R0.65-R0.41) 

[-11.80, 4.33] 

14 SFCDIF (SST-BT11) [0.26, 6.5] 

15 STDEV (0.86 m) [-0.02, 0.01] 
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Table 5. Dust detection statistics based on MODIS-AQUA and CALIPSO collocated 

pixels from April and July 2010. Total number of non-cloudy pixels based on CALIOP is 

1261460.  

No. CALIPSO 

Pure Dust 

Layers 

No. CALIPSO 

Dusty Pixels 

Accuracy POCD POFD 

1 23458 98.6 30.7 0.2 

2 16889 98.9 34.7 0.3 

3 7018 99.2 40.2 0.5 

4 1708 99.3 50.3 0.7 

5 327 99.3 74.6 0.7 

6 65 99.3 96.9 0.7 

7 5 99.3 100.0 0.7 
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Figure 1. A sample of four out of nineteen granules selected for development of the new 

dust detection algorithm. Upper left: heavy dust plume.  Upper right: diffuse dust mixed 

with clouds.  Lower left: heavy smoke plume.  Lower right: smoke plume. 

 

 

 

 

Aqua2015.032.1135

Aqua.2014162.1505

Terra.2003.301.1825

Aqua.2011157.1525
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Figure 2.  Probability distribution functions of reflectivity for wavelengths 0.41 m to 2.1 

m and brightness temperature for wavelength greater than 2.1 m for selected MODIS 

bands commonly used in single band dust tests.  The pixels for difference scenes are 

manually selected from 19 granules over ocean. The MODIS band number and 

wavelength in micrometer (starts with R or BT in parenthesis) are shown along the x-

axis. The 5% and 95% of PDF values are shown in Table 3. Note that the scales of axes 

vary. 
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Figure 3.  Probability distribution functions of multi-band tests for pixels from different 

scenes collected from 19 granules over ocean. The definitions of the tests and the 5% and 

95% of PDF values are shown in Table 4. The references to the tests can be found in 

Table 1. Note that the scales of axes vary. 
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Figure 4. Scatter plots of NDAI with (a) reflectance at 0.41m, and (b) brightness 

temperature different at 8.7 m and 11 m (BT8-BT11) for pixels collected from 19 

images.  Pixels from different scenes, i.e., dust, smoke, snow, cloud and clear ocean are 

indicated with different colors. The blue lines indicate the threshold values for respective 

tests. 
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Figure 5. The RGB images of two heavy dusty granules (top) and dust detections from 

MOD35 dust flag (left), AOD and AE retrievals from DT algorithm (middle), and new 

dust detection scheme (right) shown below each of the RGB image. The white, blue and 

yellow colors represent no-test, not-dusty and dusty pixels, respectively. 
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Figure 6. The RGB images of a mixed dusty granules over North Atlantic Ocean (top 

left) and a smoke granule over South Atlantic Ocean (top right) and corresponding dust 

detections from MOD35 dust flag (left), AOD and AE retrievals from DT algorithm 

(middle), and new dust detection scheme (right) shown below each of the RGB image. 

The white, blue and yellow colors represent no-test, not-dusty and dusty pixels, 

respectively. 
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Figure 7. Comparison of new dust detection with dust identified with pairs of AERONET 

AOD (0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and corresponding AE at (0.8, 0.7, 0.6, 0.5, 0.4, 0.3) 

thresholds. (a) and (c) are positive detection rates from the new algorithm (black line) for 

Aqua-AERONET and Terra-AERONET collocated pixels in 2011, respectively, for 

different pairs of AOD and AE thresholds. (b) and (d) are false detection rates. The blue 

lines show the positive detection rate in (a) and (c) and false detection rate in (b) and (d) 

for an after-retrieval dust classification approach using retrieved parameters from the 

MODIS DT algorithm using AOD and AE thresholds (AOD > 0.5, AE< 0.6, FMF< 0.3) 

for dust detection.   
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Figure 8.  Dust Counts at 1x1° grids based on (a) one CALIOP dust layer, (b) three 

CALIOP dust layers, and (c) new dust detection algorithm for MODIS AQUA and 

CALIOP collocated non-cloudy pixels in April and July 2010. 
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Figure 9: Total number of dusty 10-km pixels in 1x1° grids during April 12-May 11, 

2011 based on a) MOD35 dust flag; b) DT retrievals (AOD>=0.5, AE1<0.6, FMF<0.3) 

and c) new dust detection algorithm. 
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Figure 10: Total number of dusty 10-km pixels in 1x1° grids from July 1-31, 2011 based 

on a) MOD35 dust flag; b) DT retrievals (AOD>=0.5, AE1<0.6, FMF<0.3) and c) new 

dust detection algorithm. 

 


