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Abstract

Key Points: 8 * Bed heights of bedload-dominated rivers modeled by Distinct Element Method (DEM) 9 simulations follow

a Gaussian distribution. 10 * The standard deviation of bed height, s η , increases as the shear stress increases. 11 * Peak

entrainment of bed particles occurs at a distance 2s η above the average bed 12 height. Abstract 14 We investigate the

statistics of bed height variability and particle entrainment height un-15 der steady state bedload transport conditions using

distinct element method (DEM) sim-16 ulations. We do so in the context of a theoretical probabilistic formulation derived to

17 better capture spatial variation in sediment exchange between bed material load and al-18 luvial deposits (Parker et al.,

2000). Using DEM simulations, we set the foundation for 19 a physics-based closure of this probabilistic framework toward its

practical implemen-20 tation. Towards this, we perform DEM simulations for bedload transport under simi-21 lar boundary

conditions to those of Wong et al. (2007) laboratory experiments: a bed 22 of gravel particles of median grain size 7.1mm with

lognormal grain size distribution trans-23 ported under bed shear stresses ranging from τ 0 = 8.70 to 13.7 Pa. We first validate

24 these simulations by demonstrating that they capture measurable transport and height 25 variations from experimental

measurements. We then compute the statistics of both the 26 bed height and entrainment height as they vary with bed shear

stress. We find that vari-27 abilites in both bed height and entrainment height variabilities follow Gaussian distri-28 butions,

for which: (1) the standard deviation of bed height variability s η increases with 29 shear stress, and (2) the peak entrainment

height occurs a distance of twice the stan-30 dard deviation of bed height variability (2s η) above the mean bed height. We

discuss 31 implications of these results and next steps for understanding these transport statistics 32 under a broader range of

conditions. 33
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Abstract14

We investigate the statistics of bed height variability and particle entrainment height un-15

der steady state bedload transport conditions using distinct element method (DEM) sim-16

ulations. We do so in the context of a theoretical probabilistic formulation derived to17

better capture spatial variation in sediment exchange between bed material load and al-18

luvial deposits (Parker et al., 2000). Using DEM simulations, we set the foundation for19

a physics-based closure of this probabilistic framework toward its practical implemen-20

tation. Towards this, we perform DEM simulations for bedload transport under simi-21

lar boundary conditions to those of Wong et al. (2007) laboratory experiments: a bed22

of gravel particles of median grain size 7.1mm with lognormal grain size distribution trans-23

ported under bed shear stresses ranging from τ0 = 8.70 to 13.7 Pa. We first validate24

these simulations by demonstrating that they capture measurable transport and height25

variations from experimental measurements. We then compute the statistics of both the26

bed height and entrainment height as they vary with bed shear stress. We find that vari-27

abilites in both bed height and entrainment height variabilities follow Gaussian distri-28

butions, for which: (1) the standard deviation of bed height variability sη increases with29

shear stress, and (2) the peak entrainment height occurs a distance of twice the stan-30

dard deviation of bed height variability (2sη) above the mean bed height. We discuss31

implications of these results and next steps for understanding these transport statistics32

under a broader range of conditions.33

1 Introduction and Background34

Predicting the evolution of alluvial channels is a significant problem for environ-35

mental restoration and also for adaptation under ever-changing climate conditions. To36

predict spatial and temporal evolution of alluvial channels, modelers combine (1) equa-37

tions expressing the conservation of mass and momentum of the fluid flow (e.g., Saint-38

Venant equations, or similarly well-known representations); (2) equations expressing the39

conservation of mass along the sediment bed surface (e.g., the Exner equation), and (3)40

equations expressing a dependence of particle transport on average fluid stress on an al-41

luvial bed (e.g,. by Meyer-Peter and Muller (1948), Ashida and Michiue (1972), Wilcock42

and Crowe (2003)). This paper is concerned with the manner in which we relate spatial43

gradients in sediment transport with temporal height changes in a sediment bed, primar-44

ily associated with (2) above. For this we turn what is often called “the Exner Equa-45

tion,” essentially conservation of sediment mass.46

1.1 Conservation of Sediment Mass: The Exner Equation47

In its simplest form, assuming uniform particle density and constant solid fraction48

throughout of the bed, the Exner equation can be expressed as:49

(1− λp)
∂η(x, t)

∂t
= −∂q(x, t)

∂x
(1a)

(1− λp)
∂η(x, t)

∂t
= D(x, t)− E(x, t) (1b)

Here, q is the volumetric transport rate of sediment per unit width. We use x as50

the direction of average transport, so ∂q/∂x is the spatial gradient of sediment trans-51

port downstream. If negative, then it contributes to a growth in local bed height, η, over52

time t (Fig. 1(a)). λp is the bed porosity. As indicated, the Exner Equation is sometimes53

expressed in what is typically called the entrainment form using the difference between54

local rates per area of deposition D and entrainment E. While either form provides an55

extraordinarily efficient way to capture average elevation changes in a sediment bed, nei-56
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ther has the functionality to reflect any variations associated with grain size distribu-57

tions, nearly universal in natural rivers.58
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Figure 1. Schematic representation of a sediment bed illustrating particular variables in the

model frameworks described in this paper. (a) a representative sketch of a bed, (b) Discrete

model with active layer formulations, and (c) continuous model proposed by Parker et al. (2000).

1.2 The Active Layer-Based Exner Equation59

To efficiently account for the non-uniformity of the bed material grain size, mor-60

phodynamic models generally express mass conservation of sediment particles with the61

aid of the active layer approximation (Hirano, 1971; Parker, 1991b, 1991a). Examples62

include downstream fining in rivers (Parker, 1991b, 1991a), the long-term evolution of63

a gravel-sand transition (Ferguson, 2003), sedimentation in lakes and reservoirs (Cui, Parker,64

et al., 2006; Cui, Braudrick, et al., 2006) and the prediction of grain size stratigraphy65

in an alluvial deposit (Ribberink, 1987).66

An active layer-based model includes explicit consideration of a finite-thickness in-67

terface layer between particles in transport and bed deposit. Thus, the bed deposit is68

divided in two parts: the interface or active layer and the substrate. In tracking the con-69

centration of one particle type i (e.g., color only, density, or size), we can write the active-70

layer version of the (entrainment form) Exner equation as:71

(1− λp)
[
fL,i

∂η

∂t
+ (fa,i − fL,i)

∂La
∂t

+ La
∂fa,i
∂t

]
= Di − Ei (2)

La is the active layer thickness (Fig. 1(b)); fL,i is the volume fraction of particles72

of type i in the active layer at the interface of the active-layer with substrate, and fa,i73

is the volume fraction of particles of type i in the active layer. Di and Ei represent vol-74

umetric sediment deposition rate and sediment entrainment rate, respectively, per unit75

area. Porosity λp is approximated as uniform from the bottom of the transport layer and76

active layer and throughout the substrate. The volume fraction of particles of type i in77

the active layer is approximated as uniform.78

This model framework tracks entrainment and deposition of a particular grain type79

i in substrate-transport exchange translated somewhat through the finite-thickness ac-80

tive layer. For example, during a depositional period, the grain size characteristics of the81

particles in transport do not necessarily equal the characteristic of the top of the bed.82

Rather, the characteristics of the sediment transferred to the substrate during deposi-83

tion are generally a combination of that in the active and transport layers and are as-84

signed in a manner that can differ from one model to the next (Ferguson, 2003).85
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While this framework captures some aspects of grain size segregation and associ-86

ated stratification that occur during depositional processes at the associated timescales,87

it does not have the capability to account for exchanges that can happen due to grain88

size effects with what can be somewhat shorter timescales. An example of this occurs89

when smaller particles in a mixture find “pockets” in a bed at a statistically higher rate90

than do larger neighboring particles and push the larger particles into transport through91

a “squeeze-expulsion” mechanism (Savage & Lun, 1988). This time scale of this process92

depends more on the particle dynamics time scales than it does depositional scales and93

thus cannot be fully captured through the active layer model.94

Under equilibrium conditions, restrictions of the active-bed layer formalism become95

even more apparent. The exchange of sediment among layers can only be associated with96

changes in the mean bed elevation. During steady conditions (∂q/∂x = 0, and D =97

E) this framework predicts no exchange at all between substrate, active, and transport98

layers (Viparelli, Haydel, et al., 2010; Viparelli, Sequeiros, et al., 2010). Also, the dis-99

crete representation of the deposit limits entrainment and deposition to the topmost part100

of the bed. In summary, active layer-based models cannot account for vertical sediment101

fluxes associated with bedform migration, cannot reproduce the infiltration of fine par-102

ticles in a coarse substrate, fail to reproduce the fine details of the alluvial stratigraphy103

and cannot capture tracer and contaminant dispersal (Blom et al., 2008; Parker, 2004;104

Pelosi et al., 2014).105

2 Theoretical Approach: Probablistic Exner Equation106

Towards a solution to the problems of the layer-based Exner equation, Parker et
al. (2000) proposed a continuous framework that eliminates the discretization associated
with transport-substrate interfaces. At the same time, it allows for variable particle sizes
and other characteristics. While this framework is both efficient and flexible, there are
unresolved closure problems we address herein. The equation of conservation of sediment
volume at elevation z in the deposit for the case of uniform material takes the form:

(1− λp)pη(x, z, t)
∂η(x, t)

∂t
= pd(x, z, t)×D − pe(x, z, t)× E (3)

pη is a height-dependent probability density, essentially, the probability that the instan-107

taneous (or local) bed elevation is at height z at time t. pd and pe are the probability108

densities that account for bed-normal, depth dependent deposition and entrainment rates.109

This probabilistic form of the Exner equation allows for bedload-substrate parti-110

cle exchange below (or above) the average bed surface, common in cases of bed surface111

variability associated with roughness, bedforms, etc. (as in Fig. 1). In other words, the112

bed-normal depth dependences of pd and pe represent expected variability in deposition113

and entrainment associated with short term changes of local bed level associated with114

sediment transport processes as particles are alternately plucked from and deposited into115

the bed (Figure 1). The form allows for segregation in mixtures with significant spatial116

variability (bed roughness and bedforms). And the form allows for bedload-bed exchange117

under steady state. This framework offers all this without need to explicitly represent118

short-term variability. However, for its application to alluvial problems, the framework119

needs closure, in other words, functional forms for pd, pe, and pη.120

Wong et al. (2007) took the first significant steps toward testing the probabilistic121

framework and deriving expressions for pd, pe, and pη. They performed laboratory flume122

experiments using gravel particles of a narrow, lognormal size distribution (Table 1). They123

performed experiments under steady state, lower-regime plane-bed conditions. To find124

pη, they used a sonar-transducer system to measure local time-dependent bed elevations.125

In doing so, they found that pη follows a Gaussian distribution whose standard devia-126

tion sη depends on bed shear stress τo:127
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pη(z|η, s2
η) = pη(z̃|0, s2

η) =
1√

2πsη(τ)
exp

[
−1

2

(
z̃

sη(τ)

)2
]

(4)

Here, following Wong et al. (2007), z̃ = η − z (see Fig. 1(a)). Unfortunately pd128

(= pe in steady state conditions) were inaccessible directly due to the opacity of the par-129

ticles and associated difficulty of identifying initial particle movement and the associ-130

ated height just prior to that movement. Instead, based in part on depth-dependent en-131

trainment of tracer particles, Wong et al. (2007) proposed an elevation-specific density132

for entrainment from their data:133

pd(z̃) =
1

2sη(τ)
exp

(
−|z̃ − z̃e − z̃n|

sη(τ)

)
(5a)

pe(z̃) =
1

2sη(τ)
exp

(
−|z̃ − z̃e + z̃n|

sη(τ)

)
(5b)

z̃e is an offset Wong et al. (2007) suggested characterizes steady state conditions134

(i.e., mobile-bed equilibrium). They proposed that maximum entrainment was likely to135

occur just below the average bed surface (z̃e ≥ 0). z̃n an additional offset function that136

characterizes non-equilibrium conditions. Their experimental data suggest z̃e = 0.25d50137

(Here, d50 is the median grain size.) Since their experiments involved equilibrium con-138

ditions, no value for z̃n was available.139

These experimental data provided the confidence that this framework would be ef-140

fective in capturing depth-dependent phenomenology in bedload transport conditions.141

However, physical experiments to gather the additional data needed to close the equa-142

tions are extremely limited. Measurements of bed height such as those performed by Wong143

et al. (2007) are limited to the absolute local surface of particles and cannot distinguish144

between moving particles and particles in the bed. Modern techniques such as index-matched145

tracking of subsurface particles show promise but at present have not been performed146

to address these issues.147

In this paper, we aim to close the probabilistic Exner equations using computational148

simulations based on the distinct element method (DEM). In DEM simulations, we can149

track the motion of each particle at every time step and thus can provide robust par-150

ticle location and velocitiy at each time step toward the derivation of local bed height151

and elevation-specific erosion and deposition densities. Additionally, since different ef-152

fects can be “turned on” and “turned off” in DEM simulations, we can systematically153

explore the importance of specific system details, including grain size distribution, grain154

shape, average stress on the bed, and turbulent fluctuations.155

The rest of the paper is organized as follows. In the next section, we introduce our156

computational set-up including details such as grain size distribution, fluid velocities, and157

subsequent analysis methods. In the results section, we present data demonstrating that158

this simple model performs well in comparison with established bedload relationships159

as well as statistical experimental data such as those of Wong et al. (2007). In the dis-160

cussions section we present more details on the data including a remarkably simple scal-161

ing relationship between entrainment height statistics and bed surface variability under162

steady conditions. We conclude this paper with a brief summary and discussion of nec-163

essary extensions of this work, for example, to cases of different grain size distributions,164

inclusion of turbulence fluctuations, and non-equilibrium transport conditions.165
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3 Distinct Element Method (DEM) Simulations166

Toward determining how the statistics of bed height and entrainment height vary167

with shear stress on an alluvial bed, we performed computational Distinct Element Method168

(DEM) (Cundall & Strack, 1979) experiments we designed to have similar conditions to169

the physical experiments performed by Wong et al. (2007) in terms of grain size distri-170

bution and fluid properties (Table 1) and bed shear stress (Table 2). In this well-established171

technique, the motion of each particle in the system is tracked throughout the simula-172

tion. We can directly incorporate particle sizes, densities, and elasticities using Hertz-173

Mindlin interparticle interactions (Hertz, 1882; Tsuji et al., 1992), and can model fluid174

forcing and other boundary conditions through other parameters as we describe presently.175

3.1 Our DEM Model176

Our DEM simulations are built on an in-house DEM model similar to that of Hill177

and Tan (2017). To model the translational and rotational motion of each particle we178

use the following relationships:179

mi
d~ui
dt

= Σj ~F
c
ij + Σk ~F

nc
ik + ~F fi + ~F gi (6a)

Ii
d~ωi
dt

= Σj ~Mij (6b)

mi, ~ui, Ii, ~ωi are the near-instantaneous mass, velocity, moment of inertia and rotational180

velocity, respectively, of particle i. ~F cij and ~Fncik represent interparticle forces on parti-181

cle i due to contacting and non-contacting particles. ~F cij represent the force from par-182

ticle j on particle i due to direct contact and thus the form reflects the model response183

to deformation associated particle properties (Section 3.1.1); ~Fncik represents non-contact184

interactions from particle k on particle i such as those that mediate particle-fluid inter-185

actions. ~F fi concerns the fluid forces on particle i (Section 3.1.2). ~F gi = mi~g is the weight186

of particle i. ~Mij represents the force moments on particle i by particle j associated with187

the interparticle forces.188

3.1.1 Interparticle Contact Force Model189

We model the interparticle contact forces (the first term on the right hand side of190

Eq. 6a) using the Hertz-Mindlin (Hertz, 1882; Mindlin, 1949) contact theory with a damp-191

ing component and Coulomb sliding friction:192

Fn = −knδn3/2 − ηnδn
1
4 δ̇n (7a)

Ft = min[−ktδn
1
2 δt − ηtδn

1
4 δ̇t,−µFnδt/|δt|] (7b)

As is standard (e.g., Tsuji et al. (1992)), δn and δt are model deformations in the193

normal and tangential directions relative to the contact plane. Fn and Ft are forces in194

the normal and tangential directions, respectively. Here and throughout the paper, q̇ rep-195

resents temporal derivatives in any variable q. kn and kt are stiffness factors, and ηn and196

ηt represent damping factors, all of which can be calculated based on particles charac-197

teristics such as particle size, mass, and Young’s moduli (See Appendix A).198

3.1.2 Fluid Force Model199

Similar to Schmeeckle and Nelson (2003), at each time step we calculate the fluid200

force ~F fi on each particle i according to:201

–6–
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z𝑧0 = 𝑘𝑠/30
𝑧1 = 2𝑑50

 𝑢𝑓,𝑥

Bed Surface (  𝑧 = 0)

Roughened base

 𝑧

Figure 2. Sketch of flow velocity profile of the simulated bedload transport.

~F fi = ~Fbi + ~Fmi + ~Fdi (8)

~Fbi = −ρf∀i~g denotes the buoyancy force; ρf is the fluid density, ∀i is the vol-

ume of particle i. ~Fmi= ρf∀icm~̇ui is an “added mass force”; ~ui is the instantaneous ve-
locity of particle i, cm is an empirically determined coefficient – we use cm = 0.5 as sug-
gested by Batchelor (1976) and Drake and Calantoni (2001). ~Fd = 1

2ρfcdAi|~urel,i|~urel,i

denotes the drag force, where Ai = πd2/4 is the central cross-sectional area of the par-
ticle i, ~urel,i is the local fluid velocity relative to that of the particle i, and cd is a drag
coefficient suggested by Drake and Calantoni (2001):

cd = 24Rep
−1 + 4Rep

−0.5 + 0.4 (9)

Rep = |~urel|d/ν is a particle Reynolds number, and ν = 10−6m2/s is the kinematic202

viscosity of water at room temperature (Table 1).203

3.1.3 Model Bed Shear Stress, Fluid Velocity, and Shielded Fluid Ve-204

locity205

Our representation of bed shear stress τo relies on the well-known expression for206

what is known as the “log-law of the wall”, a mathematical expression of the average stream-207

wise fluid velocity profile uf,x(z) observed under steady turbulent conditions:208

uf,x(z) =
uτ
κ
ln
( z
z0

)
(10a)

z0 = ks/30 = 3.5d50/30 (10b)

In this equation, uτ ≡
√
τo/ρf is the shear velocity, κ = 0.41 is the von Kar-209

man constant, and z0 is the position at which the fluid velocity is zero (uf,x(z0) = 0).210

As relatively common, we define z0 in terms of a roughness coefficient, ks, that scales211

with a representative particle diameter (e.g., Pope (2001), Schlichting and Gersten (2016),212

van Rijn (1982)). We dynamically locate the position at which uf,x(z) = 0 so that the213

distance between the bed surface and the zero-fluid-velocity plane is z1 = 2d50, as in214

Fig. 2. (computational details in Section 3.3).215

For the work we describe in this paper, we do not explicitly model turbulent (fluc-216

tuating) velocities so that urel,y = −uy;urel,z = −uz where uy and uz are the compo-217

nents of particle velocity in cross-stream and vertical directions, respectively. While we218

limit ourselves to one-way coupling for the work described here, we include some shield-219

ing effect from upstream particles that theoretically influences the drag force experienced220

–7–
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Table 1. Summary of fluid and particle properties.

Property Magnitude

fluid density ρf 1000 kg/m3

fluid kinematic viscosity 10−6 m2/s2

particle size (d50, dg, σg) (7.1 mm, 7.2 mm, 1.2)
particle density ρp 2650 kg/m3

particle elastic modulus Ep 29 GPa
particle Poisson’s ratio νp 0.2

by each particle in the downstream. For this, we use the experimentally-derived relation-221

ship proposed by Schmeeckle and Nelson (2003):222

urel,x = [uf,x(zc)− ux]× erf

(
ld − hp

5hp

)
(11)

In this equation, uf,x(zc) is the fluid velocity from Eq. 10a (Fig. 2) at a particular par-223

ticle center zc, ux is the downstream particle velocity, ld is the downstream distance be-224

tween the center of the particle of concern and its first upstream neighbor, and hp is the225

height difference between the topmost part of the two particles.226

3.2 Computational Experiment Parameters227

Toward validating our computational experiments with physical experiments by228

Wong et al. (2007), we choose our force parameters to reflect properties of hard rock par-229

ticles (i.e. granite) with narrow log-normal distribution. In regards to fluid flow, we use230

the properties of water for the fluid and vary the bottom shear stress τo so that the Shields231

number (τ∗ = τo/((ρs − ρf )gd50)) ranged from τ∗ = 0.0757 to 0.1193.232

We design the channel to have periodic boundary condition in the downstream and233

transverse directions (x− and y− directions, respectively). To ensure our results are not234

size limited, we performed various simulations on different size channels (Fig. 3b). Based235

on these which show that stable conditions occur with a minimum channel length of ≈236

50 d50, we designed our channel for the results reported here to be 350 mm long and 85237

mm wide. For most of the simulations we performed here (table 2), we used the same238

number of particles N=3000, resulting in a bed with the height of approximately five d50.239

We found this to be a sufficient number of particles (and bed height) so that the results240

were not affected by this relatively small height (e.g., as compared with runs of 10,000241

particles and 15,000 particles in runs 3a and 3b in Table 2, respectively).242

3.3 Simulation Initialization and Outputs243

To initialize each computational experiment, we start with the randomly-arranged244

particles above the bed. We release these particles and allow them to settle to the bed.245

During this period, the forces are limited to gravity and contact forces. Under gravita-246

tional forces, the particles drop to the bed. As some of the particles rebound from the247

bed, they collide with other falling particles resulting in somewhat randomized positions248

and velocities as the particles settle down.249

Based on the sum of all forces on each particle, we calculate its translational ac-250

celeration at each time step, and, based on the sum of all surface forces, we calculate its251

rotational acceleration (Eq. 6). We integrate these accelerations using the fourth-order252

runge-kutta method (Chapra et al., 2010) at each time step to update each particle’s trans-253

–8–
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Table 2. Computational flow and bed parameters.

Run Bed thickness N τ∗ ks z1

1 ∼ 5d50 3000 0.1193 3.5d50 2d50

2 ∼ 5d50 3000 0.1052 3.5d50 2d50

3 ∼ 5d50 3000 0.1044 3.5d50 2d50

3a ∼ 16d50 10000 0.1044 3.5d50 2d50

3b ∼ 25d50 15000 0.1044 3.5d50 2d50

4 ∼ 5d50 3000 0.0915 3.5d50 2d50

5 ∼ 5d50 3000 0.0908 3.5d50 2d50

6 ∼ 5d50 3000 0.0844 3.5d50 2d50

7 ∼ 5d50 3000 0.0757 3.5d50 2d50

a N is the number of particles.

lational and rotational positions and velocities. Each computational time step is approx-254

imately 5 µs. To save computational time and space, we output particle locations and255

velocities every 10,000 time steps i.e., every 50 ms256

After the initial drop of the particles, they settle and stop moving. Once the par-257

ticles reach this state, we “roughen” the bed with the particles touching the base of the258

channel. That is, we affix these particles to this bottom surface to avoid sliding between259

the particles and the channel base that would otherwise occur under the fluid forcing.260

We use this same initialized bed for all simulations performed here to minimize additional261

uncertainties that might be introduced by local variations in bed roughnesses. Once the262

particles in this roughened bottom bed are fixed in place, we “turn on” the fluid forces263

(Eq. 8) associated with the fluid flow (Eq. 10a).264

To initialize the fluid flow we need to determine the location of the bed surface (z =265

z0 + z1 in Fig. 2). Towards this, we first consider the particle location data from five266

equal-sized vertical bins in the simulated flume, each 70 mm long and 85 mm wide. From267

these five sets of data, we determine the location of the highest particle in each column,268

and set the average of these five heights to be the location of z = z0 + z1 for the fluid269

velocity profile.270

Once we have initiated the fluid velocity, at every time step we calculate all inter-271

particle and fluid forces on each particle (Eq. 7 and Eq. 8). The particles on the surface272

start to move, primarily by rolling and also by hopping along the bed surface. As the273

particles move, the height of the top-most particles change. To account for this we dy-274

namically adjust the vertical position of the velocity profile. We do so similarly to our275

fluid initialization process. We again consider particle data from five equal-sized verti-276

cal bins. Though, here we consider particles only whose velocities are smaller than the277

local fluid velocity. We average the position of the top-most particle in each bin that meets278

that criteria to define the new location of z = z0 + z1.279

Once the fluid is initialized, we continuously use the particle positions and veloc-280

ities to calculate transport rate, bed height statistics, and entrainment statistics. As we281

describe in section 4.1, after fluid intialization, we find the system reaches steady state282

in ≈ 2.5 s. We report our statistical results calculated for 20 s of steady state run con-283

ditions.284
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4 Results and Implications for the Probabilistic Exner Formulation285

4.1 Transport Rate286

We calculate a spatially-averaged near-instantaneous unit transport rate qti at out-287

put timestep ti according to:288

qti =

∑N
p=1 ∀pup,x(ti)

bed area
(12)

In this equation, up,x(ti) is the velocity of particles p at output time step ti in the289

downstream direction (if t is the simulation time in seconds after the water is “turned290

on”, ti = t ∗ 20); ∀p is the volume of that particle, N is the number of particles (N =291

3000 for most of the results reported here), and the bed area for most of the data reported292

here is 350 mm × 85 mm, or ≈ 50 d50 × 12 d50. As is common, we non-dimensionalize293

our transport rate according to:294

q∗ =
q√

(s− 1)gd50d50

(13)

often referred to as the Einstein number. Typical for systems in bedload transport,295

there is a high temporal variability in the transport rate (Fig. 3(a)). So, for compari-296

son with experiments, we define the average dimensionless transport rate from t = ts =297

2.5 s to time T = t− ts as q∗T :298

q∗T =

∑ti=(T+ts)×20
ti=ts×20 q∗ti
T × 20

(14)

In this equation, the factor of 20 is associated with the rate of 20 outputs per sec-299

ond. Based on data such as those plotted in Fig. 3(a, inset), we used T = 20 as a suf-300

ficiently long time to average the fluctuations for clear results. Henceforth, we use q∗ ≡301

q∗20 to represent a statistically steady average unit transport rate for each system.302

To compare our transport data from those previously published for similar systems,303

we note that for a number of well-known bedload transport relations (e.g., Meyer-Peter304

and Muller (1948); Luque and Van Beek (1976)), q∗ scales roughly as τ∗1.5:305

q∗ = aq × (τ∗ − τ∗c )1.5 (15)

Here, τ∗c is an empirically determined reference stress below which the transport306

rate is negligible. To compare our results to these published relationships, we calculate307

the linearized least squares fit of Eq. 15 to our data. Fig. 4(a) demonstrates that our data308

are well-fit by this equation when aq ≈ 2.59 and τ∗c ≈ 0.051. As we discuss shortly309

(Section 5), our results are particularly close to those from the physical experiments by310

Wong et al. (2007) after which we patterned our simulations (Fig. 4(b) and caption).311

4.2 Bed Surface Statistics312

To calculate the bed surface and entrainment statistics, we need to quantitatively313

distinguish between “bed particles” and “entrained particles”. To do so, we consider the-314

oreticl forms of average particle velocity in bedload transport, from Bagnold (1956) and315

Bridge and Dominic (1984) (and references within):316

up,a = au × (uτ − uτc) (16)
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Figure 3. The conditions required to perform statistical analyses of bed surface: (a) shows

the time needed to reach steady state conditions. The inset shows the average transport rate

starting just after reaching steady state to time T after reaching steady state. The error-bar in

the inset shows the standard deviation of transport variations for 20 seconds after reaching the

steady state conditions. (b) shows the minimum channel length required to eliminate the effect of

channel size on the transport rate. q∗ represents the average transport rate for 20 seconds after

reaching the steady state.

Here, uτ ≡
√
τ0/ρ is the shear velocity, uτc ≡

√
τc/ρ is a reference shear veloc-317

ity, and au is a coefficient that researchers typically treat as constant, ranging from ap-318

proximately 8.5 (e.g., Bagnold (1956)) to 14 (e.g., Abbott and Francis (1977)).319

We determined that using au = 5 provides reasonable results to quantitatively320

distinguish between bed particles and entrained particles (e.g., Fig. 5). So we defined321

a threshold velocity that distinguishes between moving and stationary particles:322

uth ≡ up,5 ≡ 5× (uτ − uτc) (17)

Toward calculating our bed surface variability, we divided the channel into 150 sub-323

sections (each a column of cross-sectional area ≈ 14 mm × 14 mm ≈ 2 d50 × 2 d50). For324

the jth column, at each time step ti we record the top of the upper-most stationary par-325

ticle (whose downstream velocity was less than uth): ztop,i,j . We defined the averaged326

bed surface height η as the arithmetic mean of those (600,000) values and calculated what327

might be considered an effective bed roughness as the standard deviation of the mean.328

For a visualization of how the standard deviation varies with shear stress, we de-329

fine a variance of each bed height as z̃(xj , yk, ti) ≡ η−ztop(xj , yk, ti). Then we divide330

these data into 10 bins of equal width (∆z̃) ranging from the lowest to highest values331

of z̃ throughout each experiment. We normalize these binned data and then plot them332

in Fig. 6 for three representative simulations of different shear stresses. From these plots,333

we can see that, while not perfect in all cases, a Gaussian distribution fits the data well,334

as suggested by analogous experimental data of Wong et al. (2007).335

Similar to the results of Wong et al. (2007), the bed roughness of our simulation336

data increases with increasing bed shear stress (τ0). We plot the standard deviation of337

the bed heights (sη) normalized by d50 (ŝη = sη/d50) versus Shields stress (τ∗) in Fig.338

7. We find a power law relationship between the two:339

ŝη,fit = aη(τ∗ − τ∗c )bη (18)
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Figure 4. a) Our data for q∗2/3 plotted vs. τ∗ (solid circles) and a linearized least squares

fit of Eq. 15 (line) to those data [aq,τ
∗
c ]=[2.59, 0.051]. Vertical dashed line: the reference Shields

stress calculated using the Brownlie equation: 0.22Re−0.6
p + 0.06 × 10(−7.7Re−0.6

p ). b) q∗ plotted

vs. τ∗ for our data (q∗sim) (solid circles) and the fit from (a) (solid line) compared with other

previously proposed relationships. q∗wpdbb is the fit proposed by Wong et al. (2007), [aq,τ
∗
c ]=[2.66,

0.0549]; q∗mpm is from the well-known transport model proposed by Meyer-Peter and Muller

(1948), [aq,τ
∗
c ]=[3.97, 0.0495], modified by Wong and Parker (2006); q∗flv is the transport model

proposed by Luque and Van Beek (1976), [aq,τ
∗
c ]=[5.7, 0.06].
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Figure 5. Schematic representation of simulated particles in 3D (top row) and 2D (bottom

row) to illustrate the effect of changing au on the threshold velocity described in the text which

is used to distinguish between stationary and moving particles. The dependence of moving parti-

cles (black color) number on the threshold velocity: a) ubd < up,5, b) ubd < up,2, c) ubd < up,1.

Here ubd is the velocity of bed particles.
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Figure 6. Three representatives of probability density distribution of bed height variations.

Filled circles represent the simulation data while the solid line represents the Gaussian fitting

curve, pη,gau(z̃|0, s2η). Table 3 shows the standard deviation of these fittings for all the computa-

tional experiments designed for this study.

Again, τ∗c is the reference shear stress derived from the transport data, (Eq. 15).340

This form is not unlike that suggested by the experimental data of Wong et al. (2007),341

as we discuss in Section 5.342
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τ
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0.6

0.7

ŝ
η
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ŝη,f it
ŝη,wpdbb

Figure 7. Power law fitting model for standard deviation of bed height variation against

Shields stress. Filled circles represents the calculated standard deviation from the simulations.

Solid line represents our fitting model with aη = 0.84 and bη = 0.29 while the dashed line repre-

sents the fitting model suggested by Wong et al. (2007) with aη = 3.09 and bη = 0.56

We note at this point we found no noticeable differences in the bed surface vari-343

ations when we double and triple the bed height (as in Run 3 compared with Run 3a344

and 3b), so we focus on analyzing the results only for the 3000 particle simulations for345

the rest of this paper.346

4.3 Particle Entrainment Statistics347

For a quantitative measure of the entrainment height statistics for our data, we first348

need to clearly define what we identify as an entrainment event, that is, a “conversion”349

of a bed particle to an entrained particle. Since a particle is not typically considered en-350

trained if it moves only a short distance, such as that limited to shaking or rocking, we351

base a quantitative definition on a minimum distance that a particle must travel in a cer-352
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tain amount of time before we consider it to be entrained. What constitutes a minimal353

distance to be considered entrained in a general sense is debatable and warrants discus-354

sion beyond the scope of this paper. For our purpose, we consider a particle entrained355

if it travels at an average speed greater than uth (Eq. 17) for a half second. In other words,356

its minimum displacement once entrained is:357

δrmin = uthδt (19)

where δt = 0.5 s. For each entrainment event defined in this way, we use the vertical358

position of these particles relative to the mean bed height, z̃, prior to their entrainment359

for entrainment height statistics. We bin these data and normalize them as we did for360

the bed height data and plot the distributions for three representative shear stresses in361

Fig. 8. For an analytical expression of the probability of entrainment heights, we con-362

sider two, the exponential form previously suggested (Eq. 5b) and a normalized Gaus-363

sian distribution:364

pe,exp(z̃|z̃e, s2
η) =

1

2sη(τ)
exp

[
−|z̃ − z̃e|

sη(τ)

]
(20a)

pe,gau(z̃|z̃e, s2
e) =

1√
2πse(τ)

exp

[
−1

2

(
z̃ − z̃e
se(τ)

)2
]

(20b)

In Eqs. 20, sη is the standard deviation of the mean bed height likely to increase365

with increasing bed shear stress (Eq. 18) as suggested by Wong et al. (2007); z̃e is an366

offset characterizing the position at which the maximum entrainment occurs, and se is367

the (bed shear stress dependent) standard deviation of the entrainment heights about368

the mean entrainment height.369

For all simulations, we found pe well-fit by Guassian distributions; not so well-fit370

by the exponential form (Eqs. 5b and 20a). Further, unlike that suggested by the expo-371

nential form, our fitted value of se appears to be independent of bed stress within the372

range we investigate (Table 3). In contrast, we found the distance of maximum entrain-373

ment z̃e from the mean bed height to increase with bed shear stress. We discuss the im-374

plications of our results in the following section.
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Figure 8. Three representative of entrainment height distributions. Filled circles represent the

simulation data; the solid line represents a Gaussian fitting curve, pe,gau(z̃|z̃e, s2e) (Eq. 20b), and

the dashed line represents an exponential fitting curve, pe,exp(z̃|z̃e, s2η), suggested by Wong et al.

(2007), (Eq. 20a). Table 2 shows the fitting parameters from our data.

375
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−2ŝη,fit

Figure 9. Normalized peak entrainment height, ˆ̃ze, and the normalized bed surface standard

deviation, ŝη, as a function of excess Shields stress. Error bars show the normalized standard

deviation of entrainment height distribution, ŝe in Eq. 20b and table 3. ŝη,fit is our power law

fitting model for the bed surface standard deviations, Eq. 18 and Fig. 7.

Table 3. Summary of statistical analyses of bed surface for 7 computational experiments of

this study. The statistical parameters are those found from fitted probability distributions to the

data.

Run τ∗ q∗ η(mm) ŝη ˆ̃ze ŝe

1 0.1193 0.050 36.38 0.393 -0.71 0.255
2 0.1052 0.029 36.86 0.353 -0.77 0.276
3 0.1044 0.033 36.83 0.374 -0.73 0.254
4 0.0915 0.022 36.38 0.340 -0.70 0.238
5 0.0908 0.020 36.14 0.330 -0.69 0.270
6 0.0844 0.016 36.17 0.311 -0.62 0.254
7 0.0757 0.012 36.18 0.296 -0.46 0.281

5 Discussion376

To understand the implications of the data presented above, we first compare them377

with experimental data obtained under similar boundary conditions. When considering378

the basic measure of average sediment flux (q∗ vs. τ∗ as in Eq. 15), our DEM model for379

bedload transport reproduces experimental transport measures remarkably well (Fig. 4(b)).380

In particular, the model Wong et al. (2007) derived for their experimental data repre-381

sented our data almost perfectly (Table 4). Further, the reference stress we found be-382

low which the fit to our data indicates that minimal transport occurs (τ∗c , Eq. 15) is close383

to that predicted by the analytical expression derived by Brownlie (1983) (τ∗c = 0.053)384

using previously published physical data (Shields, 1936). We propose that these simi-385

larities in the context of the relative simplicity of our simulations give strength to the386

strategy of using them for the statistical analysis we report in this paper and gaining a387

greater physics-based understanding of related behaviors (Hill & Tan, 2017).388

Our bed surface variability showed that it was well-represented by a Gaussian dis-389

tribution function, also similar to the form that emerged from the experiments by Wong390
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et al. (2007). As is true of the sediment flux, the standard deviation of the local bed height391

about the mean sη increased with bed shear stress in the form of a power-law increase392

with excess Shields stress (τ∗ − τ∗c ). This qualitative dependency was similar to that393

obtained experimentally by Wong et al. (2007). However, the results are quantitatively394

different as demonstrated by the plot in Fig. 7 and the fitted coefficients to Eq. 18 (Ta-395

ble 4). Namely, experimental standard deviation of the local bed height increases at a396

much higher rate than it does in the simulations.397

We propose the differences in the bed-stress-dependence of the bed height variabil-398

ity is two-fold: (1) shape and associated significant of particle orientations and (2) mea-399

surement “techniques”. Firstly, particle shape arguably plays a role in the type of in-400

terparticle contact that sustain particle assemblies. This is likely to be associated with401

increasing the differences of particle heights relative to neighboring particles. Along with402

this, bed height variability of a deposit of spherical particles is associated with the ab-403

solute height differences of the bed surface particle locations alone, while in a bed com-404

prised of aspherical particles, bed surface variability may be due to both particle height405

and particle orientation of the topmost particles.406

The second effect may be associated with what is essentially differences in measure-407

ment techniques. The bed height measurements by Wong et al. (2007) were obtained us-408

ing ultrasound measurements of the local average of the topmost particle throughout their409

experiments, which likely includes at least some moving particles. In our simulations,410

the bed height measurements are based only on the top surface of the relatively station-411

ary particles in the bed. New simulations with aspherical particles are underway to help412

us investigate the measurement differences and to test our hypotheses about the under-413

lying differences between experimental and simulation results.414

Table 4. Summary of fitted bed-stress dependence from Wong et al. (2007) experiments and

our simulations (Eqs. 15 and 18).

results aq τ∗c aη bη

exp 2.66 0.55 3.09 0.56
sim 2.59 0.51 0.84 0.29

In contrast with the sediment flux and bed height variability, we could not com-415

pare entrainment height variability with the experimental results. Because of limited ex-416

perimental measures, Wong et al. (2007) could only suggest, not measure, the experi-417

mental entrainment height variability. As a result our measures of entrainment height418

variability provide what we feel are the most significant insights of this work.419

We highlight four significant entrainment height results: (i) First, the maximum420

probability of entrainment height did not coincide with the average bed surface in our421

simulations; (ii) the peak entrainment probability occurred above the average bed height422

in contrast of the proposal by Wong et al. (2007) that this maximum is likely below the423

average bed surface (Eq. 5b), and (iii) the entrainment height variability is well-represented424

by a Gaussian distribution function (Fig. 8) whose standard deviation of bed height vari-425

ability (ŝe = se/d50) does not vary monotonically or otherwise with τ0 (Table 3).426

(iv) Perhaps most significantly, the elevation at which the peak entrainment prob-427

ability occurs (z̃e) increases with increasing excess Shields stress, with a similar trend428

to the standard deviation of bed variability in Eq. 18. In fact, the highest rate of par-429

ticle entrainment |z̃e| ∼ 2sη (Fig. 9). This makes intuitive sense as, effectively, the lo-430

cation from which particles are being “plucked” from the increases with the height of max-431
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imum protrusion of the bed into the flow. This result is promising in providing predic-432

tions of likely particle entrainment locations by knowing the hydraulic conditions.433

To conclude this discussion, we reiterate the strength of this modeling technique434

not only for deriving probabilistic results for transport, but for a range of other ques-435

tions such as recent data demonstrating anomalous transport and segregation (e.g., Viparelli436

et al. (2015)) and the size-dependence of increased mobility in beds of fine particles (e.g,.437

Hill et al. (2017)). We suspect that the trends we measured will vary significantly in a438

bimodal mixture of a different sizes and/or densities in a way that helps explain some439

of the segregation phenomenology whose origins remain elusive.440

The very same simplifications that might be seen as limitations of the model, more441

importantly emphasize strengths of this approach. For example, for the results discussed442

here, there are no fluctuating fluid velocities. Rather, we represent the fluid forces on443

the bed using a steady local velocity whose profile is associated with previous measures444

of typical open channel turbulent flow. Thus, while there are limitations to the direct445

analogies we can make to specific turbulent effects here, we have shown some of the sta-446

tistical variability that is driven by relatively simple particle interactions only. In the fu-447

ture, by turning on and off effects of velocity fluctuations, and different correlations in448

those velocity fluctuations, we can better determine the underlying physics of the phe-449

nomenology. The same thing can be said about particle sphericity, angularity, and other450

details of shape sometimes that arguably contribute significantly to the phenomenology.451

By using relatively simplistic simulations such as those described here, one can system-452

atically vary these and other particle parameters to obtain a physics-based quantitative453

understanding of observed variations in streambeds and other sedimentary structures.454

One can use this framework to investigate transport-changing details in bedload trans-455

port including time-dependent bed aging measured in sub-bedload conditions and repeated456

flood events (e.g., Phillips et al. (2018) and Masteller et al. (2019)). And, finally, we ex-457

pect this will allow us to link to literature often referred to as granular physics includ-458

ing long-range force chains (or correlations in interparticle contact forces) and other de-459

tails of fabric.460

6 Summary and Future Work461

To summarize, we used Distinct Element Method (DEM) simulations to investi-462

gate relationships between average shear stress at the bed, bed surface height statistics,463

and bed entrainment statistics for particles in bedload transport under lower plain bed464

conditions. Toward isolating effects of shear stress magnitude from other natural vari-465

abilities, we represented the phenomenology within a relatively simple physics-based sim-466

ulation framework. For validation purposes, our particle size distribution followed pub-467

lished experimental work, specifically, the log-normal gravel particle size distribution of468

experiments performed by Wong et al. (2007). Simplifications included particle shape469

(spheres) and flow conditions (a unidirectional logarithmic average flow profile), where470

the representation of the bed shear stress appeared in the variation of fluid velocity uf (z)471

with distance from the bed z: duf (z)/dz = uτ/(κz) =
√
τo/ρf/(κz).472

We found these simulations reproduced much of the transport data from previously473

published experimental results. Specifically: (1) The value of τ∗c ∼ 0.051, is compara-474

ble with that of other bedload transport models such as those by Ashida and Michiue475

(1972), Luque and Van Beek (1976), Engelund and Fredsøe (1976), and Wong and Parker476

(2006), and (2) The dependence of bed transport on average shear stress increases as a477

power law of excess shear stress according to q∗ ∼ (τ∗ − τ∗c )
3/2

, similar to well-established478

transport laws (Meyer-Peter & Muller, 1948; Ashida & Michiue, 1972) and nearly iden-479

tical to that obtained from experiments after which we modeled our simulations (Wong480

et al., 2007).481

–17–



manuscript submitted to Water Resources Research

Our most significant new results involve a robust relationship between local bed482

height statistics and maximum entrainment probability. Using a well-defined definition483

of local computational bed-surface height, we found that bed height statistics are well-484

represented by a Gaussian distribution as obtained experimentally by Wong et al. (2007)485

and whose standard deviation increases with excess Shields stress: sη=0.84d50(τ∗−0.051)
0.29

.486

In contrast, the standard deviation of entrainment height distribution shows no corre-487

lation with the Shields stress. Rather, the height from which the most particles are en-488

trained increases with bed shear stress as well, z̃e ≈ 2sη above the average bed height489

for all runs.490

These results have established how powerful that simplified DEM simulations can491

be in representing transport details while, at the same time, they have the ability to iso-492

late dynamics in a manner often inaccessible to experiments. Using such a simple model493

as the simulation we describe here, we can turn on and off a variety of *phenomenology*494

ranging from turbulent fluctuations in the fluid to asphericity and irregularity in par-495

ticles shapes and sizes. Toward this, next steps in our work involve additional simula-496

tions we are using to better understand effects of such dynamics including fluctuating497

velocities as appears with true turbulent conditions, particle size variations, and parti-498

cle asphericity.499
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Appendix A623

This section shows how we calculate the contact parameters used in Eq. 7. These624

parameters are determined from the characteristics (e.g., radius, elastic and shear mod-625

ules) of the particles in contact by the following equations:626

kn =
4

3

√
reffEeff (A1a)

kt = 8
√
reffGeff (A1b)

ηn = α
√
meffkn (A1c)

ηt = α
√
meffkt (A1d)

where Reff, meff, Eeff, Geff are the effective radius, mass, elastic modulus and shear627

modulus, respectively. α is equal to 0.07 for the coefficient of restitution ∼ 0.9 used in628

this study according to Tsuji et al. (1992). We determine the effective radius, mass, elas-629
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tic modulus and shear modulus by the following equations where r1, ν1, E1, m1, r2, ν2,630

E2 and m2 are the radius, Poisson’s ratio, elastic modulii and mass of the particles 1 and631

2 that are in contact with each other.632

reff =
( 1

r1
+

1

r2

)−1

(A2a)

Eeff =
(1− ν1

2

E1
+

1− ν2
2

E2

)−1

(A2b)

Geff =
(2(1 + ν1)(2− ν1)

E1
+

2(1 + ν2)(2− ν2)

E2

)−1

(A2c)

meff =
( 1

m1
+

1

m2

)−1

(A2d)

Notation633

A Central cross-sectional area of a particle [m2]634

aq Fitting parameter to relate transport rate to Shields stress (see Eq. 15) [-]635

au Coefficient that determine a velocity threshold (see Eq. 16) [-]636

aη Fitting parameter to relate standard deviation of bed surface variations to Shields637

stress (see Eq. 18) [-]638

bη Fitting parameter to relate standard deviation of bed surface variations to Shields639

stress (see Eq. 18) [-]640

cd Drag coefficient [-]641

cm Added mass coefficient [-]642

D Volumetric sediment deposition rate per unit area at a particular location (x,z) [m/s]643

Di Volumetric sediment deposition rate of particles of type i per unit area [m/s]644

d50 Median particle size [m]645

dg Geometric mean particle size [m]646

d Particle Diameter [m]647

E Volumetric sediment entrainment rate per unit area at a particular location (x,z) [m/s]648

Ep Particle modulus of elasticity [N/m2]649

erf Error function. For variable ”x” the error function is defined as: erf(x) = 1√
π

∫ x
−x e

−t2dt650

~Fb Buoyancy force [N]651

~F c Interparticle contact force [N]652

~Fd Drag Force [N]653

~F f Fluid force [N]654

~F g Gravity force [N]655

~Fm Added mass force [N]656

~Fn Component of interparticle contact force normal to an interparticle contact plane657

in the DEM model [N]658

~Fnc Interparticle non-contact force [N]659

~Fp Sum of all forces on a particle defined by Eq. 8 [N]660

~Ft Component of interparticle force tangential to an interparticle contact plane in the661

DEM model [N]662

fa,i Volume fraction of particles of type i in the active layer.663

fL,i Volume fraction of particles of type i at the interface between active layer and sub-664

strate.665

g Gravitational acceleration (= 9.81) [m/s2]666

h Local bed height (see Fig. 1) [m]667

hp Height difference between the topmost part of two particles (see Eq. 11) [m]668
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Ii Moment of inertia of particle i669

i Particle counter670

kn Normal stiffness factor (see Eq. 7) [N/m1.5]671

ks Roughness length-scale (= 3.5d50) [m]672

kt Tangential stiffness factor (see Eq. 7) [N/m]673

L Representative length scale [m]674

La Active layer thickness [m]675

L̂ Dimensionless length scale [-]676

ld Downstream distance between the center of two particles (see Eq. 11) [m]677

M Torque [kgm2/t2]678

mi Mass of particle i679

N Number of particles680

pd Probability density of deposition rate (see Eq. 3 and 5a) [-]681

pe Probability density of entrainment rate (see Eq. 3 and 5b) [-]682

pη Probability density of bed height (see Eq. 4) [-]683

q Volumetric sediment transport rate per unit width [m2/s]684

qti Volumetric sediment transport rate of the simulation data at output time step ti (see685

Eq. 12) [m2/s]686

q∗ Dimensionless sediment transport rate (see Eq. 13) [-]687

q∗20 Average dimensionless sediment transport rate for 20 seconds after steady-state trans-688

port rate [-]689

q∗T Average dimensionless sediment transport rate from ts to T = t− ts [-]690

q∗fit Dimensionless sediment transport rate proposed by authors for this study q∗fit =691

2.59(τ∗ − 0.051)1.5 [-]692

q∗flv Dimensionless sediment transport rate proposed by Luque and Van Beek (1976) q∗flv =693

5.7(τ∗ − 0.06)1.5 [-]694

q∗mpm Dimensionless sediment transport rate proposed by Meyer-Peter and Muller (1948)695

and modified by Wong and Parker (2006) q∗mpm = 3.97(τ∗ − 0.0495)1.5 [-]696

q∗sim Dimensionless sediment transport rate from the simulations of this study (see Fig.697

4) [-]698

q∗ti Dimensionless sediment transport rate at output time step ti [-]699

q∗wpdbb Dimensionless sediment transport rate proposed by Wong q∗wpdbb = 2.66(τ∗−700

0.0549)1.5 [-]701

Rep Particle Reynolds number [-]702

s Particle specific gravity [-]703

se Standard deviation of the entrainment height [m]704

sη Standard deviation of bed surface variations [m]705

ŝη Normalized standard deviation of bed surface variations by median particle size [-706

]707

T Physical time starting just after steady-state transport [s]708

t Physical time [s]709

ts Physical time to reach the steady-state transport. For the simulations of this study710

ts is 2.5 seconds [s]711

ti Output time step of DEM model [s]712

ubd Velocity of bed particles [m/s]713

~uf,x Fluid velocity in the downstream direction [m/s]714

~u Particle velocity [m/s]715

~ux Particle velocity component in downstream direction [m/s]716

~uy Particle velocity component in cross-stream direction [m/s]717

~uz Particle velocity component in vertical direction [m/s]718

~urel Relative velocity between particle and fluid (~uf − ~u)[m/s]719

~urel,x Relative velocity between particle and fluid in downstream direction (~uf,x−~ux)[m/s]720
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~urel,y Relative velocity between particle and fluid in cross-stream direction (~uf,y−~uy)[m/s]721

~urel,z Relative velocity between particle and fluid in cross-stream direction (~uf,z−~uz)[m/s]722

uth Threshold velocity to distinguish between moving and stationary particles (see Eq.723

17) [m/s]724

uτ Shear velocity (uτ =
√
τ0/ρ) [m/s]725

uτc Critical shear velocity [m/s]726

x Coordinate in the downstream direction [m]727

y Coordinate in the cross-stream direction [m]728

z Coordinate in the upward direction [m]729

z0 Position in the bed at which the fluid velocity is zero in the log-law in the DEM model730

(see Fig. 2) [m]731

z1 Distance between the bed surface and zero-fluid-velocity plane (z1 = 2d50) [m]732

zc Vertical location of a particle center [m]733

ztop,i,j Topmost part of particle i on the bed surface in column j [m]734

z̃ Coordinate in the downward direction with reference located at the mean bed height:735

(z̃ = η − z) [m]736

z̃e Offset distance associated with mobile-bed equilibrium and representing the height737

of the maximum entrainment rate (see Eq. 5 and Eq. 20) [m]738

z̃n Offset distance associated with non-equilibrium conditions (see Eq. 5) [m]739

δn Representative deformation normal to the contact plane of an interparticle contact740

in the DEM model [m]741

δ̇n Temporal derivative of δn [m/s]742

δrmin Minimum displacement of a particle from stationary status to be considered as743

an eroded particle (see Eq. 19) [m]744

δt Representative deformation tangential to the contact plane of an interparticle con-745

tact in the DEM model [m]746

δ̇t Temporal derivative of δt [m/s]747

η Mean bed height (see Fig. 1) [m]748

ηn Damping coefficient associated with compressive deformation of a particle (see Eq.749

7) [Nt/m5/4]750

ηt Damping coefficient associated with shear deformation of a particle (see Eq. 7) [Nt/m5/4]751

κ Von Karman constant [-]752

λp Bed porosity [-]753

µ Interparticle friction coefficient [-]754

ν Kinematic viscosity of fluid [m2/s]755

νp Particle Poisson ratio [-]756

ρf Fluid mass density [kg/m3]757

ρp Particle mass density [kg/m3]758

σg Geometric standard deviation of particle size distribution [-]759

τ Shear stress [N/m2]760

τ0 Bed shear stress [N/m2]761

τ∗ Shields stress [-]762

τ∗
c Critical Shields stress [-]763

∀i Volume of particle i [m3]764

ωi Rotational velocity of particle i [1/s]765

Acknowledgments766

We thank the Army Research Office (ARO) for funding this research under the grant767

W911NF-16-1-0337. This link (we will provide it upon acceptance) provides access to768

the data used in this study.769

–23–


