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Abstract

A prediction algorithm of tropical cyclone (TC) intensity change based on deep learning is proposed by exploring the distribution

characteristics of atmospheric and oceanic elements. we adopted three dimensional convolutional neural network (3D-CNN),

which is part of a most advanced approach, to learn the implicit correlation between the spatial distribution characteristics of

three dimensional environmental variables and TC intensity change. Image processing technology is also used to enhance the

data of a small number of TC samples to generate the train set. On the basis of TC instantaneous three dimensional state

and the influence of sea surface temperature, we extract the spatial hybrid features from TC image patterns to predict 24 h

intensity change. Experimental results show that the Mean Absolute Error (MAE) of TC intensity change prediction and the

accuracy of strengthening and weakening classification are both have a significant improvement
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Key Points:

 The spatial mixed distribution features of three dimensional environmental variables are 
proposed to predict TC intensity change.

 The deep learning model is trained with data augmentation and shows a significant 
improvement in intensity change prediction.

 The scheme based on deep learning algorithm achieves higher classification accuracy of 
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Abstract

A prediction algorithm of tropical cyclone (TC) intensity change based on deep learning is 
proposed by exploring the distribution characteristics of atmospheric and oceanic elements. we 
adopted three dimensional convolutional neural network (3D-CNN), which is part of a most 
advanced approach, to learn the implicit correlation between the spatial distribution 
characteristics of three dimensional environmental variables and TC intensity change. Image 
processing technology is also used to enhance the data of a small number of TC samples to 
generate the train set. On the basis of TC instantaneous three dimensional state and the influence 
of sea surface temperature, we extract the spatial hybrid features from TC image patterns to 
predict 24 h intensity change. Experimental results show that the Mean Absolute Error (MAE) of
TC intensity change prediction and the accuracy of strengthening and weakening classification 
are both have a significant improvement.

Plain Language Summary

TC motion makes important influence to human beings and infrastructure. Predicting TC 
intensity is crucial, especially in the 24 h warning time. TC intensity change prediction can be 
regarded as both regression and classification problems. In this study, an algorithm based on 
deep learning is proposed to improve TC intensity change predictions, which combines the 
distribution features and interaction of atmospheric and oceanic variables.

1 Introduction

Tropical cyclone (TC) is a warm-core atmospheric vortex system that occurs and develops on the
warm ocean surface (Gao et al., 2018). The disaster is mainly caused by strong wind, heavy rain 
and storm surge, which is one of the most destructive nature disasters (Q. Zhang et al., 2009). TC
intensity prediction and rapid intensification prediction, especially in the warning time frame 
within 24-48 h, remains a major challenge(Gao et al., 2016). TC intensity change is affected by 
complex physical processes. The difficulty in predicting TC intensity is mainly due to our 
limited understanding of complex processes and various factors related to TC enhancement and 
attenuation (W. Zhang, Gao, et al., 2013). Existing studies have summarized three main factors 
leading to TC intensity change: ocean characteristics such as sea surface temperature (SST) and 
latent heat flux (Ito et al., 2015; M. Zhang et al., 2016); internal structural characteristics such as 
eyewall and structural asymmetry (Sitkowski et al., 2011); environmental impact such as vertical
wind shear and humidity (Xuyang et al., 2013). It is generally believed that the change depends 
on the combination of these factors (Chen P, 2011; Wang & Wu, 2004).

At present, TC intensity prediction methods can be divided into three categories: statistical 
prediction method, numerical prediction method and deep learning method. The traditional 
statistical method to study the change of TC intensity needs to consider the selection of multiple 
predictors, such as maximum potential intensity and relative vorticity (Gao & Chiu, 2012; Gao et
al., 2016; Jinjie et al., 2011; Lee et al., 2019; Su et al., 2010). However, the predictability of 
predictors is uneven and inconclusive. Previous studies used decision trees to classify 24 h 
intensity change, but could only qualitatively evaluate TC change (Gao et al., 2016; W. Zhang, 
Gao, et al., 2013). The numerical prediction method based on the thermodynamic equation 
adopts different parameterization schemes and obtains obvious and unique results in 
performance and characteristics, nevertheless, it is quite sensitive to the initial field and 
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boundary conditions (R. Chen et al., 2019). With the development of artificial intelligence, 
scholars have also tried to use deep learning to solve TC problems, and this approach continues 
to attract attention (B.-F. Chen et al., 2019; Jiang et al., 2018). Chen et al. used three dimensional
convolutional neural network and long short-term memory (LSTM) network to predict 24 h 
intensity. However, the number of time series samples were insufficient for the demand of deep 
learning. In addition, the feature information of the reanalysis text data is limited by the variable 
values and the number of grids (R. Chen et al., 2019). 

As is known to all, TCs have strong vertical movement in the process of development. In the 
three dimensional state, the dynamic and thermal characteristics of TCs can be better 
represented. The influence of water vapor and heat cannot be ignored (Sitkowski et al., 2011; 
Xuyang et al., 2013). Previous studies  have shown that relative humidity and water vapor flux 
are effective potential predictors of TC intensification stage (Cocks & Gray, 2002; Xuyang et al.,
2013). Moreover, large numbers of studies have shown that SST also plays an important role in 
TC generation and development (Gao et al., 2016; Ito et al., 2015; Jiang et al., 2018; M. Zhang et
al., 2016).TC in different life stages distributes with distinct flow field features (Ge & Colle, 
2019). For each TC, at each moment in its evolution, there exists a set of eigenvectors containing
numbers of potential TC intensity, precipitation, movement and lifespan features, which relates 
to the relevant attributes of TCs (Ge & Colle, 2019). Each set of eigenvectors represents a single 
TC sample. TC is a quasi-circular symmetrical closed low pressure system with great gradient. 
The peripheral environment influence appears asymmetric (Kerns & Chen, 2013). In the upper-
air weather map, when the isotherm falls behind the contours, the high-altitude trough will tend 
to deepen; otherwise, when the isotherm is ahead, the trough will weaken (Fischer et al., 2019). 
The distribution features and interaction of atmospheric and oceanic variables imply a series of 
potential changes (Guo & Tan, 2018; Kerns & Chen, 2013; Maloney Eric & Hartmann Dennis, 
2000; Russell et al., 2013). 

Aiming to improve on the previous methods, we combine a simple TC model with deep learning 
techniques to predict TC intensity change and classify. The proposed method can represent the 
instantaneous three dimensional characteristics of TCs comprehensively without the selection 
and complex calculation of various predictors. The quality of the method’s outcomes is assessed 
by comparing them with other methods. Experimental results show that our method, to a certain 
extent, simplified the process of problem solving and obtained great effect, which has improved 
the prediction skills of TC intensity.

2 Data and Methodology

2.1 Reanalysis Data and Best Track Data

In this study, the environmental variables including space atmosphere and sea surface are from 
European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets. The 
spatial resolution is 0.125°×0.125° with a temporal resolution of 6 h. The best track data set of 
TCs is released by the Shanghai typhoon research institute, China Meteorological Administration
(M. Ying et al., 2014), including latitude, longitude and maximum sustained wind speed (MSW) 
recorded every 6 hours. The data of the western North Pacific for 22 years (1997-2018) was 
selected in this study. We excluded the samples in the narrow sea area, only kept the samples at a
certain distance from land, so as to avoid the disturbance of land on TCs (W. Zhang, Leung, et 
al., 2013).
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2.2 Methodology

To cover the entire height and region of TCs as well as reduce the computational complexity, we 
select atmospheric levels at 100, 200, 300, 500, 700, 850, 1000Hpa (R. Chen et al., 2019; Kerns 
& Chen, 2013). The three dimensional space atmosphere variables and two dimensional sea 
surface variables of TC center ranges in 10°×10° are from the reanalysis data of European Centre
for Medium-Range Weather Forecasts. Then we visualized the multiple variables under different
isobaric levels (Figure 1) and stacked the images by space order to represent the characteristics 
of three dimensional space structure of TCs. The sea surface variables were regarded as the 
lower boundary conditions on TC space. On the basis of TC instantaneous flow field distribution 
in the process of development, we established the implicit pattern between the environmental 
field and TC intensity change by extracting the spatial hybrid features. The interaction between 
tropical cyclones and basic variables leads to various changes in TC intensity, from rapid 
intensification to rapid weakening (Fischer et al., 2019). Through the circulation and interaction 
of the high and low space, we hope the deep learning method can capture related patterns by 
extracting similar features and judge the changes in a certain period of time.

Figure 1. Flow field distribution images of atmospheric elements under each isobaric surface. 
(a): 100Hpa, (b): 200Hpa, (c): 300Hpa, (d): 500Hpa, (e): 700Hpa, (f): 850Hpa, (g) 1000Hpa. In 
each image, vector arrows represent wind (length represents size [m/s], arrow represents 
direction), color represents relative humidity [%], red contours represent temperature [ ], and ℃
black contours represent geopotential height [gpm].

2.3 Data Augmentation

In order to meet the demand of deep learning algorithms that need a large number of samples for 
training, data augmentation technology can help carry out the next research, so we chose some 
samples for expansion. We added Gaussian noise to each original image in the samples with 
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nonlinear distribution of a mean value  and a variance of  σ=0.0096. Based on the actual 
noise situation of the complex environment samples, the method of calculating the variance is 
designed as shown in formula (1):

σ=
x2

m2
(1)

Where  is the maximum value of the image pixel and  is the noise effect that we added in 
the original image. In this study, we collected a total of 3433 original samples. Each of these 
samples was made up of 8 images with a pixel resolution of 226 × 226, totaling 27464 images. 
Among them, 1000 samples were randomly selected and saved as test set. The rest 2433 original 
samples were extended through data augmentation for model training and validation process. 
Data augmentation reduces the time to obtain samples manually as well as the probability of 
network over-fitting under the condition of insufficient training samples. 

3 Network design and training

A CNN network consists of several processing layers to extract continuously abstract features of 
input data, and match these features with the target studied as regression tasks or classification 
tasks (B.-F. Chen et al., 2019). Each layer is composed of numerous neurons, which calculates 
the weighted linear combination of inputs and trains the model on the dataset to optimize the 
model parameters through the nonlinear action of activation function. This paper used ReLUs
(Nair & Hinton, 2010) as the nonlinear activation function among layers to study the relationship
between the input and output variables, which is very important to effectively reduce the gradient
disappear problems of training neural network and is beneficial to gradient descent and error 
back propagation. The last output layer used tanh as activation function. The effect growing 
when the features differ significantly in loops. Its output is zero mean distribution and values 
range from -1 to 1, the relevant formulas are as follows:

（2）

（3）

As shown in Figure 3, our TC-3DCNN model is mainly composed of convolution layers and 
fully connected (FC) layers. The 3D convolution kernels extract the information of tropical 
cyclones from a pixel neighborhood of cube space center (Han et al., 2019; L. Ying et al., 2017). 
Generally, in CNN networks, pooling layers through a certain method filter redundant data to 
achieve the purpose of reducing computational complexity (Shuiwang et al., 2013; Tran et al., 
2014). However, the image characteristics of TCs lead us not to use pooling layer because it 
degrades the resolution of the detected features and may miss important characteristic of tropical 
cyclones (B.-F. Chen et al., 2019), such as the contour information. In TC-3DCNN network, we 
added a dropout layer after the last convolution layer, which is a regularization technique
(Srivastava et al., 2014). During the training process, a certain proportion of neurons were 
randomly selected to be disconnected, and only the information transmitted by the remaining 
neurons was retained to prevent over-fitting of the model and improve the performance of the 
model.

m x
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Figure 2. The flow chart and architecture of TC-3DCNN neural network.

In our model, the training starts with the initialization of the weight of the nodes between the 
layers, and then updates the parameters through gradient descent. By iterating the samples in the 
training set and minimizing the loss function, the optimal solution is fitted to achieve the optimal
performance. After preprocessing, the model had 3 × 8 × 226 × 226 = 1225824 (Figure 2) input 
values. After five convolution layers, these features are compressed into 2400 core features. 
Finally, three fully connected layers were applied to convert 2400 features into one predicted TC 
intensity change. At the end of the learning process, the model calculated the loss function and 
updated the weight through continuous iteration. For the predicted value, we used the Mean 
Square Error (MSE) as the loss function and the Mean Absolute Error (MAE) as the evaluation 
standard. 

The optimization function in the model is used to update and calculate the network parameters 
that affect the model training and model output to approximately reach the optimal value, so as 
to minimize the loss function. Adam (Adaptive moment estimation) is a commonly used 
optimization function (Kingma & Ba, 2014), it dynamically adjusts each parameter by using the 
first-order moment estimation and second-order moment estimation of the gradient, and updates 
different parameters through migration correction, as described below:

(4)

(5)

(6)

(7)

(8)

in the formula, and  is the exponential decay rate of the estimated moment value, and

 is the first-order moment and second-order moment variables of time , and  is the learning

rate. It is assumed that under time , the first derivative of the objective function of the 
parameters is , and equations (4) and (5) are updates to the first order offset moment 
estimation and second order offset moment estimation of the gradient. The offset term is 
corrected by formula (6) and (7) according to the gradient, and the parameter update is 

completed by formula (8). is the parameter variable of three dimensional convolutional neural

network at time , including the weight and offset.
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4 Results

4.1 TC Intensity Change Prediction

Our model was trained on two Titan Xp GPUs of 12 GB memory under Ubuntu 16.04 systems. 
The latest official released tensorflow-gpu2.0 was adopted as the deep learning framework at the 
backend of keras to build the 3D convolutional neural network. This framework supported 
CUDA 10.0 and Opencv 4.3 versions. The entire training process of our model took about 18 
minutes, and the test process cost about 5 seconds. Our initial training by setting different batch-
size to adjust the number of model iterations under each epoch. Because the 3D data consumes 
huge memory, the batch-size cannot be too large. However, the loss curves of the model will 
constantly fluctuate if batch-size is too small, which is difficult to converge. Eventually, we set 
batch-size to 16, making the model get stable training effect. When learning rate equals 0.0004, 
our model achieved the best test result 6.5 kt, which is the average value of multiple runs. We 
ran the program 10 times, each time randomly taking 1000 samples from all the original samples 
as test set, the remaining samples were extended through data augmentation to retrain the model. 
The result was also currently the most robust, demonstrating the excellent performance of our 
model under the parameter conditions. 

We compared the result with other methods, these methods included traditional statistical models
and the widely used numerical models as well as deep learning models (R. Chen et al., 2019). 
The averaged intensity errors in past 5 years from China Meteorological Administration (CMA) 
and National Hurricane center (NHC) reports are used for the comparison. An improved 
statistical-dynamical method for TC intensity change prediction, which combined statistical 
methodology with numerical weather prediction system, has also been compared to our model
(Lee et al., 2019). The results are shown in Table 1, suggesting that the MAE of our model is 
better compared with existing models. The MAE of our model is 6.5 kt while the lowest MAE of
statistical and numerical models are 10.9 kt and 12.9 kt. Meanwhile, compared with the deep 
learning model as well as the NGR method, our model got a better MAE value and simplified the
experimental process. We achieved good experimental result by considering only the current 
time of tropical cyclones. The fact proved that our deep learning method successfully captured 
the implicit pattern between the distribution features of environment variables and TC variation.

Table 1 

The MAE values of TC intensity change prediction compared with existing models

Category Method MAE1(kt) MAE2(kt)

Statistical method
PLS 11.5
WIPS 10.9

Numerical method
GFS 12.9
GRAPES-TCM 13.7

Statistical-dynamical method NGR 11.3

Deep learning method
CNN-LSTM 7.4
TC-3DCNN (ours) 6.5 6.3

Note. PLS = Partial Least Square Regression Scheme; WIPS = Western North Pacific Topical 
Cyclone Intensity Prediction Scheme; GRAPES-TCM = Tropical Cyclone Model based on 
Global Regional Assimilation Prediction System; GFS = Global Forecast System; NGR = Net 
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Energy Gain Rate (Lee et al., 2019); CNN-LSTM (R. Chen et al., 2019). MAE1 is calculated by 
all TCs while MAE2 is only for TCs that had a wind speed at or above 34 kt.

4.2 TC Intensity Change Classification

There would be three categories of samples on the label: positive (indicating intensity increased),
negative (indicating intensity decreased) and zero (indicating intensity unchanged). Our model 
can quickly predict the three categories of samples. The predicted results for the three categories 
were statistically analyzed, respectively. For the category of prediction, we used Accuracy as 
evaluation indicator. The formula is as follows:

(9)

In the formula, TP represents the samples that are actually positive and predicted to be positive,
FP represents the samples that are actually negative but predicted to be positive, FN represents
the  samples  that  are  actually  positive  and  predicted  to  be  negative,  and  TN  represents  the
samples that are actually negative and predicted to be negative.  The classification results are
shown in Table 2. For intensity increased (  kt/24 h) and decreased (   kt/24 h), the
accuracy predicted is 96.1%. For the criterion of intensifying (  kt/24 h) and weakening (

 kt/24 h), the prediction accuracy is 92.0%. For the criterion of intensifying (  kt/24
h) and nonintensifying (  kt/24 h), the prediction accuracy is 83.1%. Compared with the
reference based on the method of decision trees (W. Zhang, Gao, et al., 2013), the results suggest
that  our  deep learning  method and the  prediction  accuracy  are  better  and have  more  stable
performance under different criteria of intensity change classification. It is also shown that our
method can effectively extract the change features of TCs in different life stages and improve the
classification skills of intensity change.

Table 2 

Comparison of accuracy under different classification criterion

Classification criterion Decision tree TC-3DCNN (ours)

and 90.2% 96.1%

and 81.5% 92.0%

and 77.4% 83.1%

4.3 Performance evaluation of data augmentation

In addition to the above results, we also explored the impact of data augmentation on our 
network performance. Under the condition of the same model architecture and configuration 
parameters, we randomly selected 1000 original samples as the test set, respectively. The training
samples was set to three cases: the original samples for no data augmentation, half of the original
samples for data augmentation and all of the samples for data augmentation. The test results of 
the three cases are shown in Table 3.

Table 3

Performance evaluation with different ratios of data augmentation. 

Ratio MAE(kt) Accuracy1 Accuracy2 Accuracy3
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0.0 7.3 94.1% 89.2% 82.0%

0.5 6.9 95.0% 90.2% 82.4%

1.0 6.5 96.1% 92.0% 83.1%

Note. The accuracy adopts the three classification criterion in table 3.

It can be intuitively seen from the comparison in Table 4 that the network trained by the sample 
set after data augmentation obtains lower prediction errors and higher classification accuracy, 
which directly demonstrates the effectiveness and necessity of data augmentation for our model. 
At the same time, the convergence speed of the model is accelerated and the performance has 
been improved. The data augmentation technique can be successfully applied to our prediction of
TC intensity change.

5 Conclusions and Prospect

In this study we propose that the flow field distribution characteristics and spatial interactions of 
atmospheric and oceanic elements are valuable prediction indicators of TCs and are correlated 
with TC intensity change. To explore this idea, we take advantage of the 22 years of 
environmental variables made available by ECMWF and train deep learning model to predict 
and classify TC intensity change. The prediction method is solely based on the image patterns of 
TC environmental variables and does not require any calculation of TC parameters. Compared 
with the existing methods, our model gets a better MAE value and higher classification accuracy.

We only used the data in the current moment of TCs and simulate TC instantaneous three 
dimensional state to better represent the spatial mixed features. The implicit patterns between the
features and TC intensity change were successfully captured and learned by our model. The 
other innovation of the proposed method lies in data augmentation based on a small number of 
TC accurate samples, which enabled us to solve the problem of insufficient deep learning 
samples. Meanwhile, it better optimizes our model and improves the training efficiency.

The proposed method can be further improved. For example, the fine features associated with TC
intensity change and the influence degree of these features are unknown. Besides, the range and 
height of these features are still worth studying. We believe that addressing these issues will 
enhance the forecast accuracy. In the future, we can continue to study the issues and extract more
fusion features to predict longer time limit and other TC attributes of concern, such as life span. 
Furthermore, we can apply this method to the study of different sea areas and landfall tropical 
cyclones, which will be much interesting and significant.
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