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Abstract

In an effort to better represent aerosol transport in meso- and global-scale models, large eddy simulations (LES) from the NCAR

Turbulence with Particles (NTLP) code are used to develop a Markov chain random walk model that predicts aerosol particle

vertical profiles in a cloud-free marine atmospheric boundary layer (MABL). The evolution of vertical concentration profiles are

simulated for a range of aerosol particle sizes and in a neutral and an unstable boundary layer. For the neutral boundary layer

we find, based on the LES statistics, that there exist temporal correlation structures for particle positions, meaning that over

short time intervals (T= 500 s, or T/Tneut= 0.25), particles near the bottom of the boundary are more likely to remain near

the bottom of the boundary layer than being abruptly transported to the top, and vice versa. For the unstable boundary layer,

a similar time interval of T= 500 s (T/Teddy= 0.39) exhibits weaker temporal correlation compared to the neutral case due

to the strong non-local convective motions. In the limit of a large time interval, T= 2000 s (T/Teddy= 1.56), particles have

been mixed throughout the MABL and virtually no correlation exists. We leverage this information to parameterize a Markov

chain random walk model that accurately predicts the evolution of vertical concentration profiles for the range of particle size

and stability tested in LES, even over short time intervals which exhibit substantial correlation. The new methodology has

significant potential to be applied at the subgrid level for coarser-scale weather and climate models.
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Abstract17

In an effort to better represent aerosol transport in meso- and global-scale models, large18

eddy simulations (LES) from the NCAR Turbulence with Particles (NTLP) code are used19

to develop a Markov chain random walk model that predicts aerosol particle vertical pro-20

files in a cloud-free marine atmospheric boundary layer (MABL). The evolution of ver-21

tical concentration profiles are simulated for a range of aerosol particle sizes and in a neu-22

tral and an unstable boundary layer. For the neutral boundary layer we find, based on23

the LES statistics, that there exist temporal correlation structures for particle positions,24

meaning that over short time intervals (T = 500 s, or T/Tneut = 0.25), particles near25

the bottom of the boundary are more likely to remain near the bottom of the bound-26

ary layer than being abruptly transported to the top, and vice versa. For the unstable27

boundary layer, a similar time interval of T = 500 s (T/Teddy = 0.39) exhibits weaker28

temporal correlation compared to the neutral case due to the strong non-local convec-29

tive motions. In the limit of a large time interval, T = 2000 s (T/Teddy = 1.56), par-30

ticles have been mixed throughout the MABL and virtually no correlation exists. We31

leverage this information to parameterize a Markov chain random walk model that ac-32

curately predicts the evolution of vertical concentration profiles for the range of parti-33

cle size and stability tested in LES, even over short time intervals which exhibit substan-34

tial correlation. The new methodology has significant potential to be applied at the sub-35

grid level for coarser-scale weather and climate models.36

1 Introduction37

At the ocean surface, the combination of winds and breaking waves generate sea38

spray aerosol droplets that are transported throughout the marine atmospheric bound-39

ary layer (MABL) (Andreas, 1998; de Leeuw et al., 2000; Veron, 2015). Suspended in40

the atmosphere, sea spray aerosol particles can act as cloud condensation nuclei (Ghan41

et al., 1998; Lewis & Schwartz, 2004; Clarke et al., 2006), influence the propagation of42

electromagnetic radiation (Stolaki et al., 2015; Gerber, 1991), and interact with geochem-43

ical cycles of reactant species (Erickson et al., 1999). The impact on these processes de-44

pends on the aerosol number concentration, mass loading, chemical composition, and sea45

spray aerosol particle diameter, which spans a wide distribution (Reid et al., 2008; Quinn46

et al., 2015). To address these influences, observational and model-based studies have47

investigated the vertical distribution of sea spray aerosol particles in the atmosphere (Reid48

et al., 2001; Bian et al., 2019).49

To study the influence of turbulence on aerosol particle transport processes, high50

fidelity numerical simulations of the MABL can be used. In particular, large eddy sim-51

ulations (LES) have been used to understand the dynamics of boundary layers (Moeng,52

1984), characterize their statistical turbulence properties (Deardorff, 1972), and inves-53

tigate plume dispersion (Lamb, 1978; Wyngaard & Brost, 1984). Upscaling the govern-54

ing physical processes with bulk parameters is of interest due to the large computational55

cost associated with explicitly resolving the wide distribution of length and time scales56

in the MABL. In environmental fluid flows, the ratio between the largest and smallest57

length scales of motion can span more than six orders of magnitude. To alleviate the cost58

of attempting to resolve all scales, modelers use coarse grid resolutions; global aerosol59

models as well as meso-scale systems have grid lengths between one and hundreds of kilo-60

meters (Riemer et al., 2003; Christensen et al., 2003). Consequently, large scale mod-61

els then neglect small scale processes, but it is imperative to provide coarse-scale mod-62

els with accurate representations of subgrid distributions of aerosol particle concentra-63

tions. This representation is particularly important along the sea surface, where aerosol64

particles are generated and are mostly confined (Blanchard et al., 1984; Toba, 1965).65

One approach for parameterizing the turbulent transport of sea spray aerosol par-66

ticles in the MABL has been through the use of one-dimensional column models (Rouse,67
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1937; Prandtl, 1981; Kind, 1992; Hoppel et al., 2002). These models attempt to describe68

vertical concentration profiles taking into account gravitational settling as well as net69

surface emission, and have been extended to account for a range of atmospheric stabil-70

ities (Chamecki et al., 2007; Freire et al., 2016). These studies rely on Monin-Obukhov71

similarity theory to predict aerosol concentration profiles in the surface layer, while Nissanka72

et al. (2018) extended this to capture profiles for the full MABL. While providing rea-73

sonable predictions in the case of neutral stability, in the case of unstable atmospheric74

stability, expressing turbulent fluxes by the gradient diffusion hypothesis (also known75

as first-order K-theory) limits the accuracy of the prediction of vertical concentration76

profiles (Stull, 1988) and so a different approach is needed. Here we propose such an al-77

ternative approach, aimed at providing both rapid and accurate predictions of aerosol78

concentrations for varying size and stability suitable as a basis for parameterizations in79

global and perhaps mesoscale aerosol models.80

To do this, we upscale transport using a correlated random walk framework. Ran-81

dom walks are commonplace, ranging across applications including financial markets (Scalas,82

2006; Montero & Masoliver, 2017), electron transport (Nelson, 1999), animal foraging83

patterns (Giuggioli et al., 2009), and solute transport in hydro-geologic systems (Le Borgne84

et al., 2008; Berkowitz et al., 2006). Particle trajectories through space and time are mod-85

eled as a series of stochastic jumps (i.e., random walk), most commonly sampled as in-86

dependent identically distributed. In this study however, we adopt a correlated random87

walk model that is conceptually similar to that applied in the subsurface hydrology com-88

munity (Le Borgne et al., 2008; De Anna et al., 2013; Bolster et al., 2014), although we89

apply correlation in time, while in hydrogeology correlation in spatial jumps arises more90

frequently. The key assumption in a correlated random walk model is that a particle’s91

transport behavior at every model step is dependent not only on its current state, but92

also on its history. The correlated random walk model we propose has a one step mem-93

ory, where a particle’s current transition depends on its last.94

We apply this random walk framework to model the evolution of a constant sur-95

face source of aerosol particles in the MABL. Aerosol particle mass is discretized into96

many point particles that transition through time and space by sampling a probability97

distribution that governs particle motion. Specifically, we model a particle’s vertical po-98

sition through time. By considering many particle trajectories, our upscaled framework99

predicts the vertical transport of aerosol particles through a cloud-free MABL, allow-100

ing effective modeling of the temporal evolution of vertical concentration profiles. Sim-101

ilar upscaled transport models in the context of hydrologic systems have displayed com-102

putational costs 6 orders of magnitude less than high fidelity simulations (e.g. Sherman103

et al. (2019)), meaning that transport behavior can be faithfully predicted at future times104

without resolving the turbulent flow field. Though the focus of this study is geared to-105

ward sea spray aerosol particles over the open ocean, this modeling strategy can in prin-106

ciple be applied to anthropogenic, dust, or any other kind of particle over various land-107

scapes. In this study, we test the robustness of our method by considering both neutral108

and unstable boundary layers and for a range of aerosol particle sizes. Although the model109

is trained on known, idealized LES simulations, the proposed modeling framework here110

is used as a proof of concept study to offer a step toward an accurate, computationally111

efficient aerosol particle transport model.112

2 Numerical Methodology113

2.1 Large eddy simulations114

This study uses the National Center for Atmospheric Research (NCAR) LES model
in which the Eulerian fields of mass, momentum and energy are solved from the filtered
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Navier-Stokes equations under the Boussinesq approximation:

∂ũi
∂xi

= 0, (1)

∂ũi
∂t

= −∂ũiũj
∂xj

− ∂τij
∂xj

+
gδi3
T0

θ̃ − 1

ρ0

∂p̃

∂xi
+ f(ũ2 − Vg)δi1 + f(Ug − ũ1)δi2, (2)

∂θ̃

∂t
= −ũi

∂θ̃

∂xi
− ∂τθi
∂xi

, (3)

where ũi is the resolved velocity, θ̃ is the resolved potential temperature, p̃ is the resolved115

pressure, τij is the subgrid stress, f is the Coriolis parameter, and τθi is the subgrid tur-116

bulent flux of potential temperature. The Eulerian subgrid-scale turbulent fluxes are pa-117

rameterized by the model proposed by Deardorff (1980). We assume the large-scale pres-118

sure gradient balances the Coriolis force by imposing a constant geostrophic wind speed,119

Ug.120

The flow is driven by this geostrophic wind, in which only one direction is consid-121

ered (Ug = 10 m/s, Vg = 0). The Eulerian representation of the carrier phase is as-122

sumed periodic in the horizontal (x and y) directions and resolved on a uniform grid in123

all Cartesian directions. An inversion layer is imposed at the upper half of the domain’s124

vertical extent, in addition to a radiation condition at the top of the domain (Klemp &125

Durran, 1983). A pseudo-spectral discretization is used for spatial gradients in the hor-126

izontal directions, whereas a second-order finite difference scheme is used in the verti-127

cal direction. Time integration is done with a third-order Runge-Kutta method, and a128

divergence-free filtered velocity field is enforced via a fractional step method. The lower129

boundary conditions are prescribed by the rough-wall Monin-Obukhov similarity rela-130

tions, and the surface is assumed flat with a constant aerodynamic roughness (0.001m).131

The base LES code (without Lagrangian point-particles) has been used previously in many132

studies of the planetary boundary layer (Moeng, 1984; Sullivan & Patton, 2011).133

Sea spray aerosol particles are represented as Lagrangian point-particles, which are
assumed smaller than the smallest scales of turbulence (Balachandar & Eaton, 2010).
Particle motion follows a Langevin equation:

xp,i(t+ ∆t) = xp,i(t) + vp,i∆t+ ηi

√
2K(xp,i)∆t+

dK(xp,3)

dz
∆tδi3, (4)

vp,i = uf,i − τpgδi3, (5)

where the velocity of the particle (vp,i) is dictated by the local resolved fluid velocity (uf,i),134

which is retrieved at the location of the particle using 6th order Lagrange interpolation.135

It is further modulated by the settling velocity τpg, where τp = ρpd
2
p/18ρfνf is the Stokes136

time scale for a sphere (Brennen, 2005). In equation 4, ηi is an independent and iden-137

tically distributed random value from a normal distribution. The sub-grid diffusivity K(xp,i)138

describes the turbulent dispersion of the Lagrangian particle; it is obtained from the LES139

sub-grid eddy diffusivity (for a passive scalar) interpolated to the particle location. Over-140

bars refer to averaging in the horizontal directions. The fourth term, dzK(xp,3)∆t, takes141

into account vertical transport that is caused by spatial variations in mean diffusivities142

and conserves mass-balance that would otherwise be violated (see (Delay et al., 2005),143

equation 40 for more details).144

For our particular simulation setups, the domain size and number of grid points145

are held fixed at 1500 × 1500 × 850 m (x× y× z) and 128 × 128 × 128, respectively.146

The timestep is set to 0.5 seconds with an initial temperature inversion of 0.50 K/m at147

approximately 570 m. The use of the strong inversion is to maintain approximately steady148

state conditions with minimal boundary layer growth. We consider aerosol particle sizes149

with diameters of 2, 10, and 50µm to test the influence of gravitational settling on trans-150

port behavior and particle aerosol lifetime.151
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Two simulations without particles are performed to allow the turbulent flow field152

to fully develop and reach steady state conditions. The first one corresponds to 3 hours153

with neutral atmospheric stability, whereas the second run is for 1 hour with unstable154

stratification. The same geostrophic wind (Ug = 10 m/s) is imposed on both neutral155

and unstable cases. For the unstable case, a surface heat flux of 0.02 K-m/s is used. In156

relation to meteorological conditions, this corresponds to a air-sea temperature differ-157

ence of roughly 1.5◦ C. Once the flow field fully develops, particles are generated randomly158

along an x − y plane at the first vertical gridpoint (z = 3.12 m); 100 particles are ini-159

tialized at each LES time step (200 particles per second). The source flux is denoted as160

φs = 200 s−1. If the Lagrangian particles are transported below the lower surface (xp,3 ≤161

0), the particle is removed from the simulation, representing dry deposition.162

LES, like all models, makes explicit assumptions and is only valid when those as-163

sumptions are reasonable. In the LES considered here, the simulated Lagrangian sea spray164

aerosol particles maintain a constant size, meaning that hygroscopicity and aerosol swell165

are not considered (Winkler, 1988). The changing atmospheric conditions due to the di-166

urnal cycle have been neglected, as have momentum and energy exchange between the167

aerosol particles and the air (e.g. neglecting the effects of spray modifying heat and mois-168

ture in the surface layer (Peng & Richter, 2019)). Lastly, the LES assumes a flat sur-169

face with a prescribed aerodynamic roughness length, although in the open ocean the170

moving surface waves may play a substantial role in the transport and fate of sea spray171

aerosol particles (Richter et al., 2019).172

2.2 Markov chain random walk model173

Particle transport behavior simulated in the LES is used to develop the upscaled174

random walk model. As an initial proof of concept, we consider only the vertical trans-175

port of aerosol particles, where a full 3-D representation can be developed in future stud-176

ies. In the Markov chain random walk framework, particles transition through time and177

space by sampling a probabilistic distribution for spatial and temporal jumps φ(x, t). A178

particle’s trajectory is conceptualized as series of jumps, where each jump has an asso-179

ciated distance and time; this is the conceptual basis of a random walk model. Here we180

fix time, meaning each jump occurs over a constant model time step T , but the associ-181

ated travel distance varies. Then, under the assumption of independent spatial and tem-182

poral jumps we can write φ(x, t) = ψ(x)δ(t − T ). Physically, the sampled travel dis-183

tance represents the net vertical displacement of a particle over the given lapsed time184

T .185

With this we can describe particle motion with the Langevin equation

tn+1
i = tni + T

zn+1
i = zni + `n+1, ` ∈ ψ(`n+1|`n) (6)

At every model step, particle i travels a net distance ` over model time step T . The186

vertical displacement ` at every model step is sampled from a global distribution ψ(`).187

Since a particle’s vertical displacement in T is conditioned by its position in the atmo-188

spheric column, we sample ` from a conditional distribution, meaning that a particle’s189

position at the next model step depends on its current position. Particle trajectories are190

therefore conceptualized as a Markov chain with their position at the next model step191

only depending on their current position. In this Markov chain random walk framework,192

particle trajectories are conditionally sampled via a transition matrix, which gives the193

probability that a particle transitions from its current height to any other z location in194

the boundary layer after model time step T .195

Successive model jumps may be independent (or decorrelated), meaning that a par-196

ticle’s predicted vertical position after an interval T is independent of its initial position.197
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If independence is assumed throughout the vertical extent, then the Markov chain is not198

necessary and a randomly sampled location would suffice. Therefore, we note that the199

random walk framework describes the overall model, which may or may not take account200

into correlation via the Markov chain and transition matrix M . Over shorter timescales201

T , it is necessary to take into consideration this correlation; i.e., particles at the bottom202

(or top) of the boundary layer are more likely to stay at the bottom (or top) of the bound-203

ary layer. This correlation structure is what necessitates the use of the Markov chain com-204

ponent of the random walk model.205

2.2.1 Vertical position correlation structure: transition matrix206

In the Markov chain model, particles transition through space according to the prob-
abilistic rules of a transition matrix M . Again, the transition matrix describes proba-
bilities that a particle changes from one location to another in a fixed time. Conceptu-
ally, we discretize the atmospheric boundary layer into S height bins, with bins 1 and
S representing the lowest and highest vertical positions in the boundary layer, respec-
tively. This discretization represents the global distribution ψ(l) into M . Matrix M then
has size [S, S] and each element in Mi,j is the probability that a particle trajectory af-
ter a T ends in bin j given in started in bin i; i.e.,

Mi,j = P (zn+1 ∈ bin j|zn ∈ bin i). (7)

By definition, this requires that the summation of any row in M is unity. The Markov207

chain model contains the critical assumption of temporal stationarity of the transport208

processes, meaning that the transition matrix elements for any T window are identical.209

One of the benefits of this transition matrix approach is that it can model nonlocal be-210

haviors (i.e. particles can jump large distances in the domain and are not just restricted211

to communicate with adjacent cells).212

In the LES, detailed statistics gathered from a large number of individual Lagrangian213

particle trajectories are used to construct M . Specifically, we run a steady-state LES sim-214

ulation over a time T (Eqn. 6) and track many (O(106)) particles to estimate each el-215

ement of M . The particles begin uniformly dispersed throughout the boundary layer height,216

meaning that each starting bin is weighted equally. A separate LES calculation is per-217

formed for each aerosol particle size to construct the size-dependent transition matri-218

ces.219

The total simulation time required to run the LES consists of: the time for the LES220

to develop steady-state turbulence, and then an additional time T to compute the tran-221

sition matrix M as well as the injection distribution ψI (explained later) of the random222

walk model. The goal is to only need to run the LES for a time T , from which the up-223

scaled model can make predictions out to much later times. In this study, the bound-224

ary layer is partitioned into 20 bins of equal size; i.e., each bin has height of approximately225

15 m. With full knowledge of M and an initial particle location, we can effectively model226

a particle’s vertical position through time and therefore predict the evolution of verti-227

cal aerosol particle concentration profiles.228

2.2.2 Boundary condition: removal of particles229

Aerosol particles that reach the ocean surface by dry deposition (xp,3 < 0) in the230

LES are removed from the simulation. Such behavior must therefore also be faithfully231

captured within the Markov chain random walk model. To do so, we add an additional232

bin to M , representing transport to the ocean surface. If a particle transitions to this233

surface bin, the particle is removed from the system. In the context of stochastic mod-234

els this is often called transport to a limbo state (Van Kampen, 1979; Sund et al., 2015).235

Parameterization of this “limbo” bin is consistent with the methods discussed above; i.e.,236

in the LES we track the number of particles that transition from height z to the surface237
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after T , and this is included in the transition matrix M as an additional column. In the238

results section, the choice of T is shown to influence the probabilities of dry deposition.239

2.2.3 Initial condition: particle injection ψI(z)240

For the MABL system considered here, sea spray aerosol particles are continuously241

emitted from the ocean surface into the atmospheric boundary layer. This means that242

under certain conditions, namely when the number of aerosol particles injected into the243

atmosphere exceeds the number of aerosol particles depositing onto the ocean surface,244

the total aerosol particle number will increase through time. We parameterize this be-245

havior in the Markov chain random walk model by adding a distribution of aerosol par-246

ticles at every model step. This distribution corresponds to the vertical distribution of247

any new particles generated over the last T seconds. We first numerically calculate ψI248

from LES statistics; ψI is simply the vertical concentration profile of particles released249

during a window of time T . Additionally, we demonstrate that in neutral conditions, ψI250

can be parameterized from existing one-dimensional models, potentially removing the251

need to calculate ψI from LES. In this study, we assume that the ψI distribution is sta-252

tionary for any interval [t, t+T ], though ψI varies slightly across various intervals for253

unstable cases. In the LES we add 200 particles per second to the domain, and there-254

fore 200T for a random walk model time step. Note that the actual injected number is255

slightly less than 200T because some particles are emitted and absorbed back into the256

ocean within the model time step T ; i.e. the lifetime of a particle is permitted to be less257

than T .258

3 Results259

Here we briefly summarize the parameterization of the Markov chain random walk260

model after statistically steady-state turbulence is achieved. Using LES, we empirically261

find the two upscaled model input parameters: M and ψI . This is done for each atmo-262

spheric condition/particle diameter combination. In this section, we first characterize263

the neutrally stratified boundary layer and use the LES particle statistics for the com-264

parison and validation of the upscaled model. Afterwards, we perform the same proce-265

dure for an unstably stratified boundary layer.266

3.1 Neutral boundary layer267

Once aerosol particles are generated at the surface, the vertical transport mech-268

anisms affecting their displacement are the local turbulence and the settling effect of grav-269

ity. If the strength of settling is less than that of the vertical velocity seen by the La-270

grangian particles throughout their lifetime, then they have a high probability of reach-271

ing the top of the boundary layer. If particles are too heavy, they have a high likelihood272

of quickly falling back into the ocean. In the case of neutral boundary layers, the wind273

shear is solely responsible for the mechanical generation of turbulence. Therefore, char-274

acterizing the turbulent kinetic energy (or specifically the vertical velocity variance) is275

useful in understanding vertical transport of sea spray aerosol particles. Neutral bound-276

ary layers as an atmospheric state can be used as a helpful model development testbed277

and as a proxy for other conditions (Stull, 1988).278

3.1.1 Characterization of the neutral boundary layer279

For the neutral case, Figure 1 presents snapshots of LES vertical velocity, with hor-280

izontal planes at two heights: 100m and 300m, corresponding to z/zi = 0.18 and z/zi =281

0.53, where zi is the boundary layer height. Near the surface, coherent structures of ver-282

tical velocities are smaller than near the middle of the boundary layer (300m), where larger-283

scale coherent turbulent structures are more visibly apparent. In Figure 1(c), the nor-284
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𝑤𝑤′2/𝑢𝑢∗

𝑧𝑧/
𝑧𝑧 𝑖𝑖

Figure 1. Snapshot of instantaneous vertical velocity with an horizontal planes at (a) 100m

(z/zi = 0.18) and (b) 300m (z/zi = 0.53) for the neutral boundary layer. (c) is the time-averaged

vertical profile of root-mean-squared vertical velocity normalized by u∗, the friction velocity.
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Figure 2. The distribution of newly generated aerosol particles ψI in a T/Tneut = 0.25 win-

dow for neutral conditions. The y-axis is the normalized vertical height z∗ = z/zi, and the x-axis

is the normalized concentration C∗ = C(z)/CT , where C(z) is the concentration of particles

at a bin location, and CT is the total concentration for a given snapshot. 20 different temporal

snapshots of ψI are shown in each panel (but overlap).

malized root-mean-square of the vertical velocity exhibits a peak near the surface, in ac-285

cordance with other studies (Deardorff, 1972). This quantity can be interpreted as a mea-286

sure of the turbulence intensity experienced by the aerosol particles.287

The vertical concentration profile of newly generated sea spray aerosol particles (over288

time T ) is measured in the LES to parameterize ψI . For neutral stability, the value of289

T is normalized by the neutral stratification time scale Tneut = zi/u∗ (u∗ is the fric-290

tion velocity), which is around 2000 seconds. We choose the normalized model time step291

T/Tneut = 0.25 (where T = 500 s), which is sufficiently large such that the transition292

matrix displays temporal stationarity, but small enough such that a Markov chain is re-293

quired to capture correlations between particle jumps. Figure 2 shows the vertical con-294

centration profiles for T/Tneut = 0.25 generated for 20 different windows [nT, (n+1)T ]295

for particles with diameter 2, 10, and 50µm. This profile reflects the distribution ψI of296

the newly injected particles in the upscaled model. Note that we have plotted all 20 dis-297

tinct profiles for each aerosol particle diameter, but they are all nearly identical and hence298

appear as a single profile. This overlap indicates that the turbulence is statistically steady-299

state based on the chosen T . For all aerosol particle sizes, the majority of newly gener-300

ated particles remains in the lower atmosphere, meaning that T/Tneut = 0.25 is not suf-301

ficiently long for particles to sample the entire boundary layer. Again, this correlation302

is what necessitates the use of a Markov chain component of the random walk model.303

As the diameter increases, the gravitational settling velocity increases, causing a304

higher concentration of particles near the surface as observed in Figure 2. Physically, larger305

particles require persistent and strong updrafts to reach the upper portions of the bound-306

ary layer, whereas smaller particles are more likely to reach greater heights and stay sus-307

pended without the need of constant upward velocities. Thus, larger particles exhibit308

lower concentrations as vertical height increases.309

3.1.2 Markov chain random walk prediction310

We apply the Markov chain random walk model to predict aerosol particle trans-311

port through the boundary layer and compare model predictions with the LES. Using312

the Lagrangian statistics, the transition matrix is parameterized, as shown in the top pan-313

els of Figure 3. The position of an aerosol particle based on the normalized model time314

step T/Tneut = 0.25 is strongly correlated to its current position. Such behavior is cap-315

tured by the transition matrices, which display strong diagonal trending; i.e. particles316
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Figure 3. The top row is the transition matrices for particles with diameter d = 2, 10, 50µm

with a normalized model time step T/Tneut = 0.25, where T = 500 s. The bottom row is the

temporal evolution of the vertical aerosol particle concentration profiles in the neutral boundary

layer for LES (dots) and the Markov chain upscaled model predictions (dashed line). Colors cor-

respond to t/Tneut = 1 (black), 2 (blue), 3 (green) and 4 (red), where t is the time since the first

sourcing of particles. Concentrations are provided as a local number density based on the number

of particles in the LES.

that start at the bottom (or top) of the boundary layer are likely to stay at the bottom317

(or top).318

For dry deposition to the surface, the rightmost column of the transition matrices319

quantifies the transition from some height to the ocean. As the distance between the ocean320

surface and current particle position decreases, the probability that the particle enters321

limbo (dry deposition) increases. Furthermore, as the particle’s diameter increases its322

probability of removal increases, seen as increased values in the removal column of the323

transition matrices — an effect well-captured by the transition matrix and upscaled model.324

Using this parameterization, the Markov chain model accurately represents the LES325

evolution of vertical concentration for 2, 10, and 50µm diameter particles. Figure 3 shows326

the horizontally-averaged concentration profile at snapshots of t/Tneut = 1 (black), 2327

(blue), 3 (green) and 4 (red) along the bottom row of panels. As a reference, the reported328

concentrations are the number concentration from the LES given the injection rate (φs =329

200 s−1). The atmosphere begins devoid of particles, and over time the particle concen-330

tration increases as they are continuously injected at z = 0. As time evolves, particles331

have sufficient time to sample the full range of motions in the boundary layer, and tur-332

bulent dispersion results in the transport of particles throughout the boundary layer. For333

the d = 2, 10µm cases, turbulence is strong enough for such transport; however in con-334

trast, very few particles with a diameter of 50µm make it to the top of the boundary335

layer because the turbulent field is too weak in comparison to gravitational settling. These336

features are well-captured by the upscaled model.337
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3.2 Unstable (convective) boundary layer338

We now consider an unstable boundary layer in addition to the neutral conditions339

of the previous section. The surface heat flux in this scenario corresponds to a 1.5◦C air340

sea temperature difference, a typical setting over open oceans. In addition to the imposed341

geostrophic wind, buoyancy production of convective turbulence occurs due to the rel-342

atively warm surface. The significant amount of vertical mixing due to these convective343

motions causes a near-constant concentration with height, a feature in the profile which344

is very difficult for traditional 1-D analytical models to capture (Nissanka et al. (2018),345

hereafter referred to as N18).346

3.2.1 Characterization of unstable boundary layer347

Figure 4 presents snapshots of vertical velocity with planes at two different heights,348

as well as a profile of vertical velocity fluctuations. Note that compared to Figure 1, the349

scales for vertical velocity fluctuation are up to three times larger. In the wall-normal350

x−y planes, convective plumes are visible via large, coherent regions of vertical veloc-351

ity fluctuation. These large scale features are important to the transport of aerosol par-352

ticles, as it will be shown to significantly affect the positional correlation structures in353

the transition matrix. Additionally, the normalized root-mean-square of the vertical ve-354

locity shows the maximum of vertical mixing toward the center of the mixed layer, in355

agreement with other studies (Moeng & Sullivan, 1994).356

We use the standard definition of the convective velocity scale w∗ = [gzi(w′θ′)s/Ts]
1/3

357

to define a convective large eddy time-scale, Teddy = zi/w∗. Here, Ts is the reference358

surface temperature (273 K), w′θ′ is the surface heat flux, and g is gravitational accel-359

eration. Our convective time scale is roughly 20 minutes, consistent with previous stud-360

ies (Moeng & Sullivan, 1994). We first choose a model time step of T = 500 s, which361

corresponds to T/Teddy = 0.39. By choosing T less than Teddy, the model time inter-362

val will be less than the time required to mix aerosols throughout the MABL, thus ne-363

cessitating the Markov chain. It will be shown that even in this case, the upscaled trans-364

port model can reasonably predict near-vertical concentration profiles in the mixed layer.365

Additionally, we anticipate that using a normalized model time step T/Teddy > 1 leads366

to particle decorrelation, removing the necessity of a Markov chain since particles would367

have time to sample the entire MABL. Therefore, we also test a case when T is larger368

than Teddy: T = 2000 s, or T/Teddy = 1.56.369

Figure 5 displays ψI for both T/Teddy = 0.39 (top rows) and T/Teddy = 1.56 (bot-370

tom rows). Each panel contains multiple profiles, representing different simulation win-371

dows of the corresponding normalized model time steps T . Due to our simulation times372

ending at t=11400s, the model time step T = 2000 s allows for 5 unique instances of373

ψI . In the neutral case, all ψI are nearly identical, however under unstable conditions374

we observe that the profile of newly generated aerosol particles is somewhat variable in375

time. We attribute this variation to the large scale turbulent structures, which influence376

the convergence of time-averaged statistics. At the surface layer and inversion layer heights,377

the initial injection distributions are similar, where the large scale structures are less dom-378

inant.379

As expected, T/Teddy = 0.39 displays concentrations that are able to reach the380

upper half of the boundary layer, unlike the neutral ψI . Particle concentration is the largest381

in the surface layer, because aerosols are generated at the surface and are carried down-382

wards by gravity – again this becomes stronger with particle size. We choose the first383

profile, i.e., the vertical concentration profile at t = T , as the injection initial condi-384

tion ψI for both values of T . For the case with T = 2000 s, the profile ψI looks simi-385

lar to the fully-developed concentration profile, as expected since the particles have had386

sufficient time to distribute and sample the entire MABL.387
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Figure 4. Snapshot of instantaneous vertical velocity with horizontal planes at (a) 100 m

(z/zi = 0.18) and (b) 300 m (z/zi = 0.53) for the unstable boundary layer. (c) the time-averaged

vertical profile of root-mean-squared vertical velocity normalized by the convective velocity scale.

3.2.2 Markov chain random walk388

We apply the same methodology of using the LES to determine M and ψI to pa-389

rameterize the upscaled model. In this section we present two random walk simulations390

using the two values of T for the unstable boundary layer, and note the difference in ver-391

tical concentration predictions.392

For unstable stratification, the transition matrix when using T/Teddy = 0.39 is393

shown in the top row of Figure 6, and exhibits generally weaker correlation throughout394

the mixed layer as compared to the neutral boundary layer (top rows of Figure 3). Par-395

ticle correlations are greater toward the surface and the inversion layer, where particles396

tend to remain for successive time intervals.397

When using these transition matrices, the bottom rows of Figure 6 compare the398

model predictions to the LES results. Above a height of z/zi ≈ 0.2, the random walk399

model correctly predicts a near-uniform concentration profile, due to the enhanced ver-400

tical mixing relative to the neutral boundary layer. As noted above, it is this feature which401

is very difficult for traditional eddy diffusivity models to capture. As the concentration402

of aerosols grows in the boundary layer, the Markov chain random walk model gener-403

ally exhibits an underprediction within the surface layer. Compared to the neutral case404

shown in Figure 3, there is more variation in the predictions for the unstable case, which405
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Figure 5. The distribution of newly generated aerosol particles ψI in for two model time steps

T under unstable conditions. The concentration is normalized in the same way as the neutral

condition. 20 unique temporal snapshots of ψI are shown for T = 500, while 5 are shown for

T = 2000, demonstrating the temporal variability of the initial condition.

is consistent with that seen in the profiles of ψI and reflects the time variability of the406

horizontally averaged concentration. Similarly, the transition matrix at multiple instances407

of T/Teddy = 0.39 undergoes slight temporal variation (not shown), but the general fea-408

tures remain the same since the flow is statistically stationary.409

When setting T/Teddy = 1.56 (T = 2000 s), the transition matrices reflect the410

well-mixed behavior exhibited in the concentration profiles, displayed in the top panels411

of Figure 7. As expected, the matrices are nearly uniform, meaning that a particle’s ini-412

tial position is not correlated to the particle’s final position since the model time step413

T is larger than the convective time scale. We again observe that increasing the aerosol414

particle size increases the probability that a particle enters limbo within the interval T ,415

and the probability of particle limbo is larger in the selection of T/Teddy = 1.56 than416

in T/Teddy = 0.39.417

When using T/Teddy = 1.56, for all particle sizes the random walk model accu-418

rately captures the evolution of mean aerosol concentration; this is shown in the bottom419

panels of Figure 7. As mentioned above, T/Teddy = 1.56 now takes into account the420

largest convective time-scale. Once considering this time-scale, the Markov chain nearly421

completely decorrelates (within the surface and mixed layer), eliminating the need of a422

Markov chain and transition matrix formulation. Effectively, the injection initial con-423

dition of the random walk (ψI) contains all of the information needed to make predic-424

tions, since it captures the shape of the well-mixed concentration profile.425

4 Discussion426

With the results of the vertical concentration profile predictions for all considered427

particle sizes and stabilities, we can now expand upon analysis of the Markov chain ran-428

dom walk model. As mentioned before, the random walk model currently requires M429

and ψI , which are obtained from the LES. With the goal of reducing computational cost430

associated with running LES, we begin this discussion by inferring new transition ma-431

trices based on already-calculated transition matrices — i.e., from several matrices M432
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Figure 6. Transition matrices are shown above for particles with diameter d = 2, 10, 50µm us-

ing the normalized model time step T/Teddy = 0.39, where T = 500 s. The bottom panels are the

temporal evolution of the vertical aerosol particle concentration profiles in the unstable boundary

layer for LES (dots) and Markov chain upscaled model predictions (dashed lines). The random

walk concentration is the scaled concentration with respect to the LES (see section 3.1.2). Colors

correspond to t/Teddy = 0.39 (black), 0.78 (blue), 1.17 (green) and 1.56 (red).

calculated from LES of a limited set of particle sizes, M for other particle sizes can be433

predicted without needing additional LES.434

With an eye on removing the need for using LES at all, we also discuss the pos-435

sibility of using 1-D theory on particle distribution to specify ψI , and discuss the sen-436

sitivity of the model predictions to M in order to assess how robust the predictions of437

C would be to various (future) parameterizations of M .438

4.1 Inference of M based on particle size439

So far we have shown predictions for models that were parameterized from the LES440

directly, meaning that we have full access to highly detailed Lagrangian trajectory data.441

However, such parameterization methods still require LES (albeit for much shorter du-442

rations) and therefore demands potentially large computational resources. In other words,443

we still need to simulate transport in order to predict transport, which somewhat de-444

feats the purpose of upscaled modeling. In this section we use the previously calculated445

transition matrix data to infer how the transition matrix changes with aerosol particle446

size. Doing so means we can parameterize random walk models for a large range of par-447

ticle sizes by gathering statistics from just a few LES cases, thereby reducing the com-448

putational costs associated with the parameterization step.449

To demonstrate, we infer the transition matrix of a particle with diameter 35µm450

from the transition matrices observed for particles with diameters 2, 5, 10, 20, 50µm for451

the unstable and neutral boundary layers. To do so requires an adjustment of the prob-452

ability of each transition matrix element with respect to particle size. Anticipating that453

the elements of the transition matrix scale with particle mass based on gravitational set-454

tling, thus depending on d3p, we find a least-squares best fit polynomial of degree 3; this455

reflects that the transition matrix elements are a function of particle volume. We find456
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Figure 7. Transition matrices are shown below for particles with diameter d = 2, 10, 50µm

using the normalized model time step T/Teddy = 1.56, where T = 2000s. The bottom panels

are the temporal evolution of the vertical aerosol particle concentration profiles in the unstable

boundary layer for LES (dots) and Markov chain upscaled model predictions (dashed line). Col-

ors correspond to t/Teddy = 1.56 (black), t/Teddy = 3.13 (blue), t/Teddy = 4.69 (green), and

t/Teddy = 6.25 (red).

the best fit probability for every transition matrix element and then normalize rows, such457

that their summation is unity. The top graphs of Figure 8 display the best fit lines for458

the probability of the limbo state bin (for the lowest five initial bins), showing clearly459

that as particle radius increases, particle deposition becomes more likely at any bin. The460

best fit lines allows the probability of a transition matrix element to be estimated for any461

particle radius or diameter.462

Once the transition matrix is inferred for a particle diameter of 35µm, the random463

walk model is used to estimate the evolution of the vertical concentration profile under464

the same forcing conditions as presented earlier. In order to speed up the convergence465

of Lagrangian statistics, we set φs = 600/s. The injection function ψI for the 35µm466

particles is obtained from the LES and used as the input parameter in the upscaled model.467

For both the neutral and unstable boundary layers, the Markov chain model accurately468

captures the LES behavior shown in the bottom panels of Figure 8. Here our simple in-469

terpolation method provides robust results, suggesting that the dependence of the tran-470

sition matrix on particle can be approximated, restricting the need for full LES runs to471

only a subset of particle size. Additionally, the predictions demonstrate that the differ-472

ence in φs has little to no effect, suggesting that the particle statistics have converged.473

4.2 Comparison to a 1-D analytical model474

In this section we compare a previously-developed, 1-D analytical model with the
LES results, in an effort to highlight the advantages of the proposed model. Specifically,
we replicate vertical concentration profiles from the work of N18. In their model, the ver-
tical gradient of mean concentration is calculated from the advection-diffusion equation
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Figure 8. The top row shows the particle radius vs probability of limbo state and a best

fit 3rd-order polynomial for different atmospheric bins. The best fit polynomial is used to infer

the transition matrix with diameter 35µm. A transition matrix for an aerosol particle with a

35µm diameter is inferred from transition matrices with other particle diameters. The temporal

evolution of the concentration profiles from Markov chain model predictions (dashed lines) are

compared with LES (dots) for the neutral (left) and unstable (right) cases. The temporal evolu-

tion is shown in the neutral case for t/Tneut = 1 (black), 2 (blue), 3 (green) and 4 (red). For the

unstable case the data correspond to t/Teddy = 1.56 (black), 3.13 (blue), 4.69 (green) and = 6.25

(red).

for a passive scalar with a constant settling velocity, under the assumptions of horizon-
tal homogeneity, negligible molecular diffusivity, zero mean vertical velocity, turbulent
vertical flux parameterized with an eddy-diffusivity, and a total (turbulent plus settling)
vertical flux that decreases linearly with height from a constant surface flux Φ to zero
at zi. The final equation can be written as

dC

dz
= − 1

Kc(z)
[wsC + Φ(1− z/zi)] (8)

where C is the mean concentration and Kc(z) is the eddy diffusivity.475

In addition to the physical parameters that are constant in the simulation (u∗, zi,
ws, Φ, and the Obukhov length L), equation (8) requires a model for the eddy diffusiv-
ity Kc(z), proposed by N18 as

Kc(z) =


κu∗z

φ(ζ)
, if z < 0.1zb,

a
κu∗z

φ(ζ)

(
1− z

zi

)2

, if z ≥ 0.1zi,
(9)

where κ is the Von Kármán constant and φ(ζ) is the stability function for a passive scalar476

in the surface layer (ζ = z/L). This model extends the Monin-Obukhov similarity the-477

ory from the surface layer (Freire et al., 2016) to the entire ABL, through the use of a478

transitioning constant a = 1/(1− 0.1zi/zi)
2.479

Figure 9 shows the comparison between N18’s model and the LES results for the480

same cases evaluated with the Markov chain random walk model. Although no explicit481
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Figure 9. The temporal evolution of the vertical aerosol particle concentration profiles

in the both neutral and unstable conditions for LES (dots) and 1-D analytical model pro-

posed by Nissanka et al. (2018) (dashed lines) for particles with diameter d = 2, 10, 50µm for

T/Tneut = 0.25 and T/Teddy = 1.56 observation windows. The model time step is T = 500 s

for the neutral condition, and T = 2000 s for the unstable condition. Colors correspond to

t/Tneut = 1.0 and t/Teddy = 1.56 (black), t/Tneut = 2.0 and t/Teddy = 3.13 (blue), t/Tneut = 3.0

and t/Teddy = 4.69 (green), t/Tneut = 4.0 and t/Teddy = 6.25 (red).

time is shown in equation 8, the analytical solution varies in time because the reference482

concentration Cr (taken here as the surface concentration) changes in time: the theory483

assumes that the vertical profile is self-similar in its relationship between flux, surface484

concentration, and C(z).485

In both neutral and unstable cases, the analytical model matches the simulation486

at the surface layer for particles with diameters of 2 and 10µm. For the 50µm case, phys-487

ical processes that are not taken into account by the analytical model (such as the trajectory-488

crossing effect) start to be relevant, and the model is not expected to work (Csanady,489

1963; Freire et al., 2016). In addition, the behavior at the upper part of the atmosphere490

is likely affected by the strong inversion and the accumulation of particles, which is also491

not considered in the theoretical model. Finally, as noted by N18, the well-mixed behav-492

ior of the unstable cases cannot be well represented by an eddy-diffusivity approach (Stull,493

1988; Wyngaard, 2010).494

The random walk model is not constrained by the same assumptions, and can eas-495

ily adapt to different conditions, as long as they are embedded in the estimation of the496

transition matrix M and an accurate representation of ψI . The critical case of well-mixed497

conditions is a clear example of this flexibility. The analytical model, on the other hand,498

is currently limited by the gradient diffusion approach to the turbulent transport param-499

eterization. In addition, it does not consider the transient period of which aerosol par-500

ticle growth in the MABL, as explained in N18. Thus, this new approach has the po-501

tential to go beyond the limitations of the 1-D analytical model, making it worth the pur-502

suit of parameterizations for M and ψI .503
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4.3 The use of 1-D analytical models as ψI for the neutral boundary layer504

In the previous analyses, we used LES to parameterize the Markov chain random
walk model inputs, M and ψI . Here, we demonstrate that a theoretically-derived sur-
face layer profile can instead be used for the injection initial condition ψI in the neutral
ABL case. We use the model provided by Kind (1992) (hereafter referred to as K92),
which corresponds to the mean concentration profile in the atmospheric surface layer (ASL)
under steady-state and horizontally-homogeneous conditions:

C

Cr
=

(
Φ

Crws
+ 1

)(
z

zr

)−γ
−
(

Φ

Crws

)
, (10)

where C is again the horizontal mean concentration, Cr is the reference concentration505

at the reference height zr, Φ is the net concentration flux at the surface, and γ = τpg/κu∗506

is the Rouse number (Rouse, 1937).507

As shown in Figure 2, nearly all of the concentration remains within the surface508

layer (z ≤ 0.1zi) for a time interval of T/Tneut = 0.25, a situation that allows the ap-509

plication of an ASL model such as K92’s equation as an initial condition to the Markov510

chain random walk model. In this calculation, performed for T/Tneut = 0.25, the tran-511

sition matrix used is the same as in previous analysis for the neutral ABL (section 3.1.2).512
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Figure 10. The temporal evolution of the vertical aerosol particle concentration profiles in the

neutral case for the LES (dots), and using ψI based on Kind (1992) with the random walk model

(dashed lines) for particles with diameter d = 2, 10, 50µm. Colors correspond to t/Tneut = 1

(black), 2 (blue), 3 (green), and 4 (red).

513

In Figure 10, concentration profiles calculated from the LES are compared to the514

Markov chain random walk model with an injection initial condition retrieved by K92’s515

analytical model. The use of the theoretical profile as ψI in the neutral boundary layer516

continues to provide accurate predictions when comparing to the LES, especially for the517

2µm and 10µm particle sizes. There exists a significant loss in predictive accuracy us-518

ing the analytical model for 50µm particles where the ASL model struggles, resulting519

in overprediction at nearly all heights.520

Thus, it is clearly important for the initial injection condition ψI to be represen-521

tative of the distribution of continually-sourced aerosol particles. If ψI does not capture522

the general particle transport features of the boundary layer, the predictions of the ran-523

dom walk model will have large errors even if M is perfect. As shown in Figure 9, in the524

unstable case the theoretical profiles have low accuracy above the surface layer, causing525

corresponding large errors in the random walk results if used as ψI (not shown). Addi-526

tionally, the use of T/Teddy = 0.39 causes an even larger mismatch for the 1-D analyt-527

ical model prediction for the unstable case. As mentioned in N18, the initial transient528
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period is not taken into consideration, it will not accurately predict the aerosol parti-529

cle growth in the boundary layer until these deficiencies are mitigated.530

4.4 Upscaled model sensitivity and limitations531

In this study, T/Tneut = 0.25 for the neutral case and two model time steps for532

the unstable case, T/Teddy = 0.39 and T/Teddy = 1.56, were demonstrated to accu-533

rately predict transport behavior. When T → 0, particles do not have sufficient time534

for transport to other atmospheric height classes, meaning the transition matrix would535

have values of 1 along the diagonal and zero otherwise; clearly such a large positional536

correlation structure would not accurately predict particle transport. When T becomes537

much greater than the largest characteristic timescales of the flow, particle transport over538

successive steps becomes increasingly decorrelated (as observed in the unstable case with539

T/Teddy = 1.56), and assuming independence over successive model steps becomes more540

valid. This removes the necessity of the Markov chain, represented by the transition ma-541

trix M . As T → ∞, all particles hit the ocean surface and are removed from the sys-542

tem, while being replaced by particles in the same location according to ψI .543

The sensitivity in predicted concentration profiles based on changes to the tran-544

sition matrix remains an open question, and in this section our goal is to test this sen-545

sitivity in order to ensure that the model performance is robust. Additionally, this in-546

formation can provide insight for a baseline parameterization for M . To do this, we run547

the random walk model with transition matrices whose elements have been artificially548

manipulated.549

For the neutral case in Section 3.1.2, the transition matrix exhibited strong diag-550

onal trending. Therefore, we adjust the probability that a particle remains in its current551

height class (i.e. the diagonal elements of the transition matrix) to 0, 50, and 150% of552

its actual value. Once the diagonal elements are adjusted, each row is normalized so its553

sum is unity.554

In Figure 11, the temporal evolution of the concentration profiles is displayed for555

the random walk model whose transition matrices have been artificially adjusted. The556

ψI profile remains the same as the analysis done in Section 3.1.2. For all adjustments557

in the transition bins, the 10µm diameter vertical profiles maintain an accurate predic-558

tion compared to the LES simulations. With no likelihood that a particle stays at the559

same height (left figures), and also for that with a higher probability (right figures), the560

random walk model loses little accuracy in the prediction of concentration profiles. Slight561

overprediction occurs at later time-steps in regions of large concentration (i.e. the sur-562

face layer), whereas in regions of lower concentrations (i.e. the inversion layer), the model563

underpredicts. Therefore, the Markov chain random walk model demonstrates a level564

of robustness based on the biased training of the transition matrix.565

For testing the sensitivity in the unstable stratification case, we perform a differ-566

ent manipulation of the transition matrix. Knowing that the transition matrix is decor-567

related when T/Teddy = 1.56, (except at the inversion and surface deposition shown568

in Figure 7), we create a uniform transition matrix (top row of Fig. 12).569

In Figure 12, the temporal evolution of the concentration profiles are presented for570

the modified transition matrices in the unstable case. Removal of the unstable correla-571

tion structure of the transition matrix affects the predictions at the top of the MABL,572

as concentrations become slightly over predicted. However, the profiles, as a whole, main-573

tain accurate predictions in time, and again the random walk model appears robust to574

modifications of the transition matrix. As a result, a baseline for the parameterization575

of M can be used as a uniform matrix for the unstable case, with only a slight loss in576

accuracy at the inversion layer.577
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Figure 11. The temporal evolution of the vertical aerosol particle concentration profiles in

neutral conditions for d = 10µm. Associated transition matrices are shown above for adjusted

diagonal probabilities of 0%, 50%, and 150%. The incremental t/Teddy are the same as in Figure

3.

5 Conclusions578

In the present study we model the evolution of vertical aerosol particle concentra-579

tions for unstable and neutral boundary layer conditions over a range of particle sizes.580

To do so we introduce an upscaled random walk model, and LES is used as a testbed581

for comparison and informing upscaled model parameters. In order to accurately pre-582

dict transport behavior, the boundary conditions and the physical processes that gov-583

ern transport must be effectively upscaled. All of the physical processes related to ver-584

tical transport of aerosols considered by the LES are captured in a Markov chain ran-585

dom walk model. The benefit of this approach is that once parameterized, the proposed586

model is orders of magnitude more computationally efficient compared with LES mod-587

eling. The proposed Markov chain random walk model for one model time step T has588

a total run time of O(0.01) cpu hours, while an LES runtime consists of roughly O(10, 000)589

cpu hours.590

In the proposed framework, particles vertically transition through the MABL by591

random walk, which is enforced with a position correlation transition matrix. Hence, par-592

ticle trajectories are modeled as a temporal Markov process. We test the upscaled model593

robustness by predicting the evolution of vertical concentration profiles for varying sta-594

bility conditions and particle diameters. For all cases, the upscaled model faithfully rep-595

resents transport behavior observed in the high fidelity LES. In comparison, 1-D ana-596

lytical models cannot take into account the transient growth of the MABL’s growth of597

aerosol particles, and also cannot obtain near-vertical concentrations in an unstable strat-598

ification environment. We demonstrate that for the neutral case, 1-D analytical mod-599

els can be used to parameterize the injection initial condition ψI of our proposed upscaled600

model without degrading prediction accuracy. Finally the model, namely the transition601

matrix, is manipulated to explore it’s sensitivity and limitations. This information pro-602

vides a basis for parameterization for M .603
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Figure 12. The temporal evolution of the vertical aerosol particle concentration profiles in

an unstable stratification for a uniform transition matrix. The times t/Teddy are the same as in

Figure 7.

An outstanding challenge to the proposed modeling framework is the parameter-604

ization of the transition matrix without using LES. Currently, a major problem is that605

in order to predict transport behavior, transport first must be simulated. This has been606

a common problem in the subsurface hydrology community. However, recent advances607

have been made in analytic Markov models (Kang et al., 2015; Morales et al., 2017), in-608

verse modeling approaches (Sherman et al., 2017, 2018), and assuming that correlation609

structures are governed by well known stochastic processes, such as Bernoulli or Ornstein-610

Uhlenbeck (Dentz et al., 2016; Hyman et al., 2019; Sherman et al., 2020). We envision611

that with some future effort similar methodologies may be applied in the context of the612

proposed MABL model and that our work here lays the ground motivating such advances.613

Furthermore, the designation of T in the training of the transition matrix is still614

somewhat arbitrary, only as long as temporal stationarity is satisfied. In this study, the615

normalized random walk time step T/Tneut = 0.25 (T = 500s) for the neutral condi-616

tion showed strong particle transport correlation, a feature well captured by the tran-617

sition matrix. For the unstable boundary layer, the use of T/Teddy = 0.39 showed weaker618

correlation, attributed by the large-scale convective structures of turbulence. Increas-619

ing the normalized model time step to T/Teddy = 1.56 shows that the transition ma-620

trix is effectively decorrelated past the time-scale of one large scale eddy life cycle, re-621

laxing the necessity of the Markov chain to the random walk model for model predic-622

tion. Once specific T are addressed, the upscaled Markov random walk may serve as a623

computationally efficient subgrid model that can be implemented in current boundary624

layer representation in global aerosol models.625
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