Stable oxygen isotope composition is biased by shell calcification
intensity in planktonic Foraminifera

Manuel F. G. Weinkauf!, Jeroen Groeneveld?, Joanna Waniek?®, Torsten Vennemann®, and
Martini Rossanal

!University of Geneva

2Helmholtz-Center for Polar and Marine Sciences
3Leibniz Institute for Baltic Sea Research Warnemiinde
4University of Lausanne

November 28, 2022

Abstract

Planktonic Foraminifera are widely used for environmental reconstructions through measurements of their shell’s geochemical
characteristics, including its stable oxygen and carbon isotope composition. Using these parameters as unbiased proxies requires
a firm knowledge of all potential confounding factors influencing foraminiferal shell geochemistry. One such parameter is the
shell calcification intensity (shell weight normalized for shell size) that may influence the shell 3180 value either bioenergeti-
cally (by reducing energy available and required for equilibrium isotope fractionation during faster calcification) or kinetically
(by influencing calcification depth through the shell’s density contrast with seawater). Specimens from the Globigerinoides
ruber/elongatus compound from a sediment trap in the North Atlantic have been used to quantify the influence of shell cal-
cification intensity on shell 8180 values. Shell calcification intensity was found to have a significant effect on the shell stable
oxygen isotope composition in all species. Through model fitting, it is suggested that the effect size may be in a range of 1 to
2on species, depth migration, and local oceanographic conditions). We show that the confounding effect of shell calcification
intensity on stable oxygen isotope composition can be of importance, depending on the anticipated precision of the derived

reconstructions. A framework is provided to quantify this effect in future studies.



ESS@®

Earth and Space Science Open Archive

Stable oxygen isotope composition is biased by shell
calcification intensity in planktonic Foraminifera

Manuel F. G. Weinkauf'® Jeroen Groeneveld?, Joanna J. Waniek?, Torsten Vennemann* &

Rossana Martini'

"Department of Earth Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland
2Alfred Wegener Institute, Helmholtz-Center for Polar and Marine Sciences, Telegrafenberg A45, 14473 Potsdam, Germany
3Marine Chemistry Section, Leibniz Institute for Baltic Sea Research Warnemiinde, SeestraRe 15, 18199 Rostock, Germany
“Faculty of Geosciences and Environment, University of Lausanne, Batiment Geopolis, 1015 Lausanne, Switzerland
@Current address: Institute of Geology and Palaeontology, Charles University, Albertov 2038/6, 128 43 Prague, Czech Republic

Mar 31°¢, 2020

ABSTRACT

Planktonic Foraminifera are widely used for environmental recon-
structions through measurements of their shell's geochemical charac-
teristics, including its stable oxygen and carbon isotope composition.
Using these parameters as unbiased proxies requires a firm knowl-
edge of all potential confounding factors influencing foraminiferal
shell geochemistry. One such parameter is the shell calcification
intensity (shell weight normalized for shell size) that may influence
the shell 6'°0 value either bioenergetically (by reducing energy
available and required for equilibrium isotope fractionation during
faster calcification) or kinetically (by influencing calcification depth
through the shell's density contrast with seawater). Specimens from

the Globigerinoides ruber/elongatus compound from a sediment trap
in the North Atlantic have been used to quantify the influence of
shell calcification intensity on shell 3'0 values. Shell calcification
intensity was found to have a significant effect on the shell stable
oxygen isotope composition in all species. Through model fitting,
it is suggested that the effect size may be in a range of 1 to 2%o
(depending on species, depth migration, and local oceanographic
conditions). We show that the confounding effect of shell calcification
intensity on stable oxygen isotope composition can be of importance,
depending on the anticipated precision of the derived reconstructions.
A framework is provided to quantify this effect in future studies.

INTRODUCTION

Planktonic Foraminifera are an abundant
protist group in the world's oceans and
their calcitic shells are commonly pre-
served in the sediment (Schiebel, 2002;
Schiebel & Hemleben, 2017). For this rea-
son, planktonic foraminiferal shells are
abundantly used for paleoenvironmental
reconstructions and biomonitoring pur-
poses (e.qg., Consolaro et al., 2018; Gor-
barenko & Southon, 2000; Kucera, 2007;
Weinkauf et al, 2016). A major applica-
tion of planktonic foraminiferal shells is
the use of their geochemical compositions
for reconstructions of past environmental
conditions (Lea, 2002; Ravelo & Hillaire-
Marcel, 2007; Rohling & Cooke, 2002;

Rosenthal, 2007), which also provides the
basis for climate models (e.g., Ezat et al,
2016: G. Ganssen & Troelstra, 1987; G. M.
Ganssen et al, 2011; Groeneveld et al,
2006: Hemleben et al, 1996; Henehan
et al,, 2016; Ivanova, 1985; Milker et al.,
2013; Steph et al, 2009).

The stable isotope composition of
planktonic foraminiferal shells is usually
not in equilibrium with seawater. For
instance, for the shell's stable oxygen
isotope composition, a vital effect often
results in a different isotopic composition
compared to a composition in equilib-
rium with the ambient seawater (com-
pare Spero et al, 1991, Zeebe et al,
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2008). For different species, the size
of this vital effect varies, necessitating
species-specific correction functions to al-
low reliable paleoenvironmental interpre-
tations (Carter et al, 2017; Spero, 1998;
Steinke et al, 2005; Wit et al., 2013). For
the application of stable oxygen isotope
compositions of planktonic foraminiferal
shells, for instance for paleoclimate (e.g.,
(. Ganssen & Troelstra, 1987; Milker et
al, 2013) and depth habitat reconstruc-
tions (e.g., Mortyn & Charles, 2003; van
Eijden, 1995), it is necessary to under-
stand further factors that may bias the
values measured within the shells. This
is especially important when applying
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single-shell geochemical analyses, as the
geochemical variation between individ-
ual shells precipitated under comparable
conditions is mostly larger than expected
and beyond the analytical error of the
measurement (Groeneveld et al, 2019;
Killingley et al,, 1981; Schiffelbein & Hills,
1984). For instance, the seasonality of
species may play an important role in
the observed stable isotope composition
of a temporally integrated sediment sam-
ple (G. M. Ganssen et al, 2011; King &
Howard, 2005), as does the intermixing
of sedimented shells due to bioturbation
(Billups & Spero, 1996; Stott & Tang,
1996). The interpretation of geochemical
compositions of shells may even be fur-
ther complicated by intra-shell variations
of stable isotope compositions (Vetter et
al, 2013) and ontogenetic changes in
shell geochemistry (Rohling et al,, 2004;
Shackleton et al, 1985). While progress
is being made in the understanding of
the individual variation of the geochemi-
cal signal in planktonic Foraminifera, a
larger part of the observable variation
in single-shell analyses is still unac-
counted for (compare Groeneveld et al,
2019, and citations therein). Incidentally,
there have been few studies so far investi-
gating to what degree the stable oxygen
isotope composition of individual plank-
tonic foraminiferal shells is influenced
by their shell calcification intensity (the
amount of calcite in the shell, normal-
ized for shell size; Billups & Spero, 1995;
Ezard et al, 2015).

Shell calcification intensity varies
widely across planktonic foraminiferal
species, and can in its own right be used
as an environmental proxy (compare Mar-
shall et al,, 2013; Weinkauf et al,, 2016).
In this regard, shell calcification inten-
sity has been mostly used as a proxy
for dissolution (Broecker & Clark, 2001;
Lohmann, 1995; Schiebel et al, 2007)
and carbonate saturation of the seawater
(Bijma et al., 2002; Bijma et al, 1999;
Davis et al, 2019; de Moel et al., 2009;
Osborne et al, 2016; Spero et al, 1997;
Weinkauf et al., 2013). However, other
studies could show that the picture is
more complicated, and shell calcification
intensity is indeed influenced by a va-
riety of environmental factors (Aldridge
et al,, 2012; Marshall et al., 2013; Mohan

et al, 2015; Weinkauf et al,, 2016), which
may also have an influence on the shell's
geochemical composition (e.g., water tem-
perature, salinity).

The mechanisms of shell calcification
in Foraminifera are still a matter of
discussion, with seawater vacuolization,
transmembrane ion transport, calcifica-
tion via organic matrices, and active pH
manipulation all touted as possibly valid
calcification models (de Nooijer et al,
2014; de Nooijer et al., 2009; Ohno et
al, 2016; Toyofuku et al,, 2017). Since
shell calcification in Foraminifera is so
complicated and hardly understood, only
comparatively little work has been per-
formed so far to investigate its influence
on the shell geochemical composition
(e.g., Raitzsch et al, 2010; Steinhardt
et al., 2015; van Dijk et al, 2017). Never-
theless, it is very feasible that calcifica-
tion intensity of the shell can affect the
foraminiferal shell's geochemical composi-
tion of the Foraminifera via two potential
pathwauys.

The first possible influence stems from
the calcification process itself. Normally,
organisms preferentially use lighter iso-
topes of elements for inclusion in their or-
ganic and inorganic structural parts when
compared to inorganic calcite (De La
Rocha, 2003; Gabitov et al,, 2012; Kendall
& Caldwell, 1998). This is because inclu-
sion of lighter isotopes is energetically
favored, since bonds are weaker with
the lighter isotopes (Kendall & Caldwell,
1998). In this regard, the calcification
process involves an active selection of
isotopes from the seawater, which is nor-
mally considered to be the so-called vital
effect (fractionation). This process itself is
time- and energy consuming, especially
in those calcification models that require
active membrane transport of components
at the time of calcification (de Nooijer
et al, 2014; Toyofuku et al, 2017). A
higher calcification intensity in the shell
can either result from a faster calcifica-
tion rate for the same amount of time,
or calcification at a constant rate for a
longer time-interval. Under the assump-
tion that a higher calcification intensity
in the adult foraminiferal shell was de-
rived from a faster instead of longer cal-
cification duration during chamber for-
mation (Hemleben et al, 1987; Spero,
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1988; Spero et al,, 1991), we may assume
that the faster calcification rate must in-
crease the size of the vital effect. This
scenario leaves the foraminifer with less
time to perform the calcification process,
necessitating a more frequent inclusion
of the much more abundant lighter iso-
tope 1%0 and thus lower 6'%0 values of
the shell when the shell's calcification
intensity increases (Norris, 1998). Such
a process has for instance been observed
in corals in relation to their growth rate,
where faster growing parts of the skele-
tal structure were enriched in '°0 (Mc-
Connaughey, 1989).

The second influence stems from the
effect of a heavier shell on the depth habi-
tat of the Foraminifera. While planktonic
foraminiferal species in general prefer
a certain, species-specific habitat (Bé,
1977; Bé & Tolderlund, 1971; Numberger
et al,, 2009; Schiebel & Hemleben, 2017;
Weiner et al, 2012), this depth habitat
has been shown to be rather wide and
reasonably flexible (compare Meilland et
al, 2019; Rebotim et al, 2017). More-
over, there are signs for an ontogenetic
change of the depth habitat in plank-
tonic Foraminifera (Eggins et al, 2003;
Schiebel & Hemleben, 2017; van Eijden,
1995). It can be reasonably assumed that
a planktonic foraminifer with a higher
calcification intensity lives in a deeper
habitat than a foraminifer of a similar
species with a lighter calcified shell sim-
ply due to gravitational pull and reduced
buoyancy (Haenel, 1987; Weinkauf et al.,
in press; Zarkogiannis et al, 2019). Since
the stable isotope composition of the sea-
water varies as a function of density,
which in turn is largely controlled by
the salinity and temperature of water
through changes in evaporation and/or
freshwater contributions, this could influ-
ence the stable isotope composition of all
subsequently built chambers in correla-
tion with the shell calcification intensity.
If higher density shells, hence, find them-
selves at larger depths compared to lower
density shells, this could influence the
5'80 values of planktonic foraminiferal
shells. For example, foraminiferal shells
with a higher shell calcification intensity
would have formed within higher-salinity
or lower-temperature waters at larger
water depths and, thus, show increased
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680 values.

In this study, we use sediment trap
material from the subtropical North At-
lantic to study the correlation between
shell calcification intensity and the &80

MATERIAL AND METHODS

SAMPLING MATERIAL

We used material from the 2000 m deep
sediment trap Kiel 276-25 in the North At-
lantic (33° N, 22°W; Fig. 1), spanning the
time between May 2005 and April 2006
with a sampling resolution of 1-2 months
(Table S1). The >63 pm fraction of the
dried and de-poisoned sediment trap
samples were desalted using MilliQ wa-
ter and then dried overnight at 50 °C. De-
salted samples were then split into the
63-150 ym and >150 pm size fraction us-
ing a Retsch AS 200 sieve tower (10 min.
at intensity 40). Only the >150 ym size
fraction was used for further analyses to
avoid ontogenetic effects on calcification
intensity (Peeters et al., 1999). All plank-
tonic Foraminifera from all samples were
separated from the residue. Planktonic
Foraminifera for shell calcification analy-
ses were picked from representative sam-
ples of those concentrates, split with an
ASC Scientific MS-1 microsplitter, such
that approximately 100 specimens per
sample were available for analyses. In
samples with fewer specimens, 100 % of
the sample was used (Table S2).

All specimens for analyses were
cleaned with 2% ethanol and brushes
and then rinsed in distilled water and on
wet filter paper. They were then trans-
ferred into 10-hole cardboard slides and
left to dry at room temperature for at
least 24 hours.

Choice of species

The species were chosen to fulfill certain
criteria. (1) They had to have a relatively
restrictive depth habitat, so that our en-
vironmental reconstructions were effec-
tive in eliminating confounding factors,
but still large enough to observe habitat
depth changes. (2) They needed to be
abundant enough for a reliable analysis.
(3) They had to be species which are

values of individual shells of planktonic
Foraminifera, to quantify the influence
and deduce the mechanisms leading to
potential correlations with external crys-
tallization factors. Investigating such con-
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founding factors is of great importance
to unambiguously use foraminiferal shell
geochemical data as environmental prox-
les.

-20°

0°

40°

20°

Fig. 1:

Sampling area including position of the mooring Kiel 276 and the catchment

area of the 2000 m-sediment trap (J. J. Waniek et al, 2005). The Azores Front
separates the North Atlantic temperate water from the North Atlantic subtropical
gyre (NAST). Bathymetry from ETOPO1 (Amante & Eakins, 2009), temperature
isolines from the “averaged decades” annual dataset of the World Ocean Atlas 2018

(Locarnint et al., 2018).

often used in geochemical analyses to
maximize the practical value of the study
and stay comparable with the literature.

We thus selected the three species
Globigerinoides ruber (pink), Globigeri-
noides ruber (white), and Globigerino-
ides elongatus (Fig. 2). They all have
photosymbionts (Schiebel & Hemleben,
2017) and are, thus, restricted to the
photic zone, as is also confirmed by in
situ studies (Meilland et al., 2019; Rebo-
tim et al, 2017; Steinhardt et al,, 2015).
They are extensively used in geochemical
analyses and especially G. ruber (white)

3

and G. elongatus were studied in detail
concerning their differences in geochemi-
cal shell composition (Carter et al, 2017;
Kawahata, 2005; Numberger et al,, 2009;
Steinke et al, 2005; Wang, 2000). We
here follow the suggestions by Aurahs et
al. (2011) to distinguish G. ruber (white)
and G. elongatus: Globigerinoides elon-
gatus has a flat last and penultimate
chamber and especially the last cham-
ber is very asymmetrical, while these
chambers are inflated and symmetrical
in G. ruber (white). The separation into
G. ruber (white) and G. elongatus was
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G. ruber (pink)

G. ruber (white)
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G. elongatus

Fig. 2: Depiction of the three planktonic foraminiferal species used in this study (upper row: scanning electron micrographs,
lower row: light microscopy images of the same specimens). Globigerinoides ruber (pink) is characterized by a reddish
color of the chambers (often missing in the last and sometimes the penultimate chamber). Globigerinoides ruber (white) and
Globigerinoides elongatus can be distinguished by the former having round and inflated chambers while in the latter the final
and penultimate chamber are distinctly flattened and asymmetrical (Aurahs et al., 2011).

entirely done by the same scientists (prin-
cipal author) to avoid any influence of
competing species concepts.

Calcification intensity analysis

All specimens where weighed individually
on a Mettler Toledo UMX 2 microbalance
(nominal precision 0.1 pg). The empty
weighing boats (Elemental Microanaly-
sis D5007) were first weighed ten times
to reliably determine their weight. Af-
terwards, individual Foraminifera were
transferred into the weighing boats and
weighed four times each, and the differ-
ence between the empty and filled weigh-
ing boat was noted as the weight (W) of
the foraminifer. The replication of weigh-
ing per individual allows to determine

the measurement error of the weighing
procedure.

The same specimens were then pho-
tographed in apertural standard view at
27.5x magnification on a Leica M420
light microscope using a Leica DFC420
camera. The cross-sectional area (A) of
each foraminifer was extracted in FlJI
(Schindelin et al., 2012) running Image])
v. 1.520 (Schneider et al, 2012), and the
calcification intensity ps sensu Marshall
et al. (2013) was calculated as py = %
(compare Fig. S1).

Stable isotope analyses

Approximately 50 specimens per species
for stable isotope analysis were selected
using a stratified random sampling ap-

4

proach. For this, the sample was di-
vided into 4 strata based on the range
of observed specimen calcification inten-
sity, and an equal number of specimens
was randomly selected from each stra-
tum. Thus, it could be made sure that
all pa classes were equally represented
in the analyses. All geochemical mea-
surements were performed at the Faculty
of Geosciences and Environment of the
University of Lausanne.

Selected specimens were individually
cleaned via sonication (3 min.) in Krantz
cells filled with tap water to remove any
potential contaminants from the handling
during the calcification intensity analy-
sis. Specimens were then transferred into
glass vials, closed with screw-on septum
caps, and then analyzed for their o3¢
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and 6'30 values on a Gas Bench Il He-
carrier gas system connected to a Ther-
moFisher DeltaPlus XL mass spectrome-
ter (method by Spotl & Vennemann, 2003,
adapted for small vials of 4ml volume:
acidifying with four drops of orthophos-
phoric acid of a specific gravity of 1.90,
and measuring only four instead of ten
peaks for each sample). Carrara marble
was used as a standard and was mea-
sured alongside the foraminiferal shells
every six samples and additionally two
times at the start and at the end of each
sequence. Standards and samples had
the same weights and, hence, yields for
the carbonate. All values are expressed
in the familiar 0-notation and normalized
against NBS-19 on the VPDB-scale. Re-
peated measurements for the standards
after a size correction are within 0.1 %o
for both oxygen and carbon isotope com-
postitions.

Environmental setting

The sediment trap is located close to
the Azores Front, which separates the
temperate North Atlantic water from the
North Atlantic subtropical gyre and is in-
fluenced by both water regimes (Figs. 1
and 3; Frindt & Waniek, 2012). Envi-
ronmental data were calculated as aver-
ages for the respective sample duration
and the estimated catchment area of the
sediment trap (based on J. Waniek et
al, 2000; J. J. Waniek et al, 2005) (Ta-
ble S1). Sea surface temperature (SST) is
based on the NOAA Optimum Interpola-
tion (Ol) Sea Surface Temperature (SST)
V2 provided by the NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA (https://

RESULTS

We analyzed the shell calcification inten-
sity and shell geochemical composition
of 136 specimens of the Globigerinoides
ruber/elongatus compound from four sam-
ples covering an entire year from sedi-
ment trap Kiel 276-25 (Fig. S2, Table S1).
In total, 42 specimens of Globigerinoides
ruber (pink), 42 specimens of Globigeri-
noides ruber (white), and 52 specimens of
Globigerinoides elongatus were success-
fully analyzed. The results have been

www.esrl.noaa.gov/psd/; Reynolds et al,
2002). Sea surface salinity (SSS) was cal-
culated from the EN4 quality controlled
ocean data (v. EN4.2.0; Good et al., 2013).
The carbonate system of the seawater
was estimated using the MS Excel pro-
gram CO2Sys v. 2.1 (Lewis et al., 1998)
with K1 and K2 constants from Mehrbach
et al. (1973) (refit by Dickson & Millero,
1987) and KSO4 constant after Dickson
(1990).

DATA ANALYSIS

All data analyses were performed in R
v. 362 (R Core Team, 2019) and in-
terpreted following Murthaugh (2014).
Differences between parameters across
species were tested using pairwise
Mann-Whitney U tests (Mann & Whit-
ney, 1947) with p-values corrected for the
false discovery rate after Benjamini and
Yekutieli (2001). The data for regression
analyses were cleaned from potential
outliers using bagplots of 5% against
calcification intensity (Rousseeuw et al,
1999) as implemented in the R-package
“aplpack” v. 1.3.3. Problems with multi-
collinearity in the data were eliminated
following suggestions by Dormann et al.
(2013): (1) The presence of a consider-
able degree of multicollinearity in the
data was tested based on the condi-
tion number (Dormann et al,, 2013). (2)
Multicollinearity-clusters in the predic-
tor variables were identified using prin-
cipal component analysis (PCA; Booth et
al, 1994) and cluster analysis on Hoeff-
ding's (1948) D-similarity index (Kauff-
mann & Rousseeuw, 2009). (3) The rank-
ing of collinear parameters was estab-

summarized in Fig. 4 and Table S3.

In terms of raw shell weight, we note
that specimens of G. ruber (pink) are
on average more than twice as heawy
as specimens of G. ruber (white) and
more than 25% heavier than G. elonga-
tus specimens. The difference between
all species is moderately significant at
p < 0.02, indicating a general inherent
difference in net shell weight. A differ-
ent picture emerges when examining the

5

Oxygen isotopes of foraminiferal shells

lished based on the deviance in bivariate
regressions with 0'°0 values. (4) Se-
quential regression (Graham, 2003) was
used to calculate the residuals of lower-
ranked parameters and we used these as
new parameters for the ensuing analy-
ses (Dormann et al, 2013). We further
applied general additive models (Fried-
man & Stuetzle, 1981) to identify all
factors influencing the 680 values of
the foraminiferal shells in the R-package
‘gam” v. 1.10.1, and tested the signifi-
cance of the influence of shell calcifica-
tion intensity via analysis of variances
(ANOVA; Fisher, 1919) of the additive
model against a null-model without cal-
cification intensity. When the shell cal-
cification intensity had a significant ef-
fect when accounting for all other param-
eters, linear and non-linear regression
was used to fit different models to the
data. Because most of the equations
of the fitted models can only describe
relationships in the first quadrant (to
avoid e.g., division by zero), 10%. had
been added to all 6'°0 values to trans-
form them into positive values for this
step. The corrected Akaike information
criterion (AIC; Akaike, 1974) in combi-
nation with Akaike weights (Wagenmak-
ers & Farrell, 2004) was used to deter-
mine the best fitting model from a set of
mechanistically feasible candidate mod-
els and estimate the effect size. The
relationship between 680 and 6'°C was
investigated using a Deming regression
(Deming, 1943) that took the associated
measurement error in both values into
account, using the R-package “deming”
v. 14.

shell calcification intensities. Globigeri-
noides elongatus is most heavily calcified,
followed by G. ruber (pink) and G. ru-
ber (white). However, these differences
are all very small and insignificant at
p > 0.3, implying a comparable size—
weight ratio between the species, which
suits well with the fact that they are
closely related and inhabit roughly the
same portion of the water column, which
requires a comparable density contrast
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Fig. 3: Oceanography of the sampling area during summer and winter. Maps showing sea surface temperature and salinity as
average of the upper 50 m of the water column. Depth profiles showing average values for the catchment area of the trap
(indicated by the dotted rectangle in the maps). Temperature and salinity data from the 2005-2017 “decadal period” and
oxygen as “average over all decades” of the World Ocean Atlas 2018 (Garcia et al., 2018; Locarnint et al, 2018; Zweng et al,

2018).

with the surrounding seawater.

For the stable isotope composition,
we also see considerable differences be-
tween the species. The 63C values of
G. ruber (pink) are positive, while they
are negative for the other species, with
G. ruber (white) having the lowest val-
ues. The difference in average 63C val-
ues is moderately significant for all pair-
wise comparisons (p < 0.02). For the
stable oxygen isotopes, we see another
signal. Values are highest for C. elonga-
tus and lowest for G. ruber (pink), but
the differences between neither G. ruber
(pink) and G. ruber (white) (p = 0.131)
nor G. ruber (white) and G. elongatus
(p = 1.000) are significant. Only be-

tween G. elongatus and G. ruber (pink)
do differences in 6'°0 values of the shell
accumulate to a convincingly significant
signal (p = 0.002).

We applied general additive models to
evaluate the influence of shell calcifica-
tion intensity on the stable oxygen iso-
tope composition of shells within the Glo-
bigerinoides ruber/elongatus compound.
To disentangle this influence from the ef-
fects of water temperature, salinity, and
symbiont-photosynthetic activity (approx-
imated by shell 3"°C values), which all
influence the &80 values of foraminiferal
shells, we used the model described in
Eq. (1).

5180 =0(T)+ ¢(S) + ¢ (ap) +

O(pa) + € 8

with T as sea surface temperature, S as
sea surface salinity, ap as photosynthetic
activity, pa as shell calcification inten-
sity, € as error term, and 14 indicating a
LOESS smooth.

To facilitate the analysis of the im-
pact of environmental factors and shell
calcification on the isotopic composition
of the foraminiferal shells, it was neces-
sary to establish the multicollinearity be-
tween the different parameters included
in Eq. (1) in order to remove confounding
factors from the analyses. We tested the
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Fig. 4: Comparison of shell weight (a), shell calcification intensity (b), and shell §'3C (c) and §'®0 (d) values of shells of
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presence of multicollinearity between any
of the parameters by calculating the con-
dition number of the correlation matrix as
k = 11.11, far in excess of the suggested
threshold of k > 5 that would imply the
presence of collinearity. An ensuing PCA,
where elements which show a loading
L > 0.3 on the first principal compo-
nent (PC) are supposed to be collinear,
suggests a noteworthy collinearity be-
tween temperature (Lpc1 = 0.68), salin-
ity (Lpc1 = 0.65), and photosynthetic
activity (Lpc1 = 0.33). A cluster analy-
sis (complete linkage) on the Hoeffding
D-similarity index supports this collinear-

ity, with only shell calcification intensity
showing a similarity below 0 with the
other parameters (Fig. S3).

To eliminate the collinearity between
temperature, salinity, and photosynthetic
activity before calculation of the general
additive models, we used general linear
regression to regress collinear parame-
ters against 680 as dependent variable.
Through the deviance d of these regres-
sions, we could establish the relative im-
portance of the parameters on the 620 of
the foraminiferal shells as (1) temperature
(d = 45.30), (2) photosynthetic activity
(d = 42.81), and (3) salinity (d = 42.35).
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Through sequential regression using gen-
eral linear models, we then calculated
the residuals for photosynthetic activity
and salinity for use in the additive mod-
els instead of the raw values of these
parameters. Based on these corrections
for multicollinearity, the additive mod-
els we calculated (based on Eq. 1) are
described in Eq. (2).

5180 =€ (T) + € (er4a, () +

0 (2)
(e (ap)) + € (pa) + €

with e as residuals and other parameters
as for Eq. (1).
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Results of the additive models accord-
ing to Eq. (2) are summarized in Table 1.
For G. ruber (pink), no outliers were de-
tected, but we encountered the problem
that because one sample did not con-
tain any specimens, the data set was not
suitable for an additive model approach
because it had only three distinct temper-
ature and salinity values. We thus limited
the analyses to the photosynthetic activ-
ity and calcification intensity parameters
in this species. The model suggests an
influence of shell calcification intensity
on shell 60 values and a significant
increase in model fit when adding shell
calcification intensity in comparison with
the model that ignores it (p = 0.031).

DISCUSSION

The average 680 values are negative in
Globigerinoides ruber (pink), Globigeri-
noides ruber (white), and Globigerinoides
elongatus in our study, and are compati-
ble with a typical foraminiferal vital effect
and with a preference for lighter 1°0 dur-
ing calcification in all species. The gen-
eral trend in all species is an increase
in 0'%0 (toward zero) with increasing
shell calcification intensity. This trend
indicates that the influence of shell cal-
cification intensity on §'°0 is linked to
depth habitat changes when the density
contrast between the shell and ambient
seawater changes. If calcification inten-
sity influences 6'%0 values through a
modification of living depths via changing
density contrasts with the surrounding
seawater (Weinkauf et al,, in press; Zarko-
giannis et al, 2019), we would expect
lighter individuals that live in shallower
depths and thus warmer water (espe-
cially in summer, we could expect tem-
perature changes of ca. 6 °C within the
upper 100 m of the water column; com-
pare Fig. 3), to have lower 680 values;
this is indeed noted by the present data.
In contrast, if faster calcification rates
would limit the time or energy available
for fractionation, heavier calcified indi-
viduals would show reduced "0 values
because of unselected uptake of the more
abundant °0 (Norris, 1998).

To better understand the observed rela-
tionship between shell calcification inten-

Ultimately, we can use the results from
the other species to get a clearer picture
of the influence of shell calcification in-
tensity on the stable oxygen isotope com-
position of the foraminiferal shells consid-
ering all other parameters, even though
this was impossible in G. ruber (pink).
In G. ruber (white), no outliers were de-
tected. Using an additive model, we could
identify that all included parameters have
a moderately to convincingly significant
influence on the shell §'0 values. An
ANOVA against the null-model confirms
the significant increase in model fit when
shell calcification intensity is included at
p < 0.001. In G. elongatus, two speci-
mens (Specimen 77 from Sample 3 and

sity and shell 680 values and estimate
the effect size, we fitted linear and non-
linear regressions to the data (Bolker,
2008) and determined, which would best
describe the observations using the cor-
rected Akaike information criterion (AIC,).
We tried the following regression func-
tions: (1) A Michaelis—Menten (Michaelis
& Menten, 1913) function and (2) a power-
law function, which through their bioener-
getic applicability would both be suitable
candidate functions (Raitzsch et al.,, 2010;
Russell et al, 2004). (3) A monomolec-
ular function and (4) a second-degree
polynomial function, which are function-
ally suitable for fractionation processes
during calcification (Groeneveld et al,
2018; Pearson, 2012; Steinhardt et al,
2015). The results of this model assess-
ment are summarized in Fig. 5 and Ta-
ble 2. In G. ruber (pink), the data are
best described by a polynomial function
and second-best by a monomolecular
function. The estimated effect size us-
ing the two best-fitting models is 0.63—
1.01%0. A similar signal is obtained for
G. ruber (white), where a monomolecular
function describes the data much better
than the second-best model (Michaelis—
Menten function; normalized probability:
0.587). The effect size in G. ruber (white)
is approximately in the range of 1.37-
1.42%o. In G. elongatus, the power-law
and Michaelis—Menten models outper-
form both alternative models, indicating

Oxygen isotopes of foraminiferal shells

Specimen 88 from Sample 5) were identi-
fied as outliers and removed from further
analyses. The additive model confirms a
convincingly significant influence of tem-
perature, photosynthetic activity, and cal-
cification intensity, but not salinity, on
the stable oxygen isotope composition of
the shells. Shell calcification intensity
improves the model significantly in com-
parison to the null-model (p = 0.049). In
all species analyzed here, we thus find
a significant influence of shell calcifica-
tion intensity on the shell §'0 values
when accounting for all other relevant
parameters.

a smaller effect size of ca. 0.56 %o.

We consider the measured shell geo-
chemical composition in our data largely
free from constraining influences. It is
known that photosynthetic activity in-
fluences the §'80 value measured in
foraminiferal shells (Ezard et al, 2015;
Spero, 1998; Spero & Lea, 1993), but
6BCis directly scaled to photosynthetic
activity or bioproductivity, and hence also
to depth (e.g., Norris, 1998; Spero, 1998;
Spero & Lea, 1993; Spero et al, 1991).
Therefore, by including shell 63C values
in our general additive models, we can
test for the effect of calcification inten-
sity on shell 580 values, regardless. A
shell size effect on 0"°C has been noted,
which does not exist for 6'°0 to any note-
worthy extent in the species used here
(Ezard et al, 2015; Franco-Fraguas et
al,, 2011; Norris, 1998; Shackleton et al.,
1985), meaning that our analyses are ro-
bust against the shell size range used
in this study. Carbonate ion concentra-
tion can have an effect on stable isotope
compositions of planktonic Foraminifera,
especially 53C values (Spero, 1998), but
the sampling region is considerably sta-
ble concerning its carbonate system. We
used data from the ESTOC time series
(Gonzalez-Davila, 2016a, 2016b), which is
situated close to sediment trap Kiel 276,
and the MS Excel program CO2Sys to
estimate the carbonate system param-
eters. The maximum annual range of
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Tab. 1: Results of an additive model analysis of stable oxygen isotope composition against temperature (7), salinity (5),
photosynthetic activity (ap), and shell calcification intensity (p4) in foraminiferal shells from sediment trap Kiel 276-25.

Parametric terms

Nonparametric terms

Parameter Mean squares F-value p-value F-value  p-value
Globigerinoides ruber (pink)

ap 410 4458 <0.001 348 0.023
PA 0.25 2.69 011 5.03 0.006
Globigerinoides ruber (white)

T 061.36 371.03 <0.001 2090 <0.001
S 159 9.61 0.004  21.00 <0.001
ap 26.83 162.22 <0.001 0.81 0.487
PA 5.66 3425 <0.001 212 0130
Globigerinoides elongatus

T 48.59 536.71 <0.001  200.39 <0.001
S 0.00 0.00 0989  97.95 <0.001
ap 157 1734 <0.001 1.84 0.144
PA 0.75 8.32 0.007 0.98 0.414

Tab. 2: Results from a fitting of four model functions to the influence of shell calcification intensity on shell 680 in foraminiferal
shells from sediment trap Kiel 276-25. The corrected Akaike information criterion (AIC.; Akaike, 1974) and model weights
(Wagenmakers & Farrell, 2004) are reported.

Parameter  Michaelis—=Menten function

Power-law function

Monomolecular function

2"_degree polynomial function

Globigerinoides ruber (pink)

AlC. 55.175
AAIC, 3.649
Weight 0.089
Globigerinoides ruber (white)
AlC. 94.469
AAIC, 0.702
Weight 0.284
Globigerinoides elongatus
AIC, N.277
AAIC, 0.184
Weight 0.321

50.953 52577
5.427 1.051
0.036 0325

95.207 93.767
1.440 0.000
0.196 0.404

41.093 42.097
0.000 1.003
0.352 0.213

51526
0.000
0550

96.263
2496
0.116

43.340
2247
0.114

CO3°~ in surface waters in the region is
<50 ymol kg™, and the average range
is as small as <10 ymol kg~ throughout
spring—autumn (Table S4), ruling out a
large effect of this parameter. We there-
fore believe that a better interpretation
of the data is required.

One possible solution to explain the
observations would be dissolution of the
shells (Broecker & Clark, 2001; Lohmann,
1995; Schiebel et al, 2007), as selective
dissolution of poorly crystallized, small
crystallites of calcite with a particular
stable oxygen isotope composition could
result in a spurious 0 °O—calcification
intensity-correlation. This is unlikely,

however, for the following reasons. (1) We
used the same stratified random sampling
applied to pick the specimens for isotope
analyses to choose a second random sam-
ple per species to be investigated under
the scanning electron microscope. The
vast majority of the shells shows good
to excellent preservation, with minor re-
crystallization observable in only a small
number of shells (Figs. S4-56). (2) This
is supported by a reconstruction of the
carbonate system using the ESTOC time
series (Gonzélez-Davila, 2016a, 2016b).
Throughout the entire sampling interval,
the calcite saturation state at the sur-
face is >4, and even at the sediment

trap depth of 2000 m it never decreases
below 1.38 at any time (Table S4). The
latter value is near the lower boundary
below which dissolution starts to affect
shell geochemistry (Dekens et al., 2002;
Regenberg et al,, 2006), but not yet prob-
lematic. (3) We further note that, should
dissolution play a major role, we would
expect to see the inverse effect. This is
because calcite that was precipitated in
warmer waters has a higher Mg/Ca ratio,
and is generally dissolved more readily
than calcite precipitated in colder wa-
ters (de Villiers et al,, 2002; Rosenthal et
al, 2003). Since calcite that was formed
in warmer water would also have lower
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Fig. 5: Models for the shell 5'%0 values depending on the shell calcification intensity in the planktonic foraminifers (a)
Globigerinoides ruber (pink), (b) Globigerinoides ruber (white), and (c) Globigerinoides elongatus from sediment trap Kiel 276-25.
(d) Relationship between shell 63C and 6"0 in the same samples. Error bars indicate standard error of the measurements.

580 values, this process of selective dis-
solution would increase the §'%0 values
of the lighter shells, such that the pat-
tern we observe here would have been
even more pronounced if such a selective
dissolution would have taken place.

The other possibility is an environ-
mental effect. On the one hand, this
could for instance be a salinity effect. Al-
though salinity was determined as least
important and non-significant parameter,
and is strongly collinear with tempera-
ture, this is only true for the remote and
averaged environmental data available
here. It was shown that such data of-
ten underestimate the true short-term
variation in oceanic settings (Laepple

& Huybers, 2014a, 2014b). CGlobigeri-
noides ruber is very resistant against
salinity changes (Bijma et al, 1990) and
planktonic Foraminifera can build new
chambers within hours (Bé et al., 1979;
Spero, 1988), which would make it the-
oretically feasible that the local salin-
ity could have changed sufficiently on
smaller time-scales (e.g., via north—south-
fluctuation of the Azores front; Frandt &
Waniek, 2012) without influencing cham-
ber formation in the Foraminifera, thus
explaining part of the measured range of
compositions. However, this is unlikely to
be responsible for the majority of the cor-
relation due to the inconceivable ampli-
tude of salinity changes in an open-ocean
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setting this assumption would require.
In fact, even through fluctuation of the
Azores front, salinities beyond 36.2 are
practically never observed in this oceano-
graphic setting (Frindt & Waniek, 2012;
Pérez et al, 2003). Temperature changes
due to vertical migration, on the other
hand, could explain a major part of the
measured differences in isotopic composi-
tions for shells with different calcification
intensities (Rebotim et al, 2019). The
depth habitat of species in the Globi-
gerinoides ruber/elongatus compound is
generally shallow, partly due to its de-
pendence on sunlight for photosynthesis,
but both living- and calcification-depths
were shown to be reasonably variable
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within the uppermost 50-100m of the
water column (Meilland et al,, 2019; Re-
botim et al., 2017; Steinhardt et al., 2015).
Within the studied area, the mixed layer
covers this depth in winter, with an av-
erage temperature change of only 0.3°C
over the top 100 m. During summer, how-
ever, the average temperature variation
across the first 100 m is ca. 6 °C, and thus
large enough to explain perhaps 1.5-2 %o
of the observed variation in shell %0
(compare Fig. 3). Even in winter, changes
beyond the recorded mean values can oc-
cur due to the fluctuation of the Azores
front across the sediment trap mooring
(Frindt & Waniek, 2012).

Interestingly, & '3C values can be in-
terpreted as a water depth indicator, es-
pecially pronounced in photosymbiont-
bearing Foraminifera (Spero & Williams,
1988). For this reason, one would expect
to note a positive correlation between
63C and 6'°0 in such foraminiferal as-
semblages, where the recorded tempera-
ture changes are at least partly related
to depth migration (Norris, 1998; Spero
& Williams, 1988). We see a pronounced
pattern of this type in G. ruber (pink)
and G. ruber (white), but a much weaker
signal in G. elongatus for our dataset
(Fig. 5d). Coincidentally, G. elongatus is
also the species that shows the smallest
effect size of shell calcification intensity
on shell 680 values. It was shown by
Steinke et al. (2005) that G. elongatus
lives generally deeper than G. ruber, but
because the species is still dependent on
light for its photosymbionts this implies
that extensive depth migration is less of
a possibility for this species, which could
explain why a more stable depth habitat
in G. elongatus is compatible with our

CONCLUSIONS

Our analyses of foraminiferal species of
the Globigerinoides ruber/elongatus com-
pound imply that shell calcification in-
tensity has an impact on shell 6130 val-
ues and therefore has the potential to
be a confounding factor in environmental
reconstructions derived from stable oxy-
gen isotope measurements of planktonic
foraminiferal shells.

Our data suggest that the observed

data. We hypothesize here that the mea-
sured compositions in all species are the
result of a depth migration-related tem-
perature change (directly scaled to shell
calcification intensity via density contrast
with the seawater). We further hypothe-
size that G. elongatus shows the smallest
effect size due to its limited depth migra-
tion. If this interpretation is true, then
shell calcification intensity can be a vi-
able proxy to reduce the bias in geochem-
ical shell measurements of planktonic
Foraminifera that is associated with habi-
tat depth. Our study can consequently
be used in the implementation of bias-
modelling of climate archive proxies as
for instance through “Sedproxy” (Dolman
& Laepple, 2018), and can help to further
improve the reliability of climate recon-
structions (Dolman et al, 2020). Such
an interpretation is also in line with ear-
lier observations that larger shells within
some species have higher 63C values
(e.g., Spero & Lea, 1993). Larger shells
contain more cytoplasm that has a neg-
ative density contrast to the surround-
ing seawater. Unless the foraminifer in-
creases it's relative shell thickness (to
keep the shell calcification intensity con-
stant), it will be subject to greater buoy-
ant forces, reducing its depth habitat as
shown by the higher 63C values of its
shell. This is also implied by observa-
tions in Zarkogiannis et al. (2019), where
it is shown that larger shells tend to be
more buoyant because their weight does
not increase at the same rate as their
volume if the shell thickness remains con-
stant.

Further studies are suggested in this
fleld, ideally involving controlled labo-
ratory experiments, especially regarding

effect is mainly an environmental effect,
where heavier calcified shells would oc-
cupy a deeper habitat of the water col-
umn and are thus exposed to lower tem-
peratures of their ambient seawater. The
effect size will depend on the species
(range of depth habitat; compare Rebotim
et al,, 2019), the range of shell calcifica-
tion intensity, and the local oceanogra-
phu.
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if this effect also exists for asymbiotic
Foraminifera — as is implied by Billups
and Spero (1995) at least for small spec-
imens — or species which tend to de-
velop thick crusts (Schiebel & Hemleben,
2017, e.qg., Globoconella inflata, Globoro-
talia crassaformis, Globorotalia truncat-
ulinoides). If our hypothesis is true, the
effect of shell calcification intensity on
the stable oxygen isotope composition of
foraminiferal shells through depth habitat
changes is rather variable between loca-
tions and species. This means that the
effect on temperature reconstructions can
be small enough that for most purposes a
correction for shell calcification intensity
does not need to be applied, but a bias of
around 1°C seems feasible under certain
oceanographic conditions. Such effects
may be important for some studies (e.g.,
Dolman et al, 2020), especially in re-
gions or species where shell calcification
intensity varies more strongly within a
species and in environments with strong
vertical changes in the ambient seawater
environment. We presented in this study
a framework to deal with this problem in
the future, by quantifying shell calcifica-
tion intensity of specimens intended for
geochemical analyses and quantifying its
effect size for data correction. Since es-
pecially the portion of the influence that
is caused by depth migration will be de-
pendent on the investigated species (the-
oretical range of depth habitat), observed
range of calcification intensity (practical
range of depth habitat), and the local
oceanography, no generally applicable
corrections can be suggested here. We
thus suggest an implementation of this
factor in bias-modelling protocols in the
future (e.g., Dolman & Laepple, 2018).

We suggest using shell calcification
intensity studies to evaluate and elim-
inate this effect on geochemical analy-
ses if high-precision reconstructions are
needed, but arqgue that the effect is prob-
ably small enough to not interfere with
the majority of practical applications. We
suggest further studies in this field and
an implementation of this bias in stan-
dard bias-modelling protocols.
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1 Material and methods

Table S1. Sample metadata for material from sediment trap Kiel 276-25.

Sample Startdate  End date Sampling dur. (d) SST(°C) SSS

1 2005-05-01 2005-07-01 61 20.95 36.63
3 2005-09-01 2005-11-01 61 2293 36.76
5 2006-01-01 2006-02-01 31 18.25 36.65
7 2006-03-01 2006-04-01 31 18.23  36.58

SST: Sea surface temperature after Reynolds et al. (2002); SSS: Sea surface salinity after Good et al. (2013)

Table S2. Number of specimens of three species of planktonic Foraminifera from sediment trap Kiel 276-
25 used for shell calcification intensity (calci.) and stable isotope composition (geochem.) analyses.

Species Sample1 Sample3 Samples5 Sample7
Globigerinoides ruber (pink) calci. 27 55 2 0
Globigerinoides ruber (pink) geochem. 19 21 2 0
Globigerinoides ruber (white) calci. 60 92 70 34
Globigerinoides ruber (white) geochem. 11 7 12 12
Globigerinoides elongatus calci. 38 75 34 41

Globigerinoides elongatus geochem. 13 12 13 14
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Fig. S1. Flowchart of size measurements of planktonic foraminiferal shells for shell calcification intensity
analyses. The contrast in the raw image (a) with a planktonic foraminifer in apertural standard view is
increased and the image is converted into a black-and-white threshold image (b). Within this image, the
shell is automatically traced and its size measured as cross-sectional area (c).
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Fig. S2. Sea surface temperature Reynolds et al. (2002, a) and sea surface salinity Good et al. (2013, b) in
the catchment area of sediment trap Kiel 276-25 during the sampling period. The range of values across
the catchment area is indicated as shaded area, the sampling intervals are indicated as grey rectangles.

Table S3. Measured mean foraminiferal shell parameters of three species of planktonic Foraminifera
from sediment trap Kiel 276-25.

Species Diam. (um) Weight (ug) pa (1 x 10* pgpm=2)  6C (%o) 50 (Y%o)
G. ruber (pink) 334.2 10.15 1.31 0.334 —-0.533
G. ruber (white) 240.8 4,90 1.26 —0.588 —0.363
G. elongatus 273.5 6.89 1.43 -0.215 —0.206

Diam: Shell Feret diameter; p 4: Shell calcification intensity; stable isotopes measured on the Vienna Pee Dee
Belemnite scale normalized against NBS-19
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Fig. S3. Complete linkage clustering on the Hoeffding D-similarity Hoeffding (1948) of sea surface temper-
ature Reynolds et al. (2002), sea surface salinity Good et al. (2013), photosynthetic activity (approximated
by shell §%C), and shell calcification intensity of planktonic Foraminifera from sediment trap Kiel 276-25.
A similarity value of O (values >0 imply collinearity) is indicated by the dashed grey line.

3 Discussion

Table S4. Estimated carbonate system parameters of the ambient sea water in the region of sediment
trap Kiel 276-25, based on data from the ESTOC time series (Gonzalez-Davila, 2016a, 2016b).

Date Depth(m) T(°C) S TA (umolkg™") pH C0;%” (umolkg™) Qs

2005-03-19 10.0 18.0 36.7 2401.90 8.00 171.86 4.05
2005-03-19 1976.9 4.5 35.1 2340.99 7.75 60.93 1.40
2005-04-13 0.3 19.1 36.7 2402.38 8.01 181.67 4.29
2005-04-13 200.1 16.9 36.4 2392.03 7.94 146.00 3.44
2005-09-28 5.0 23.9 36.9 2418.41 8.03 220.98 5.22
2005-09-28 199.9 16.6 36.4 2387.05 7.92 140.08 3.30
2005-11-22 11.6 22.0 36.9 2412.60 8.03 207.44 4.90
2005-11-22 1800.0 4.4 35.1 2343.95 7.76 61.94 1.43
2006-03-04 12.7 17.9 36.7 2405.59 8.00 172.41 4.06
2006-03-04 2002.2 4.4 35.1 2342.17 7.74 60.17 1.38

T: Water temperature; S: Water salinity; T A: Total alkalinity; pH measured on the total scale; CO32™: Carbonate
concentration; Qc;: Calcite saturation state
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4 Scanning electron micrographs

Fig. S&. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (pink)
from sediment trap Kiel 276-25.
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Fig. S4. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (pink)
from sediment trap Kiel 276-25 (continued).



ESSOAr Oxygen isotopes of foraminiferal shells Weinkauf et. al.

Fig. S4. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (pink)
from sediment trap Kiel 276-25 (continued).
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Fig. S4. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (pink)
from sediment trap Kiel 276-25 (continued).
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Fig. S5. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (white)
from sediment trap Kiel 276-25.
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Fig. S5. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (white)
from sediment trap Kiel 276-25 (continued).
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Fig. S5. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (white)
from sediment trap Kiel 276-25 (continued).
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Fig. S5. Scanning electron micrographs of randomly selected specimens of Globigerinoides ruber (white)
from sediment trap Kiel 276-25 (continued).
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Fig. S6. Scanning electron micrographs of randomly selected specimens of Globigerinoides elongatus
from sediment trap Kiel 276-25.
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Fig. S6. Scanning electron micrographs of randomly selected specimens of Globigerinoides elongatus
from sediment trap Kiel 276-25 (continued).
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Fig. S6. Scanning electron micrographs of randomly selected specimens of Globigerinoides elongatus
from sediment trap Kiel 276-25 (continued).
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Fig. S6. Scanning electron micrographs of randomly selected specimens of Globigerinoides elongatus
from sediment trap Kiel 276-25 (continued).
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