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Abstract

We present a new spectral analysis method for the identification of periodic signals in geophysical time series. We evaluate the

power spectral density with the adaptive multitaper method, a non-parametric spectral analysis technique suitable for time series

characterized by colored power spectral density. Our method provides a maximum likelihood estimation of the power spectral

density background according to four different models. It includes the option for the models to be fitted on four smoothed

versions of the power spectral density when there is a need to reduce the influence of power enhancements due to periodic

signals. We use a statistical criterion to select the best background representation among the different smoothing+model pairs.

Then, we define the confidence thresholds to identify the power spectral density enhancements related to the occurrence of

periodic fluctuations (γ test). We combine the results with those obtained with the multitaper harmonic F test, an additional

complex-valued regression analysis from which it is possible to estimate the amplitude and phase of the signals. We demonstrate

the algorithm on Monte Carlo simulations of synthetic time series and a case study of magnetospheric field fluctuations directly

driven by periodic density structures in the solar wind. The method is robust and flexible. Our procedure is freely available as a

stand-alone IDL code at https://zenodo.org/record/3703168. The modular structure of our methodology allows the introduction

of new smoothing methods and models to cover additional types of time series. The flexibility and extensibility of the technique

makes it broadly suitable to any discipline.
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Key Points:6

• Our technique provides a robust estimate of the continuous background of colored7

Power Spectral Density.8

• This method uses a combination of spectral and harmonic statistical tests to iden-9

tify periodic fluctuations.10

• There are multiple options for the method of Power Spectral Density smoothing11

and the background model.12
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Abstract13

We present a new spectral analysis method for the identification of periodic signals in14

geophysical time series. We evaluate the power spectral density with the adaptive mul-15

titaper method, a non-parametric spectral analysis technique suitable for time series char-16

acterized by colored power spectral density. Our method provides a maximum likelihood17

estimation of the power spectral density background according to four different models.18

It includes the option for the models to be fitted on four smoothed versions of the power19

spectral density when there is a need to reduce the influence of power enhancements due20

to periodic signals. We use a statistical criterion to select the best background represen-21

tation among the different smoothing+model pairs. Then, we define the confidence thresh-22

olds to identify the power spectral density enhancements related to the occurrence of pe-23

riodic fluctuations (γ test). We combine the results with those obtained with the mul-24

titaper harmonic F test, an additional complex-valued regression analysis from which25

it is possible to estimate the amplitude and phase of the signals. We demonstrate the26

algorithm on Monte Carlo simulations of synthetic time series and a case study of mag-27

netospheric field fluctuations directly driven by periodic density structures in the solar28

wind. The method is robust and flexible. Our procedure is freely available as a stand-29

alone IDL code at https://zenodo.org/record/3703168. The modular structure of our method-30

ology allows the introduction of new smoothing methods and models to cover additional31

types of time series. The flexibility and extensibility of the technique makes it broadly32

suitable to any discipline.33

1 Introduction.34

In the analysis of space physics time series, distinguishing between quasi-periodic35

fluctuations and random fluctuations or noise is a challenging task. Identifying period-36

icities is important for the understanding of many processes in geophysics and space physics.37

For example, the acceleration and loss of radiation belt electrons via Ultra Low Frequency38

(ULF) wave-particle interactions not only depends on the mode structure of the wave39

and the azimuthal wave number, but also on whether the wave is discrete (drift bounce40

or drift resonances; Zong et al., 2007; Claudepierre et al., 2013; I. R. Mann et al., 2013)41

or broadband (radial diffusion; Ozeke et al., 2014). Therefore, distinguishing discrete ULF42

wave power from broadband wave power is critical in order to address the relative im-43

portance of resonant versus stochastic ULF wave interactions. Another example is the44

–2–



manuscript submitted to JGR: Space Physics

analysis of coronagraph images showing that mesoscale solar wind density structures are45

periodically released from helmet streamers on time scales of many hours down to the46

resolutions of the imagers (many minutes; Sheeley et al., 1997; Wang et al., 2000; Viall47

et al., 2010; Sanchez-Diaz et al., 2017; DeForest et al., 2018) with ≈90 min being one48

characteristic time scale (Viall & Vourlidas, 2015). In situ measurements of periodic den-49

sity structures showed their presence between 0.3 and 0.6 AU (Di Matteo et al., 2019)50

as well as at 1 AU (Viall et al., 2008; Rouillard et al., 2011; Kepko et al., 2020). Con-51

current periodic changes in composition of heavy abundances link the formation of the52

periodicities with the origin of solar wind parcels from different regions of the solar corona53

(Kepko et al., 2016; Viall et al., 2009). Additionally, Kolmogorov-like power spectra, of-54

ten observed in solar wind magnetic field and velocity measurements, suggests turbu-55

lent expansion of the solar wind (Kolmogorov, 1941; Tu & Marsch, 1995; Bruno & Car-56

bone, 2013; Tsurutani et al., 2018). Therefore, the distinction between periodic fluctu-57

ations and the underlying power law spectrum is an important way to measure the dif-58

ferences between the structured and turbulent nature of the solar wind.59

One of the major diagnostic tools for the identification of quasi-periodic fluctua-60

tions in a time series is the frequency domain characterization via the spectral density61

function S(f), which establishes the distribution of the time series variance at specific62

frequencies. Given a discrete time series {xn} of N data points (n = 0, 1, . . . , N − 1)63

with a sampling time ∆t, the simplest estimator of the spectral density function is the64

periodogram based on the time series discrete Fourier transform defined as:65

Xj =

N−1∑
n=0

xne
−i2πfjn∆t

evenN j = −N/2, . . . , N/2

oddN j = −(N − 1)/2, . . . , (N − 1)/2
(1)66

where fj = j/(N∆t) are the Fourier frequencies defined over the frequency interval [−fNy, fNy],67

limited by the Nyquist frequency fNy = 1/(2∆t), with the frequency resolution deter-68

mined by the Rayleigh frequency fRay = 1/(N∆t). The periodogram is defined as the69

product of the time series sampling rate over the number of points and discrete Fourier70

transform square modulus, that is S(p)(fj) = (∆t/N)|Xj |2. For real-valued processes,71

the spectral density function is two-sided, i.e. symmetric about the zero frequency so that72

S(−f) = S(f). In this case, we can define the one-sided spectral density function, here-73

after referred to as power spectral density (PSD), with S(f) doubled for 0 < f < fNy74

and set to zero for f < 0. As a consequence, the PSD is defined on Nf Fourier frequen-75

cies fj with j = 0, 1, . . . , (Nf − 1). Note that Nf = N/2 + 1 for even N and Nf =76
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(N+1)/2 for odd N . The major issues of this estimator are well known (Percival & Walden,77

1993): (i) the leakage of power into adjacent bins, due to the finite frequency resolution,78

(ii) a bias in the estimate not known a priori, depending on the time series itself, and79

(iii) the associated variance, that is equal to the estimate itself. These effects can be re-80

duced by tapering the time series with appropriate weights wn, satisfying
∑
n w

2
n = 1,81

and/or by averaging the PSD over adjacent frequency bins (Percival & Walden, 1993).82

Another procedure consists of averaging the PSD estimated on different weighted subin-83

tervals (possibly overlapped) of the original time series (Welch, 1967); since the inter-84

vals are shorter, the frequency resolution is reduced. Additionally, many parametric spec-85

tral analysis procedure exist, including minimum prediction error (Samson, 1983), max-86

imum entropy (Vellante & Villante, 1984), and CARMA (Kelly et al., 2014) method. Among87

the non-parametric methods, the singular-spectrum analysis (Ghil, 1997) and the adap-88

tive multitaper method (Thomson, 1982) have been extensively used for the identifica-89

tion of periodic signals in time series. The singular-spectrum analysis is able to recon-90

struct the original data in terms of oscillatory components, based on a data-adaptive ba-91

sis set, obtained with the eigen-decomposition of the lagged covariance matrix on M lagged92

copies of a time series. This method is particularly useful for the analysis of non-linear93

systems, owing to the absence of assumptions on the basis-set. On the other hand, it is94

difficult to recover the frequency of a reconstructed oscillation as the singular-spectrum95

analysis searches for frequency bands containing a relevant amount of the time series vari-96

ance, rather than discrete PSD enhancements.97

Purely periodic or quasi-periodic signals appear in the PSD as enhancements rel-98

ative to the continuous PSD background whose properties depends on the physical sys-99

tem. While harmonic analysis to identify the occurrence of periodic variations compared100

to a flat PSD (i.e. white noise) are well established (Percival & Walden, 1993), there is101

no standard techniques to assess the significance of a periodicity against a colored noise,102

such as the red PSD typically found in astrophysical and geophysical time series. The103

identification of the continuous part of the PSD constitutes a great challenge since sharp104

peaks can be created by completely different processes, such as random/stochastic pro-105

cesses with signals or deterministic chaotic systems (Kantz & Schreiber, 2003). Vaughan106

(2010) addressed this issue in an analysis of the occurrence of quasi-periodic oscillations107

in X-ray observations of Seyfert galaxies (Vaughan, 2005). They introduced a significance108

test for periodicity assuming red noise PSD with an approximately power law or bend-109
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ing power law spectral background shape. Using the statistical properties of the peri-110

odogram, Vaughan (2010) applied a Bayesian approach to estimate the posterior distri-111

bution of the PSD model parameters. After selecting the best representation of the PSD112

background via the sum of the squared standard errors and the likelihood ratio test (Vaughan,113

2010; Vaughan et al., 2011), periodic signals appear as periodogram outliers.114

More recently, Inglis et al. (2015) adapted the Vaughan (2010) method to the iden-115

tification of quasi-periodic pulsations typically observed during the impulsive phase of116

solar and stellar flares over a wide range of wavelengths. From radio waves and microwaves117

to hard X-rays and gamma-rays (Nakariakov & Melnikov, 2009), the characteristic timescales118

of these fluctuations range from one second up to several minutes. The Automated Flare119

Inference of Oscillations (AFINO; Inglis et al., 2015, 2016) technique probes the PSD120

of the time series for a single power-law-plus-constant model, a broken-power law model,121

and power-law-plus-constant combined with a Gaussian component in log-frequency space,122

representing the excess power due to the occurrence of a periodic oscillation. The most123

appropriate background model is selected via the Bayesian information criterion (Burnham124

& Anderson, 2004) and a modified χ2 statistic for exponentially distributed data (Nita125

et al., 2014). The AFINO technique has been applied also to magnetometer data from126

the Magnetospheric Multiscale mission to study the role of the ULF waves in the dynam-127

ics of the inner magnetosphere and outer radiation belt (Murphy et al., 2018). This tech-128

nique has been proven to be effective in the identification of strong PSD enhancements,129

but it is limited to the selection of a single wave mode (Murphy et al., 2020).130

M. E. Mann and Lees (1996) proposed a procedure for distinguishing between PSD131

background and peaks, based on the spectral and harmonic analyses of Thomson (1982).132

Briefly, the PSD background is estimated fitting a lag-one autoregressive model to the133

median smoothed PSD of the time series. Then, a periodicity is identified at locations134

where the PSD enhancements are concurrent with enhanced harmonic F test values, both135

above a defined confidence threshold (Thomson, 1982). This method has been applied136

to many studies of remote and in situ observations of the solar wind and the magneto-137

sphere. A similar approach was developed by Di Matteo and Villante (2017) who com-138

bined the identification of narrow peaks in the PSD, estimated with the Welch method,139

with the harmonic F test of the MTM method.140
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Here, we combine and improve some of these approaches. Following a brief descrip-141

tion of the spectral and harmonic analysis of the multitaper method, we discuss the ex-142

tension of the maximum likelihood approach, developed for the periodogram, to the mul-143

titaper estimates of the PSD. We introduce various combinations of PSD models and smooth-144

ing approaches. We discuss robust statistical criteria to determine the best representa-145

tion of the PSD background. Finally, we describe different options for the identification146

of periodic fluctuations. The method is validated with Monte Carlo simulations and demon-147

strates its application with real observations.148

2 The Multitaper Method149

Given a time series of length N with sampling time ∆t, the multitaper method (MTM)150

uses a set of K orthogonal tapers to obtain K independent estimates of the PSD. The151

tapers result from the Fourier transform of the eigenfunctions of the Dirichlet kernel, namely152

the Slepian functions (Slepian, 1978). These functions minimize the spectral leakage out-153

side a frequency band 2W/∆t with 0 < 2W < 1. Ordering the Slepian sequences with154

the corresponding eigenvalues in decreasing order, the first K ≤ 2NW−1 eigensequences155

have eigenvalues close to 1 (Slepian, 1978) and provide, in the case of a white noise pro-156

cess, unbiased and uncorrelated estimates of the spectral density function at the Fourier157

frequencies fj (Thomson, 1982), S
(mt)
k (fj). For colored PSD slowly varying over inter-158

vals [f −W/∆t, f +W/∆t], a refined estimator is the adaptive multitaper:159

S(amt)(fj) =

∑K−1
k=0 d2

k(fj)S
(mt)
k (fj)∑K−1

k=0 d2
k(fj)

(2)160

in which the weights dk(fj) are derived from:161

dk(f) =

√
λkS(f)

λkS(f) + (1− λk)σ2
(3)162

where σ2 is the variance of the time series. The weights are obtained at the Fourier fre-163

quencies fj by recursively substituting S(f) with the spectral density function estimated164

by (2). In particular, starting from the average of the spectral estimates S
(mt)
k (fj) cal-165

culated using the first two ordered Slepian sequences, we obtain a set of weights from166

(3), that, when substituted into (2) gives a new estimate of the spectral density func-167

tion to be used for the evaluation of dk(fj). As with the periodogram, the PSD estima-168

tor is the one-sided spectral density function. The main advantage of this procedure is169

the attenuation of the average broadband bias, i.e. the amount of power leakage outside170

a frequency band of 2W/∆t (Thomson, 1982; Percival & Walden, 1993).171
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A powerful tool that we use in conjunction with the MTM spectral analysis is the172

harmonic F test. The assumption is that a time series can be expressed as a superpo-173

sition of sinusoidal components and a background process with a continuous PSD (Thomson,174

1982; Ghil et al., 2002). The MTM yields a complex-valued regression model (Thomson,175

1982; Di Matteo & Villante, 2017) from which it is possible to estimate amplitude and176

phase of the sinusoidal components. The null hypothesis, that an estimated amplitude177

is zero, is tested with the harmonic F test according to a Fisher distribution, which pro-178

vides the confidence interval of the least-squares fit. If the initial assumption is not valid179

and the PSD background is not locally white, false positives can be identified. Protassov180

et al. (2002) cautioned that the F test deviates from the nominal Fisher distribution when181

the null value of the tested parameters is on the boundary of the possible parameter value,182

as for the MTM harmonic F test. As a consequence, this test is likely to identify false183

positives, especially at low confidence levels. Therefore, this method should never be used184

alone. M. E. Mann and Lees (1996) considered only values of the harmonic F test above185

a defined confidence level that were concurrent with PSD enhancements with respect to186

a PSD background. This combined test is more robust than either test alone. In the fol-187

lowing section, we extend this methodology through additional smoothing approaches188

and background models, the latter fitted via an appropriate maximum likelihood approach.189

3 Maximum Likelihood and Confidence Bounds190

While fitting a model to an estimated PSD, we have to consider the probability den-191

sity function of these estimates since they are not Gaussian distributed. The periodogram192

estimates follow an exponential distribution, that is S(p)(fj) ∼ exp(1/Bj) where Bj =193

B(fj) is the expectation value at the Fourier frequencies fj 6= 0, fNy (Anderson et al.,194

1990; Bevington & Robinson, 2003; Vaughan, 2005). The adaptive MTM estimates in-195

stead follow a gamma distribution (Thomson & Haley, 2014), such that S(amt)(fj) ∼196

Gamma(αj , Bj/αj) where αj is related at each Fourier frequency to the number of de-197

grees of freedom, νj , defined as (Percival & Walden, 1993)198

νj = 2αj =
2
(∑K−1

k=0 d2
k(fj)

)2

∑K−1
k=0 d4

k(fj)
(4)199

where dk(fj) are the final weights obtained from eq.(3).200

We extend the approach already adopted for periodograms (Vaughan, 2005, 2010;201

Vaughan et al., 2011) to MTM spectra. Given a time series of length N, the joint prob-202
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Table 1. Probability density function and log-likelihood of the PSD estimated with the peri-

odogram and the MTM at the Fourier frequencies fj 6= 0, fNy.

Periodogram: Sj = S(p)(fj) Multitaper Method (MTM): Sj = S(amt)(fj)

Sj = Bj
χ2
2

2 ∼ exp
(

1
Bj

)
Sj = Bj

χ2
2αj

2αj
∼ Gamma

(
αj ,

Bj
αj

)
p(Sj) = 1

Bj
e−Sj/Bj p(Sj) =

αj
Γ(αj)Bj

(
αjSj
Bj

)αj−1

e
−
αjSj
Bj

M = 2
∑
j

[
Sj
Bj

+ ln (Bj)
]

M = 2
∑
j

[
αjSj
Bj

+ ln [Γ(αj)Sj ]− αj ln
(
αjSj
Bj

)]

ability density function, which characterizes the distribution of the PSD estimates at fj 6=203

0, fNy, is L =
∏
j p(Sj). When used as a function of the model parameters, this cor-204

responds to the likelihood function that can be more easily managed considering the log-205

likelihood, namely M = −2 lnL. Table 1 summarizes the types of random variables,206

the probability density functions, and the log-likelihoods for the periodogram and MTM207

estimates. Note that the two approaches match each other for αj = 1, corresponding208

to one direct PSD estimate among the ones obtained from the different tapered data in-209

stances.210

Once the PSD background has been estimated, we define confidence thresholds in211

order to identify statistically significant PSD enhancements. In previous work, the ra-212

tio between the estimated PSD and the modeled background, often referred to as γ, is213

probed for confidence bounds according to the corresponding probability distribution func-214

tion (e.g. for the periodogram, γ ∼ χ2
2/2). In our case, from table 1, at each Fourier215

frequency fj 6= 0, fNy:216

γj =
Sj
Bj

=
χ2

2αj

2αj
∼ Gamma

(
αj ,

1

αj

)
(5)217

If we consider the ensemble of γj as possible representations of a single random variable218

γ, the corresponding probability distribution function is:219

p(γ) = p(γ/α)p(α) with p(γ/α) ∼ Gamma(α,
1

α
) (6)220

where p(α) is the probability distribution function of half the number of degrees of free-221

dom that we estimate via a simple histogram of the αj values over the range [0,K] with222

a fixed step of ∆α = 0.2. The use of more sophisticated methods for the estimation of223

p(α), like the nearest neighbor or the kernel methods (Silverman, 1986), determine dif-224
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ferences lower than the 1.0% on the final confidence level. To define a confidence thresh-225

old z, we need the cumulative distribution function. Considering that 0 < α < K by226

definition and that z > 0, since the PSD is always positive, we obtain:227

CK(z) =

∫ z

0

p(γ′)dγ′ =

∫ K

0

α

Γ(α)
αα−1

(∫ z

0

γ′α−1e−αγ
′
dγ′
)
p(α)dα (7)228

Introducing the normalized lower incomplete gamma function:229

γ(a, x)

Γ(a)
=

∫ x
0
e−tta−1dt∫∞

0
e−tta−1dt

(8)230

the cumulative distribution function for the random variable γ is:231

CK(z) =

∫ K

0

γ(α, z)

Γ(α)
p(α)dα (9)232

At a given confidence level ε, a threshold zε can be evaluated by searching for the zero233

of the function g(z) = CK(z)− ε.234

4 Practical Procedure235

Our procedure is freely available as a stand-alone IDL code at https://zenodo.org/236

record/3703168 (Di Matteo et al., 2020). We assume a time series xn regularly sam-237

pled with no data gaps. By default, we subtract the average value < xn >. Note that238

data trends, due to long term variations on the same timescale of the length of the in-239

terval, might affect the results. In this case, the user should consider prewhitening of the240

time series if necessary. In the following sections, we carefully describe our new proce-241

dure for the characterization of the PSD background and the identification of signals.242

4.1 Smoothing243

Accurate estimation of the PSD background can be strongly influenced by embed-244

ded signals that create large local enhancements in the PSD (signal to noise ratio of sev-245

eral units or more). The major consequence of this energy excess is to increase the es-246

timated background level, possibly along the entire frequency range, leading to selection247

of PSD peaks at lower confidence levels. The smoothing of the PSD is a way to reduce248

this effect (Percival & Walden, 1993). Here, we describe the four different approaches249

we offer as options in our algorithm. The italicized abbreviation used below to refer to250

each approach corresponds to the keyword for calling that version of smoothing in our251

code.252
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Our first smoothing approach is the running median (med ; M. E. Mann & Lees,253

1996) over frequency intervals of 2w + 1 points.254

Smed,j = median(Sk) with k = j − w, . . . , j + w (10)255

Near the edges of the frequency interval the window is truncated to fewer points. The256

number of points, determined by w, are evaluated from a percentage value p of the avail-257

able frequency interval. For example, given the complete interval [0, fNy] and the per-258

centage value p (such that 0 < p < 1), the width of the smoothing window is 2w +259

1 ≈ (pfNy)/fRay. Note that the running median strongly distorts portions of the PSD260

that exhibit steep variations.261

Our second approach is based on a running median on windows with uniform width262

with respect to the central frequencies in the logarithmic frequency space (mlog ; Stella263

et al., 1994), namely:264

Smlog,j = median(Sk) with k : |log(fj)− log(fk)| ≤ p log (fNy) (11)265

For geophysical signals, which are typically red noise spectra, the critical range is at low266

frequencies (M. E. Mann & Lees, 1996). This approach includes only a few points at low267

frequencies enabling the recovery of the steep PSD at low frequencies. However, at high268

frequencies, where a large portion of the frequency range is included, the smoothed PSD269

tends to flatten.270

The third smoothing approach associates the running average of the logarithmic271

PSD over 2w + 1 data points to the geometric mean of the corresponding frequencies272

(bin; Papadakis & Lawrence, 1993), namely:273

log [Sbin(fbin,j)] =
1

2w + 1

∑
k

log [Sk] and fbin,j =

(∏
k

fk

)1/2w+1

(12)274

with k = j−w, . . . , j+w. At the edges of the frequency interval, we neglect intervals275

of length less than 2w + 1, so that j = w, . . . , Nf − w − 1. Papadakis and Lawrence276

(1993) showed that this is an unbiased estimator of the true PSD at the set of frequen-277

cies fbin,j in the case of a power law. They also note that the bias is small as long as the278

logarithm of the PSD varies smoothly with the logarithm of frequency. Note that the279

bin smoothed PSD can be significantly distorted if the raw PSD exhibit strong local spikes.280
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For our fourth smoothing approach we apply a butterworth low pass filter to the281

PSD as if it were a time series (but). The butterworth gain function is given by:282

G(f ′) =
1√

1 +
(
f ′

f ′c

)2Ω
(13)283

where f ′ are the “frequencies”, f ′c is the cutoff frequency, and Ω is the order of the fil-284

ter. Typically, the filtered series exhibits problems at the boundaries of the interval. To285

overcome this issue, we first extend the data by introducing a mirrored replica of itself286

at both ends of the PSD. Then, we apply the zero-phase forward and reverse butterworth287

filter providing no phase distortion. Finally, the central part of the inverse Fourier trans-288

form provides the smoothed PSD. The percentage of smoothing p regulates the value of289

the cutoff frequency f ′c = pf ′Ny while the order is set to Ω = 8. The choice of the fil-290

ter order is arbitrary, but it provides reasonable results in various synthetic data rep-291

resentations (white and colored noise). For PSD with steep variations, this procedure292

shows limitations similar to the med approach. Note that the but smoothed PSD can293

be affected by strong local spikes in the raw PSD if they occur.294

The parameter p of the smoothing procedure must be chosen carefully. The width295

of the window must be greater than the width expected for the PSD enhancements, but296

not too large to distort the PSD. For the MTM, the width of the peaks in the PSD is297

typically greater than 2W/∆t. This set the minimum size of p, such that p > 2W/∆tfNy =298

4W . To avoid strong distortions of colored PSD, we assume an upper limit of p = 0.5.299

To have an estimate of the optimum window in different scenarios, we can use the in-300

formation on the probability density function of the PSD. Stella et al. (1994) showed that301

a Kolmogorov-Smirnov (KS) test (Press et al., 2007), can be applied to the ratio between302

the periodogram and its smoothing. In a similar way, for the MTM, we can apply the303

same concept to γ, as defined in eq.(5). The data points can be converted to an unbi-304

ased estimator of the cumulative distribution function Cγ(z) with z > 0 providing the305

fraction of data points less than a certain value z. The theoretical cumulative distribu-306

tion function for the ratio γ is CK(z) as defined in eq.(9). The KS test probes the sim-307

ilarity between these two cumulative distribution functions evaluating their maximum308

distance:309

DKS = max(|Cγ(z)− CK(z)|) (14)310

The optimal percentage of smoothing is the one in which Cγ(z) minimizes the DKS value.311

First, we probe all the p values between 4W and 0.5, then we select the p correspond-312
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ing to the minimum DKS value among all the local minima. In the Supporting Infor-313

mation, we provide the distribution of the optimal p values obtained from a Monte Carlo314

simulation of synthetic time series. This procedure is robust for peaks with a signal-to-315

noise ratio on the order of unity, even in the case of multiple PSD peaks. When stronger316

signals occur, the smoothed PSD results are distorted, especially for the bin and but ap-317

proaches. In this case, additional steps are required that will be discussed in section 4.4.318

4.2 Background Models319

Once the adaptive MTM PSD, hereafter referred to as the raw PSD, and the dif-320

ferent smoothed versions med, mlog, bin, and but have been evaluated, we can test the321

PSD background against simple parametric models representative of a wide range of geo-322

physical systems. The best parameters are determined by minimizing the log-likelihood323

as outlined in section 3.324

A common representation of colored PSD is the power law (PL) model:325

Bj(c, β) = cf−βj (15)326

with constant factor c and spectral index β. For β = 0, (15) reduces to a simple white327

noise process, where the power is evenly distributed among the Fourier frequencies fj .328

In this case, we can analytically determine the maximum likelihood, such that the PSD329

background is the weighted average of the adaptive MTM PSD estimates at the Fourier330

frequencies fj with weights equal to half of the corresponding number of degrees of free-331

dom, namely ĉ =
∑
j αjSj/

∑
j αj . For the power law model we use a numerical pro-332

cedure to minimize the log-likelihood. We start from a rough estimate of the spectral333

index, as the slope of the logarithmic PSD, and the corresponding analytical solution for334

the constant factor, namely:335

β0 = log(Sj′/Sj′′)/ log(fj′′/fj′)

c0 =
∑
j αjSjf

β0

j /
∑
j αj

(16)336

where the indices j′ and j′′ refer to the lower and upper limit of the frequency range of337

interest. To find the solution, the minimization procedure needs the definition of the pa-338

rameter space boundaries. For the PL model, we need only the lower and upper limit339

of β. The default interval in our code is 0 < β < 10, but it can be modified by the340

user.341
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When considering discrete finite red noise time series, the simplest statistical pro-342

cess one can assume is the lag-one autoregressive process (AR(1)) represented by xn =343

ρxn−1+wn. The present value of a time series xn depends on the past values xn−1 by344

the degree of serial correlation (the lag-one autocorrelation coefficient 0 ≤ ρ < 1) to-345

gether with some random effect wn (white process with variance σ2). It is representa-346

tive of many geophysical systems (M. E. Mann & Lees, 1996). The autocorrelation of347

a AR(1) process decays exponentially with a characteristic time determined by τ = −∆t/ log(ρ);348

therefore, on time scales longer than τ , it behaves as a white noise process. The corre-349

sponding PSD is given by (M. E. Mann & Lees, 1996; Vaughan et al., 2011):350

Bj(c, ρ) =
c

1− 2ρ cos(πfj/fNy) + ρ2
(17)351

Note that for ρ = 0, (17) reduces to a white process. For the numerical minimization352

procedure, we define the starting values for ρ, using the Yule-Walker equation, and for353

c, using its analytical solution for the log-likelihood minimization, namely:354

ρ0 =
∑N−2
i=0 xixi+1/

∑N−2
i=0 x2

i

c0 =
∑
j αjSj(1− 2ρ0 cos(πfj/fNy) + ρ2

0)/
∑
j αj

(18)355

In our code, the default interval for the lag-one autocorrelation coefficient is 0 < ρ <356

1, but it can be modified by the user.357

A more flexible approach is the adoption of analytical functions able to reproduce358

the general behavior of geophysical PSDs, even though they are not related to a partic-359

ular stochastic process. An example is the bending power law (BPL; McHardy et al., 2004;360

Vaughan et al., 2011) defined as:361

Bj(c, β, γ, fb) =
cf−βj

1 + (fj/fb)
γ−β (19)362

There are four parameters: the constant factor c, the spectral indices β and γ dominat-363

ing respectively the frequency intervals below and above the frequency break fb at which364

the model bends. This model is particularly helpful when analyzing time series of tur-365

bulent systems that exhibit different spectral indices at frequencies below and above a366

frequency break, corresponding to different regimes of the energy cascade. As in the pre-367

vious models, we provide a starting value for the model parameters. We initialize the368

estimate with the frequency break at the center of the interval in analysis, the spectral369

indices as the slopes of the logarithmic PSD at frequencies below and above the frequency370

break, and the constant factor from its analytical solution for the log-likelihood mini-371
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mization, namely:372

fb0 = fj∗ with j∗ ≈ (j′′ − j′)/2

β0 = log(Sj′/Sj∗)/ log(fj∗/fj′)

γ0 = log(Sj∗/Sj′′)/ log(fj′′/fj∗)

c0 =
∑
j αjSjf

β0

j (1 + (fj/fb0)
γ0−β0)/

∑
j αj

(20)373

where the indices j′ and j′′ refer to the lower and upper limit of the frequency range of374

interest. When β > γ > 0, the spectral indices β and γ dominate in the opposite fre-375

quency interval, that is above and below the frequency break, respectively. We can re-376

cover our original definition, with the parameter transformation of β′ = γ, γ′ = β, f ′b =377

fb, and c′ = cfγ−βb . In our code, the default parameter space intervals for the BPL model378

are −5 < β < 10, 0 < γ < 15, and 0 < fb < fNy, but they can be modified by the379

user.380

4.3 Best PSD Background Choosing Criteria381

The combination of the possible smoothing and models creates an array of PSD382

background estimates that in some cases are very similar. Here, using the stochastic prop-383

erties of the adaptive MTM PSD estimates, we introduce three tests providing objec-384

tive criteria to identify the best representation of the PSD background. In the follow-385

ing, Bj indicates a possible PSD background and Sj the raw un-smoothed PSD.386

Based on the likelihood and the number of free parameters, Nθ, of each model, a387

useful method of comparison is the Akaike Information Criterion (AIC; Akaike, 1973).388

AIC = −2 lnL+ 2Nθ (21)389

It corresponds to the sum of the log-likelihood with a penalty value for including more390

free parameters. This is a standard tool in maximum likelihood analysis allowing the com-391

parison of non-nested models (Vaughan, 2005), that is, models in which parameter val-392

ues are not a subset of those of another model. The best PSD background corresponds393

to the model that minimizes the AIC.394

Anderson et al. (1990) defined a fit acceptable when a MERIT value, defined as395

the ratio between the weighted sum of squared errors and the number of degrees of free-396

dom (difference between the number of points and the number of the model free param-397
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eters), was lower than 1. For the adaptive MTM PSD, the MERIT value is398

MERIT =
1

NS −Nθ

∑
j

(Sj − E{Sj})2

var{Sj}
=

1

NS −Nθ

∑
j

αj

(
Sj −Bj
Bj

)2

(22)399

where NS is the number of PSD values considered. We use the adaptive MTM expected400

value and variance (Thomson & Haley, 2014), that are respectively E{Sj} = Bj and401

var{Sj} = B2
j /αj . The MERIT value represents the goodness of fit for least-squares402

problems (Bevington & Robinson, 2003), but in our case, since the distribution of our403

data differs from a Gaussian distribution, it represents only a comparison tool. As with404

the AIC, the lower the MERIT value is, the better the representation is of the PSD405

background.406

A Kolmogorov-Smirnov test can be applied to the ratio between the adaptive MTM407

PSD and the background model (see eq.5). After evaluating DKS , the significance level408

can be approximately estimated by (Press et al., 2007):409

P (D > DKS) = QKS(
√
NSDKS) with QKS(λ) = 2

∞∑
j=1

(−1)j−1e−2j2λ2

(23)410

A confidence level for the fit is defined as CKS = 1−P (D > DKS) so that, in a simi-411

lar way to the previous approaches, the minimum value identifies the best PSD back-412

ground representation. The performance of the three criteria is discussed in section 5.2.413

4.4 Selection of Signals and PSD reshaping.414

Once the PSD background has been identified, we provide four options for signal415

identification. In the first option, we identify every portion of the PSD above a thresh-416

old defined as the product of the PSD background and the value zε obtained by eq. (9)417

at the confidence level ε. We refer to this procedure as the γ test. Among the frequency418

intervals corresponding to the PSD portions passing the γ test, we select only those whose419

width is greater than W , the half-bandwidth of the MTM spectral window. In the MTM420

approach, spurious peaks exhibit a triangular shape, while enhancements due to real pe-421

riodicities show a rectangular shape of width ≈ 2W (Thomson & Haley, 2014). Due to422

the distortion of the enhancement’s shape caused by noise, especially for low signal-to-423

noise ratio, a lower limit of W on the width is more appropriate. No upper limit is im-424

posed in order to include the possibility of broad enhancements related to the occurrence425

of multiple signals at close frequencies (Di Matteo & Villante, 2017) or quasi-periodic426

signals whose frequency varies in time. For each portion of the PSD that passes the test,427
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we identify the central frequency and the half width. In the second option, we provide428

all of the harmonic F test local maxima above the defined confidence level (see section429

2). We combine the results of the two tests in the third option: the selected frequencies430

are the ones identified in the harmonic F test that are within a PSD enhancement pass-431

ing the γ test. Finally, for the last option, we impose the more stringent criterion allow-432

ing only the harmonic F test absolute maximum within each PSD frequency band se-433

lected by the γ test.434

When strong periodic fluctuations, with a signal-to-noise ratio of several units or435

more, occur in the time series, the PSD background level provided by our procedure can436

increase above the true value and/or be distorted. In the case of narrow-band PSD peaks,437

the smoothing step reduces this effect, but better results can be obtained by reshaping438

the PSD (Thomson, 1982; Percival & Walden, 1993). In our code, we implement an op-439

tion to remove from the adaptive PSD estimate the contribution of strong signals iden-440

tified by the combined γ and F tests at a given confidence level. Once these spectral peaks441

are removed, we apply our procedure again starting from this reshaped PSD. In the case442

of strong broadband PSD enhancements, where these expedients are ineffective, we sug-443

gest applying our procedure to a portion of the PSD unaffected by the strong signal to444

recover the global PSD background. Another solution is to implement a new PSD back-445

ground model and/or the inclusion of a proper parameterization of the features of in-446

terest (e.g. power-law-plus-constant combined with a Gaussian component; Inglis et al.,447

2015). This task is relatively simple given the modular structure of our code. In this sce-448

nario, the PSD model will provide information on the PSD background, the parameter-449

ized features, and the possible additional signals.450

5 Examples with Synthetic Data451

We discuss the performance of our procedure using synthetic time series represent-452

ing lag-one autoregressive, power law, and bending power law processes. There are many453

methods to generate synthetic data with a specific PSD shape (Anderson et al., 1990;454

Timmer & Koenig, 1995; Vaughan et al., 2011). We use the approach of Timmer and455

Koenig (1995). Briefly, the square root of half the desired PSD is multiplied for two dif-456

ferent series of Gaussian distributed random numbers. These vectors constitute the real457

and imaginary parts of a complex variable that, when extended with its complex con-458

jugate, retrieve the double-sided Fourier transform of the desired data such that the syn-459
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thetic data are obtained as its inverse Fourier transform. We generate synthetic time se-460

ries in which we vary the N lengths, but we hold ∆t=1s. We set the parameters: i) c=1461

a.u.2Hz−1 and ρ=0.90 for the AR(1); ii) c=1 a.u.2Hzβ−1 and β=1.5 for the power law;462

iii) c=1 a.u.2Hzβ−1, β=1, γ=3, and fb=0.25 Hz for the bending power law. In the fol-463

lowing, the PSD are evaluated using NW=3 and K=5 tapers.464

The following discussion covers common scenarios for time series frequently observed465

in space physics environments, but it is not exhaustive. We note that the choice of the466

analysis parameters such as the time series length, N , the time-half-bandwidth product,467

NW , the number of tapers, K, the width of the smoothing window, and the parame-468

ter space of the models might influence the results. Therefore, we always recommend a469

preliminary investigation on specific sets of measurements to determine the best param-470

eters for a robust spectral analysis.471

5.1 Smoothing472

The primary purpose of the smoothing procedure is to reduce the fluctuations of473

the estimated PSD around the true value in order to recover the shape of the PSD back-474

ground, even when enhancements due to periodic signals may be present. Figure 1 shows475

results of a Monte Carlo simulation of 104 repetitions of time series with N=512 points.476

From the left, each column shows results for the AR(1), PL, and BPL processes. From477

the top we report an example of time series and the average of the raw and the med, mlog,478

bin, and but smoothed PSD (black thick line) with the 90% percentiles bounds (black479

thin lines). The red lines are the true PSD used to generate the synthetic time series.480

The smoothing windows have been identified automatically with the KS test. The dis-481

tribution of the values p are available in the Supporting Information. Each procedure482

provides a different background approximation, primarily due to the different behavior483

at the edges of the frequency interval. Note that, compared to the raw PSD, all the smooth-484

ing procedures significantly reduce the 90% percentiles bounds.485

The average raw PSD shows at low and high frequencies the effect of the convo-486

lution of the spectral window with the true PSD. At low frequencies, it underestimates487

the PSD for an AR(1) process at fj < W . On the other hand, for the PL and BPL pro-488

cesses, the average raw PSD flattens for fj < 2W and results in a spurious peak at fj ≈489

W with respect to the true PSD. In all three processes, the true PSD is underestimated490
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for fj > fNy − 2W . The average med smoothed PSD provides a good representation491

of the PSD except at low frequencies, where it flattens due to the rapid rise of power.492

Therefore, it systematically underestimates the true PSD. The average mlog smoothed493

PSD, on the other hand, follows exactly the raw PSD at lower frequencies and flattens494

at high frequencies. This approach is particularly well-suited for AR(1) processes with495

ρ values that lead to a flattening toward a white noise PSD at high frequencies. In con-496

trast, for PL and BPL processes, the average mlog smoothed PSD overestimates the PSD497

background. The bin smoothed PSD, known to be an unbiased estimator of power law498

PSD (Papadakis & Lawrence, 1993), gives a good representation of the PSD background499

in all three cases. Unfortunately, since the corresponding frequency range is reduced due500

to the binning, the values at low and high frequencies are extrapolated. Unlike the other501

smoothing procedures, the bin smoothed PSD is unaffected by the flattening at low fre-502

quencies, even though it slightly underestimates the PSD for the AR(1) process, and over-503

estimates the PSD for the PL and BPL processes. The average but smoothed PSD is sim-504

ilar to the med one with a better representation of the true PSD at low frequencies for505

the AR(1) process. For the PL and BPL processes, it provides a good representation only506

for high frequencies. Decreasing the percentage of smoothing, that is, increasing the pass507

band of the low pass filter, the but smoothed PSD could give a better representation of508

the PSD at low frequencies, but it would rapidly reduce to the raw PSD.509

5.2 Background Estimate510

Once the raw and/or the smoothed PSDs have been evaluated, the next step is to511

fit the different models with the maximum likelihood method. For each of the three sim-512

ulated cases (AR(1), PL and BPL), Figure 1 shows the average of the PSD backgrounds513

(green dashed lines) estimated from the raw PSD and its four different smoothed ver-514

sions, while the red lines represent the true PSD. All of the PSD background estimation515

techniques provide a good representation of the true PSD for some portion of the fre-516

quency interval, but there are some differences. For the AR(1) process, the true PSD is517

underestimated at low frequencies by the med, bin, and but smoothed PSD, showing a518

clear flattening. At high frequencies, the true PSD is overestimated using the raw PSD519

and underestimated using the mlog, bin, and but smoothed PSD. For the PL case, the520

fits tend to overestimate the true PSD at all frequencies with the exception of the med521

approach, which lies below the true PSD at low frequencies. For the BPL case, instead,522
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the true PSD is underestimated at low frequencies, while it tends to be overestimated523

at mid frequencies near the frequency break. At high frequencies, the true PSD is slightly524

overestimated using the raw PSD and underestimated using the mlog, bin, and but smoothed525

PSD.526

Starting from the same synthetic time series used in Figure 1, in Figure 2 we show527

the distribution of the model parameters estimated via each smoothing+model combi-528

nation. Since there are no signals in the simulated data, we expect the raw PSD to give529

the best results. However, this analysis helps to understand the biases that each smooth-530

ing procedure might introduce. For the AR(1) time series, the raw/AR(1 ) combination531

provides unbiased estimates for both the c and ρ parameters as the length N of the time532

series increases, as expected. The constant factor c, estimated using the smoothed PSDs,533

deviates from the true value as N increases, while the bin and but approaches provide534

a good estimate of the lag-one autocorrelation coefficient. For the PL time series, the535

raw PSD provides good estimates only for the slope β. The mlog, bin, and but smoothed536

PSD correctly estimate the constant factor c. We also note that the spread of the c dis-537

tribution remains almost constant for time series longer than 1024 points. For the BPL538

time series, both the raw/BPL and bin/BPL combinations provide unbiased estimates539

of all the model parameters. In addition, the mlog smoothed PSD determines a good ap-540

proximation of the constant factor c and the slope β. The frequency break fb shows an541

uncertainty of about half of the entire frequency range even at the longest probed time542

series (2048 points). However, the identification of the bending is strictly related to the543

gap between spectral indices. For large gaps, the uncertainty of the frequency break will544

be significantly reduced.545

Finally, we investigated the performance of the AIC, MERIT, and CKS criteria in546

the selection of the PSD background. We report in Table 2 the rate of identification of547

a model by each criteria in the case of AR(1), PL, and BPL processes. Note that the BPL548

model, due to its flexibility, is able to approximate both the AR(1) and PL PSD retain-549

ing a relevant selection rate even in these cases. The MERIT criterion provides the best550

performance in all three of the scenarios with the correct selection rate above ≈57%. In551

addition, it properly excludes PL for AR(1) time series (false positive 0.22%), AR(1) for552

PL time series (false positive 2.53%), and both AR(1) and PL for BPL time series (false553

positive respectively 0.12% and 0.22%). The CKS criterion shows almost uniform rates554

with values between ≈30% and ≈37%. However, the maximum rates occur at the cor-555
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Table 2. Percentage of selection of the AR(1), PL, and BPL model by the the MERIT, CKS,

and AIC criteria given 104 AR(1), PL, or BPL time series of N=512 points. Bold numbers indi-

cate the highest rate in each scenario.

AR(1) PL BPL

Criteria AR(1) PL BPL AR(1) PL BPL AR(1) PL BPL

MERIT 65.55% 0.22% 34.23% 2.53% 57.44% 40.03% 0.12% 0.22% 99.66%

CKS 36.16% 34.59% 29.25% 30.64% 37.38% 31.98% 11.98% 31.70% 56.32%

AIC 0.01% 0.00% 99.99% 0.00% 58.70% 41.30% 0.00% 0.05% 99.95%

rect models, reaching ≈56% for BPL time series. The AIC criterion shows results sim-556

ilar to the MERIT criterion for PL and BPL time series, but it completely excludes the557

AR(1) model. For AR(1) time series, the AIC criterion almost always selects the BPL558

model. Following these considerations, the MERIT criterion is the default in our code,559

while the values of the other criteria are provided.560

5.3 Signal Identification561

The last step is the identification of periodic signals according to the γ test, har-562

monic F test, and their combination. In the following discussion we do not impose con-563

straints on the minimum width of the frequency intervals corresponding to the PSD por-564

tions selected by the γ test. Therefore, the frequency distributions shown here represent565

an upper bound for those obtained from signals identified by the γ test and its combi-566

nation with the F test when imposing a minimum frequency width on PSD enhancements.567

First, we evaluated the performance of our tests on the same synthetic time series568

used in the previous section. We evaluated the occurrence rate of false positives when569

imposing confidence thresholds at the 90% level. Figure 3 shows the distribution of false570

positives for AR(1) (panel a), PL (panel b), and BPL (panel c) time series. Each row571

corresponds to the results obtained using a specific smoothing procedure for the iden-572

tification of the PSD background. For the AR(1) time series, the occurrence of false pos-573

itives identified by the harmonic F test (green lines) is around the 10% level, as expected574

for a 90% confidence threshold, except at the edges of the frequency interval fj < 2W575
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and fj > fNY−2W (limits identified by the red vertical lines) that show higher rates.576

The γ test (blue lines) shows significantly fewer false positives. Unlike the F test, where577

the maximum F value above the confidence level is a single isolated outlier, the MTM578

windowing creates a group of consecutive outliers for periodic signals. For the γ test, we579

assign a single central frequency to this entire group. If we consider the distribution of580

every outlier according to the γ test, we would obtain a level of ≈10%. For comparison,581

we show the 10% level divided by the average width of the PSD enhancements above the582

confidence threshold (horizontal black lines). We found good agreement with the raw,583

mlog, and but approaches except for frequencies below 6W (left black vertical line) and584

above fNY−2W where the occurrence rate decreases. For the med and bin approaches585

the distribution of false positives increases toward lower frequencies with a peak at fj .586

2W . The γ + F test (black lines) and γ + maximum F test (red lines) results are sim-587

ilar, but produce a flatter distribution than the single γ test with the number of false588

positives almost halved. For the PL time series, the distribution of false positives iden-589

tified by the harmonic F test is similar to the AR(1) case with an additional small de-590

crease toward low frequencies in the interval 2W < fj < 6W . The γ test determines591

a peak in the distributions at frequencies lower than 2W for all the approaches. The dis-592

tributions obtained via the raw and mlog smoothed PSD provide good agreements with593

the expected level of false positives for the rest of the frequency interval. For the bin and594

but approaches, the distribution shows a slight increase towards high frequencies, while595

for the med approach, the distribution far exceeds the expected level in the first half of596

the frequency interval. The γ + F test and γ + maximum F test produce flatter distri-597

butions with the absence of the peak at low frequencies, except for the med smoothing598

results. For the BPL, the distribution of false positives identified by the harmonic F test599

is similar to the PL case. The γ test finds a peak in the distributions at frequencies lower600

than 2W, less pronounced for the raw and the mlog approaches. Other than with the601

raw PSD, the distribution of false positives manifests local enhancements between ≈0.2602

and ≈0.4 Hz (0.4–0.8 fNy) via med, ≈0.15 and ≈0.35 Hz (0.3–0.7 fNy) via mlog, above603

≈0.35 Hz (0.7 fNy) via bin, and between ≈0.15 and ≈0.4 Hz (0.3–0.8 fNy) via but. The604

γ + F test and γ + maximum F test distributions exhibit trends similar to the one ob-605

tained with the γ test with half the values. At low frequencies, the peak in the distri-606

bution is retained by the med, bin, and but approaches.607
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We also estimated the rate of identification at the 90% confidence level of a monochro-608

matic signal with frequencies spanning the entire frequency range. Each dot, at a spe-609

cific frequency, in panel d−f of Figure 3, represents the results for 104 repetitions of a610

synthetic time series plus a signal at the corresponding frequency with signal-to-noise611

ratio equal to 0.8. Given the frequency of the signal f0, we considered the ratio of the612

power of a monochromatic signal A2/2, where A is the amplitude of the sinusoid, and613

the noise level, estimated integrating the theoretical PSD generating the time series over614

the interval f0 −W < f < f0 +W . The amplitude of the signal versus frequency fol-615

lows as A(f0) =
√

1.6
∫ f0+W

f0−W PSD(f ′)df ′. The identification rate of true positives by616

the harmonic F test (green dots) is constant at about 80% for all the smoothing approaches617

and models, with the exception of a jump to higher values for f < 2W . The γ test (blue618

dots) determines occurrence rates of ≈35−40% in all scenarios, except for f . 6W where619

we observe a decrease for lower frequencies. Only the but/BPL combination exhibits an620

opposite behavior. The γ + F test (black dots) and γ + maximum F test (red dots), in621

contrast with the analysis of false positives, find higher occurrence rates with respect to622

the single γ test. The reason is that for the latter, the chance of identifying nearby fre-623

quencies is high, with a probability to select f0 − fRay and f0 + fRay of ≈20% each,624

but the PSD enhancement contains the correct frequencies, f0, that are then identified625

by the harmonic F test, which has an almost null rate of false positives at nearby fre-626

quencies (Di Matteo & Villante, 2017). For the AR(1) time series (panel d), the rate of627

true positives is ≈60% for f > 6W and slowly decreases for f < 6W except for the628

results obtained via the med approach, which determines rates of up to 70%. For the PL629

time series (panel e), the identification rate is between 50% and 55% except for f < 2W ,630

where values up to 75% occur, and for the med related results, showing an almost lin-631

ear decrease from 70% to 45%. For the BPL time series, the occurrence rates of true pos-632

itives closely follow the shape of the distribution of false positives (panel c) with values633

ranging between 40% and 65% for f > 2W . Note that the raw PSD and the bin ap-634

proaches provide almost flat distributions.635

The results provide insight into the performance of our method for the types of spec-636

tra commonly observed in geophysical environments. Depending on the circumstances,637

each smoothing+model combination provides good results in specific frequency ranges.638

In addition, we can use the biases quantified with these simulations to make a reason-639

able conclusion about the physics of the actual system.640
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6 Demonstration of the Technique Applied to Observations641

In this section, we apply our approach to a case study using data taken in the so-642

lar wind, magnetosphere and ground observations to demonstrate the performance of our643

methodology. We consider the periodic fluctuations previously identified by Viall et al.644

(2009) in the solar wind proton density and magnetic field measurements at geostation-645

ary orbit on January 15, 1997, extending the analysis to a longer time interval and to646

ground observatories. Viall et al. (2009) showed that the magnetospheric field fluctu-647

ations observed by GOES 9 can be a consequence of the quasi-static modulation of the648

magnetospheric cavity size by the solar wind dynamic pressure in turn related to the so-649

lar wind density variations. However, the frequency of these oscillations are in the same650

range of magnetospheric ULF waves that can be triggered by numerous processes, in-651

cluding solar wind pressure pulses, flow shear instabilities at the magnetopause, and wave-652

particle interactions in the inner magnetosphere. The ability to identify these waves is653

the first step in distinguishing between the different possible formation mechanisms and654

in furthering our understanding of them. Identification of these waves, especially in the655

case of low signal-to-noise ratio, is often affected by the limitation of the adopted spec-656

tral analysis techniques. Here, we show that even though the PSD background in the657

solar wind, magnetosphere, and ground observations exhibit considerably different shapes,658

our technique exhibits great flexibility and is able to provide good background estimates659

and identify a common periodicity among all of the PSDs.660

6.1 Solar Wind661

Periodic structures in the solar wind proton density were observed by the Wind662

spacecraft on January 15, 1997, between 12:40 and 19:10 UT. We used proton density663

data derived from the Wind-Solar Wind Experiment (Ogilvie et al., 1995) measurements.664

The time interval of 6.5 h determines a Rayleigh frequency of fRay ≈43 µHz, while the665

average sampling rate of ∆t ≈ 83 s corresponds to a Nyquist frequency of fNy ≈6 mHz.666

We choose NW = 3 and K = 5 as parameters for the MTM analysis, therefore the667

bandwidth for the spectral window is 2W/∆t ≈0.26 mHz corresponding to the minimum668

separation needed to distinguish two signals with close frequencies. Figure 4a shows the669

proton density observations, np, while Figure 4b shows the corresponding PSD, the γ670

and harmonic F tests. Applying our spectral analysis procedure, the best fit PSD back-671

ground identified (red line) is the bin/PL pair with parameters c ≈0.033 cm−6Hzβ−1
672
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and β ≈1.39. Then, we tested the occurrence of periodic signals at the 90% confidence673

levels (red dashed lines). We placed circles above the PSD enhancements passing the γ674

test and crosses at the frequencies that also passed the harmonic F test within the same675

frequency range. We identified three clear signals passing both tests at ≈0.88, 2.25 and676

3.89 mHz corresponding respectively to ≈19, 7.4 and 4.3 min. An additional periodic-677

ity at f ≈0.17 mHz (≈100 min) was identified only by the γ test. Viall et al. (2009), us-678

ing the M. E. Mann and Lees (1996) approach over part of the same time interval an-679

alyzed here, identified periodic fluctuations passing both the narrow band and the har-680

monic F test at f ≈0.2, 0.8 and 2.8 mHz.681

6.2 Magnetosphere682

The solar wind described in the previous section was measured near L1, and im-683

pacted the magnetosphere ≈ 45 min later, corresponding to the time range from 13:25684

to 19:55 UT. We investigated the magnetospheric response considering the 60 s (fNy ≈8.3 mHz)685

averaged magnetic field components derived from the triaxial fluxgate magnetic field mea-686

surements (Singer et al., 1996) on the GOES 9 geostationary satellite (LT=UT-9) located687

in the dawn-morning sector (between 4:25 and 10:55 LT). The data have been rotated688

in the Mean Field Aligned (MFA) coordinate system at each point along the spacecraft689

trajectory. In MFA coordinates (Takahashi et al., 1990), µ̂ is along the average field, as690

defined by a vector running average; ϕ̂ is perpendicular to µ̂ and the spacecraft position691

vector, positive eastward; ν̂ completes the orthogonal system. To avoid the introduction692

of spurious periodicity due to the rotation procedure, the average magnetic field is eval-693

uated on a running window of 6.5 h (Di Matteo & Villante, 2018). Figure 4c shows the694

three components of the magnetospheric field, while Figure 4d shows the corresponding695

PSDs, the γ and harmonic F tests. The similarity of the compressive component Bµ with696

the solar wind density fluctuations is clear, even though the higher frequencies compo-697

nent seems to be filtered out in the magnetosphere at the GOES 9 location. Next, we698

investigate the occurrence and properties of the magnetospheric field fluctuations with699

our spectral analysis approach. Our method selects the raw/BPL PSD background with700

parameters c ≈0.72 nT2Hzβ−1, β ≈1.17, γ ≈3.57, and fb ≈0.33 mHz for the compres-701

sive component (Bµ), the raw/PL PSD background with parameters c ≈1.05× 10−6 nT2Hzβ−1
702

and β ≈2.31 for the toroidal component (Bϕ), and the raw/BPL PSD background with703

parameters c ≈6.18× 10−3 nT2Hzβ−1, β ≈1.56, γ ≈3.15, and fb ≈0.36 mHz for the704
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poloidal component (Bν). At the 90% confidence level (red dashed lines), we identify PSD705

peaks passing the γ test at f ≈7.56 mHz and 8.16 mHz for Bµ, at f ≈7.65 and 8.12 mHz706

for Bϕ, and at f ≈0.94 and 7.61 mHz for Bν . In addition, both the γ and harmonic F707

tests selected signals at f ≈0.90 mHz in Bµ, at f ≈0.43 mHz in Bϕ, and at f ≈8.25 mHz708

in Bν . Note that the PSDs of both the compressive and poloidal components manifest709

an enhancement at f ≈0.9 mHz (≈20 min) clearly observed also in the solar wind pro-710

ton density. In the toroidal component, the signal at f ≈0.43 mHz, corresponding to os-711

cillations of about ≈39 min, is probably related to the first three oscillations observed712

at the beginning of the time interval (≈26, 32 and 36 min). Similar fluctuations appear713

also in the solar wind proton density (≈26, 40 and 36 min), even though there is no clear714

enhancement in the PSD. In fact, other stronger fluctuations at nearby frequencies dom-715

inate the low frequency range of the solar wind density PSD making it difficult to dis-716

tinguish additional quasi-periodic signals.717

6.3 Ground Observatories718

We extended the analysis to ground magnetic field observations from two stations719

located near the GOES9 magnetic field line footpoint: Yellowknife (YKC, λ = 62.48◦720

and φ = 245.52◦) and Fort McMurray (FMC, λ = 56.66◦ and φ = 248.79◦), where λ721

and φ are the geographic latitude and longitude, respectively. For these examples, we722

used the 60 s data from the SuperMAG collaboration providing the three components723

of the magnetic field in the NEZ coordinate system where BN and BE are directed to-724

ward the locally magnetic north and east, respectively, and BZ is vertically down. We725

analyzed the BN component after the removal of the daily variations and yearly trend726

determined by the Gjerloev (2012) algorithm. Figure 4e shows the magnetic field obser-727

vations from the two stations, while Figure 4f shows the corresponding PSD, the γ and728

harmonic F tests. Applying our procedure, we obtain the raw/BPL PSD background with729

c ≈0.05 nT2Hzβ−1, β ≈1.82, γ ≈9.25, and fb ≈6.64 mHz at YKC, and the raw/PL PSD730

background with c ≈0.02 nT2Hzβ−1 and β ≈1.57 at FMC. As in the previous section,731

we classified the signals identified at the 90% confidence level. At YKC, we observed three732

PSD peaks at f ≈0.86, 4.88 and 5.14 mHz passing both the γ and the harmonic F test.733

The spectral analysis at FMC identified one signal satisfying both the γ and the harmonic734

F test at f ≈0.86 mHz and two signals at f ≈6.04 mHz and 7.84 mHz selected only by735

the γ test. The two ground observatories observed magnetic field oscillations at f ≈0.9 mHz736
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as in the magnetospheric field at geostationary orbit, in turn, driven by the solar wind737

density fluctuations.738

6.4 Additional Remarks739

Viall et al. (2009), using the M. E. Mann and Lees (1996) approach, identified, dur-740

ing part of the same time interval, periodic fluctuations passing both a narrow band and741

harmonic F test, with the 95% confidence level, at f ≈0.2, 0.8 and 2.8 mHz in both the742

solar wind proton density and Bz magnetospheric field component at the geostationary743

orbit. We find similarity with our results at f ≈0.17, 0.89 and 2.26 mHz in the solar wind744

and at f ≈0.9 mHz at the geostationary orbit and in the two ground observatories. The745

time series of Bµ at GOES9 suggests that the longer timescales are directly driven by746

the solar wind density fluctuations. In addition, we note that in the low frequency range747

of the γ statistic, three enhancements centered at f ≈0.2, 0.4 and 0.9 mHz occurred in748

all the observations, but our procedure identified only the strongest component at f ≈0.9 mHz.749

The difficulty in the identification of PSD peaks at nearby frequencies and at the edges750

of the frequency interval are two known limitations of spectral analysis methods. The751

simplest way to overcome these issues is to increase the frequency resolution, either by752

increasing the length of the time interval or decreasing the width of the spectral window753

main lobe (reducing the NW parameter for the MTM). Another alternative is the anal-754

ysis of overlapping time intervals to construct dynamic γ and F tests. While the γ test755

will always show PSD enhancements with a width equal to or greater than 2W, the F756

test might distinguish simultaneous signals at close frequencies, that is |fi−fj | . 2W ,757

depending on the characteristics of the signal itself (Di Matteo & Villante, 2017). The758

occurrence of multiple signals might be revealed by the distribution of the frequencies759

identified with the F test in each patch of the dynamic γ test above the confidence thresh-760

olds. This approach can also be extremely useful when the signal frequency changes in761

time. A possible improvement to our procedure, especially when facing multiple signals,762

is the implementation of the approach developed by Denison et al. (1999), who provide763

an alternative significance test to the simple harmonic F test when facing time series with764

embedded signals at close frequencies. Another alternative is the extension of our ap-765

proach to multivariate spectral analysis (Walden, 2000), simultaneously analyzing the766

time series of interest.767
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7 Discussion768

We presented a new spectral analysis procedure, based on the adaptive MTM method,769

for the robust modeling of the PSD background and identification of signals at discrete770

frequencies. The adaptive MTM was specifically introduced by Thomson (1982) to in-771

vestigate colored PSD when common spectral analysis techniques might suffer from strong772

energy leakage, especially for short time series. One major challenge in the analysis of773

the PSD of space physics time series is their wide range of variability. In general, even774

when the physical process at work in the creation of the PSD is well known, any indi-775

vidual instances may not produce a fully developed PSD of that type, so the flexibility776

provided by our algorithm may still be needed. For example, the PSD spectral slope of777

the solar wind parameters in the inertial range evolves with increasing distance from the778

Sun, steepening from -3/2 to -5/3 for the velocity (Roberts, 2010) and magnetic field (Chen779

et al., 2020), or may tend towards -2 in the presence of discontinuities (Roberts, 2010)780

or anisotropies (Horbury et al., 2012). We use the statistical properties of the adaptive781

MTM to develop a maximum likelihood determination of the PSD background as in Vaughan782

(2010). In addition, we extended the M. E. Mann and Lees (1996) approach, combin-783

ing different smoothing methods (raw, med, mlog, bin, and but) and spectral models (WHT,784

PL, AR(1), BPL). Finally, we defined objective criteria to select the best representation785

of the PSD background and to identify spectral peaks in the PSD and F values at de-786

fined confidence levels.787

We examined the characteristic features of PSD background identification via Monte788

Carlo simulations of synthetic time series representing lag-one autoregressive, power law,789

and bending power law processes. The first step is the smoothing of the raw PSD, use-790

ful when large PSD enhancements due to geophysical periodic signals are present. The791

user can choose from four different raw PSD smoothing approaches, each of which has792

its own advantages and disadvantages for fitting colored PSDs. The med approach sys-793

tematically underestimate steep PSD at low frequencies on an interval comparable to794

the width of the running window. However, it might give a better representation of the795

PSD background when strong clear peaks occur at very low frequencies. The mlog ap-796

proach, instead, reproduces the raw PSD at low frequencies, while at high frequencies,797

due to the running window covering a large portion of the frequency interval, returns al-798

most constant values. This behavior is optimal for a AR(1) process, when the PSD flat-799

tens at high frequencies, but is not well suited for very steep PSD where it will overes-800
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timate the PSD background. The bin approach defines the smoothed PSD on a limited801

range of frequencies, therefore the PSD background at the edge of the frequency inter-802

val is extrapolated. However, this procedure provides a good representation of the PSD803

background in all three processes studied. The but approach provides results similar to804

med but with better estimates in the low frequency range.805

When we fit the different models to the smoothed PSDs, we obtain a good repre-806

sentation of the true PSD for the majority of the smoothing+model combinations in the807

interval 2W < fj < fNy − 2W . In absence of signals, the use of the raw PSD ensures808

good results in all of the scenarios, as expected. In the examples with synthetic time se-809

ries, we show that for steep PSDs, especially for power law processes, the low frequen-810

cies portion, which is not well represented even by the raw PSD for fj < 2W , plays a811

critical role in the identification of a reliable background model. This is mainly a con-812

cern for short time series that might have few points in the low frequency range. For bend-813

ing power laws, additional complications might arise when the frequency break is too close814

to the edges of the frequency interval or when the two spectral indices are similar; in these815

scenarios the BPL can be easily mistaken for a PL. Therefore, a necessary condition for816

the BPL is to have enough points in each of the two frequency intervals that exhibit dif-817

ferent spectral slopes. Both problems might be resolved by considering time series long818

enough to ensure adequate coverage for both regimes of the PSD. When there is a lack819

of information about the properties of the background model, our technique allows for820

the smoothing+model combinations to be calculated and the best representation selected821

according to objective statistical criteria. This is particularly helpful when PSD enhance-822

ments due to periodic fluctuations are present.823

Using synthetic time series we found that fitting the chosen model to the raw PSD824

provided the best results, except for a constant factor offset for PL time series. For the825

AR(1) process, ρ is best estimated with bin and but ; for the PL process c can be esti-826

mated with mlog, bin, and but, and β with mlog and bin. For the BPL process c and β827

are best estimated with mlog and bin, while γ and fb via bin. Overall, among the smoothed828

PSD, we obtain the best performance with the bin approach followed in order by the mlog,829

but, and med approaches.830

Regarding the identification of periodic signals, the distribution of false positives831

estimated with the Monte Carlo simulations agrees with the expected rate over the fre-832
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quency interval 6W < fj < fNy − 2W . In particular, we find that, in this frequency833

range, the identification rates of true signals are flat for the raw PSD, as expected. In834

addition, we obtain flat distributions via the mlog, bin, and but approaches for AR(1)835

and PL time series, and via the bin approach for BPL time series. Outside this inter-836

val, the false positive rate can significantly differ from this expected rate, and care should837

be taken when testing in this range.838

We demonstrated our technique by analyzing observations of solar wind proton den-839

sity, magnetospheric field at geostationary orbit, and magnetic field at two ground sta-840

tions. We considered a previously studied time interval during which the solar wind den-841

sity directly drove compressional fluctuations in the magnetospheric field at geostation-842

ary orbit and the magnetic northward component at ground observatories (Viall et al.,843

2009). The best PSD background representation identified by our procedure corresponded844

to a power law for Wind measurements of np, Bϕ at GOES 9, and for BN at FMC, and845

a bending power law for Bµ and Bν at GOES 9; and BN at YKC. AR(1) was not found846

to provide the best fit background model for any of the data. This demonstrates the need847

for utilizing different models for a correct evaluation of the PSD background, especially848

in cases like the YKC observatory where only the BPL provided reasonable results.849

8 Conclusions850

We have developed an automated method for identifying both the background and851

significant enhancements of PSDs. We start with the adaptive MTM, a sophisticated non-852

parametric spectral analysis tool suitable for the analysis of colored PSD. The knowl-853

edge of the statistical properties of the PSD allows a robust maximum likelihood fitting854

of four models on the raw PSD and four smoothed PSDs. The best representation of the855

PSD background, selected via a robust statistical criterion, determines the confidence856

thresholds used to identify statistically significant PSD enhancements and, when com-857

bined with the harmonic F test, robustly identifies the frequency of the periodic oscil-858

lations occurring in the time series.859

The Monte Carlo simulations of synthetic time series demonstrates how different860

combinations of smoothings and models influence the determination of the PSD back-861

ground, and hence the confidence levels of the PSD enhancements. Our method is not862

meant to be a black box to be applied to any time series, but rather a useful tool pro-863
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viding different paths from which a user can choose the best combinations for the data864

being analyzed. The Monte Carlo simulations of synthetic time series show clearly that865

not all paths provide good results. We highlight that a preliminary analysis on the data866

of interest is the best practice to assure a robust application of our method. For the spe-867

cific case analyzed in our simulations, we can conclude that the recommended smooth-868

ing are bin and but for AR(1) time series, mlog and bin for PL time series, and bin for869

BPL time series. Note that the other smoothing approaches provide good results in a870

narrower frequency range. We also demonstrated the inherent flexibility of our method871

by applying the analysis to real measurements in three different geophysical environments872

for the same event.873

The approach developed here can be extended to a broad range of disciplines that874

need to distinguish between continuous PSD and discrete PSD enhancements. Such ap-875

plications range from analyzing time-series for statistically significant periodicities to ro-876

bustly characterizing the PSD background. The present work also lays the foundation877

of a Bayesian approach for estimating the posterior distribution of the PSD model pa-878

rameters using the MTM PSD. The modular structure of our methodology allows the879

introduction of new smoothing methods and models to cover additional types of time880

series. The flexibility and extensibility of the technique makes it broadly suitable to any881

discipline. Generally speaking, this technique provides a good representation of the PSD882

background thanks to the different smoothing+model pairs covering more scenarios than883

previous spectral analysis methods. When combined with an independent harmonic anal-884

ysis, this allows the robust identification of PSD enhancements related to monochromatic885

fluctuations occurring in the time series.886
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Principle. (B. N. Petrov & F. Csáki, Eds.). Budapest: Akademiai Kiado.899

Anderson, E. R., Duvall, T. L. J., & Jefferies, S. M. (1990). Modeling of solar os-900

cillation power spectra. Astrophysical Journal , 364 , 699-705. doi: 10.1086/901

169452902

Bevington, P. R., & Robinson, D. K. (2003). Data reduction and error analysis for903

the physical sciences (3rd ed.). Boston, MA: McGraw-Hill. doi: 1969drea.book.904

....B905

Bruno, R., & Carbone, V. (2013). The Solar Wind as a Turbulence Laboratory. Liv-906

ing Reviews in Solar Physics, 10 (1), 2. doi: 10.12942/lrsp-2013-2907

Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding908

AIC and BIC in Model Selection. Sociological Methods & Research, 33 (2), 261-909

304. doi: 10.1177/0049124104268644910

Chen, C. H. K., Bale, S. D., Bonnell, J. W., Borovikov, D., Bowen, T. A., Burgess,911

D., . . . Whittlesey, P. (2020, feb). The Evolution and Role of Solar Wind912

Turbulence in the Inner Heliosphere. The Astrophysical Journal Supplement913

Series, 246 (2), 53. doi: 10.3847/1538-4365/ab60a3914

Claudepierre, S. G., Mann, I. R., Takahashi, K., Fennell, J. F., Hudson, M. K.,915

Blake, J. B., . . . Wygant, J. R. (2013). Van Allen Probes observation of916

localized drift resonance between poloidal mode ultra-low frequency waves917

and 60 kev electrons. Geophysical Research Letters, 40 (17), 4491-4497. doi:918

10.1002/grl.50901919

DeForest, C. E., Howard, R. A., Velli, M., Viall, N., & Vourlidas, A. (2018). The920

Highly Structured Outer Solar Corona. The Astrophysical Journal , 862 (1), 18.921

doi: 10.3847/1538-4357/aac8e3922

Denison, D. G. T., Walden, A. T., Balogh, A., & Forsyth, R. J. (1999). Multita-923

per testing of spectral lines and the detection of the solar rotation frequency924

and its harmonics. Journal of the Royal Statistical Society: Series C (Applied925

Statistics), 48 (4), 427-439. doi: 10.1111/1467-9876.00163926

–31–



manuscript submitted to JGR: Space Physics

Di Matteo, S., Viall, N. M., & Kepko, L. (2020). SPD MTM: a spectral analysis tool927

for the SPEDAS framework. Retrieved from https://zenodo.org/record/928

3703168 doi: 10.5281/zenodo.3703168929

Di Matteo, S., Viall, N. M., Kepko, L., Wallace, S., Arge, C. N., & MacNeice, P.930

(2019). Helios Observations of Quasiperiodic Density Structures in the Slow931

Solar Wind at 0.3, 0.4, and 0.6 AU. Journal of Geophysical Research: Space932

Physics, 124 (2), 837-860. doi: 10.1029/2018JA026182933

Di Matteo, S., & Villante, U. (2017). The identification of solar wind waves934

at discrete frequencies and the role of the spectral analysis techniques.935

Journal of Geophysical Research: Space Physics, 122 (5), 4905-4920. doi:936

10.1002/2017JA023936937

Di Matteo, S., & Villante, U. (2018). The Identification of Waves at Discrete938

Frequencies at the Geostationary Orbit: The Role of the Data Analysis939

Techniques and the Comparison With Solar Wind Observations. Jour-940

nal of Geophysical Research: Space Physics, 123 (3), 1953-1968. doi:941

10.1002/2017JA024922942

Ghil, M. (1997). The SSA-MTM Toolkit: applications to analysis and prediction of943

time series. In B. Bosacchi, J. C. Bezdek, & D. B. Fogel (Eds.), Applications of944

soft computing (Vol. 3165, pp. 216 – 230). SPIE. doi: 10.1117/12.279594945

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E.,946

. . . Yiou, P. (2002). Advanced Spectral Methods for Climatic Time Series.947

Reviews of Geophysics, 40 (1), 3-1-3-41. doi: 10.1029/2000RG000092948

Gjerloev, J. W. (2012). The SuperMAG data processing technique. Journal of Geo-949

physical Research: Space Physics, 117 (A9). doi: 10.1029/2012JA017683950

Horbury, T. S., Wicks, R. T., & Chen, C. H. K. (2012). Anisotropy in Space Plasma951

Turbulence: Solar Wind Observations. Space Science Reviews, 172 , 325-342.952

doi: 10.1007/s11214-011-9821-9953

Inglis, A. R., Ireland, J., Dennis, B. R., Hayes, L., & Gallagher, P. (2016). A large-954

scale search for evidence of quasi-periodic pulsations in solar flares. The Astro-955

physical Journal , 833 (2), 284. doi: 10.3847/1538-4357/833/2/284956

Inglis, A. R., Ireland, J., & Dominique, M. (2015). Quasi-periodic pulsations in957

solar and stellar flares: re-evaluating their nature in the context of power-958

law flare fourier spectra. The Astrophysical Journal , 798 (2), 108. doi:959

–32–



manuscript submitted to JGR: Space Physics

10.1088/0004-637x/798/2/108960

Kantz, H., & Schreiber, T. (2003). Nonlinear Time Series Analysis (2nd ed.). Cam-961

bridge: Cambridge University Press. doi: 10.1017/CBO9780511755798.020962

Kelly, B. C., Becker, A. C., Sobolewska, M., Siemiginowska, A., & Uttley, P. (2014).963

Flexible and Scalable Methods for Quantifying Stochastic Variability in the964

Era of Massive Time-Domain Astronomical Data Sets. The Astrophysical965

Journal , 788 (1), 33. doi: 10.1088/0004-637x/788/1/33966

Kepko, L., Viall, N. M., Antiochos, S. K., Lepri, S. T., Kasper, J. C., & Weberg,967

M. (2016). Implications of L1 observations for slow solar wind formation968

by solar reconnection. Geophysical Research Letters, 43 (9), 4089-4097. doi:969

10.1002/2016GL068607970

Kepko, L., Viall, N. M., & Wolfinger, K. (2020). Inherent Length Scales of Periodic971

Mesoscale Density Structures in the Solar Wind Over Two Solar Cycles. Jour-972

nal of Geophysical Research: Space Physics, 125 (8), e2020JA028037. doi: 10973

.1029/2020JA028037974

Kolmogorov, A. (1941). The Local Structure of Turbulence in Incompressible975

Viscous Fluid for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR976

Doklady , 30 , 301-305.977

Mann, I. R., Lee, E. A., Claudepierre, S. G., Fennell, J. F., Degeling, A., Rae, I. J.,978

. . . Honary, F. (2013). Discovery of the action of a geophysical synchrotron in979

the Earths Van Allen radiation belts. Nature Communications, 4 (2795). doi:980

10.1038/ncomms3795981

Mann, M. E., & Lees, J. M. (1996). Robust estimation of background noise and sig-982

nal detection in climatic time series. Climatic Change, 33 (3), 409–445. doi: 10983

.1007/BF00142586984

McHardy, I. M., Papadakis, I. E., Uttley, P., Page, M. J., & Mason, K. O. (2004).985

Combined long and short time-scale X-ray variability of NGC 4051 with986

RXTE and XMM–Newton. Monthly Notices of the Royal Astronomical So-987

ciety , 348 (3), 783-801. doi: 10.1111/j.1365-2966.2004.07376.x988

Murphy, K. R., Inglis, A. R., Sibeck, D. G., Rae, I. J., Watt, C. E. J., Silveira, M.,989

. . . Nakamura, R. (2018). Determining the Mode, Frequency, and Azimuthal990

Wave Number of ULF Waves During a HSS and Moderate Geomagnetic991

Storm. Journal of Geophysical Research: Space Physics, 123 (8), 6457-6477.992

–33–



manuscript submitted to JGR: Space Physics

doi: 10.1029/2017JA024877993

Murphy, K. R., Inglis, A. R., Sibeck, D. G., Watt, C. E. J., & Rae, I. J. (2020).994

Inner Magnetospheric ULF Waves: the Occurrence and Distribution of Broad-995

band and Discrete Wave Activity. Journal of Geophysical Research: Space996

Physics, 125 (n/a), e2020JA027887. doi: 10.1029/2020JA027887997

Nakariakov, V. M., & Melnikov, V. F. (2009). Quasi-Periodic Pulsations in Solar998

Flares. Space Science Reviews, 149 (1), 119–151. doi: 10.1007/s11214-009-9536999

-31000

Nita, G. M., Fleishman, G. D., Gary, D. E., Marin, W., & Boone, K. (2014).1001

Fitting FFT-derived spectra: theory, tool, and application to solar ra-1002

dio spike decomposition. The Astrophysical Journal , 789 (2), 152. doi:1003

10.1088/0004-637x/789/2/1521004

Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Keller, J., Lo-1005

bell, J., . . . Gergin, E. (1995). SWE, a comprehensive plasma instru-1006

ment for the Wind spacecraft. Space Science Reviews, 71 (1), 55–77. doi:1007

10.1007/BF007513261008

Ozeke, L. G., Mann, I. R., Turner, D. L., Murphy, K. R., Degeling, A. W., Rae,1009

I. J., & Milling, D. K. (2014). Modeling cross L shell impacts of magnetopause1010

shadowing and ULF wave radial diffusion in the Van Allen belts. Geophysical1011

Research Letters, 41 (19), 6556-6562. doi: 10.1002/2014GL0607871012

Papadakis, I. E., & Lawrence, A. (1993). Improved methods for power spectrum1013

modelling of red noise. Monthly Notices of the Royal Astronomical Society ,1014

261 (3), 612-624. doi: 10.1093/mnras/261.3.6121015

Percival, D. B., & Walden, A. T. (1993). Spectral Analysis for Physical Applications.1016

Cambridge, UK: Cambridge University Press. doi: 1993sapa.book.....P1017

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numeri-1018

cal recipes in C: the art of scientific computing (3rd ed.). New York, NY, USA:1019

Cambridge University Press.1020

Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A.1021

(2002). Statistics, Handle with Care: Detecting Multiple Model Components1022

with the Likelihood Ratio Test. The Astrophysical Journal , 571 (1), 545-559.1023

doi: 10.1086/3398561024

Roberts, D. A. (2010). Evolution of the spectrum of solar wind velocity fluctuations1025

–34–



manuscript submitted to JGR: Space Physics

from 0.3 to 5 au. Journal of Geophysical Research: Space Physics, 115 (A12).1026

doi: 10.1029/2009JA0151201027

Rouillard, A. P., Sheeley, N. R., Cooper, T. J., Davies, J. A., Lavraud, B., Kilpua,1028

E. K. J., . . . Sauvaud, J.-A. (2011). The solar origin of small interplanetary1029

transients. The Astrophysical Journal , 734 (1), 7. doi: 10.1088/0004-637x/734/1030

1/71031

Samson, J. C. (1983). Pure states, polarized waves, and principal components in the1032

spectra of multiple, geophysical time-series. Geophysical Journal International ,1033

72 (3), 647-664. doi: 10.1111/j.1365-246X.1983.tb02825.x1034

Sanchez-Diaz, E., Rouillard, A. P., Davies, J. A., Lavraud, B., Pinto, R. F., &1035

Kilpua, E. (2017). The Temporal and Spatial Scales of Density Structures1036

Released in the Slow Solar Wind During Solar Activity Maximum. The Astro-1037

physical Journal , 851 (1), 32. doi: 10.3847/1538-4357/aa98e21038

Sheeley, N. R., Wang, Y.-M., Hawley, S. H., Brueckner, G. E., Dere, K. P., Howard,1039

R. A., . . . Biesecker, D. A. (1997). Measurements of Flow Speeds in the1040

Corona Between 2 and 30 R�. The Astrophysical Journal , 484 (1), 472–478.1041

doi: 10.1086/3043381042

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Lon-1043

don: Chapman & Hall.1044

Singer, H., Matheson, L., Grubb, R., Newman, A., & Bouwer, D. (1996). Monitoring1045

space weather with the GOES magnetometers. In E. R. Washwell (Ed.), Goes-1046

8 and beyond (Vol. 2812, pp. 299 – 308). SPIE. doi: 10.1117/12.2540771047

Slepian, D. (1978). Prolate spheroidal wave functions, Fourier analysis, and uncer-1048

tainty V: the discrete case. The Bell System Technical Journal , 57 (5), 1371-1049

1430. doi: 10.1002/j.1538-7305.1978.tb02104.x1050

Stella, L., Arlandi, E., Tagliaferri, G., & Israel, G. L. (1994). Continuum power1051

spectrum components in X-ray sources: detailed modeling and search for co-1052

herent periodicities. Milano Series in Astrophysics, Proceeding in International1053

Conference on Applications of Time Series Analysis in Astronomy and Meteo-1054

rology(136), 10. doi: arXiv:astro-ph/94110501055

Takahashi, K., McEntire, R. W., Lui, A. T. Y., & Potemra, T. A. (1990). Ion flux1056

oscillations associated with a radially polarized transverse Pc 5 magnetic pul-1057

sation. Journal of Geophysical Research: Space Physics, 95 (A4), 3717-3731.1058

–35–



manuscript submitted to JGR: Space Physics

doi: 10.1029/JA095iA04p037171059

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of1060

the IEEE , 70 (9), 1055-1096. doi: 10.1109/PROC.1982.124331061

Thomson, D. J., & Haley, C. L. (2014). Spacing and shape of random peaks in non-1062

parametric spectrum estimates. Proceedings of the Royal Society A: Mathemat-1063

ical, Physical and Engineering Sciences, 470 (2167), 20140101. doi: 10.1098/1064

rspa.2014.01011065

Timmer, J., & Koenig, M. (1995). On generating power law noise. Astronomy & As-1066

trophysics, 300 , 707. doi: 1995A&A...300..707T1067

Tsurutani, B. T., Lakhina, G. S., Sen, A., Hellinger, P., Glassmeier, K.-H., &1068

Mannucci, A. J. (2018). A Review of Alfvènic Turbulence in High-Speed1069
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Figure 1. The effect of the smoothing procedures on the PSD estimated from 104 repetitions

of a) AR(1), b) PL, and c) BPL time series. Each column shows an example time series, the

average PSD (black thick line) bounded by the 5% and 95% percentiles at each frequency (black

thin lines) for the raw PSD and the med, mlog, bin, and but smoothed PSD. The red lines show

the true PSD used to generate the synthetic time series. The green dashed line is the average of

the corresponding model fitted to each PSD representation. The red (blue) vertical lines corre-

spond to the width (half-width) of the main lobe of the MTM spectral window (2W ≈0.012 Hz),

from the limits of the frequency interval.
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a) AR(1): c=1 a.u., ρ=0.8 b) PL: c=1 a.u., β=1.5

c) BPL: c=1 a.u., β=1, γ=3, f
b
=0.25 Hz

Figure 2. Distribution of the model parameters estimated from each smoothing+model com-

bination for 104 repetitions of a) AR(1), b) PL, anc c) BPL time series. Each box represents the

interquartile range while the horizontal line inside indicates the median value. The whiskers iden-

tify the 5% and 95% percentiles of the distribution. The horizontal red lines indicate the values

of the model parameters used to generate the synthetic time series.
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Figure 3. Distribution of the false positives identified at the 90% confidence level according to

the γ test (blue lines), harmonic F test (green lines), γ plus F test (black lines), and γ plus max-

imum F test (red lines) for each combination of smoothing plus the AR(1) (panel a), PL (panel

b), and BPL (panel c) model. The horizontal black lines represent the 10% level divided by the

average width of the PSD enhancements above the threshold according to the γ test. Panels d–f

show the identification rate at the correct frequencies of a monochromatic signal with signal-

to-noise ratio equal to 0.8 and frequencies spanning the entire frequency range. The red (black)

vertical lines correspond to the width (three times the width) of the main lobe of the multitaper

spectral window, that is 2W≈0.012 Hz (6W≈0.035 Hz), from the limits of the frequency interval.
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Figure 4. Spectral analysis of the solar wind proton density at Wind (top panels), magneto-

spheric field components in MFA coordinates at GOES 9 (middle panels), and north component

of the geomagnetic field at YKC and FMC observed on January 15, 1997. Panels a, c, and e

show the time series; panels b, d, f the raw PSD (black line) compared with the best representa-

tion of the PSD background (red line), their ratio γ and the harmonic F values. The red circles

(crosses) identify the frequencies passing the γ (γ + F) test at the 90% confidence level (red

dashed lines).
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Figure S1. The distributions of the p parameter for each smoothing approach applied on 104

PSDs of AR(1), PL, and BPL time series of length N . For the med, mlog, and bin approaches,

p determines the width of the running window; for the but approach, p defines the low pass

band of the Butterworth filter. Each box represents the interquartile range, while the horizontal

line inside indicates the median value. The whiskers identify the 5% and 95% percentiles of the

distribution.
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