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Abstract

Classification of ground points is a critical step in producing digital elevation models of the Earth’s surface for studying

landscape processes and geomorphic or ecological change. This paper describes a new algorithm for ground point classification

and assesses the relative accuracy of the resulting ground surface in filtered light detection and ranging (lidar) and structure-

from-motion (SFM) datasets. This color-enhanced multiscale curvature classification algorithm (MCCRGB) extends a popular

lidar classification method (MCC) by introducing classification updates that distinguish vegetation and ground points by color.

Multispectral lidar and SFM data imaging a subalpine volcanic tree kill are used to evaluate both methods. We find that color-

based classification updates remove tree fall, low canopy, and brush, often requiring fewer iterations on large, ultra-high-density

datasets. SFM data capture rills, small channels, and tree fall not visible in the lidar data. “Bare-earth” datasets from each

method are internally consistent (mean vertical differences: -0.01 to 0.08 m) and validation at a set of 165 checkpoints shows a

mean vertical difference of 0.46 m (standard deviation: 2.21 m) with the SFM ground points. The methods produce consistent

topographic derivatives from each data source, including digital elevation models, slope, and profile curvature. While SFM

derivatives are more variable and less continuous, the filtered products may be useful for geomorphic mapping and analysis,

including mapping of microtopography or measuring landscape change in challenging, forested settings.
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Table S1: Ground control points used in photogrammetric survey of HSL. Coordinate system: NAD83 / UTM Zone 11N, GRS80 ellipsoidal height.

GCP name Northing (m) Easting (m) Registered elevation 
(m)

Surveyed elevation 
of GPS antenna (m)

Vertical translation 
(m)

Horizontal precision 
(m)

BLACK 321878.2 4165156.3 2714.5 2713.6 0.8 0.2
BLUE 321805.5 4164996.7 2705.9 2705.1 0.8 0.2
CYAN 321584.9 4164644.2 2717.3 2716.0 1.3 0.3
FOREST 321562.3 4164785.4 2718.2 2717.1 1.1 0.2
LAVENDER 321618.2 4165035.5 2730.0 2729.8 0.2 0.4
LIME 321427.5 4164583.7 2737.2 2738.1 -0.9 0.4
ORANGE 321429.2 4164720.7 2739.2 2740.6 -1.3 0.4
PINK 321447.3 4164909.4 2747.8 2746.5 1.3 0.4
WHITE 321972.6 4165013.1 2703.0 2704.9 -1.9 0.2

Table S3: Default parameters of MCC-RGB.

Parameter Value Values Tested Description

n_components 100 100, 250, 500, 1000 Number of approximate radial basis function components
gamma 0.01 0.001, 0.01, 0.1, 1 Shape parameter of radial basis function kernel. Also denoted $\lambda$.
alpha 0.001 0.00001, 0.0001, 0.001, 0.01 Margin regularization parameter of support vector machine classifier. (Also denoted C.)

2
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Key   points  
 

● Machine   learning   using   point   colors   improves   iterative   methods   for   lidar   ground   point  
classification  
 

● Low   vegetation   is   successfully   filtered   in   lidar   and   structure-from-motion   (SFM)   data   of  
forested   landscapes,   exposing   topography  
 

● Elevation,   slope,   and   curvature   can   be   derived   from   filtered   SFM   data   with   more  
landscape   detail,   but   less   continuity,   than   bare   earth   lidar  
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Abstract  

 

Classification   of   ground   points   is   a   critical   step   in   producing   digital   elevation   models   of   the  

Earth’s   surface   for   studying   landscape   processes   and   geomorphic   or   ecological   change.   This  

paper   describes   a   new   algorithm   for   ground   point   classification   and   assesses   the   relative  

accuracy   of   the   resulting   ground   surface   in   filtered   light   detection   and   ranging   (lidar)   and  

structure-from-motion   (SFM)   datasets.   This   color-enhanced   multiscale   curvature   classification  

algorithm   (MCCRGB)   extends   a   popular   lidar   classification   method   (MCC)   by   introducing  

classification   updates   that   distinguish   vegetation   and   ground   points   by   color.   Multispectral   lidar  

and   SFM   data   imaging   a   subalpine   volcanic   tree   kill   are   used   to   evaluate   both   methods.   We   find  

that   color-based   classification   updates   remove   tree   fall,   low   canopy,   and   brush,   often   requiring  

fewer   iterations   on   large,   ultra-high-density   datasets.   SFM   data   capture   rills,   small   channels,  

and   tree   fall   not   visible   in   the   lidar   data.    “Bare-earth”   datasets   from   each   method   are   internally  

consistent   (mean   vertical   differences:   -0.01   to   0.08   m)   and   validation   at   a   set   of   165   checkpoints  

shows   a   mean   vertical   difference   of   0.46   m   (standard   deviation:   2.21   m)   with   the   SFM   ground  

points.   The   methods   produce   consistent   topographic   derivatives   from   each   data   source,  

including   digital   elevation   models,   slope,   and   profile   curvature.   While   SFM   derivatives   are   more  

variable   and   less   continuous,   the   filtered   products   may   be   useful   for   geomorphic   mapping   and  

analysis,   including   mapping   of   microtopography   or   measuring   landscape   change   in   challenging,  

forested   settings.  

 

1   Introduction  

 

Bare   earth   lidar   data   have   transformed   geomorphic   and   tectonic   research   over   the   last   two  

decades   by   providing   a   high-resolution   (<   1-m   pixel),   high-accuracy   (<   20   cm)   depiction   of  

Earth’s   surface   (Roering   et   al.,   1999;   Dietrich   et   al.,   2003;   Perron   et   al.,   2009;   Zielke   et   al.,  

2010;   Kirby   and   Whipple,   2012;   Perron   and   Royden,   2013;   Johnstone   and   Hilley,   2015;  

Passalacqua   et   al.,   2015;   St   Clair,   Moon,   et   al.,   2015)   and   changes   in   Earth’s   surface   over   time  

(Nissen   et   al.,   2012;   Scott   et   al.,   2019;   Diedrichs   et   al.,   2019;   DiBiase   and   Lamb,   2020).   Recent  

advances   in   unmanned   aerial   vehicle   (UAV)   navigation   and   computer   vision   methods   promise   to  

image   Earth’s   surface   at   even   higher   resolution   at   lower   cost.   However,   the   photogrammetric  

methods   that   underpin   these   point   clouds   do   not   penetrate   above-ground   features   as   do   lidar  

laser   pulses,   which   limits   the   use   of   photogrammetric   point   clouds   in   geomorphic   and   ecological  
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applications.   Nonetheless,   bare   ground   may   be   visible   in   these   photogrammetric   point   clouds,  

and   so   point-classification   algorithms   that   discriminate   these   bare-ground   points   from   overlying  

vegetation   would   greatly   increase   the   utility   of   these   data   for   geomorphic   and   tectonic  

applications.  

 

The   general   need   to   classify   ground   and   vegetation   points   in   both   lidar   and   photogrammetric  

point   clouds   has   motivated   the   development   of   iterative   algorithms   using   curvature   or  

morphological   filtering   to   separate   ground   and   non-ground   points   based   on   their   relative   height  

(Haugerud   and   Harding,   2001;   Zhang   et   al.,   2003;   Evans   and   Hudak,   2007).   More   recently,   the  

popular   CANUPO   algorithm   combined   multi-scale   geometric   features   such   as   local   planarity  

with   semi-supervised   classification   based   on   user-defined   class   boundaries   for   multi-class   point  

classification   (e.g.,   bare   rock,   river   gravels,   vegetation)   (Brodu   and   Lague,   2012).   Other   recent  

work   has   incorporated   color   or   multispectral   information   into   classification   (Ekhtari   et   al.,   2018;  

Tan   et   al.,   2018).   In   geomorphology   and   ecology,   these   methods   are   used   to   differentiate   tree  

crowns   and   canopy   from   smoothly-varying   topography   in   lidar   data,   which   often   contains  

multiple   returns   where   laser   pulses   penetrate   vegetation.   Classified   points   are   used   to  

interpolate   bare   earth   representations   of   topography.   Misclassification   of   low   vegetation   and  

vegetation   on   slopes   are   common   failure   modes   of   iterative   methods   where   vegetation   height   is  

similar   to   natural   topographic   variability   (Montealegre   et   al.,   2015).   This   can   complicate  

geomorphic   analysis   by   introducing   non-topographic   roughness   into   bare-earth   digital   elevation  

models   (DEMs).  

 

The   proliferation   of   photogrammetric   point   clouds   from   new   modalities   requires   automated  

filtering   methods   that   scale   to   the   very   high   point   densities   of   these   datasets   and   accurately  

classify   the   low   vegetation   they   image.   Structure-from-motion   (SFM)   datasets   are   frequently  

used   in   studies   of   fine-scale   topography   in   geomorphology   (Westoby   et   al.,   2012;   Bemis   et   al.,  

2014;   Johnson   et   al.,   2014).   Many   studies   of   topographic   change   use   pre-   and   post-event   lidar  

data   ( e.g. ,   Nissen   et   al.,   2012;   Scott   et   al.,   2019;   Diederichs   et   al.,   2019;   DiBiase   and   Lamb,  

2020),   and   recent   work   has   used   repeat   SFM   surveys   to   measure   coastal   erosion   (James   and  

Robson,   2012;   Cook   and   Dietze,   2019)   and   landslide   deformation   (Carey   et   al.,   2019;   Pickering  

et   al.,   2019).   As   UAVs   and   other   photogrammetric   platforms   ( e.g. ,   satellite   stereo   imaging)   are  

applied   to   more   challenging   settings,   delineating   the   ground   surface   in   the   presence   of  
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vegetation   may   become   an   important   prerequisite   to   mapping   microtopography   or   measuring  

landscape   change.  

 

While   software   such   as   ENVI   Lidar   and   Terrascan   include   proprietary   filtering   algorithms,  

open-source   alternatives   provide   widely   available   and   reproducible   methods   for   producing  

useful   derivatives   from   point   cloud   data.   This   work   provides   an   automated   open-source   and  

scalable   method   of   classifying   photogrammetric   point   clouds,   by   building   on   an   established  

ground   classification   method,   multiscale   curvature   classification   (MCC;   Evans   and   Hudak,   2007)  

to   exploit   color   attributes   of   photogrammetric   data.   We   validate   the   accuracy   of   the   new   method,  

called   MCCRGB,   on   a   false   color,   multispectral   lidar   point   cloud   and   an   SFM   point   cloud   of  

Horseshoe   Lake,   a   subalpine   evergreen   forest   and   tree   kill   area   at   Mammoth   Mountain,  

California,   USA.   Classification   results   are   compared   to   independent   classification   of   ground  

points   performed   by   the   lidar   vendor.   We   find   that   the   new   method   requires   fewer   iterations   than  

MCC   filtering   and   reclassifies   many   low   non-ground   points   that   are   difficult   to   filter   using   only  

relative   height.  

 

We   assess   the   relative   accuracy   of   the   ground   points   from   each   method.   To   ensure   that   the  

datasets   could   be   vertically   compared,   SFM   point   clouds   were   constructed   with   ground   control  

points   registered   to   the   vendor-classified   lidar   ground   surface.   Filtered   ground   point   clouds   are  

vertically   consistent,   with   sub-meter   vertical   differences   between   lidar   and   SFM   that   are   similar  

to   reported   differences   in   previous   work   that   compares   SFM   to   ground-based   lidar   scanning  

(Westoby   et   al.,   2012;   James   et   al.,   2017).   Results   are   also   evaluated   at   a   set   of   ground  

checkpoints   surveyed   with   moderate   horizontal   precision   (~0.48   m).   While   the   vertical   precision  

of   these   checkpoints   is   poor   and   the   corresponding   vertical   differences   are   large   (mean:  

0.45-0.46   m   for   both   methods),   we   find   that   MCC   and   MCCRGB   produce   ground   point   clouds  

with   sub-meter   vertical   differences   when   checkpoints   are   vertically   registered   to   the   lidar   ground  

surface.   

 

To   evaluate   the   utility   of   filtered   data   for   geomorphic   mapping   and   analysis,   bare   earth   DEMs  

were   produced   from   the   ground   points   for   each   method   and   data   source.   The   SFM   DEMs  

capture   much   of   the   topographic   detail   of   the   lidar   DEMs,   and   include   rills,   boulders,   small  

channels,   and   tree   fall   not   visible   in   the   bare   earth   lidar.   Derivatives   such   as   slope   and   profile  

curvature   from   each   data   source   are   also   consistent   (RMSEs   of   0.01   and   0.001   m -1 ).   Flow  
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paths   and   accumulation   areas   were   determined   by   routing   flow   over   each   DEM.   The   lidar   and  

SFM   flow   paths   are   similar   in   plan   form   but   differences   in   tributary   flow   and   junction   position  

lead   to   discrepancies   in   accumulation   area   up   to   20%   along   the   largest   channel   in   the   area.  

Finally,   SFM   DEMs   have   data   gaps   where   no   ground   points   are   available,   and   we   find   larger  

discrepancies   between   elevation,   slope,   and   curvature   in   low-point-density   areas.   Where   point  

density   is   reasonably   high,   our   results   suggest   that   MCCRGB   can   efficiently   produce  

ground-only   point   clouds   and   derivatives   suitable   for   analyzing   fine-scale   topography.   Classified  

data   from   SFM   and   other   modalities   will   likely   enable   new   discoveries   in   geomorphology,   much  

as   bare   earth   lidar   data   continues   to   advance   our   understanding   of   the   earth’s   surface.  

 

2   Methods  

 

2.1   MCC  

 

The   MCC   method   and   related   techniques   iteratively   discard   non-ground   points   based   on   their  

relative   height   above   an   interpolated   surface   (Haugerud   and   Harding,   2001;   Evans   and   Hudak,  

2007).   The   algorithm   requires   two   parameters,   a   scale   domain   ( )   and   curvature   tolerance   ( ;  

hereafter   referred   to   as   “height   tolerance”).   The   scale   domain   determines   the   resolution   of   the  

interpolated   surface   at   each   iteration   and   the   height   tolerance   defines   the   relative   height   cutoff  

for   non-ground   points.   In   its   original   implementation,   MCC   iterates   over   three   scale   domains   of  

  and     using   a   default   height   tolerance   of     m.  

 

At   each   iteration,   a   candidate   ground   surface   is   interpolated   and   points   exceeding   a   height  

tolerance   are   classified   as   high,   non-ground   points.   All   remaining   points   are   not   classified.   The  

non-ground   points   are   discarded   and   the   procedure   is   repeated   until   a   stopping   condition   is  

reached.   The   algorithm   continues   to   the   next   scale   domain,   interpolating   a   comparison   surface  

and   discarding   non-ground   points   until   it   converges   to   a   final   set   of   points   that   are   classified   as  

ground.   The   reader   is   referred   to   Evans   and   Hudak,   2007   for   a   detailed   description.  

 

2.2   MCCRGB  

 

Each   iteration   of   the   MCCRGB   algorithm   is   divided   into   two   stages:   MCC   classification   and   an  

update   step   (Figure   1).   First,   a   relative-height-based   classification   is   performed   for   a   chosen  

https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=c%0
https://www.codecogs.com/eqnedit.php?latex=0.5s%2C%20s%2C%0
https://www.codecogs.com/eqnedit.php?latex=1.5s%0
https://www.codecogs.com/eqnedit.php?latex=c%20%3D%200.3%0
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scale   domain   as   in   an   iteration   of   MCC.   In   the   update   step,   a   support   vector   machine   (SVM)  

classifier   is   trained   using   color   attributes   with   the   current   ground/non-ground   classification   as  

training   labels.   Then,   each   ground   point’s   class   is   predicted   by   the   classifier   and   re-assigned   to  

the   non-ground   class   if   they   are   classified   as   non-ground   by   the   SVM.   The   remaining   ground  

points   are   retained   and   the   procedure   is   repeated   for   the   current   scale   domain   until   a  

convergence   criterion   is   met.   The   algorithm   repeats   this   procedure   through   the   remaining   scale  

domains.  

 

The   default   behavior   of   MCCRGB   is   to   perform   the   classification   update   only   for   the   first   scale  

domain,   but   classification   updates   can   be   performed   at   any   user-defined   scales   and   height  

tolerances.   These   are   intended   to   capture   the   vegetation   points   in   a   given   height   range;   for  

example,   the   suggested   MCC   tolerance   would   yield   a   classifier   trained   on   non-ground   points  

above   0.3   m   of   relative   height.   Additional   height   ranges   could   be   specified   to   classify   vegetation  

points   below   this   height   tolerance   ( e.g. ,   lower   trees   or   bushes).  

 

The   features   used   by   the   SVM   classifier   are   derived   from   point   color   attributes   and   do   not  

incorporate   spatial   information   or   relative   height.   A   color   index,   the   normalized   green-red  

difference   index   (NGRDVI),   is   calculated   as   

 

                                                                                                 (1)  

 

Large   positive   values   of   NGRDVI   emphasize   green   points,   similar   to   the   normalized   difference  

vegetation   index   (NDVI)   and   other   indices   derived   from   multispectral   or   optical   imagery   (Tucker,  

1979;   Tan   et   al.,   2018).   The   8-bit   input     colors   are   transformed   into   a   CIE-Lab   color  

space   of     values   to   capture   perceptual   color   contrasts.     (lightness)   varies   from   0  

(black)   to   100   (white),     from   -128   (green)   to   128   (red),   and     from   -128   (blue)   to   128   (yellow).  

This   transformation   uses   the    rgb2lab    function   of   scikit-image   with   default   illuminant   D65   and  

observer   aperture   angle   of     (van   der   Walt   et   al.,   2014).  

 

To   reduce   the   effects   of   shadowing,   the   lightness   is   ignored,   and   each   point   has   a  

corresponding   feature   vector  

 

https://www.codecogs.com/eqnedit.php?latex=NGRDVI%20%3D%20%5Cfrac%7BGreen%20-%20Red%7D%7BGreen%20%2B%20Red%7D%0
https://www.codecogs.com/eqnedit.php?latex=(R%2C%20G%2C%20B)%0
https://www.codecogs.com/eqnedit.php?latex=(L%2C%20a%2C%20b)%0
https://www.codecogs.com/eqnedit.php?latex=L%0
https://www.codecogs.com/eqnedit.php?latex=a%0
https://www.codecogs.com/eqnedit.php?latex=b%0
https://www.codecogs.com/eqnedit.php?latex=2%5E%5Ccirc%0
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                                                                                                          (2)  

 

In   order   to   delineate   a   non-linear   class   boundary,   these   feature   vectors   are   transformed   to   a  

high-dimensional   feature   space   using   an   approximation   to   a   radial   basis   function   kernel   (RBF)  

before   training   the   SVM   (Rahimi   and   Recht,   2008;   2009).   The   same   transformation   is   applied   in  

the   prediction   step.   Point   labels   are   assigned   as   ,   or   ground,   if   the   point   falls   below   the  

height   tolerance   at   the   current   scale,   and   0,   or   non-ground,   otherwise.   The   classification   update  

step   modifies   only   the   labels   of   ground   points,   changing   the   value   from   1   to   0   if   they   are  

predicted   to   be   in   the   non-ground   class   based   on   their   color   features.   The   values   of   the   radial  

parameter     of   the   kernel,   the   dimensionality   of   the   transformed   features,   and   the   regularization  

parameter     of   the   SVM   were   selected   using   inspection   of   site   SW   data   (Figure   2)   classified  

using   different   parameter   combinations,   as   SFM   point   labels   were   not   available   for  

cross-validation   (Table   S3).   

 

The   classification   problem   of   the   MCCRGB   update   step   is   to   distinguish   vegetation   points   from  

a   poorly-defined   set   of   putative   ground   points   as   defined   by   the   intermediate   point   labels.   This   is  

a   semi-supervised   classification   problem   or   outlier   detection   problem,   as   opposed   to   supervised  

binary   classification,   which   requires   well-defined   ground/non-ground   classes   and   a   large   set   of  

labelled   points.   In   contrast   to   CANUPO,   which   is   also   a   semi-supervised   method,   MCCRGB  

does   not   require   users   to   provide   labeled   points   for   training.   However,   it   is   restricted   to   a   limited  

number   of   vegetation   classes,   while   CANUPO   can   classify   multiple   texturally   distinct   point  

classes,   which   is   especially   useful   for   terrestrial   laser   scanning   data   (Brodu   and   Lague,   2012;  

Lague   et   al.,   2013).  

 

2.3   Validation  

 

We   assessed   elevation   accuracy   with   a   point-to-point   comparison   using   both   field-surveyed  

checkpoints   and   randomly   selected   vendor   ground   points   (Table   1).   The   elevation   of   each  

checkpoint   and   its   nearest   horizontal   neighbor   in   the   target   dataset   were   compared.   The  

nearest   neighbor   search   was   performed   by   indexing   the     positions   of   the   target   dataset   in  

a   two-dimensional   tree   and   querying   this   tree   for   the   checkpoint’s   nearest   neighbor.   Randomly  

selected   lidar   points   classified   as   ground   by   the   vendor   were   also   used   for   validation,   chosen   in  

https://www.codecogs.com/eqnedit.php?latex=x_i%20%3D%20%5B%20a_i%2C%20b_i%2C%20NGRDVI_i%20%5D%5E%5Ctop%0
https://www.codecogs.com/eqnedit.php?latex=y_i%20%3D%201%0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma%0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%0
https://www.codecogs.com/eqnedit.php?latex=(x%2C%20y)%0
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areas   of   at   least   10   SFM   points   m -2    (Figure   S7),   with   vertical   differences   calculated   in   the   same  

way.   

 

2.4   Topographic   derivatives  

 

Digital   elevation   models   (DEMs)   were   produced   from   ground-only   point   clouds   at   1   m   resolution  

by   inverse   distance   weighted   interpolation   using   vendor   and   MCCRGB   classifications   (PDAL  

Contributors,   2018).   Topographic   slope   was   calculated   using   the   second   order   centered   finite  

difference   method   (Zevenberge   and   Thorne,   1987)   and   local   profile   curvature   was   calculated   in  

the   direction   of   maximum   gradient   using   a   second-degree   polynomial   fit   to   elevations   in   a   5   m  

square   window   (Wood,   1996).  

 

For   channel   network   analysis,   these   products   were   void-filled   with   the   priority   flood   algorithm  

(Barnes   et   al.,   2014).   Flow   directions   and   accumulation   (watershed)   areas   were   calculated  

using   the   D8   algorithm   (O’Callaghan   and   Mark,   1984).   In   order   to   compare   accumulation   area  

magnitudes,   the   lidar   DEM   was   clipped   to   the   extent   of   the   SFM   DEM   prior   to   flow   routing.   We  

report   “partial”   areas   from   accumulating   flow   over   the   small   SFM   survey   area   (0.67   km 2 ),   not  

the   full   lidar   survey   area   (9.1   km 2 ).   A   channel   network   was   extracted   from   each   DEM   by  

applying   a   partial   area   threshold   of   30   m 2    (Figure   S9).   

 

The   distance   between   flow   paths   from   each   DEM   was   measured   by   a   local   pixel-to-pixel   search.  

For   each   source   pixel   in   the   SFM   DEM,   a   corresponding   target   pixel   was   identified   in   the   lidar  

DEM   in   a   20   x   20   m   square   window.   The   target   pixel   was   selected   as   the   pixel   having   the  

smallest   difference   in   accumulation   area   with   the   source   pixel.   The   local   difference   between  

channel   networks   was   calculated   as   the     distance   between   source   and   target   pixels.   This   is  

intended   to   capture   the   adjustment   required   to   match   flow   paths   in   the   SFM   DEM   to   those   in   the  

lidar   DEM.  

 

3   Data  

 

3.1   Study   site  

 

https://www.codecogs.com/eqnedit.php?latex=%5Cell_2%0
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Horseshoe   Lake   (HSL,   Figure   2)   is   a   subalpine   lake   south   of   Mammoth   Mountain,   California  

where   diffusive   release   of   carbon   dioxide   (CO 2 )   has   created   a   volcanic   tree   kill.   Coniferous  

trees   and   tree   fall   comprise   the   majority   of   vegetation   in   the   area.   The   area   has   been   subject   to  

monitoring   of   atmospheric   and   soil   CO 2    flux   surveys   by   the   USGS/California   Volcano  

Observatory   since   1993   following   the   formation   of   tree   kills   during   seismic   unrest   in   1989   (Sorey  

et   al.,   1998;   Werner   et   al.,   2014;   Lewicki   et   al.,   2019).   This   uses   a   network   of   179   flux  

measurement   stations;   165   of   these   are   used   as   checkpoints   in   this   study.   The   tree   kill   area   is  

approximately   0.5   km 2    (Farrar   et   al.,   1999)   with   elevations   between   2730   and   2800   m.   Slopes  

range   from   flat,   bare   ground   near   Horseshoe   Lake   to   slope   greater   than   25°   on   the   northern   and  

western   areas   of   the   tree   kill.   The   topography   includes   the   steep   south   flank   of   Mammoth  

Mountain,   moderate   gravel-   and   sand-covered   slopes   of   the   central   tree   kill,   and  

intermittently-active   channels   and   rills   draining   into   Horseshoe   Lake.  

 

3.2   Datasets  

 

3.2.1   Lidar   data  

 

A   multispectral   lidar   dataset   was   collected   in   an   airborne   survey   of   HSL   by   the   National   Center  

for   Airborne   Laser   Mapping   (NCALM)   on   September   22,   2018   (Figure   2a).   The   survey   used   an  

Optech   Titan   multispectral   lidar   system   operating   three   lasers,   two   at   shortwave   infrared  

wavelengths   of   1550   nm   (channel   1)   and   1064   nm   (channel   2),   and   one   green   laser   with   a  

wavelength   of   532   nm   (channel   3).   Datasets   were   delivered   in   Universal   Transverse   Mercator  

projected   coordinates   (NAD83(2011)   /   UTM   Zone   11   N)   with   ellipsoidal   elevations   (GRS80).  

Point   classification   was   performed   by   NCALM   with   Terrascan   followed   by   manual   verification  

and   cleaning   of   ground   points   (hereafter   referred   to   as   “vendor   ground   points”).   The   reported  

accuracy   is   0.023   m   root-mean-square   error   (RMSE)   relative   to   survey   ground   control   points  

(GCPs).   The   point   cloud   consists   of   three   scan   lines,   one   for   each   channel,   imaging   the   9.4   km 2  

survey   area   with   an   average   point   density   of   8.57   points   m -2    (NCALM,   2019).   

 

3.2.2   SFM   data  

 

An   unmanned   aerial   vehicle   survey   of   HSL   was   conducted   in   October   2019   comprising   841  

nadir   and   oblique   photographs   acquired   to   mitigate   doming   error   (James   and   Robson,   2014).  



Confidential   manuscript   submitted   to    Journal   of   Geophysical   Research:   Earth   Surface  
 

285

290

295

300

305

310

Color   point   clouds   were   derived   from   each   survey   by   SFM   photogrammetry   using   Agisoft  

Metashape   software   (Agisoft,   2019).   The   HSL   survey   area   included   nine   GCPs   surveyed   using  

a   Trimble   ProXH   Global   Positioning   System   (GPS)   receiver,   which   provides   sub-meter   accuracy  

(<0.30   m)   via   differential   GPS.   The   average   GCP   horizontal   (vertical)   precision   was   0.38   m  

(0.43   m)   following   correction   against   Continuously   Operating   Reference   Station   data   from  

reference   station   P630   (Table   S1).   A   set   of   165   GPS   checkpoints   was   surveyed   by   the   same  

procedure   in   November   2019   with   an   average   horizontal   (vertical)   precision   of   0.48   m   (0.76   m)  

(Table   S2).   While   no   major   topographic   change   occurred   during   the   year   between   lidar   and   SFM  

acquisitions,   a   hazardous   fuels   reduction   project   began   in   2019,   resulting   in   tree   clearing  

throughout   the   survey   area   and   excavation   at   the   borrow   pit   (BP,   Figure   2c).  

 

3.2.3   Data   processing  

 

The   datasets   were   augmented   before   analysis.   First,   the   raw   lidar   data   were   reprocessed   into  

false-color   point   clouds.   Each   lidar   point   in   the   channel   1   scan   lines   was   assigned   a   color   value  

by   a   nearest   neighbor   search.   The   intensities   from   the   closest   two   channel   2   and   3   returns   were  

assigned   to   each   point   in   the   channel   1   scan   lines,   and   the   16-bit   intensity   values   were   rescaled  

to   8-bit   color   depth.  

 

Additionally,   the   GCPs   were   vertically   referenced   to   the   vendor-defined   lidar   ground   surface.  

The   nearest   neighbor   of   each   point   was   determined   using   the   horizontal   coordinates   of   the  

surveyed   points   and   lidar   points,   and   each   GCP   was   vertically   translated   to   the   elevation   of   the  

nearest   lidar   ground   point   as   defined   by   the   vendor   classification.   The   translations   varied   from  

-1.9   m   to   1.3   m   (Table   S1).   This   registration   was   performed   to   mitigate   the   effect   of   relatively   low  

vertical   accuracy   of   GCPs   and   enable   relative   accuracy   assessment   between   SFM   and   lidar  

data.   

 

4   Results  

 

4.1   Point   classification  

 

Three   sites   at   HSL   were   selected   to   test   point   cloud   filtering:   two   tree   kill   sites   capturing   live,  

transitional,   and   dead   tree   cover   (site   SW)   and   a   forested   slope   (site   NW),   and   the   borrow   pit  
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(site   BP)   to   the   northeast   of   the   tree   kill   (Figure   2).   They   contain   46,792   lidar   points   (4,067,195  

SFM),   238,933   (20,902,531)   points,   and   62,487   (2,873,948)   points.  

 

Both   lidar   and   SFM   datasets   were   processed   with   the   MCC   method   with   a   scale   domain   of   1   m  

and   height   tolerances   of   0.3   m   and   0.03   m.   A   comparison   of   MCCRGB   with   baseline   MCC  

classification   using   a   height   tolerance   of   0.3   m   is   shown   in   Figures   3   and   4.   The   MCC   method  

removes   the   majority   of   live   and   dead   standing   trees   and   HSL   sites   SW   (Figures   3c   and   4c)   and  

NW   (Figures   S1c   and   S2c).   Tree   fall   and   vegetative   cover   imaged   in   the   SFM   data   are   classified  

as   ground   points   by   MCC   at   site   SW   (Figure   3b   and   c)   and   a   small   bush   is   misclassified   as  

ground   at   site   NW   (Figure   S2c).   A   small   number   of   points   were   reclassified   at  

sparsely-vegetated   site   BP   (Figures   S3   and   S4).   Over   the   entire   tree   kill   area,   green   lower  

canopy   and   tree   fall   was   removed   by   MCCRGB   but   classified   as   ground   by   MCC   (Figure   5).  

Finally,   testing   (not   shown)   indicated   that   both   methods   are   more   sensitive   to   height   tolerance  

than   interpolation   scale,   with   tolerances   0.01   m   and   less   resulting   in   misclassification   of  

topography,   with   patches   in   flat   areas   and   contour   artifacts   on   sloping   terrain.  

 

4.2   Ground   surface   accuracy   assessment  

 

Ground   point   clouds   were   validated   against   checkpoints   and   lidar   point   elevations   (Table   1).   The  

mean   and   median   vertical   errors   at   the   checkpoints   are   similar   for   each   method   and   dataset,  

ranging   from   0.35   m   (MCCRGB   applied   to   lidar)   to   0.46   m   (MCC   and   MCCRGB   applied   to   SFM  

data)   with   higher   standard   deviations   and   RMSEs   of   2.08   m   to   2.26   m.   The   minimum   and  

maximum   checkpoint   errors   are   also   similar,   with   a   range   of   -15.72   m   to   8.24   m,   likely   due   to  

low   GPS   vertical   accuracy.   Only   a   small   number   of   outlier   points   have   high-magnitude   vertical  

errors   against   the   surveyed   checkpoint   elevations   (Figure   S6a-d),   primarily   near   the   edge   of   the  

survey   area.   These   points   are   on   steep   slopes   and   under   tree   canopy,   conditions   that   degrade  

the   accuracy   of   the   GPS   positions.  

 

Comparison   with   vendor   ground   points   yields   smaller   average   vertical   errors   because   these  

points   are   vertically   consistent   with   both   the   lidar   and   SFM   data.   Both   methods   yield   low   mean  

errors   (-0.01   m   to   0.06   m)   and   vertical   RMSE   (0.07   m   to   0.63   m)   on   each   dataset   compared   to  

vendor   ground   points.   The   minimum   and   maximum   errors   are   larger   for   the   SFM   data   (~-1   to   8  

m)   than   for   the   lidar   data   (~-1   to   0.6   m)   in   each   case.   Inspection   of   the   point   clouds   shows   that  
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this   reflects   topographic   and   ecological   change   at   the   tree   kill   between   2018   (lidar)   and   2019  

(SFM).   The   vertical   differences   at   the   locations   of   the   checkpoints   are   also   relatively   small,   with  

the   largest   differences   near   the   tree   kill   boundary   (Figure   S6f-h).   Over   the   entire   survey   area,  

cloud-to-cloud   distances   between   the   vendor   ground   points   and   MCCRGB   SFM   ground   points  

are   within   1   m   (Figure   S8).   In   all   SFM-lidar   comparisons,   tree   clearing   and   excavation   created  

vertical   changes   in   excess   of   1   m   (Figure   S6a-d;   Figure   S8b).  

 

4.3   Slope   and   curvature  

 

The   lidar   and   MCCRGB   SFM   DEMs   both   capture   the   distribution   of   slope   and   curvature   at   HSL  

(Figure   6).   The   SFM   slope   field   is   rougher   than   lidar   slope   in   the   western   section   of   the   tree   kill;  

there,   fallen   trees   are   apparent   in   the   SFM   dataset,   but   not   the   lower-density   lidar   data   (Figure  

6b).   The   steepest   slopes   occur   to   the   north   of   BP   on   the   southern   flank   of   Mammoth   Mountain.  

The   SFM   slope   field   is   variable   on   that   forested   slope   due   to   data   gaps   not   present   in   the   lidar  

DEM,   which   is   interpolated   from   ground   returns   in   the   area.   Overall,   the   two   slope   fields   are  

consistent   with   high   variability;   the   residual   RMSE   is   0.011   and   standard   deviation   is   0.103  

(Table   2).   The   lidar-derived   profile   curvature   field   is   more   continuous   and   less   variable   than   the  

SFM   equivalent   (Figure   6c-d).   The   SFM   curvature   field   has   large   gaps   due   to   the   5   m   window  

used   for   the   curvature   calculation.   However,   the   two   curvature   fields   are   consistent   with   an  

overall   residual   RMSE   of   0.001   and   standard   deviation   of   0.036   (Table   2).  

 

4.4   Accumulation   area  

 

The   HSL   survey   area   contains   three   channels,   one   of   which   attains   accumulation   areas   greater  

than   1   km 2    over   its   catchment   in   the   full   lidar   survey   area.   This   channel   is   similar   in   plan   view  

and   accumulation   area   in   both   DEMs   (Figure   7).   The   lidar-   and   SFM-derived   channels   are  

within   seven   meters   of   each   other   along   the   flow   path   (Figure   7d)   and   differ   by   up   to   1000   m 2    in  

partial   accumulation   area   (Figure   7c,   e).   Near   the   head   of   this   channel   in   the   survey   area,   the  

accumulation   areas   differ   by   a   small   amount.   Flow   routing   discrepancies   result   in   less   flow  

accumulation   in   the   lower   part   of   the   channel   in   the   SFM   dataset   beyond   250   m   of   channel  

length   as   less   flow   is   delivered   from   the   northern   slope   (Figure   7e).   However,   this   difference   is   a  

relatively   small   proportion   of   total   accumulation   area   at   this   position   (Figure   7f).   Finally,   the   flow  
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paths   diverge   in   the   low-relief   borrow   pit   area,   resulting   in   different   channel   outlets   in   the   two  

datasets   (Figure   7a,   b).   

 

5   Discussion  

 
5.1   Point   classification  
 
5.1.1   Removal   of   multiple   returns  

 

Intermediate   returns   are   discarded   aggressively   by   the   classification   updates   of   MCCRGB  

(Figure   8).   Whereas   MCC   gradually   removes   intermediate   and   first   returns   with   each   iteration,  

MCCRGB   reclassified   24,851   ground   points   as   non-ground   in   a   single   update   step   at   site   SW  

(iteration   0,   Figure   8b).   This   led   to   a   total   of   88,528   non-ground   points   being   discarded   following  

the   update,   a   41%   increase   over   the   initial   non-ground   points   classified   by   MCC,   which   removed  

only   60,204   points   out   of   238,933   points   in   the   lidar   point   cloud   (Figure   8a).   As   a   result,  

MCCRGB   required   only   eight   iterations   in   this   case   and   subsequent   MCC   spline   interpolations  

were   slightly   more   efficient,   using   fewer   points   for   nearest-neighbor   averaging.   Finally,   the  

similarity   between   the   MCC   and   MCCRGB   results   suggests   that   the   new   method   quickly  

discards   many   points   that   would   eventually   be   classified   as   non-ground   by   MCC.  

 

5.1.2   Which   points   are   reclassified   by   color?  

 

Recent   work   on   point   classification   of   SFM   data   for   geomorphic   applications   has   focused   on  

specifying   a   difference   index   cutoff   value   for   vegetation   points   (Tan   et   al.,   2018).   By   contrast,   the  

MCCRGB   method   imposes   no   minimum   NGRDVI.   Instead,   the   classifier   is   sensitive   to   the  

distinctive   greenness   of   the   non-ground   training   examples,   reclassifying   points   with   higher  

NGRDVI   values   (Figure   9).   The   classification   approach   removes   the   need   to   specify   an  

NGRDVI   cutoff,   which   may   be   useful   at   sites   where   there   is   not   a   multimodal   distribution   of  

NGRDVI,   as   discussed   in   Tan   et   al.,   2018.   However,   in   areas   with   built   structures   or   less   color  

contrast,   the   use   of   a   color-based   classifier   may   be   inappropriate   and   a   morphological   filter  

could   yield   better   results   ( e.g. ,   Zhang   et   al.,   2003).  

 

5.2   Topographic   derivatives  
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Real   topography   and   data   artifacts   contribute   to   slope   and   curvature   variability.   Small-scale  

features   like   rills,   boulders,   and   fallen   trees   are   better   represented   in   high   density   SFM   data,   but  

SFM   cannot   image   many   points   below   tree   canopy   or   other   cover.   Consequently,   the   mean   and  

range   of   slope   and   curvature   differences   between   SFM   and   lidar   DEMs   is   higher   in  

low-point-density   areas   (Figure   10).   Many   of   these   are   data   gaps   and   areas   where   ground   is  

obscured   by   canopy   in   the   SFM   data.   Lidar   derivatives   are   less   variable   in   these   areas   because  

ground   returns   are   available.   However,   the   lower   point   density   and   resolution   of   lidar   products  

may   fail   to   capture   fine-scale   topography   even   where   the   ground   is   imaged.   Roughness   and  

data   gaps   also   contribute   to   small   differences   in   flow   routing   that   yield   moderate   differences   in  

accumulation   when   aggregated   along   a   channel’s   length   (Figure   7).  

 

6   Conclusions   and   future   work  

 

6.1   Applications   in   geomorphology  

 

Bare   earth   lidar   data   have   underpinned   many   new   research   directions   and   discoveries   in  

geomorphology   over   the   past   two   decades.   In   terms   of   critical   measurements,   geomorphic  

mapping   with   lidar   has   quantified   the   slip   history   of   major   faults,   including   segments   of   the   San  

Andreas   Fault   (Zielke   et   al.,   2010).   Lidar   has   also   enabled   fundamental   advances   in  

geomorphology   by   providing   elevation   data   at   scales   relevant   to   geomorphic   processes  

(Dietrich   et   al.,   2003).   These   include   the   study   of   nonlinear   hillslope   creep   (Roering   et   al.,   1999),  

lithologic   influences   on   hillslope   creep   (Johnstone   and   Hilley,   2015),   the   characteristic   spacing  

of   ridges   and   valleys   (Perron   et   al.,   2009),   topographic   stresses   in   the   critical   zone   (St   Clair,  

Moon,   et   al.,   2015),   and   many   applications   of   the   stream-power   equation   in   fluvial  

geomorphology   (e.g.,   Kirby   and   Whipple,   2012;   Perron   and   Royden,   2013).   Finally,   lidar  

differencing   has   recently   revealed   hazards-related   landscape   change,   including   near-fault   and  

anelastic   earthquake   deformation   (Scott   et   al.,   2019;   Diedrichs   et   al.,   2019)   and   debris   flows  

following   wildfires   associated   with   dry   sediment   loading   (DiBiase   and   Lamb,   2020).   Classified  

photogrammetric   data   have   the   potential   to   drive   discoveries   in   geomorphology   in   a   similar   way.   

 

Classified   SFM   data   may   be   useful   in   many   key   areas.   They   enable   measurements   of  

microtopography,   such   as   rilling,   deposit   or   bed   roughness   at   boulder   to   cobble   scales,   and  
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small   scale   variations   in   slope   that   affect   near-surface   fluid   and   gas   transport.   Results   of   this  

study   also   suggest   that   these   data   could   be   used   in   larger-scale   fluvial   geomorphology,  

including   channel   extraction,   slope-area   analysis,   or   steepness/chi   analysis,   if   the   survey  

captures   an   entire   catchment.   Change   detection   around   tree   cover   is   another   intriguing  

application.   While   many   studies   have   focused   on   large-scale   deformation,   classified   SFM   data  

could   be   used   to   measure   change   in   challenging   settings,   such   as   small   earthquake   surface  

ruptures,   coseismic   cracking,   and   debris   flows   or   accelerated   erosion   in   forested   catchment  

areas   upstream   of   fire   scars.   Most   significantly,   UAV-based   surveys   are   inexpensive   and   rapidly  

deployed,   and   so   abrupt   landscape   change   might   be   captured   under   a   broader   range   of  

circumstances   than   airborne   lidar   surveys.   Finally,   the   resolution   of   space-based   optical   imaging  

platforms   has   increased   over   the   last   decade.    As   the   resolution   of   these   images   increases,  

point   clouds   derived   from   these   coarser-resolution   data   might   be   classified   using   MCCRGB   in   a  

similar   way   to   SFM   point   clouds,   which   might   allow   sparse   (>   1-m   spacing)   point   clouds   to   be  

derived   over   large,   moderately   vegetated   areas   from   space.   

 

6.2   Conclusions  
 

Point   color   and   other   spectral   characteristics   provide   important   information   for   point  

classification.   We   developed   a   machine   learning   method   that   exploits   the   color   of   vegetation  

points   to   refine   iterative,   curvature-based   point   classification.   Testing   on   co-located   multispectral  

lidar   and   structure-from-motion   datasets   shows   that   the   ground   surfaces   produced   by   this  

method   and   standard   multiscale   curvature   classification   are   consistent.   Furthermore,   color  

classification   updates   remove   low   vegetation   and   intermediate   returns   that   can   challenge  

height-based   classification   in   sloping   or   complex   terrain.   Finally,   we   found   that   both   methods  

produce   consistent   estimates   of   topographic   slope,   curvature,   and   accumulation   area,   although  

SFM   derivatives   are   more   variable.   Both   MCC   and   MCCRGB   produce   data   gaps   in   SFM   data  

where   the   ground   is   occluded   by   vegetation.   However,   if   point   density   is   high,   MCCRGB   can   be  

a   more   efficient   method   for   filtering   large   datasets.   Color-based   classification   could   enable   a  

wide   range   of   geomorphic   studies   that   were   previously   limited   to   arid   environments   or   areas  

imaged   by   lidar   by   filtering   novel   drone   and   satellite   datasets.  
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Figure   1.   MCCRGB   method.   Purple   steps   show   the   MCC   algorithm.   Green   steps   are   MCCRGB  

reclassification   of   ground   points.   SVM:   Support   vector   machine.  
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Figure   2.   Horseshoe   Lake   tree   kill.   a)   Map   with   extent   of   panels   b-c   (dashed   black   line),   lidar  

dataset   (solid   black   line),   and   Long   Valley   Caldera   (LVC;   dashed   red   line),   b)   Bare   earth   shaded  

relief   map   with   SFM   survey   area   (dashed   red   line),   ground   control   points   (red   squares),   and  

checkpoints   (black   circles).   c)   Satellite   image   showing   differences   in   tree   cover   between   test  

sites   (red   polygons).   Lidar   acquired   9/22/2018,   imagery   acquired   7/26/2016,   copyright   2019  

Google,   DigitalGlobe.   NAD83/UTM   Zone   11   N.   NW:   Northwest   treekill,   SW:   Southwest   treekill,  

BP:   Borrow   pit.  
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Figure   3.   Results   from   lidar   data   at   site   SW.   a)   Full   point   cloud,   b)   Ground   points   that   are  

reclassified   as   non-ground   by   MCCRGB,   c)   MCC   ground   points,   d)   MCCRGB   ground   points.   
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Figure   4.   Results   from   SFM   data   at   site   SW.   a)   Full   point   cloud,   b)   Ground   points   that   are  

reclassified   as   non-ground   by   MCCRGB,   c)   MCC   ground   points,   d)   MCCRGB   ground   points.   
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Figure   5.   MCCRGB   results.   a)   Ground-only   point   cloud   and   b)   digital   elevation   model,   1   m  

resolution,   c)   Unfiltered   point   cloud   of   slope   with   tree   fall,   d),   MCC   ground   point   cloud,   e)  

MCCRGB   ground   point   cloud.   Blue   arrows   indicate   errors   of   omission   and   red   arrows   errors   of  

commission.  
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Figure   6.   Topographic   slope   and   curvature.   Slope   derived   from   a)   vendor   bare   earth   DEM   and  

b)   SFM   MCCRGB   ground-only   DEM.   Profile   curvature   derived   from   c)   vendor   bare   earth   DEM  

and   d)   SFM   MCCRGB   ground-only   DEM   using   a   5   m   window.   Insets   show   histograms   of  

differences   (lidar   -   SFM).   
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Figure   7.   Partial   accumulation   area   from   a)   lidar   DEM   and   b)   SFM   DEM   for   largest   channel   in  

survey   area.   c)   Area   difference   (lidar   -   SFM).   d)   Distance   between   channels,   e)   Area   difference,  

and   f)   Relative   area   difference   as   percentage   of   lidar   area   along   flow   path   in   b).   Shaded   areas  

highlight   effects   of   small   tributaries   with   greater   flow   accumulation   in   lidar   DEM   (red)   or   SFM  

DEM   (blue)   and   large   area   difference   due   to   flow   paths   diverging   near   the   outlet   (gray).   
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Figure   8.   Lidar   points   classified   as   non-ground   by   a)   MCC   (solid   lines)   and   b)   MCCRGB  

(dashed   lines)   in   each   iteration.   Note   that   the   MCCRGB   update   step   classifies   more  

intermediate   second   and   third   returns   as   non-ground   at   first   iteration.   Based   on   lidar   data   at   site  

SW   (Figure   3).   Only   multiple   returns   shown.   Vertical   axis   in   logarithmic   scale.   
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Figure   9.   Histograms   of   NGRDVI   from   points   classified   as   ground   (brown)   and   non-ground  

(green).   a)   MCC   only,   b)   MCCRGB,   c)   Points   updated   to   non-ground   by   MCCRGB.   Based   on  

SFM   data   at   site   SW   (Figure   4).  
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Figure   10.   Point   density.   a)   Slope   and   b)   curvature   differences   as   a   function   of   point   density.  

Windowed   means   (white   circles)   and   1st/99th   percentiles   (dashed   lines)   plotted   over   data   (grey  

circles).   
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Table   1.   Error   statistics   for   checkpoints   at   Horseshoe   Lake   tree   kill.   

 

Table   2.   Statistics   for   slope   and   curvature   differences   (lidar   -   SFM)   at   Horseshoe   Lake   tree   kill.  

Distributions   shown   in   Figure   6.  



Table 1: Error statistics for ground points at Horseshoe Lake tree kill.

Statistic (m)
Surveyed check points Registered check points Vendor ground points

Lidar + MCC Lidar + MCCRGB SFM + MCC SFM + MCCRGB Lidar + MCC Lidar + MCCRGB SFM + MCC SFM + MCCRGB Lidar + MCC Lidar + MCCRGB SFM + MCC SFM + MCCRGB

Minimum -15.72 -15.72 -15.63 -15.63 -0.38 -0.59 -0.66 -0.64 -0.50 -0.70 -1.32 -1.08
Maximum 7.77 7.40 8.24 8.22 0.33 0.34 5.49 5.48 0.32 0.32 6.39 8.28
Mean 0.36 0.35 0.45 0.46 -0.01 -0.02 0.11 0.09 -0.01 -0.02 0.05 0.08
Median 0.45 0.46 0.47 0.46 0.00 0.00 0.04 0.03 0.00 0.00 0.02 0.03
Standard deviation 2.08 2.08 2.19 2.21 0.08 0.09 0.56 0.55 0.07 0.07 0.44 0.60
RMSE 2.11 2.11 2.23 2.26 0.08 0.10 0.57 0.56 0.07 0.08 0.44 0.61
n 165 165 165 165 165 165 165 165 1000 1000 1000 1000



Table 2: Statistics for slope and curvature differences (Lidar - SFM) at Horseshoe Lake tree kill.

Slope difference ( ) Curvature difference (m-1)

RMSE 0.011 0.001
Mean absolute error (MAE) 0.066 0.024
Standard devation 0.103 0.036
Minimum -0.994 -0.644
Maximum 1.501 0.891
n (pixels) 331982 296790



Table S2: Check points surveyed from Horseshoe Lake flux grid. Coordinate system: NAD83 / UTM Zone 11N, GRS80 ellipsoidal height.

Check point Northing (m) Easting (m) Lidar ground 
elevation (m)

SFM ground 
elevation (MCC) 

(m)

SFM ground 
elevation (MCCRGB) 

(m)
Elevation of GPS 

antenna (m)
Lidar vertical 
translation (m)

SFM vertical 
translation (MCC) 

(m)

SFM vertical 
translation (MCCRGB) 

(m)
Horizontal precision 

of GPS (m)

bp_1 4164896.8 321781.0 2711.3 2711.5 2711.5 2712.6 -1.4 -1.2 -1.2 1.0
bp_2 4164953.3 321817.0 2711.3 2711.3 2711.3 2712.0 -0.8 -0.7 -0.7 0.9
bp_3 4164977.3 321861.2 2708.0 2706.9 2706.9 2707.2 0.8 -0.3 -0.3 0.8
bp_4 4164996.1 321913.3 2703.9 2704.0 2704.0 2706.6 -2.7 -2.6 -2.6 0.5
bp_5 4165022.5 321947.5 2702.6 2697.2 2697.2 2705.4 -2.7 -8.2 -8.2 0.7
bp_6 4165070.6 321991.4 2702.9 2703.5 2703.5 2704.4 -1.5 -0.9 -0.9 0.6
bp_7 4165111.2 321992.3 2700.5 2700.5 2700.5 2701.5 -1.0 -1.0 -1.0 0.8
bp_8 4165147.3 321976.9 2700.0 2700.1 2700.1 2701.3 -1.3 -1.3 -1.3 0.8
bp_9 4165172.1 321944.0 2704.2 2704.2 2704.2 2706.3 -2.1 -2.1 -2.1 0.8
bp_10 4165168.2 321915.4 2708.5 2708.2 2708.2 2711.6 -3.1 -3.4 -3.4 0.8
bp_11 4165186.1 321914.7 2712.6 2712.3 2712.3 2713.5 -0.9 -1.2 -1.2 0.8
bp_12 4165196.7 321872.8 2722.8 2722.6 2722.6 2723.6 -0.8 -1.0 -1.0 0.7
bp_13 4165175.5 321839.6 2727.5 2727.2 2727.2 2728.3 -0.8 -1.1 -1.1 0.7
bp_14 4165140.2 321811.7 2727.1 2726.6 2726.6 2727.7 -0.6 -1.1 -1.1 0.7
bp_15 4165121.7 321825.4 2719.0 2718.6 2718.6 2718.9 0.1 -0.2 -0.2 0.4
bp_16 4165143.0 321860.6 2714.4 2714.2 2714.2 2714.6 -0.2 -0.4 -0.4 0.3
bp_17 4165152.1 321885.7 2712.3 2711.9 2711.9 2712.1 0.2 -0.1 -0.1 0.4
bp_18 4165128.4 321918.0 2704.0 2703.9 2703.9 2703.4 0.6 0.5 0.5 0.2
bp_19 4165120.2 321924.8 2702.4 2702.4 2702.4 2701.8 0.6 0.5 0.5 0.2
bp_20 4165114.1 321872.7 2707.4 2707.2 2707.2 2706.9 0.4 0.3 0.3 0.2
bp_21 4165093.9 321885.2 2702.9 2702.9 2702.9 2702.3 0.6 0.6 0.6 0.2
bp_22 4165067.5 321852.7 2706.1 2705.9 2705.9 2705.4 0.7 0.5 0.5 0.2
bp_23 4165079.0 321840.5 2708.2 2708.0 2708.0 2707.7 0.5 0.3 0.3 0.2
bp_24 4165090.8 321805.6 2717.2 2717.2 2717.2 2716.9 0.3 0.3 0.3 0.6
bp_25 4165103.3 321766.4 2728.6 2728.3 2728.3 2729.2 -0.5 -0.8 -0.8 0.4
bp_26 4165103.0 321753.8 2731.0 2730.7 2730.7 2730.3 0.6 0.4 0.4 0.8
bp_27 4165068.3 321737.8 2720.0 2719.8 2719.8 2719.0 1.0 0.8 0.8 0.4
bp_28 4165053.3 321701.5 2721.0 2720.6 2720.6 2721.0 0.0 -0.4 -0.4 0.4
bp_29 4165069.3 321685.1 2730.6 2730.0 2730.0 2727.9 2.6 2.1 2.1 0.8
bp_30 4165023.0 321745.4 2711.4 2711.4 2711.4 2709.6 1.9 1.8 1.8 0.5
bp_31 4165051.1 321778.7 2710.2 2710.2 2710.2 2709.9 0.3 0.3 0.3 0.6
bp_32 4165037.3 321822.4 2706.3 2706.3 2706.3 2702.9 3.4 3.3 3.3 0.9
bp_34 4165028.3 321868.7 2703.4 2703.5 2703.5 2702.7 0.6 0.8 0.8 0.2
bp_35 4165101.1 321958.9 2701.8 2701.9 2701.9 2700.7 1.1 1.2 1.2 0.2
bp_36 4164987.4 321763.9 2707.3 2707.4 2707.4 2706.9 0.4 0.5 0.5 0.2
bp_37 4164983.0 321743.9 2712.5 2712.5 2712.5 2712.1 0.4 0.3 0.3 0.2
bp_38 4165096.7 321650.1 2750.2 2749.9 2749.9 2752.2 -2.0 -2.3 -2.3 0.9
bp_40 4165139.7 321725.4 2748.6 2745.1 2745.1 2751.2 -2.6 -6.1 -6.1 0.8
bp_41 4165163.4 321772.1 2745.8 2745.6 2745.7 2748.8 -3.0 -3.3 -3.1 0.9
bp_42 4165197.9 321799.9 2744.4 2744.1 2744.1 2746.8 -2.4 -2.7 -2.7 1.0
bp_43 4165227.5 321836.7 2735.3 2734.8 2734.8 2735.6 -0.3 -0.7 -0.7 0.4
bp_44 4165142.5 321687.9 2757.0 2756.5 2756.5 2762.9 -5.9 -6.4 -6.4 0.7
bp_45 4165118.2 321615.6 2766.5 2766.3 2766.3 2766.7 -0.1 -0.3 -0.3 0.7
hs_2 4164925.1 321739.0 2713.0 2712.8 2712.9 2712.2 0.8 0.6 0.7 1.0
hs_3 4164849.3 321745.1 2711.5 2711.6 2711.6 2713.3 -1.8 -1.7 -1.7 0.4
hs_4 4164810.2 321730.3 2710.7 2710.7 2710.7 2711.4 -0.7 -0.7 -0.7 0.4
hs_14 4164471.5 321594.4 2710.7 2710.2 2710.2 2712.9 -2.2 -2.7 -2.7 0.6
hs_15 4164424.2 321539.0 2713.3 2713.1 2713.1 2721.0 -7.8 -7.9 -7.9 0.7
hs_16 4164433.8 321497.9 2719.6 2719.4 2719.4 2721.2 -1.6 -1.8 -1.8 0.6
hs_17 4164420.0 321467.8 2724.0 2723.7 2723.7 2715.2 8.8 8.5 8.5 0.7
hs_18 4164413.6 321395.3 2734.0 2733.6 2733.6 2736.2 -2.2 -2.6 -2.6 0.5
hs_19 4164453.6 321419.7 2731.3 2731.3 2731.3 2731.2 0.0 0.1 0.1 0.5
hs_20 4164494.7 321386.9 2738.5 2738.4 2738.4 2744.3 -5.8 -5.9 -6.0 0.7
hs_21 4164529.8 321395.4 2739.9 2739.8 2739.8 2738.7 1.2 1.1 1.1 0.6
hs_22 4164584.2 321402.1 2739.0 2739.2 2739.2 2739.6 -0.6 -0.5 -0.5 0.5
hs_23 4164585.5 321356.0 2740.9 2741.2 2741.2 2740.1 0.8 1.1 1.1 0.7
hs_24 4164638.2 321359.7 2741.2 2741.6 2741.6 2742.9 -1.7 -1.3 -1.3 0.6
hs_25 4164613.3 321400.7 2738.3 2738.6 2738.6 2739.8 -1.5 -1.2 -1.2 0.5
hs_26 4164676.7 321394.3 2740.4 2740.6 2740.6 2743.8 -3.4 -3.2 -3.2 0.7
hs_27 4164722.3 321406.5 2741.0 2741.3 2741.3 2742.3 -1.3 -1.0 -1.0 0.6
hs_28 4164771.0 321382.4 2745.5 2745.8 2745.8 2745.5 0.0 0.3 0.3 1.5
hs_29 4164817.1 321383.0 2749.8 2749.8 2749.8 2749.9 0.0 -0.1 -0.1 1.1
hs_30 4164897.8 321392.0 2757.3 2757.2 2757.2 2741.5 15.7 15.6 15.6 1.7
hs_31 4164917.8 321405.2 2756.7 2756.9 2756.9 2759.9 -3.2 -3.1 -3.1 0.7
hs_32 4164964.4 321414.4 2754.9 2755.0 2755.0 2751.9 3.0 3.0 3.0 0.6
hs_33 4165026.1 321444.8 2756.0 2756.4 2756.4 2754.7 1.3 1.7 1.7 0.3
hs_34 4165074.9 321448.3 2761.5 2761.5 2761.5 2760.5 0.9 1.0 1.0 0.6
hs_35 4165100.7 321492.6 2756.9 2757.0 2757.0 2758.2 -1.3 -1.2 -1.2 0.6
hs_36 4165083.8 321553.6 2751.6 2751.5 2751.5 2748.4 3.2 3.0 3.0 0.6
hs_37 4165067.9 321591.9 2743.7 2743.7 2743.7 2744.3 -0.6 -0.5 -0.6 0.9
hs_38 4165062.8 321647.5 2735.8 2735.5 2735.5 2734.9 0.9 0.6 0.6 0.7
hs_39 4165024.5 321704.0 2716.4 2716.2 2716.2 2715.9 0.5 0.2 0.2 0.7
hs_40 4164972.6 321700.1 2716.4 2716.3 2716.3 2715.4 1.0 1.0 1.0 0.6
hs_41 4164929.0 321708.6 2714.6 2714.5 2714.5 2713.8 0.8 0.7 0.7 0.7
hs_42 4164870.8 321704.8 2713.1 2712.9 2712.9 2712.6 0.4 0.2 0.2 0.4
hs_43 4164834.4 321695.9 2711.9 2711.7 2711.7 2712.7 -0.8 -0.9 -0.9 0.7
hs_44 4164761.0 321697.1 2709.6 2709.4 2709.4 2709.0 0.5 0.4 0.4 0.5
hs_45 4164731.6 321655.3 2710.1 2709.9 2709.9 2709.8 0.3 0.1 0.1 0.2
hs_46 4164705.1 321652.2 2708.1 2707.9 2707.9 2708.3 -0.2 -0.5 -0.5 0.2
hs_47 4164666.2 321636.6 2708.3 2707.9 2707.9 2708.8 -0.5 -0.9 -0.9 0.2
hs_48 4164644.8 321623.3 2710.5 2710.4 2710.4 2710.9 -0.4 -0.6 -0.6 0.3
hs_49 4164610.1 321638.0 2710.8 2710.3 2710.3 2712.4 -1.6 -2.0 -2.0 0.6
hs_50 4164583.7 321646.5 2708.8 2708.6 2708.6 2711.2 -2.4 -2.6 -2.6 0.5
hs_51 4164557.4 321601.5 2712.6 2712.3 2712.3 2713.1 -0.5 -0.8 -0.8 0.3
hs_52 4164557.3 321575.0 2715.9 2715.7 2715.7 2716.4 -0.5 -0.7 -0.7 0.3
hs_53 4164517.7 321561.2 2716.3 2716.3 2716.3 2719.1 -2.7 -2.8 -2.8 0.5
hs_54 4164468.8 321533.3 2715.7 2715.5 2715.5 2712.9 2.8 2.6 2.6 0.7
hs_55 4164468.1 321508.9 2719.2 2719.1 2719.1 2721.8 -2.6 -2.7 -2.7 0.6
hs_56 4164476.8 321488.9 2723.4 2723.2 2723.2 2723.8 -0.5 -0.6 -0.6 0.7
hs_57 4164468.6 321459.9 2726.6 2726.5 2726.5 2727.1 -0.5 -0.6 -0.6 0.5
hs_58 4164476.1 321442.0 2730.0 2730.0 2730.0 2730.1 -0.2 -0.1 -0.1 0.4
hs_59 4164515.3 321454.8 2730.2 2730.1 2730.1 2729.0 1.3 1.2 1.2 0.8
hs_60 4164536.1 321435.4 2733.6 2733.7 2733.7 2734.5 -0.9 -0.9 -0.9 0.5
hs_61 4164573.0 321434.4 2734.8 2735.0 2735.0 2735.2 -0.5 -0.2 -0.2 0.4
hs_62 4164612.1 321451.5 2735.6 2735.7 2735.7 2737.0 -1.4 -1.4 -1.4 0.8
hs_63 4164671.5 321446.2 2735.1 2735.4 2735.4 2736.0 -0.9 -0.6 -0.6 0.5
hs_64 4164716.2 321460.3 2734.8 2735.2 2735.2 2733.3 1.5 2.0 2.0 0.7
hs_65 4164769.5 321440.0 2738.2 2738.5 2738.5 2738.4 -0.2 0.1 0.1 0.6
hs_66 4164834.2 321445.8 2736.0 2736.1 2736.1 2736.1 0.0 0.0 0.0 0.3
hs_67 4164866.3 321445.0 2740.0 2740.0 2740.0 2739.9 0.0 0.0 0.1 0.3
hs_68 4164924.1 321452.8 2746.3 2746.5 2746.5 2746.1 0.2 0.4 0.4 0.2
hs_69 4164999.9 321444.2 2750.6 2750.7 2750.7 2751.4 -0.8 -0.7 -0.7 0.6
hs_70 4165050.6 321509.9 2745.0 2744.8 2744.8 2746.6 -1.7 -1.8 -1.8 0.6
hs_71 4165065.0 321526.9 2742.7 2742.9 2742.9 2743.3 -0.6 -0.4 -0.4 0.4
hs_72 4165028.5 321545.0 2738.6 2738.6 2738.6 2738.5 0.1 0.1 0.1 0.4
hs_73 4165022.2 321594.6 2730.4 2730.3 2730.3 2730.7 -0.4 -0.5 -0.5 0.4
hs_74 4165011.0 321645.6 2724.0 2723.9 2723.9 2726.6 -2.6 -2.7 -2.7 0.4
hs_75 4164971.8 321636.9 2722.5 2722.3 2722.3 2723.2 -0.7 -0.8 -0.8 0.5
hs_76 4164932.0 321636.6 2720.8 2720.6 2720.6 2721.1 -0.3 -0.5 -0.5 0.6
hs_77 4164905.0 321661.4 2715.9 2715.9 2715.9 2716.3 -0.5 -0.5 -0.5 0.1
hs_78 4164848.1 321663.7 2712.7 2712.6 2712.6 2713.0 -0.3 -0.4 -0.4 0.1
hs_79 4164798.0 321670.6 2711.4 2711.3 2711.3 2711.7 -0.3 -0.3 -0.3 0.1
hs_80 4164768.5 321637.9 2712.0 2712.0 2712.0 2711.7 0.3 0.3 0.3 0.1
hs_81 4164700.3 321612.8 2713.1 2713.0 2713.0 2712.9 0.2 0.1 0.1 0.1
hs_82 4164678.3 321595.8 2715.2 2715.1 2715.1 2714.9 0.3 0.3 0.3 0.1
hs_83 4164617.1 321584.4 2714.6 2714.3 2714.3 2714.2 0.4 0.0 0.0 0.1
hs_84 4164562.8 321544.2 2720.5 2720.4 2720.4 2721.1 -0.6 -0.7 -0.7 0.3
hs_85 4164511.4 321528.8 2720.4 2720.3 2720.3 2720.2 0.1 0.0 0.0 0.6
hs_86 4164515.9 321500.0 2724.3 2724.3 2724.3 2724.5 -0.2 -0.2 -0.2 0.6
hs_87 4164577.6 321507.1 2728.1 2728.2 2728.2 2729.6 -1.5 -1.4 -1.4 0.6
hs_88 4164637.8 321475.8 2729.6 2729.7 2729.7 2730.8 -1.2 -1.1 -1.1 0.4



hs_89 4164669.4 321492.3 2730.3 2730.4 2730.4 2730.5 -0.1 -0.1 -0.1 0.4
hs_90 4164717.3 321483.9 2731.1 2731.3 2731.3 2732.0 -0.9 -0.7 -0.7 0.2
hs_91 4164774.6 321505.9 2728.3 2728.4 2728.4 2729.0 -0.7 -0.6 -0.6 0.1
hs_92 4164831.2 321495.3 2727.4 2727.7 2727.7 2728.0 -0.6 -0.3 -0.3 0.1
hs_93 4164877.3 321499.6 2729.4 2729.7 2729.7 2730.0 -0.6 -0.3 -0.3 0.1
hs_94 4164923.3 321501.2 2740.2 2740.4 2740.4 2740.0 0.2 0.4 0.4 0.2
hs_95 4164981.1 321496.3 2744.5 2744.7 2744.7 2746.0 -1.5 -1.3 -1.3 0.6
hs_96 4165022.2 321513.7 2743.2 2743.1 2743.1 2745.0 -1.8 -2.0 -2.0 0.6
hs_97 4164985.8 321546.0 2738.4 2738.4 2738.4 2739.1 -0.6 -0.7 -0.7 0.2
hs_98 4164968.0 321589.5 2731.4 2731.4 2731.4 2732.2 -0.8 -0.9 -0.9 0.2
hs_99 4164933.1 321587.9 2730.8 2730.7 2730.7 2731.3 -0.6 -0.7 -0.7 0.2
hs_100 4164904.9 321618.9 2719.3 2719.1 2719.1 2719.5 -0.2 -0.3 -0.3 0.1
hs_101 4164881.2 321631.6 2714.7 2714.7 2714.7 2715.6 -0.9 -0.9 -0.9 0.1
hs_102 4164821.4 321633.3 2712.3 2712.4 2712.4 2713.1 -0.8 -0.8 -0.8 0.1
hs_103 4164776.8 321616.1 2712.7 2712.8 2712.8 2712.4 0.4 0.4 0.4 0.1
hs_104 4164739.7 321621.6 2713.3 2713.3 2713.3 2713.0 0.2 0.3 0.3 0.1
hs_105 4164725.8 321598.6 2716.1 2716.0 2716.0 2715.8 0.3 0.2 0.2 0.1
hs_106 4164708.3 321570.7 2719.9 2720.0 2720.0 2720.7 -0.8 -0.8 -0.8 0.2
hs_107 4164645.4 321562.3 2721.6 2721.6 2721.6 2721.6 -0.1 -0.1 -0.1 0.5
hs_108 4164613.6 321541.1 2723.6 2723.8 2723.8 2723.8 -0.2 0.0 0.0 0.4
hs_109 4164649.4 321522.1 2726.9 2727.0 2727.0 2727.3 -0.4 -0.4 -0.4 0.4
hs_110 4164704.6 321514.2 2725.5 2725.6 2725.6 2726.2 -0.7 -0.6 -0.6 0.2
hs_111 4164757.9 321518.0 2726.0 2726.2 2726.2 2726.3 -0.4 -0.2 -0.2 0.1
hs_112 4164781.7 321520.8 2726.2 2726.4 2726.4 2726.9 -0.7 -0.6 -0.6 0.1
hs_113 4164846.3 321529.9 2721.2 2721.7 2721.7 2722.5 -1.3 -0.8 -0.8 0.4
hs_114 4164897.1 321523.0 2732.0 2732.1 2732.1 2732.6 -0.6 -0.5 -0.5 0.1
hs_115 4164927.8 321540.9 2735.2 2735.3 2735.3 2736.1 -0.9 -0.8 -0.8 0.3
hs_116 4164898.4 321560.8 2729.4 2729.4 2729.4 2729.6 -0.2 -0.2 -0.2 0.2
hs_117 4164848.3 321618.0 2713.0 2713.1 2713.1 2713.9 -0.8 -0.8 -0.8 0.1
hs_118 4164821.2 321601.7 2713.7 2713.7 2713.7 2714.5 -0.8 -0.8 -0.8 0.1
hs_119 4164760.9 321587.7 2715.9 2715.9 2715.9 2716.4 -0.6 -0.6 -0.6 0.2
hs_120 4164750.6 321575.3 2718.1 2718.3 2718.3 2718.7 -0.6 -0.4 -0.4 0.2
hs_121 4164672.9 321541.9 2724.0 2724.0 2724.0 2723.1 0.9 0.9 0.9 0.5
hs_122 4164720.0 321545.2 2722.6 2722.7 2722.7 2723.3 -0.7 -0.6 -0.6 0.2
hs_123 4164758.7 321544.2 2723.1 2723.1 2723.1 2723.8 -0.7 -0.7 -0.7 0.2
hs_124 4164841.1 321541.3 2720.6 2720.6 2720.6 2721.1 -0.5 -0.5 -0.5 0.4
hs_125 4164889.4 321538.4 2728.9 2729.1 2729.1 2729.6 -0.7 -0.5 -0.5 0.3
hs_126 4164869.0 321568.7 2722.1 2722.0 2722.0 2722.4 -0.3 -0.3 -0.3 0.3
hsw_2 4164599.0 321306.0 2747.2 2746.0 2746.1 2750.9 -3.7 -4.8 -4.8 0.7
hsw_3 4164661.4 321326.4 2746.6 2747.0 2747.0 2750.0 -3.4 -3.0 -3.0 0.7
hsw_4 4164742.1 321340.1 2747.3 2747.5 2747.5 2746.4 0.8 1.1 1.1 0.8
hsw_5 4164821.6 321339.5 2755.0 2755.4 2755.4 2752.3 2.7 3.1 3.1 1.0
hsw_6 4164879.9 321355.2 2763.7 2763.7 2763.7 2765.4 -1.6 -1.7 -1.7 0.6
hsw_7 4164941.2 321380.0 2762.9 2762.9 2762.9 2761.9 1.0 1.0 1.0 0.5
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Text   S1.    This   supplement   contains   two   tables   of   ground   control   and   checkpoint   locations.   The  

vertical   translation   applied   to   each   GCP   for   registration   to   the   lidar   ground   surface   is   recorded   in  

Table   S1.   The   vertical   differences   between   checkpoints   and   lidar   and   SFM   point   clouds   are  

reported   in   Table   S2.   Table   S3   gives   the   default   parameters   for   the   RBF-SVM   classifier.  

 

Figures   S1-S4   show   filtering   results   for   site   NW   and   BP   as   in   the   text.   Figures   S5   and   S6   show  

the   vertical   differences   at   the   checkpoints   for   the   original   checkpoint   positions   and   registered  

checkpoints   as   summarized   in   Table   1.   Figure   S7   shows   the   location   of   the   random   lidar   ground  

validation   points   used   in   Table   1.  

 

In   addition   to   the   point-to-point   comparison   discussed   in   the   text   (Sections   2.3   and   4.2;   Table   1),  

local   cloud-to-cloud   differences   were   also   examined   (Figure   S8).   The   Multiscale   Model   to   Model  

Cloud   Comparison   (M3C2)   algorithm   was   used   to   measure   cloud-to-cloud   differences   over   the  

entire   survey   area   (Lague   et   al.,   2013;   James   et   al.,   2017).   This   method   computes   the   local  

normal   vectors   of   a   set   of   core   points   in   the   source   cloud.   Using   this   direction,   a   search  

neighborhood   is   projected   onto   the   target   cloud.   The   average   position   of   each   cloud   is  

calculated   in   its   respective   neighborhood   and   the   M3C2   distance   is   the   distance   between   these  

positions.   For   this   analysis,   we   use   a   search   radius   of   11.75   m   for   both   neighborhoods.   This   was  

applied   to   every   point   in   a   ground-classified   SFM   point   cloud   as   core   points   and   the   vendor  

ground   points   as   target   points.   The   result   is   a   local   cloud-to-cloud   difference   at   each   SFM   point  
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(Figured   S8b).   The   spatial   distribution   of   M3C2   differences   is   similar   to   the   vertical   differences  

after   registration   at   the   checkpoints   (Figure   S6)   and   lidar   validation   points   (Figure   S7).  

 

To   provide   context   for   the   accumulation   analysis   in   the   text,   Figure   S9   shows   the   distribution   of  

partial   accumulation   areas   derived   from   the   lidar   and   SFM   DEMs   and   area   difference   for   every  

pixel   exceeding   30   m 2 .   The   plan   form   of   each   network   is   similar,   with   no   major   flow   paths  

missing   in   the   SFM   date   (Figure   S9a,   b).   However,   several   missing   junctions   and   differences   in  

tributary   flow   contribute   to   large   area   differences   in   the   larger   channels   (Figure   S9c),   similar   to  

the   result   in   Figure   7.   
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Figure   S1.   Results   from   lidar   data   at   site   NW:   Horseshoe   Lake   tree   kill.   a)   Full   point   cloud,   b)  
Ground   points   that   are   reclassified   by   MCC-RGB,   c)   MCC   ground   points,   d)   MCC-RGB   ground  
points.  
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Figure   S2.   Results   from   SFM   data   at   site   NW:   Horseshoe   Lake   tree   kill.   a)   Full   point   cloud,   b)  
Ground   points   that   are   reclassified   by   MCC-RGB,   c)   MCC   ground   points,   d)   MCC-RGB   ground  
points.  
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Figure   S3.   Results   from   lidar   data   at   test   site   BP.   a)   Full   point   cloud,   b)   Ground   points   that   are  
reclassified   by   MCC-RGB,   c)   MCC   ground   points,   d)   MCC-RGB   ground   points.  
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Figure   S4.   Results   from   SFM   data   at   test   site   BP.   a)   Full   point   cloud,   b)   Ground   points   that   are  
reclassified   by   MCC-RGB,   c)   MCC   ground   points,   d)   MCC-RGB   ground   points.  
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Figure   S5.   Check   point   vertical   errors.   a)   Vertical   difference   between   surveyed   checkpoint  
elevations   and   vendor   lidar   ground   classification   (white),   MCC   ground   classification   (red),   and  
MCCRGB   ground   classification   (blue)   of   SFM   data.   Points   are   arbitrarily   sorted   from   low   to   high  
elevation.   b)   Histogram   of   vertical   differences   in   panel   a.   Red   and   blue   squares   correspond   to  
differences   mapped   in   Figure   S6c   and   d.  
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Figure   S6.   Vertical   errors   before   (top   row)   and   after   registration   (bottom   row).   a   -   d)   Check   point  
vertical   errors   against   ground   points   from   a)   MCC   applied   to   lidar,   b)   MCCRGB   applied   to   lidar,  
c)   MCC   applied   to   SFM,   d)   MCCRGB   applied   to   SFM.   e)   -   h)   Vertical   differences   between  
ground   surface   and   checkpoints   after   registration   to   lidar   elevations   for   e)   MCC   applied   to   lidar,  
f)   MCCRGB   applied   to   lidar,   g)   MCC   applied   to   SFM,   h)   MCCRGB   applied   to   SFM.   Negative  
values   indicate   the   test   point   is   below   vendor   ground   point.   See   Figure   3   for   checkpoint   network.  
Summary   statistics   given   in   Table   1.  
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Figure   S7.   Randomly   selected   vendor   ground   lidar   validation   points   used.   a)   MCC   applied   to  
lidar,   b)   MCCRGB   applied   to   lidar,   c)   MCC   applied   to   SFM,   d)   MCCRGB   applied   to   SFM.  
Negative   values   indicate   test   point   is   below   vendor   ground   point.   These   locations   have   a  
minimum   point   density   of   10   points   m -2    in   the   SFM   point   cloud   as   measured   in   a   circular  
window   of   1   meter   radius.   Summary   statistics   given   in   Table   1.   
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Figure   S8.   a)   Hillshade   produced   from   DEM   using   all   structure-from-motion   points,   b)   M3C2  
distance   between   vendor   ground   points   and   SFM   MCCRGB   ground   points.   Search   radius   11.75  
m.   See   text   for   details.  
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Figure   S9.   Partial   accumulation   area   calculated   using   a)   vendor   bare   earth   DEM   and   b)   SFM  

MCCRGB   ground-only   DEM.   c)   Local   difference   between   areas   (lidar   -   SFM)   with   major  

junctions   not   present   in   SFM-derived   channel   network   (white   circles).   1   m   resolution.   See   text  

for   details.   Survey   area   outlined   in   Figure   2b.  
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Table   S1.   Ground   control   points   used   in   UAV   survey   of   HSL.  
 
Table   S2.   Check   points   surveyed   at   HSL.  
 
Table   S3.   Default   parameters   chosen   for   classification.  
 


