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Abstract

Decoupled hydro-shearing has been a decades-long paradigmatic mechanism of fluid-induced seismicity. A surging alternative

is coupled hydro-mechanical triggering, largely based on the theory of linear poroelasticity. Unfortunately, seismicity source

fractures and their geometric and physical alterations to a canonical poroelastic system are rarely accounted for, and seismicity is

typically forecasted using a Coulomb stress rate model without producing catalogs. Here, I present a new framework for modeling

fluid-induced seismicity in arbitrarily fractured nonlinear poroelastic media. The hydro-mechanical triggering is modeled using

our Jin & Zoback (2017, https://doi.org/10.1002/2017JB014892) computational model that resolves both fracture fluid storage

and nonlinear flow in addition to full poroelastic coupling. Seismological modeling is achieved stochastically by generating

stress drops based on the full inter-seismic poroelastic stressing history. The two steps are sequentially coupled and advanced in

time via a new prediction-correction algorithm, allowing for fracture stress updating and synthetic event catalog assembly. To

demonstrate model capabilities and effects of fractures and full coupling on overpressure, stress and seismicity, I perform three

microseismic-scale numerical experiments by progressively adding fractures and poroelastic coupling into a diffusion-only base

model. Some previously unknown mechanisms are elucidated. In contrast to existing models, my model produces repeaters

and linear clustering of seismicity. Poroelastic coupling enhances the clustering, inhibits near-field seismicity over time while

increasingly favoring remote triggering, and overall significantly reduces the event population. Meanwhile, some seismic source

statistical characteristics including the Gutenberg-Richter scaling relation overall remain unaffected, and the curious -value

elevation for microseismicity can be attributed to a mechanical origin.
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Abstract   14 

Decoupled hydro-shearing has been a decades-long paradigmatic mechanism of fluid-induced seismicity. 15 

A surging alternative is coupled hydro-mechanical triggering, largely based on the theory of linear 16 

poroelasticity. Unfortunately, seismicity source fractures and their geometric and physical alterations to a 17 

canonical poroelastic system are rarely accounted for, and seismicity is typically forecasted using a 18 

Coulomb stress rate model without producing catalogs. Here, I present a new framework for modeling 19 

fluid-induced seismicity in arbitrarily fractured nonlinear poroelastic media. The hydro-mechanical 20 

triggering is modeled using our Jin & Zoback (2017, https://doi.org/10.1002/2017JB014892) 21 

computational model that resolves both fracture fluid storage and nonlinear flow in addition to full 22 

poroelastic coupling. Seismological modeling is achieved stochastically by generating stress drops based 23 

on the full inter-seismic poroelastic stressing history. The two steps are sequentially coupled and 24 

advanced in time via a new prediction-correction algorithm, allowing for fracture stress updating and 25 

synthetic event catalog assembly. To demonstrate model capabilities and effects of fractures and full 26 

coupling on overpressure, stress and seismicity, I perform three microseismic-scale numerical 27 

experiments by progressively adding fractures and poroelastic coupling into a diffusion-only base model. 28 

Some previously unknown mechanisms are elucidated. In contrast to existing models, my model produces 29 

repeaters and linear clustering of seismicity. Poroelastic coupling enhances the clustering, inhibits near-30 

field seismicity over time while increasingly favoring remote triggering, and overall significantly reduces 31 

the event population. Meanwhile, some seismic source statistical characteristics including the Gutenberg-32 

Richter scaling relation overall remain unaffected, and the curious b-value elevation for microseismicity 33 

can be attributed to a mechanical origin.         34 

Keywords: coupled hydro-mechanical modeling, seismological modeling, induced seismicity, fractured 35 

porous media, poroelasticity, seismic source parameters   36 
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1. Introduction  37 

Fluid perturbations (i.e., injection or withdrawal) within the subsurface alter the pore pressure and 38 

effective stress quasi-statically, inducing seismicity and dynamic stress release on certain fractures (in this 39 

study, I do not distinguish between a fracture and a fault, both defined as an arbitrarily long pre-existing 40 

permeable fluid pathway with frictional strength, and I shall use them inter-changeably). The occurrence 41 

of fluid-induced seismicity on a source fracture is due to the maximum shear stress resolved on it exceeds 42 

its static frictional strength. Adopting the classic linear Coulomb shear failure criterion, this can be 43 

summarized as 44 

    
1/2

2 2

| | ' ' ' : ' :f s nf f f f f f s f f fCFF n n n n n           
  
σ σ σ   (1) 45 

where σ’f is the current effective stress tensor on the fracture in the presence of fluid perturbations, σ’nf, |τf| 46 

and CFF are the effective normal stress, the maximum shear stress and the Coulomb Failure Function 47 

(i.e., Coulomb stress) resolved on the fracture, and nf and μs are the unit normal vector and the static 48 

frictional coefficient of the fracture. Hereinafter the subscript f is used to indicate fracture-related 49 

quantities.  50 

If fractures themselves are known a priori, i.e., n and μs are given, then the mechanics of fluid-induced 51 

seismicity fundamentally rests on the principle of effective stress (Dunham & Rice, 2008). For any given 52 

fluid-pressurized fracture, the current effective stress state can be decomposed as    53 

 0' ' 'f f f  σ σ σ   (2) 54 

where σ’f0 is the arbitrary initial effective stress on the fracture and δσ’f is the perturbation due to fluid 55 

overpressure within the fracture.  56 

The key step in the hydro-shear process described by equation (1) then lies in the calculation of δσ’f. This 57 

is traditionally done in a fluid-solid decouple manner. Specifically, the mass conservation law in the form 58 

of fluid pressure diffusion is solved separately to obtain the overpressure within the fault, δpf. The 59 

alteration to the fluid storage capacity due to solid deformation (i.e., the full volumetric strain for the 60 

fracture itself or a fraction of the volumetric strain for the fracture-hosting rock) is not accounted for. 61 

Following the Terzaghi simple effective stress law (Terzaghi, 1936), it is then assumed that the effective 62 

stress tensor is modified through isotropic reduction of all normal components by the amount of δpf 63 

whereas all shear components remain unchanged. Following a compression positive notation, it can be 64 

summarized as  65 
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 
 

     
  

σ 1   (3) 66 

Substituting equations (2) and (3) into equation (1), one recovers the familiar form of the Coulomb failure 67 

function with the pore pressure effect (e.g., Byerlee, 1978) 68 

 
   

 

1/2
2 2

0 0 0

0 0

' ' : ' :

| | '

f f f f f s f f f f

f s nf f

CFF n n n n n p

p



  

       
  

  

σ σ σ
  (4) 69 

where σ’nf0 and |τf0| are the initial effective normal stress and maximum shear stress on the fracture from 70 

σ’f0. 71 

Equation (4) shows that the fluid overpressure within the fracture leads to a direct increase in its Coulomb 72 

stress (or effectively, a reduction in its static frictional strength) by the amount of μsδpf. To induce 73 

seismicity, i.e., the CFF is driven from negative to 0, the required δpf is simply (σ’nf 0-|τf0|/μs). This is 74 

widely used as a paradigm in designing experiments on fluid-induced seismicity both in the laboratory 75 

and on the field (e.g., Scuderi & Collettini, 2016; Mukuhira et al, 2017). This decoupled approach also 76 

remains as the basis of some prevalent statistical models of induced seismicity (e.g., Shapiro et al., 2005; 77 

Rothert & Shapiro, 2007). In this class of models, a statistically random critical pore pressure is used as a 78 

proxy of the frictional strength of a pre-existing fracture and the pore pressure evolution is governed by 79 

simple linear fluid diffusion; the modeled spatial-temporal distribution of seismicity, however, is often 80 

inconsistent with observations. As a remedy, some nonlinear diffusion models have been developed by 81 

adding a pressure-dependent diffusivity (Hummel & Shapiro, 2012; Johann et al., 2016; Carcione et al., 82 

2018) in an attempt for better data matching. The diffusion-based seismicity models can be further 83 

extended by incorporating, e.g., random stress heterogeneity (Goertz-Allmann & Wiemer, 2012), 84 

fractures following distributions derived from field observations (Verdon et al., 2015), and even empirical 85 

seismic emission criteria for generating synthetic seismograms (Carcione et al., 2015). This decoupled 86 

mechanism also underlies some studies that invert for distributions of permeability (Tarrahi & Jafarpour, 87 

2012) and pore pressure (Terakawa et al., 2012; Terakawa, 2014) from induced seismicity data.  88 

Equation (4) also underlies some recent physics-based models for forecasting injection-induced 89 

seismicity. For example, the RSQSim earthquake simulator, originally developed in the absence of fluid 90 

flow and is aimed at improved modeling of seismicity through the inclusion of rate-and-state friction 91 

(Richards-Dinger & Dieterich, 2012), has been extended for forecasting induced seismicity by combining 92 

it with an analytical pressure diffusion model (Dieterich et al., 2015; Kroll et al., 2017). A model based on 93 

the so-called “seismogenic index”, which quantifies the seismotectonic state at an injection location 94 
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(Shapiro et al., 2010) and is locally calibratable using existing injection and seismicity data, has also been 95 

proposed and applied to seismicity forecasting at large scales (Langenbruch & Zoback, 2016; 96 

Langenbruch et al., 2018). The pressure rate used in the definition of the seismogenic index is derived 97 

from the standard pressure diffusion equation decoupled from solid stress state.   98 

Despite their successful applications in many cases, the decoupled class of models has two fundamental 99 

drawbacks. First, they inherently cannot explain the remoting triggering of seismicity in areas not directly 100 

subjected to finite pressure perturbations (Stark & Davis, 1996; Megies & Wassermann, 2014; Yeck et 101 

al., 2016). They also incorrectly predict that pore pressure depletion increases the effective normal stress 102 

on a fault and therefore will always inhibit seismicity. However, depletion-induced faulting has been 103 

amply documented (e.g., Zoback & Zinke, 2002; Van Wees et al., 2014). The Biot theory of 104 

poroelasticity (Biot, 1941) provides a viable avenue to eliminating such dilemmas and subsume all 105 

observations under one paradigm. At its essence is the full monolithic coupling between the fluid and 106 

solid. Specifically, the negative pressure gradient acts an equivalent body force that enters the force 107 

balance law and drives changes in the solid deformation and stress; on the other hand, the volumetric 108 

strain rate acts an equivalent fluid source in the mass balance law and drives changes in the fluid 109 

overpressure (Segall, 2010; Jin & Zoback, 2017). Classic analytical solutions to a fully coupled linear 110 

poroelastic system under various simplifying conditions have been derived (e.g., Rice and Cleary, 1976; 111 

Cleary, 1977; Segall, 1985; Booker & Carter, 1986; Rudnicki, 1986; Segall & Fitzgerald, 1998; Wang & 112 

Kümpel, 2003). Pioneering studies have utilized this theory to explain depletion-induced seismicity 113 

(Segall, 1989; Segall et al., 1994) and more recently, probe its roles in injection-induced seismicity 114 

(Altmann et al., 2014; Segall & Lu, 2015). Since then the application of the theory of poroelasticity seems 115 

to have quickly arisen as a trend in establishing models of induced seismicity, and a rapidly growing body 116 

of studies have been documented recently, either analytically based (Jin & Zoback, 2015a; Dempsey & 117 

Suckale, 2017) or numerically based (e.g., Chang & Segall, 2016a; Chang & Segall, 2016b; Fan et al., 118 

2016; Deng et al., 2016; Chang & Segall, 2017; Zbinden et al., 2017; Postma & Jansen, 2018; Tung & 119 

Masterlark, 2018; Chang & Yoon, 2018; Norbeck & Rubinstein, 2018). At a smaller scale, numerical 120 

simulations of fluid-induced microseismicity, typically motivated by applications like stimulations of 121 

hydrocarbon and geothermal reservoirs, have also been reported (e.g., Maillot et al., 1999; Angus et al., 122 

2010; Baisch et al., 2010; Zhao & Young, 2011; Wassing et al., 2014; Yoon et al., 2014; 123 

Raziperchikolaee et al., 2014; Riffracture et al., 2016).  124 

It is worth noting that a fully coupled poroelastic model has two important distinctions from a decoupled 125 

model. First, for the fluid, solid-to-fluid coupling can lead to non-monotonic solutions of the fluid 126 

pressure, due to changes in the pore (and fracture) volume caused by the compression or dilation of the 127 

solid skeleton. This was first observed in 2D by Mandel (1953) and later in 3D by Cryer (1963) and is 128 

collectively referred to as the Mandel-Cryer effect. Successfully replicating this phenomenon in the 129 
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numerical pressure solution is often considered as an important benchmark point (e.g., White & Borja, 130 

2011). Second, for the solid, fluid-to-solid coupling generates a full and anisotropic poroelastic stress 131 

tensor instead of an isotropic stress tensor with only normal components as predicted by equation (3). 132 

Additionally, the magnitudes of the normal components differ from -δpf. This has been documented in 133 

great details in Jin & Zoback (2017, 2018a, 2018b, 2019). In the context of induced seismicity, the second 134 

distinction is of our interest and it can be summarized as  135 

 

' ' '

' ' '

'

f xx f xy f xz

f f yy f yz

f zzsymmetric

  

 



   
 

    
  

σ   (5) 136 

Here, δσ’fxx, δσ’fyy, δσ’fzz, δσ’fxy, δσ’fxz and δσ’fyz are the six independent normal and shear components of 137 

δσ’f, which are to be solved for from the following quasi-static force balance law on the fault where the 138 

Terzaghi simple effective stress law applies (it is to be paired with the mass balance law in a 139 

monolithically coupled manner, details are not shown here, and the dependence of δpf on the mean stress 140 

is indicated)  141 

 

       

       

       

' ' ' ( ( ' )) 0

' ' ' ( ( ' )) 0

' ' ' ( ( ' )) 0

f xx f yx f zx f f

f xy f yy f zy f f

f xz f yz f zz f f

p tr
x y z x

p tr
x y z y

p tr
x y z z
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  

  

    
        

   
    

        
   

    
        

   

σ

σ

σ

  (6) 142 

Note that here the equilibrium needs to be sought only among the perturbating state itself since the 143 

arbitrary initial state is already in balance. In the coupled approach, the coulomb failure function equation 144 

(1) thus takes a more general form with the poroelastic effect 145 

 
     

 

1/2
2 2

0 0 0

0 0

' ' ' ' : ' ' :

| | ' '

f f f f f f f s f f f f

f f s nf nf

CFF n n n n n

    

               
     

     

σ σ σ σ σ σ
  (7) 146 

Comparing equation (7) with equation (4), the difference between the poroelastic effect and the pore 147 

pressure effect on seismicity triggering on a source fracture becomes clear. Generally speaking, δσ’nf  ≠  -148 

δpf . The maximum shear stress on the fracture is also modified. The sense of δτf can be the same as or 149 

opposite to τf0 and one must first sum up δσ’f  and σ’f0 before calculating the CFF. The distinction between 150 

equations (7) and (4) are vital as they can lead to radically different predictions on the time of rupture 151 

nucleation, the co-seismic rupture velocity, rupture style and radiation pattern as well as the post-seismic 152 

distributions of displacement and stress (Jin and Zoback, 2018a, 2018b).  153 
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While it has become increasingly recognized that the seismicity-triggering force within the fault-hosting 154 

rock is generated in a poroelastically coupled manner, there appear to be some unfortunate 155 

misconceptions. The first misconception is that pore pressure effect and poroelastic effect are alternative 156 

to each other and the former should be accepted as the correct approach when the Biot-Willis coefficient 157 

α of the hosting rock is less than 0.3 (Johann et al., 2016). The second misconception is that the pore 158 

pressure effect and the poroelatic effect co-exist such that induced seismicity is a result of both (e.g., 159 

Goebel et al., 2017; Barbour et al., 2017; Keranen & Weingarten, 2018; Skoumal et al., 2018; Yu et al, 160 

2019). The reason why neither is valid becomes evident at this point. As has been shown above, the key 161 

difference between the pore pressure effect and the poroelastic effect in seismicity triggering lies in 162 

equations (3) and (6), which can now be summarized as 163 

 'f f fp on    σ 1 0   (8) 164 

for pore pressure effect and  165 

  ' ' 0f f f f fp p on        σ 1 σ   (9) 166 

for poroelastic effect.  167 

Here 1 is the unit identity (Kronecker delta), 0 and 0 are a second-order tensor and a vector with all 0 168 

constituents and Ωf is the fracture domain. Equation (9) needs to be closed with appropriate boundary 169 

conditions. Obviously, the solution to equation (8) always satisfies equation (9); however, the solution to 170 

equation (9) does not always guarantee equation (8). In other words, equation (8) is sufficient but not 171 

necessary for equation (9). This is the case, for example, when δpf is not spatially uniform (i.e., a gradient 172 

in δpf is present, ∇δpf ≠ 0). Under this condition, one can readily see that ∇δpf acts as an equivalent body 173 

force vector and produces a full stress tensor. For the solution from equation (9) to be the same as that 174 

from equation (8), two simplifying conditions are needed. First, the pressure change δpf is uniform such 175 

that 176 

 0fp    (10) 177 

and second, the domain is subjected to zero incremental traction on the boundary, described by a 178 

Neumann type boundary condition 179 

  ' 0f f f fp n on     σ 1   (11) 180 

where ∂Ωf is the fracture domain boundary. Only under the conditions specified by equations (10) and 181 

(11) can the solution to equation (9) also satisfies equation (8). Therefore, I point out that the poroelastic 182 

effect (or more broadly speaking, the poromechanical effect in the presence of material nonlinearity like 183 
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plasticity and non-Darcy flow) is the true and only effect; the pore pressure effect is the “reduced” 184 

poroelastic effect under simplifying conditions and the two should not be considered as alternative nor co-185 

existing effects.  186 

For the fault-hosting porous rock itself, the degree of poroelastic coupling is scaled by the Biot coefficient 187 

α (typically below 1). Johann et al. (2016) hypothesize that for low-permeability rocks, α should also be 188 

negligible and they cast doubt on the validity of the Segall (2015, 2016a) poroelastic models in which 189 

α>0.3. This hypothesis is impertinent. α is a measurement of the rock solid’s susceptibility to the 190 

influence of the fluid and vice versa. Its exact form was first rigorously derived from basic linear 191 

constitutive equations as (Nur & Byerlee, 1971) 192 

 1 b

m

K

K
     (12) 193 

where Kb and Km are the bulk moduli of the porous rock and the solid skeleton grains, respectively.  194 

The exact same expression was later re-derived from the first and second laws of thermodynamics and it 195 

was shown that the Biot effective stress tensor arises naturally as power-conjugate to the rate of 196 

deformation tensor of the solid phase (Borja, 2006). Low permeability does not necessarily imply low 197 

porosity nor low α. The solid grains can be packed in a manner to maintain high porosity and low Kb 198 

(hence high α) with poor or little interconnections between pores (hence low permeability). As a matter of 199 

fact, laboratory experiments confirm that α of low-permeability shale reservoir rocks is indeed primarily 200 

between 0.3 and 0.9 (e.g., Hornby, 1995; He et al., 2016; Ma & Zoback, 2017). Returning to the first 201 

misconception discussed above, the conclusion by Johann et al. (2016) that the pore pressure effect can 202 

approximate the poroelastic effect when α<0.3 is merely a coincidence in the parameter space. It the case 203 

of a medium with overall low permeability, or with severe permeability contrasts (e.g., an ultra-low-204 

permeability shale embedded with high-permeability fractures), the differences between distributions of 205 

pore pressure and poroelastic stress are drastic (Jin & Zoback, 2019). 206 

The theory of poroelasticity is undoubtedly applicable to fluid-infiltrated and -saturated porous rock 207 

across a wide range of permeability scales. Classic analytical solutions offer important insights but are 208 

generally less applicable due to restricting conditions. Despite a surging number of numerical poroelastic 209 

models as have been mentioned above, applications of them to induced seismicity are rather limited. They 210 

are used to either analyze a single event or forecast seismicity rate based on the classic Dieterich 211 

Coulomb stress rate model (Dieterich, 1994), without modeling the spatial-temporal evolutions of 212 

seismicity nor their source and statistical characteristics. Notice also that these models either do not 213 

explicitly include faults or include very limited number of them and treat them simply as a porous domain 214 

with localized permeabilities, therefore the medium is effectively “porous” only. None offered the 215 

capacity to model geometrically complex fracture networks. More importantly, some first-order fracture-216 
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related physics, for example, the Poiseuille flow behavior within the fracture and the associated 217 

nonlinearity due to pressure-induced hydraulic aperture variations, are not accounted for. Furthermore, 218 

limited within the capacity of commercial solvers, the fracture domain is often represented with 219 

exaggerated thickness (and therefore artificially enhanced along-fracture fluid flow) to facilitate equal-220 

dimensional space discretization. These simplifications come with consequences and may diminish the 221 

meaningfulness of modeling outcomes (Jin & Zoback, 2016a, 2016b).  222 

To date, a general mechanic-based and physically representative model of fluid-induced seismicity in a 223 

geologically realistic medium is not available, due to in part difficulties in establishing a suitable 224 

theoretical and computational framework for fluid-saturated, arbitrarily fractured and nonlinear 225 

poroelastic solid. As a result, effects of fractures and full coupling on triggering seismicity and controlling 226 

its evolutional and source characteristics also remain largely unexplored. We are therefore motivated to 227 

develop the following new hydro-mechanical-seismological modeling framework. Built upon our Jin & 228 

Zoback (2017) fracture-poro-mechanical computational model, this framework offers the capacity to 229 

handle arbitrarily distributed fractures and the associated new physics and nonlinearity. It also integrates 230 

for the first time deterministic modeling of inter-seismic, quasi-static and fluid-solid fully coupled 231 

triggering and mechanics-based stochastic modeling of co-seismic shear stress drop, and offers a natural 232 

way to model multiple induced seismic cycles. An important outcome of the modeling is a synthetic event 233 

catalog that allows for further statistical analysis. As a general tool, the model not only is capable of 234 

producing many phenomena observed in real data, but also allows for numerically uncovering some 235 

otherwise unknown effects of model configuration and physics on induced seismicity. Details are 236 

described below. Throughout the text, space- and time-dependent quantities in all equations are marked 237 

using (x, t).  238 

2. Theory and Implementation  239 

2.1 Calculating Effective Stress on Fractures   240 

As has been shown in section 1, the pivotal piece in modeling fluid induced seismicity lies in the 241 

calculation of the current effective stress tensor σ’f, defined on the fracture domain Ωf. While it suffices to 242 

use Ωf for describing the essence of poroelastic seismicity triggering (equations (2), (7) and (9)) and its 243 

fundamental difference from pore pressure triggering (equations (1), (2) and (8)), the calculation of σ’f is 244 

a different issue. Directly solving equation (9) (coupled with a mass balance law) obviously requires 245 

discretizing an irregular stand-alone domain consists fractures with arbitrary locations and orientations as 246 

well as lengths and thicknesses that typically differ by orders of magnitude. Additionally, the fracture 247 

domain is coupled with the hosting rock through fluid and solid boundary conditions that are challenging 248 

to implement. One can circumvent this dilemma by indirectly solving for σ’f. To do so, the traction 249 

continuity condition across any given rock-fracture interface can be invoked,  250 
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  ( , ) ' ( , ) ( , ) 0 ,

f

f f f f f

fracturehosting rock

x t n x t p x t n n x f

 
 

       
  σ

σ σ 1   (13) 251 

where σ and σf are the current Cauchy total stress tensor within the hosting rock (i.e., matrix) and on the 252 

fracture of interest, respectively, nf and 0 are the same as before, and ∂f is the matrix-fracture interface.  253 

Because equation (13) holds for any fracture of arbitrary orientation nf, it implies the following equality  254 

 ( , ) ( , ) ,fx t x t x f  σ σ 0   (14) 255 

Therefore, following the simple effective stress law, the effective stress tensor on the fracture of interest 256 

can be expressed as  257 

 ' ( , ) ( , ) ( , ) ( , ) ( , ),f f f fx t x t p x t x t p x t x f    σ σ 1 σ 1   (15) 258 

To show the initial and perturbing states, equation (15) can be further expanded as  259 

    0 0' ( , ) ( , ) ( , ) ,f f fx t x t p p x t x f      σ σ σ 1   (16) 260 

where the subscript “0” indicates initial states whereas “δ” suggests perturbing states. Here, δpf is the 261 

same as in equation (3) and is also referred to as the fluid overpressure within fractures or fault-zone 262 

overpressure.  263 

2.2 Two Sources of Changes in Total Stress and Overpressure  264 

From equation (16), it can be readily seen that the focus of the problem is now diverted towards solving 265 

for the two perturbing quantities: the Cauchy total stress tensor δσ in the poroelastic hosting rock and the 266 

fluid overpressure δpf  within fractures. Because the medium undergoes both fluid perturbations externally 267 

and seismicity internally, both variables can be decomposed to reflect these two sources as  268 

 
( ) ( )( , ) ( , ) ( , ) ( )j j

p s

j

x t x t x t H CFF    σ σ σ   (17) 269 

 
( ) ( )

0

( , ) ( , ) ( , ) ( )j j

f fp fs

j

p x t p x t p x t H CFF



      (18) 270 

Here,  271 

 
0, 0

( ) :
1, 0

CFF
H CFF

CFF


 


  (19) 272 
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In equations (17), H is the Heaviside function, CFF is calculated according to equation (7), the subscript 273 

“p” indicates poroelastic changes arising from external fluid perturbations, the subscript “s” indicates 274 

seismicity-induced (i.e., fracture slip-induced) redistributions, and (j) refers to the number of episodes of 275 

slip on an event-generating source fracture. Here it is worth noting that external fluid perturbations fall 276 

into three categories: injection/withdraw pressure, surface flux (mass rate per unit area) and volume flux 277 

(mass rate per unit volume), the former two described by fluid Dirichlet and Neumann boundary 278 

conditions, respectively, and the last specified by a direct source/sink term. There appears to be some 279 

growing interest on which relates to induced seismicity the most (e.g., Barbour et al., 2017; Almakari et 280 

al., 2019; Alba et al., 2020; Hopp et al., 2020). Essentially, such differentiations are about testing the 281 

sensitivity of the governing law to the prescribed boundary conditions which all become parts of an 282 

external fluid mass vector for a linear problem and a residual vector for a nonlinear problem. Providing a 283 

universal answer should not be attempted, rather, the analysis ought to be done on a case-by-case basis.   284 

Recall that mode-II slip on a source fracture yields negligible changes in the overpressure within it 285 

(volumetric strain occur in the hosting rock but not on the fracture), therefore, in this study, δpfs is 286 

approximately 0 as is indicated in equation (18) such that δpf ≈ δpfp and can be solely attributed to external 287 

fluid perturbations.   288 

Equations (17) and (18) must be substituted into equation (16) for determining if seismicity occurs on the 289 

fracture of interest according to equation (7); if yes, the seismic cycle needs to be updated (j=j+1) for this 290 

fracture. This process ought to be iterated over all time steps for all fractures. The major computational 291 

cost then arises from the calculation of external perturbations-induced changes δσp and δpfp as well as 292 

seismicity-induced changes δσs. The first two variables can be obtained from our Jin & Zoback (2017) 293 

computational model. The last variable can also be solved for in a fully dynamic spontaneous earthquake 294 

rupture problem with a loading history from the former two and this can be achieved using our Jin & 295 

Zoback (2018a, 2018b) computational model. For an arbitrarily fractured domain with a large fracture 296 

population, this task is perhaps computationally intractable. In this study, I seek intermediate solutions by 297 

focusing on the inter-seismic evolution of induced seismicity but not the co-seismic dynamic changes, 298 

therefore, rather than solving for all three for updating fracture stress, I will instead solve only for δσp and 299 

δpfp and insert them into a novel fracture stress updating algorithm to indirectly account for the effect of 300 

δσs on source fractures without considering source-to-source interactions. The details of these two steps 301 

are given in the following three sections. 302 
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2.3 Fracture-Poro-Mechanical Modeling    303 

2.3.1 Objective and Challenges  304 

The objective of this section is to calculate δσp within the hosting rock and δpfp  within fractures as inputs 305 

for updating the Coulomb stress on fractures. Here, the total stress tensor δσp is further decomposed as the 306 

following according to the Biot effective stress law,  307 

 ( , ) ' ( , ) ( , )p p px t x t p x t    σ σ 1   (20) 308 

where δσ’p and δpp are changes in the effective stress tensor and the fluid overpressure within the hosting 309 

rock due to external fluid perturbations, and α is the Biot-Willis coefficient.  310 

Three major issues are posed here. First, from equations (16) and (20), it can now been seen that this step 311 

indeed involves three unknown variables, δσ’p, δpp and δpfp, and therefore requires solving three 312 

governing equations, including one force balance law for the hosting rock and two mass conservation 313 

laws for the hosting rock and fractures, respectively. This step is referred to as fracture-poro-mechanical 314 

modeling. Second, δσ’p must be solved for simultaneously with the associated fluid overpressure δpp in a 315 

fully coupled manner. Third, all three variables are functions of the arbitrary network of pre-existing 316 

fractures, which not only introduces additional fluid behaviors but also spans over a wide range of scales. 317 

While accounting for all fractures is probably computationally intractable, the subset of fractures at a 318 

scale comparable to the model domain must be deterministically resolved, as they have amply been 319 

demonstrated to have a first-order control of modeling outcomes (e.g., Berkowitz, 2002; Vujevic´ et al., 320 

2014; Hirthe & Graf, 2015; Hardebol et al., 2015). I hereinafter refer to these fractures as the large-scale 321 

deterministic fractures (LSDF), which can be expressed as   322 

 
N

II
LSDF F   (21) 323 

where FI is the Ith large-scale fracture and N is the total population.  324 

2.3.2 Progressive Scenarios  325 

To address the above issues and illustrate effects of the LSDF and full poroelastic coupling on seismicity, 326 

three progressive scenarios are constructed, each physically more representative than the previous. In the 327 

base scenario (case 1), I consider a fluid diffusion problem in a porous rock matrix Ωm, which is governed 328 

by the following mass conservation law accompanied by the Darcy’s flow equation. They read  329 

   0 ( ) ( , ) ( , ) ( , )m m p mx C C p x t v x t s x t x
t




     


  (22) 330 

 1( , ) ( ) ( , )m p mv x t x p x t x   k   (23) 331 
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where ϕm0 is the initial matrix porosity, Cm, Cρ  are compressibilities of the matrix and the fluid, 332 

respectively, v is the fluid velocity, s is the fluid source/sink term divided by the initial fluid density, η is 333 

the fluid viscosity, and km is the full matrix permeability tensor permitted to be heterogeneous and fully 334 

anisotropic.  335 

In the next scenario (case 2), I consider fluid diffusion in a fractured porous media by introducing the 336 

LSDF into the porous rock. In an equal-dimensional representation, the fractured domain is denoted as 337 

Ω=Ωm∪ Ωf. For efficient computations without resolving transversal details across each fracture, Jin & 338 

Zoback (2017) proposed a new formulation customized for hydraulically conductive fractures. Due to its 339 

exceedingly thin nature, the fracture domain Ωf  can be reduced into a lower-dimensional domain 340 

superposed onto (instead of portioned from) the ambient matrix domain Ωm such that Ωf ⊂Ωm=𝛺 where 𝛺 341 

is a mixed-dimensional approximation of Ω. In this manner, fractures introduce no additional degrees of 342 

freedom (i.e., the unknown overpressure is now δpp only rather than both δpp and δpfp), and the following 343 

relation holds   344 

 
fp pp p     (24) 345 

However, the fluid storage capacity of the medium is now augmented due to the presence of fractures and 346 

the mass balance over the fractured domain now reads (Jin & Zoback, 2017) 347 

      0 0 0( ) ( ) 1 ( ) ( , ) ( , ) ( , )m m f px x C C x C C p x t v x t s x t x
t

 


        


  (25) 348 

where Λ0 is a locally defined geometric factor that depends on the initial hydraulic aperture of fractures 349 

and Cf is the fracture compressibility.   350 

Also, the hydraulic conductivity of the medium is enhanced and the addition of a nonlinear Poiseuille 351 

flow equation is needed for describing the localized fluid behavior within fractures. It reads  352 

  
2

1

0

1
( , ) (1 ( , )) ( , )

12
f fp fp fv x t b C p x t p x t x          (26) 353 

where b0 is the initial hydraulic aperture of fractures and  is the tangential gradient operator.  354 

Poroelasticity is not considered in scenarios 1 and 2. In the last scenario (case 3), I further introduce full 355 

poroelastic coupling to the mixed-dimensional fractured domain 𝛺. The mass conservation law shown by 356 

equation (25) now needs a further modification to reflect a second change to the fluid storage capacity 357 

due to the solid matrix volumetric strain. Following a compression positive notation, it reads (Jin & 358 

Zoback, 2017)   359 
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      0 0 0 0( ) ( ) 1 ( ) ( ) ( , )

( , ) ( , ) ( , )

m m f f p

p

x x C C x x C C p x t
t

u x t v x t s x t x
t

  




     



 
      

 

  (27) 360 

Equation (27) is to be fully and monolithically coupled with the following quasi-static force balance law 361 

  ' ( , ) ( , ) ' ( , ) ( , ) 0p p p px t p x t x t p x t x          σ 1 σ   (28) 362 

In this study, I consider the fractured medium in its entirety as linear elastic and adopt the Hooke’s law  363 

 ( )' ( , ) : ( , )s

p px t u x t x    σ D   (29) 364 

Here in equations (27) and (29), δup is the change to the solid matrix displacement vector due to external 365 

fluid perturbations, D is the elastic stiffness tensor, (s) is the symmetric gradient operator and “:” 366 

indicates double tensor contraction. 367 

Table 1 summarizes the three progress scenarios, the latter two being nonlinear. The nonlinearity is 368 

sourced from equation (26) and is two-fold, as is manifested by first the pressure-dependent hydraulic 369 

aperture and second, the fracture permeability as a quadratic function of the hydraulic aperture, therefore 370 

the medium becomes nonlinearly poroelastic. Such form of nonlinearity is typically not included in 371 

previous seismicity modeling studies.  372 

Table 1. Three progressive scenarios  373 

Scenarios 

Governing equations 

Descriptions  Fluid Solid 

Conservation  Flow Balance Constitutive 

Case 1 (22) (23) N/A N/A Fluid diffusion in a porous medium; linear  

Case 2 (25) (23), (26) N/A N/A Fluid diffusion in a fractured porous medium; nonlinear 

Case 3 (27) (23), (26) (28) (29) 
Fully monolithically coupled fluid diffusion and solid 

stressing in a fractured poroelastic medium; nonlinear  

In seeking for a numerical solution, Jin & Zoback (2017) developed a hybrid-dimensional two-field 374 

mixed finite element method for efficient space discretization while preserving the distribution of a given 375 

set of deterministic fractures; the solution of the fully coupled semi-discrete system is advanced in time in 376 

a fully coupled manner (as opposed to a sequentially coupled manner) following a fully implicit 377 

(backward Euler) finite difference scheme; within each time step, the resulting nonlinear and fully 378 

discrete equation is solved using a Newton-Raphson solver. This technique is adopted for case 3. For case 379 

1, the discretization is done in space using a standard Galerkin finite element method and in time using a 380 

backward Euler scheme; no linearization is needed. For case 2, the discretization and linearization 381 

procedures resemble those in case 3 except for the use of a single-field interpolation scheme. To illustrate 382 

the differences, for cases 1-3, I give their respective semi-discrete forms of the governing laws shown in 383 

table 1 after space discretization. They read  384 
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 1
ˆ ˆ 0p p F   M K   (30) 385 

 2 2
ˆ ˆ ˆ ˆ( ) ( )

I I I I

N N

F pF p F pF p

I I

F R   
   

       
   

 M M K K   (31) 386 

 
3

3

ˆˆ ˆ ˆ( ) ( )
I I I I

N N
T

pF pF p F pF

I I

pp

F
R

Ydd

  
                          

            

 M M C K K 0

0 0 C G

  (32) 387 

where 𝐌̃ and M are fluid storage capacity matrices in the absence and presence of fractures, respectively, 388 

K is the hydraulic conductivity/transferability matrix, G is the stiffness matrix, C is the coupling matrix, 389 

F1, F2 and F3, which take different forms, are external nodal mass vectors for cases 1-3, Y is the external 390 

nodal force vector, 𝜁𝑝  and dp are nodal values of δp and δup, respectively, augmenting quantities 391 

associated the LSDF are indicated with the subscript “FI” and I and N are the same as in equation (21). 392 

The detailed expressions of the above discrete matrices and vectors can be found in Jin & Zoback (2017). 393 

𝐌̃, F1, F2 can be obtained by removing the fracture effect and/or the coupling effect from their respective 394 

counterparts.  395 

Solving the fully discrete form of equations (30) - (32) gives their respective final numerical solutions. 396 

For the two cases with fractures (cases 2 and 3), the numerical solution of fracture overpressure δpfp, 397 

denoted as 𝜁𝑓𝑝, is then obtained by extracting a subset of the hosting rock pressure nodal values,   398 

 ˆ ˆ
fp p  Q   (33) 399 

where Q is a matrix with 0 and 1 constituents. Details can be found on Jin and Zoback (2017).  400 

Additionally, for case 3, the numerical solution of δσ’p is in the so-called Voigt notation and it is 401 

calculated from dp as  402 

 'p pd σ DB   (34) 403 

where B is standard finite element displacement-strain transformation matrix (e.g., Hughes, 2012).   404 

2.3.3 Poroelastic Stress Invariants  405 

In the fully coupled scenario (case 3), to examine and understand roles of poroelastic stressing in 406 

seismicity evolution, the distribution of CFF within the hosting rock is often plotted. In the presence of 407 

several faults with the same orientations, this step is straightforward (e.g., Chang & Segall, 2016a). In the 408 

case with varying fracture orientations, however, it is pragmatic to define an equivalent CFF calculated 409 
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from stress invariants. Here, two poroelastic stress invariants are calculated  according to standard 410 

formulations except for the use of the effective poroelatic stress tensor δσ’p. Under plane strain, they read:  411 

   1

1 1
' 1 ' '

3 3
p x p yI          (35) 412 

          
2 22 2

2

1
' ' ' ' ' ' ' ' ' '

6
p x p y p y p x p y p x p x p y p xyJ                             

  
  (36) 413 

where ν is the Poisson’s ratio, δσ’px, δσ’py are the two normal components and δσ’pxy is the shear 414 

component of δσp’, I1’ and √𝐽2
′ are the first and second poroelastic stress invariants.  415 

Using these two invariants, an excess poroelastic shear stress denoted as MC, is defined,  416 

  2 1

1
' sin '

3
MC J I    (37) 417 

Here,  418 

 1tan ( )s    (38) 419 

Equation (37) is adapted from the invariant form of the Mohr Coulomb yield function (e.g., Borja, 2013) 420 

by setting the cohesion to 0 and the Lode’s angle as π/6. In a sense, MC is the invariant form of CFF.  421 

2.4 Inputs Preparation  422 

At this point, for the two scenarios with fractures (cases 2 and 3), equation (16) can now be elaborated  as 423 

the following  424 

 
0 0

( , ), ( , )

0

' ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( )

f

j j j j

f p s f fp fs

j j

fp
p x t p x t

x t x t x t H CFF p p x t p x t H CFF x f

 



 
  

           
    
 

 σ σ σ σ 1  (39) 425 

Applying the simple effective stress law for fractures, equation (39) collapses into a more general form  426 

 0' ( , ) ' ' ( , ) ' ( , ) ( )j j

f f fp fs

j

x t x t x t H CFF    σ σ σ σ   (40) 427 

where δσ’fp=δσp-δpfp1 and δσ’fs=δσs-δpfs1 are the effective stress changes on fractures from external fluid 428 

perturbations and seismicity, respectively, and their summation is δσ’f shown in equation (2). Also, δσ’fs≈ 429 

δσfs.  430 
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Here, the numerical solution of δσ’fp vary among scenarios and its expression is obtained from equations 431 

(3) and (33) for case 2 and equations (20), (34) for case 3. For case 1, since fractures are absent, the 432 

definition of fracture effective stress does not apply. Nevertheless, to facilitate seismicity modeling, pre-433 

defined random critical pore pressure as described in Shapiro et al. (2005) can be seeded in the domain, 434 

and an equivalent δσ’fp (which indeed should be written as δσ’p), can be defined similar to equation (3). In 435 

mixed finite element discretization, numerical solutions reside at nodes for the fluid pressure but 436 

integration points for the stress. The mixed-field elements in Jin & Zoback (2017) are equal-lower-order, 437 

leading to element-wise constant strain and stress. Accordingly, to compute the element-wise effective 438 

stress, the element-averaged nodal fluid pressure is used. Mapped back into the tensor notation, the above 439 

is summarized as  440 

 

 

 

     

ˆ , 1

ˆ' , 2

ˆ ˆ , 3

p
mean

fp p
mean

p p pVoigt tensor mean mean

case

case

d case

 



  






  

  


1

σ Q 1

DB 1 Q 1

  (41) 441 

2.5 Seismological Modeling  442 

The modeling outcomes from section 2.3 provide essential inputs for seismicity modeling. The remaining 443 

task here is to iteratively determine if seismicity occurs from equation (7), and if yes, update the stress on 444 

fractures and generate a synthetic event catalog.  445 

2.5.1 A Dual-Scale Discrete Fracture Network  446 

A dual network of fractures, hereinafter referred to as the DF, is considered as the source for seismicity. It 447 

consists of two complementary subsets A and B, where the subset A, denoted as 𝐿𝑆𝐷𝐹̃ , is an 448 

approximation to the LSDF using a series of discrete fractures and the subset B is a stochastic 449 

representation of small-scale fractures typically found in the surrounding hosting rock and is hereinafter 450 

referred to as the SSSF. The above description can be summarized as:  451 

    A Bn n

a ba b
DF LSDF SSSF f f    (42) 452 

where fa is the ath fracture in the subset A, fb is the bth fracture in the subset B, and na and nb are the 453 

respective populations.  454 

2.5.2 Stochastic Stress Drop Modeling Constrained by Poroelastic Stressing History 455 

As has been discussed in section 2.2, fracture stress will be updated first using external perturbation-456 

induced changes and then corrected to account for slip-induced redistributions. To this end, two 457 

simplifications are made. First, source-to-source interactions are neglected, i.e., stress on a fracture is not 458 
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affected by slip on nearby fractures. Second, slip causes negligible changes in the effective normal stress 459 

on the source fracture itself. This reads 460 

 ' ( , ) : 0fs f fx t n n  σ   (43) 461 

Combined with equation (40), equation (43) implies that 462 

  0' ( , ) : ' ( ) ' ( , ) :f f f f fp f fx t n n x x t n n    σ σ σ   (44) 463 

Therefore the shear stress on the fracture after slip can now be re-written in the following form  464 

       
222 2

0 0' ( , ) ' ( , ) : ' ' ( , ) ' ' ( , ) :f f f f f f fp f f fp f f jj
x t n x t n n x t n x t n n           σ σ σ σ σ σ (45) 465 

Here, Δτj is the static shear stress drop on the fracture due to the jth episode of slip. The constrained 466 

stochastic stress drop modeling on a source fracture based on its full poroelastic loading history is 467 

describe by   468 

 
maxj jr      (46) 469 

Here,  470 

  *

max 0( ) ' ' ( , ) :j s d f fp j f fx t n n       σ σ   (47) 471 

In equations (46) and (47), tj
* is the time at which the jth episode of slip occurs, μd is the fracture dynamic 472 

frictional coefficient as is typically used in a slip-weakening law (Andrews, 1976), Δτjmax is the maximum 473 

likely shear stress drop and r is a stochastic parameter between 0 and 1 in honor of potential non-full 474 

degree of stress drop (see also Verdon et al., 2015). The distribution of Δτj is a convolution of 475 

distributions of r and Δτjmax. In this study, since Δτjmax is deterministically modeled, only the distribution 476 

of r is needed, which is assumed to be uniform on [0, 1]. Equations (46) and (47) state that first, the new 477 

shear stress on a fracture due to seismicity is constrained above a lower bound defined by the residual 478 

frictional strength of the fracture and second, the maximum likely shear stress drop on a source fracture is 479 

determined by its full inter-seismic poroelastic loading history. This is an improvement on directly 480 

prescribing the shear stress drop in previous studies (e.g., Izadi & Elsworth, 2014).  481 

2.5.3 Source Parameter Calculations  482 

The key equations used in calculating the seismic source parameters are shown here. First, the seismic 483 

moment M0 can be calculated from the fracture dimension and the recorded Δτ. Depending on the fracture 484 

geometry and the faulting regime, various formulas are available. Here, I opt for the one suitable for a 485 

rectangular dip-slip fracture (Kanamori and Anderson, 1975):   486 
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 


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
  (48) 487 

where W is the fracture width (assumed as 1 m in numerical examples under plane strain), λ and μ are the 488 

Lame’s constant and the shear modulus of the medium.  489 

Second, the moment magnitude Mw is calculated from M0 following (Hanks & Boore, 1984):  490 

  0

2
lg 9.1

3
Mw M    (49) 491 

2.5.4 Fracture Stress Updating Algorithm  492 

Inspired by the prediction-correction type of algorithm in plasticity computational modeling, here I 493 

propose the following incremental fracture stress updating and seismicity generation algorithm. The 494 

overshoot in the inter-seismic prediction step can be minimized by reducing the time step used for 495 

matching the solutions of equations (30) - (32).   496 

List 1. Incremental fracture stress updating algorithm  497 

for fracture fi  % within the DF, equation (42) 

      for time step tk 

           get ' ( , )fp i kf tσ , 1' ( , )fp i kf t σ  % calculated and stored in sections 2.3 and 2.4 

           get 
1' ( , )fn i kf t 

, 
1( , )f i kf t 

, 1( , )i kCFF f t  from tk-1 

           predict ' ( , )fn i kf t , ( , )f i kf t , ( , )i kCFF f t  from 0' ( , ) ' ( ) ' ( , )f i k f i fp i kf t f f t  σ σ σ  % equation (7) 

           % incremental poroelastic stress compensation on the fracture (inter-seismic) 

                    1 1' ( , ) ' ( , ) ' ( , ) ' ( , )fn i k fn i k fn i k fn i kf t f t f t f t        

                    1 1( , ) ( , ) ( , ) ( , )f i k f i k f i k f i kf t f t f t f t        

                    1 1( , ) ( , ) ( , ) ( , )i k i k i k i kCFF f t CFF f t CFF f t CFF f t     

           % correction for seismicity-induced shear stress drop on the fracture, if any (co-seismic) 

                   if ( , ) 0i kCFF f t    

                      ( , ) ( ) ' ( , )i k s d fn i kf t r f t      % equations (46), (47) 

                       ( , ) ' ( , ) ( , )f i k s fn i k i kf t f t f t      % update the fracture shear stress  

                       ( , ) ( , ) ' ( , ) ( , )i k f i k s fn i k i kCFF f t f t f t f t       % update the fracture CFF 

                        nos=nos+1 % number of seismic cycles 

                        record and calculate seismic source parameters % section 2.5.3 

                 end  

        end  

end  

In list 1, the fracture fi needs to be associated with a stress tensor δσ’fp(fi, t). Since fi can intersect multiple 498 

elements (or Gauss integration points if using high-order finite elements), here, I will use only the stress 499 

tensor from the element nearest to its center. The above algorithm automatically produces multiple 500 

seismic cycles and therefore offers a natural way of modeling repeating events. I am now at a place to 501 
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proceed to the seismological modeling, see figure 1 for a schematic illustration. A complete seismicity 502 

catalog containing information on, e.g., the event origin time t0, the location x, the shear stress drop Δτ, 503 

the seismic moment M0, the moment magnitude Mw, the fracture length L and the initial Coulomb stress 504 

CFF0, can be assembled. Notice in equation (48), a unit length along the third dimension is used. 505 

Additionally, the definitions of a triggered event and an induced event are given and they will be 506 

elaborated later in section 4.3.3 and used there for classifying the modeled events.       507 

3. Microseismic-Scale Numerical Example Model Set-Up 508 

3.1 Step 1 for Fracture-Poro-Mechanical Modeling 509 

As a microseismic-scale numerical example, a 200 m × 200 m 2D domain is constructed representing a 510 

fracture-hosting porous rock. For cases 2 and 3, a LSDF with 100 constituents with lengths ranging from 511 

20 m to 50 m, and orientations, from 0 to 360°, is resolved, see figure 2a. The model domain is then 512 

discretized in space, see figure 2b, to arrive at the semi-discrete forms given by equations (31) and (32). 513 

For case 1, no fracture is present; nevertheless, for meaningful comparisons, the same mesh is used for 514 

arriving at equation (30). For cases 2 and 3, the nominal model parameters, including the hydraulic and 515 

mechanical properties, the coupling coefficient of the hosting rock (i.e., the Biot-Willis coefficient α), the 516 

fluid and solid boundary conditions and the time-stepping parameter are identical to those in Jin & 517 

Zoback (2017). A particular quantity of interest is the hydraulic diffusivity of the hosting rock and the 518 

LSDF in cases 2 and 3, which are 9.95×10-4 m2/s and 6.64 m2/s, respectively. For case 1, the parameters 519 

are also the same except for the permeability of the hosting rock, which is 23 mD, leading to a hydraulic 520 

diffusivity Dh = 0.03 m2/s. The rationale behind the choice of this value is explained in section 4.2. For all 521 

cases, a plane strain assumption is made.  522 

3.2 Step 2 for Seismological Modeling  523 

The next step is to set up the DF for the seismological modeling, see figure 3, and this involves two sub-524 

steps, see equation (42). Take cases 2 and 3 for example, the first sub-step is to approximate the LSDF 525 

shown in figure 2a with a 𝐿𝑆𝐷𝐹̃ as the subset A, see figure 3a, by honoring the original locations and 526 

orientations. The second sub-step is to construct a SSSF in the hosting rock as the subset B, see figure 3b; 527 

in principle, this can be derived from a statistical model if data is available (Jin & Zoback, 2015b). In this 528 

example, for simplicity and this does not change the generality of the method, I assign only one fracture 529 

to each element center shown in figure 2b as the modeling of fracture locations; for subset A, the 530 

orientations are the same as the associated deterministic fracture; for subset B, the orientations are 531 

randomly generated following a uniform distribution on [0, 360°]. Subsets A and B constitute the 532 

complete DF for the seismological modeling, see figure 3c. In this process, the fracture length is 533 

generated following a well-established scaling relation, which states that the number of fractures within a 534 
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natural fracture system scales with the fracture length according to a power law (e.g., Watanabe & 535 

Takahashi, 1995; Bonnet et al., 2001; Johri & Zoback, 2014): 536 

 
DN CL   (50) 537 

where N is the number of fractures of length L, C is a site-specific constant and D is the so-called fractal 538 

dimension and a typical value is between 1 and 2. In this study, C=1.6861 and D=1.0015 (further details 539 

in section 4.4.2). The generated L is randomly distributed to all fractures shown in figure 3c. 540 

On the other hand, the base scenario case 1 is designed not to include any fractures. Instead, the concept 541 

of random critical pore pressure (Shapiro et al., 2005) pre-allocated at seismicity seeds is adopted here. 542 

Nevertheless, such seeds can be explicitly visualized as equivalent fractures. The magnitude of the critical 543 

pore pressure translates to the fracture orientation with respect to the initial stress state. For calculating 544 

source parameters, fracture length is also randomly assigned. Therefore, the above two sub-steps are 545 

repeated for case 1. For meaningful comparisons, the locations of the seeds are identical to those in cases 546 

2 and 3. In the first sub-step, however, equivalent fracture orientations are random and generated 547 

following a uniform distribution. The resulting two subsets of fractures are shown in figures 3d and 3e 548 

and the complete DF is shown in figures 3f.  549 

In all cases, μs =0.6, μd =0.4 and a homogenous initial stress tensor σ’0 = σ’f0 = [15 0; 0 5.05] MPa is used. 550 

The initial effective normal stress and shear stress on all fractures are then calculated, forming a Mohr 551 

circle, see figure 4a, where the color indicates the associated initial Coulomb stress CFF0. The same color 552 

scale is used in figure 3 to show the susceptibility of a fracture to slip with respect to σ’f0. The peak and 553 

residual frictional strengths, calculated from μs and μd, respectively, are also shown in figure 4a. Figure 4a 554 

also indicates that the domain is nearly critically stressed. Figures 4b and 4c show the distribution of 555 

CFF0, which is no longer uniform, despite a uniform distribution of the fracture orientation. 556 

4. Results   557 

4.1 Fluid Pressure, Poroelastic Stress and Seismicity  558 

Figures 5 shows four snapshots of the distribution of δpp (figures 5a-5d) and the associated seismicity 559 

(figures 5e-5h) for case 1. The radial outward diffusion of δpp with a smooth overpressure front (Shapiro 560 

et al., 1997) activates a subset of the pre-seeded seismicity sources where the equivalent critical pore 561 

pressure, μs×CFF0, is breached by δpp, leading to a similar radially progressive distribution in seismicity. 562 

Note here the “front” is a loose term and it refers to an isoline where changes in a quantity become 563 

visible. It is important to recognize that this case has one critical difference from the Shapiro et al. (2005) 564 

diffusion-only statistical model, that is, instead of using a pre-defined critical pore pressure value 565 

following a uniform distribution, it is the pre-defined fractures with uniformly distributed orientations that 566 
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are used. Because the orientation needs to be transformed through equation (1), the resulting CFF0 and 567 

the equivalent critical pore pressure, μs×CFF0, follow instead an exponential distribution, see figure 4b. 568 

Therefore, the modeled seismicity distribution here is indeed different. Also, the addition of the proposed 569 

seismological modeling framework further allows for the calculation of seismic source parameters, 570 

including Mw and Δτ as are shown in figures 5e-5h. Notice, however, that the modeled seismicity 571 

distribution fails to retain the evident linear feature of the pre-allocated source locations (figure 3f), 572 

illustrating a fundamental drawback of this approach.  573 

Figure 6 shows the same snapshots of the same two quantities for case 2. Here, the effect of the LSDF 574 

(figure 2a) becomes evident. First, δpp increases primarily along those fractures and secondarily within 575 

the hosting rock, leading to a highly non-smooth overpressure front (figures 6a-6d). Compared to case 1, 576 

δpp here is of lower magnitude due to the LSDF diverting the fluid from the injector. Such a distribution 577 

leads to clear linear clustering of seismicity (figures 6e-6h), a phenomenon frequently observed in the 578 

field (e.g., Baisch & Harjes, 2003; Stabile et al., 2014; Deichmann et al., 2014; Block et al., 2015; Chen et 579 

al., 2018; Currie et al., 2018). Second, the distribution of seismicity is not coincident with that of δpp, 580 

instead, the clustering occurs only along certain fractures. By further examining the fracture orientation 581 

(figure 3a), it can be seen that the seismicity is clustered near those that are well-oriented or sub-well-582 

oriented with respect to σ’0 (or σ’f0) and meanwhile subjected to sufficient δpp.  583 

Figure 7 shows the results for case 3. The distribution of δpp (figures 7a-7d) and the seismicity (figures 584 

7q-7t) are shown together with three poroelastic stress invariants I1’/3 (figures 7e-7h), √𝐽2
′ (figures 7i-7l) 585 

and MC (figures 7m-7p). Recall all three quantities are calculated from δσ’p under plane strain as 586 

discussed in section 2.3.3. Here, compared to case 2, complex effects of poroelastic coupling are 587 

elucidated. First, the distribution of δpp is visibly different; the front of δpp is suppressed and the 588 

magnitude is noticeably lower. Second, the poroelastic normal stress I1’/3 develops, dominantly being 589 

extensional near the fluid-penetrated fractures; however, the magnitude of I1’/3 is lower than that of its 590 

counterpart from the decoupled approach which predicts I1’/3 ≈ -0.67δpp (appendix A.1) using δpp from 591 

case 2. Third, a pronounced shear stress field √𝐽2
′ also develops and influences an even larger portion of 592 

the domain beyond the region subjected to I1’/3 and δpp, whereas its counterpart in case 2 is 0. Fourth, as 593 

a result, the distribution of MC is different than its counterpart in case 2, which is 0.34 δpp (appendix 594 

A.1). Specifically, within the δpp front (delineated in case 2, not case 3), the magnitude is lower; outside 595 

the δpp front, it still prevails. This observation has important implications: within the fluid-pressurized 596 

region (i.e., in the near field), poroelastic coupling tends to inhibit seismicity; outside this region (i.e., in 597 

the far field), it can either remotely promote or inhibit seismicity depending on the fracture orientation. 598 

The reason behind the former is that a fracture within the fluid-pressurized region acts as preferred flow 599 

channel, leading to a discontinuous equivalent body force (-α∇δpp) acting away from it on the two sides, 600 

and therefore, inhibiting shear mode failure by unclamping it (Chang & Segall, 2016a; Jin & Zoback, 601 
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2016b; Jin & Zoback, 2017). This is reflected by the modeled seismicity. Like in case 2, here the 602 

seismicity is clustered near fractures favorably oriented with respect to σ’0 (or σ’f0) and meanwhile 603 

subjected to sufficient excess shear stress. Notice the linear clustering is further enhanced by poroelastic 604 

coupling. More importantly, the number of events in the near field is substantially reduced. Overall, the 605 

event population is reduced to only around a third of that in case 2. These observations are further 606 

elaborated in sections 4.2 and 4.3.1.  607 

4.2 Spatial-Temporal Characteristics in the R-T Space  608 

4.2.1 Fluid Pressure and Poroelastic Stress  609 

The spatial-temporal characteristics of the modeled quantities are further illustrated using the so-called R-610 

T plot, where R is the distance from the origin and T is the time since the beginning of the injection. The 611 

R-T plots of δpp for cases 1-3 are given by figure 8. Overlaying are several iso-diffusivity profiles (gray 612 

dashed lines) calculated as R= √4𝜋𝐷ℎ𝑇 +5m where Dh is the hydraulic diffusivity; √4𝜋𝐷ℎ𝑇  is a 613 

characteristic profile derived from linear diffusion from a Heaviside point source injection in an isotropic, 614 

homogeneous and porous-only medium, and it is referred to as the seismicity triggering front (Shapiro et 615 

al., 1997; Shapiro et al., 2002). Notice the use of such profiles should apply only to case 1 (figure 8a). 616 

Nonetheless, for reference, they are also plotted for cases 2 and 3 (figures 8b, 8c), where additionally, the 617 

green and magenta lines corresponding to Dh of the hosting rock and the LSDF, respectively, are also 618 

plotted. It is mentioned in section 3.1 that in case 1, Dh = 0.03 m2/s. This value is chosen such that the 619 

modeled δpp front in the R-T space is approximately the same as that in case 2. In a sense, this value 620 

reflects the overall effective Dh of the fractured porous media in case 2. Case 1 shows a smooth variation 621 

of δpp in the R-T space. In case 2, however, due to effect of fractures, the variations become non-smooth, 622 

in addition to an overall reduction in the magnitude of δpp. The effect of poroelastic coupling is reflected 623 

by comparing case 2 and 3. The δpp front is slightly suppressed and the magnitude of δpp is further 624 

reduced.       625 

To further illustrate the effect of poroelasic coupling in case 3, here I investigate the R-T characteristics of 626 

the poroelastic stress invariants, see figure 9. Although the spatial distributions of I1’/3 and δpp differ 627 

(figures 7a-7h), the delineated fronts of I1’/3 (figure 9a) and δpp (figure 8c) coincide in the R-T space. 628 

This is explained by equation (27), which states that I1’/3, which scales linearly with the volumetric strain 629 

∇∙up, diffuses together with δpp. Poroelastic coupling does, however, reduce the magnitude of I1’/3 630 

compared to its counterpart -0.67p (appendix A.1) where δpp is given by figure 8b. The effect of 631 

poroelastic coupling further manifests itself in figure 9b, which shows the development of √𝐽2
′ one-order 632 

of magnitude below p. This cannot be predicted by case 2. Also, it is evidently shown that the delineated 633 

front of √𝐽2
′ well exceeds those of p and I1’/3 (figures 8c and 9a). Figure 9c results from the combination 634 



Confidential Manuscript Submitted to JGR: Solid Earth 

- 24 - 

 

of figures 9a and 9b. The effect of poroelastic coupling is reflected by its difference in magnitude from its 635 

counterpart 0.34p (appendix A.1) where δpp again is given by figure 8b.    636 

4.2.2 Seismicity   637 

Figures 10 shows the R-T distribution of the seismicity for cases 1-3 and the color indicates CFF0. In 638 

figure 10a, a parabolic seismicity front is clearly delineated for case 1, showing also an evident “lag” 639 

behind the δpp front (figure 8a). This lag reflects the effect of the initials stress with respect to the static 640 

shear failure line (i.e., the peak strength, see figure 4). Here Dh corresponding to the δpp front and the 641 

seismicity front are 0.03 m2/s and 0.015 m2/s, respectively. In this case, if the seismicity front was to be 642 

used to back calculate Dh (e.g., Shapiro et al., 2002), Dh would be over-estimated by 100%. This motivates 643 

some nonlinear diffusion-based interpretations which incorporate pressure-dependent Dh (e.g., Hummel & 644 

Shapiro, 2012; Hummel & Shapiro, 2013). Here, my model is mechanics-based and it does not require the 645 

somewhat equivocal definition of “relatively large” pressure which underlines the diffusion-only 646 

statistical models (Shapiro et al., 1997). The effect of the LSDF can be seen in figure 10b. Notice the 647 

increased curvature of the parabolic seismicity front, which is above the predicted characteristic profile 648 

(second grey dashed line from the top) earlier and near the injector but below this profile later and away 649 

from the injector. Hummel & Shapiro (2013) used a power-law type of pressure-dependent Dh to correct 650 

for this change. However, my model not only produces this change but also introduces additional 651 

heterogeneity. Figure 10c shows further variations by accounting for poroelastic coupling. Compared to 652 

figure 10b, here the number of events is greatly reduced, the heterogeneity becomes much more 653 

pronounced, and some “outliers” are present. These are remotely triggered events to be elaborated in 654 

section 4.3.1. Additionally, nearly all events are sourced from favorably oriented fractures. The result of 655 

case 3 also shows qualitative agreement with a dataset provided in Hummel & Shapiro (2013).   656 

4.3 Event Analysis 657 

4.3.1 Near-Field and Remote Events (Coupled Case 3) 658 

As has been discussed in section 4.2, poroelstic coupling tends to inhibit seismicity in the fluid-659 

pressurized area but is also capable of triggering events remotely. Such effects are further illustrated here. 660 

To this end, the pressure front used here is defined as an iso-line on which δpp is 1% of the maximum 661 

pressure, which is the prescribed constant injection pressure pg in this study. The pressure front 662 

demarcates the near field and the far field, the latter assumed devoid of any pressure influence. Seismicity 663 

outside the pressure front is considered remotely triggered by only the remote poroelastic stress that is 664 

simply defined as the excess poroelastic shear stress outside the pressure front,  665 

  : 0.01 g pRS H p p MC    (51) 666 
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where H is the Heaviside function, MC is given by equation (37), and pg is the fluid Dirichlet boundary 667 

condition (i.e., injection pressure in this study).  668 

Figures 11a – 11h are eight time slices illustrating the evolution of remote events (blue) occurring in the 669 

far field (area colored by remote stress) in relation to the remaining events (magenta) located within the 670 

near field (non-colored area). In each time slice, only events occurred at that time are shown. Over time, 671 

poroelastic coupling inhibits near-field events and reduces their population while increasingly triggering 672 

more events remotely. This transition of triggering style is further shown by figure 11i where the relative 673 

sizes of the remote and near-field event populations are compared. Finally, figure 11j is the corresponding 674 

R-T plot of the remote poroelastic stress superposed with near-field and remote seismicity. The space-675 

time is partitioned into two regimes, one dominated by remote triggering and the other, near-field 676 

triggering. The transition, however, is non-smooth due to the presence of the LSDF.  677 

4.3.2 Repeating Events  678 

The detection of repeating events in induced seismicity catalogs have been documented by many studies 679 

across scales (e.g., Baisch & Harjes, 2003; Moriya et al., 2003; Deichmann et al., 2014; Lengliné et al., 680 

2014; Duverger et al, 2015; Zaliapin & Ben‐Zion, 2016; Hakso & Zoback, 2017; Cochran et al., 2018). 681 

Identification of repeaters requires using cross correlation measurements to locate hypocenters as well as 682 

robustly constraining rupture dimensions (e.g., Ellsworth & Bulut, 2018). Admittedly, true repeaters with 683 

centroid separations less than rupture dimensions are difficult to search for, especially in small-magnitude 684 

event catalogs. Nevertheless, they can be theoretically predicted. Indeed, the proposed modeling 685 

framework here offers a natural way to modeling repeaters - shear stress loss on and around a source fault 686 

can be compensated by poroelastic stress, provided with right combinations of fault orientations and 687 

porolastic stressing history, and this process can be driven through multiple seismic cycles. This theory is 688 

especially suited for induced seismicity where fluid clearly plays a role. Here, the modeled repeater 689 

groups are shown figure 12. Each location indicates a doublet pair or a multiplet group (e.g., Poupinet et 690 

al., 1984; Waldhauser & Ellsworth, 2002) which contains two or more events that occur on the same 691 

source location but at different time; for visibility, a small-magnitude event is always plotted within a big-692 

magnitude one (see the concentric circles). The repeating events exhibit some characteristics in space 693 

similar as those discussed in section 4.1. For example, the overall distribution is radial in case 1 but are 694 

clustered near favorably oriented fractures subjected to sufficient δpp in case 2 and MC in case 3. Despite 695 

the difference in the spatial pattern, the number of repeater groups and the total number of events are 696 

similar between cases 1 and 2. In case 3, however, both drop significantly, suggesting poroelastic 697 

coupling inhibits the occurrence of repeating events as it does to the overall seismicity. Finally, within 698 

each group, an earlier event does not necessarily have a larger magnitude; the contrary is not uncommon. 699 

This is due to the complex stress path and the non-full degree of stress drop as is reflected by the r in 700 

equation (46). To see this, for each case, I chose one representative fracture that has generated the most 701 
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repeating events and plot the associated complete stress path colored with time, see figure 13. In each 702 

case, δpp or MC suffice to drive a fracture through multiple seismic cycles within 90 minutes. However, 703 

the decoupled approach tends to over-predict both the number of seismic cycles and the number of 704 

repeater groups. Notice the increasingly unfavorable orientation of the fracture from cases 3 to 1. 705 

Additionally, within each seismic cycle, poroelastic coupling leads to a nonlinear stress path in case 3 as 706 

opposed to a linear leftward one in case 1 or 2.  707 

Additionally, I analyze the number of events within each group and the associated inter-event time (i.e., 708 

inter-seismic time), see figure 14. From figures 14a, 14c and 14e, one observes that in all cases, the 709 

repeating events are primarily doublet pairs; multiplet groups are present, and the number of events within 710 

these groups suggests that δpp can drive a fracture through up to 8 seismic cycles within the simulated 90 711 

minutes of injection; this number is reduced if poroelastic coupling is considered. For the entire catalog, 712 

the inter-event time between any two consecutive repeating events are compiled. The results are plotted in 713 

figures 14b, 14d and 14f and they all exhibit a Poisson distribution described by Pr=e-λλt/(t!), where Pr is 714 

the probability density function, λ is the average number of repeating events per time interval and t is the 715 

time interval (here I acknowledge a slight violation in notation; λ also means the Lame’s constant in 716 

equation (48)). Observations of such distributions have also been reported for real datasets (e.g., 717 

Langenbruch et al., 2011; Cochran et al., 2018). The best-fitting λ with a 95% confidence and the 718 

associated probability density function are shown in figure 15. Overall, variations appear small among the 719 

cases, suggesting insignificant impact of fractures and poroelastic coupling on the inter-event time.  720 

4.3.3 Triggered and Induced Events  721 

In figure 1, the distinction between triggered and induced events is made based on the initial stress on a 722 

fracture in relation to its peak and residual frictional strengths. This is a quantitative definition and it reads  723 
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  (52) 724 

Equation (52) states that from a loading point of view, the key difference between the two lies in that an 725 

induced event represents shear failure on a fault that is otherwise tectonically inactive with respect to the 726 

background stress state, whereas a triggered event is indicative of a fault that is nevertheless expected to 727 

produce an earthquake given the background stress state but the process towards failure is favorably 728 

accelerated. This definition is consistent with the qualitative one provided by McGarr & Simpson (1997). 729 

As a result, upon seismicity, a triggered event releases a substantial amount of tectonic stress whereas an 730 

induced event releases mostly anthropogenic stress.  731 
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The triggered and induced events are distinguished from each other according to the above definition. The 732 

results are shown in figure 16. In cases 1-3, 93.3%, 92.8% and 98.5% of the events are triggered; the 733 

remaining small number of events are induced and are distributed in close proximity to the injector, as 734 

they occur on unfavorably-oriented fractures and require a significant amount of δpp or MC to be 735 

activated. Again, for either type of event, accounting for the LSDF leads to the clustering and accounting 736 

for poroelastic coupling significantly reduces the number of events.   737 

4.4 Source Parameters  738 

4.4.1 Stress Drop, Fracture Length and Moment Magnitude  739 

Figures 17a, 17c and 17e summarize the modeled seismic source characteristics in the parameter space for 740 

cases 1-3. For each event, Mw is plotted against the associated fracture length L and colored with Δτ. The 741 

modeled events, with Mw between -3 and -1, occur on fractures of L ranging from 0.1m and 10m, and Δτ 742 

ranges from below 0.1 MPa to above 1 MPa, consistent with many real induced micro-earthquake 743 

datasets at a similar scale (e.g., Goertz-Allmann et al., 2011; Mukuhira, 2013). Such source characteristics 744 

overall seem not affected by the LSDF nor poroelastic coupling. For a realistic range of Δτ, the parameter 745 

r in equation (46) turns out to be a key controlling factor and the sensitivity of model outcomes to r 746 

remains to be explored. I will leave this for future work. Figures 17b, 17d and 17f further show the overall 747 

similar distribution of Δτ for cases 1-3. In each case, [0.1, 1] MPa is the dominant range. Notice, however, 748 

that case 3 sees a bigger portion of events with higher Δτ (e.g., above 1 MPa). The reason underlies 749 

nonlinear poroelastic loading paths with upward components, which lead to larger Δτmax (equation (47)) 750 

compared to decoupled cases, see also figures 1 and 13c.  751 

4.4.2 Magnitude-Frequency Scaling   752 

I have introduced a power law that describes the commonly observed scaling relation between the fracture 753 

length and the frequency (section 3.2). Meanwhile, earthquakes in nature are characterized with a 754 

universal statistical relation between the magnitude and the cumulative frequency, namely the Gutenberg-755 

Richter law (Gutenberg, 1956), which reads:  756 

 lg ( )w wN m M a bM     (53) 757 

where N(m>Mw) is the total number of events with a moment magnitude m above Mw, and a and b are 758 

constants. 759 

In nature, the fractal dimension D shown in equation (50) is observed to be mostly between 1 and 2 (e.g., 760 

Okubo & Aki, 1987). The b-value fitted from natural earthquake catalogs is commonly around 1 (e.g., Shi 761 

& Bolt, 1982) albeit a wide possible range of variations from 0.3 to 2.5, see, e.g., El-Isa & Eaton (2014) 762 

for a comprehensive review. Studies suggest that D and b are inherently related. For example, Hirata 763 

(1989) suggests a well-recognized D = 2b relation. A somewhat curious yet common observation is that 764 
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for induced seismicity, especially microseismicity as is modeled here, b-value is frequently elevated 765 

above 1 and even 2 (e.g., Vermylen & Zoback, 2011; Bachmann et al., 2011; Bachmann et al., 2012; 766 

Eaton et al., 2014; Tutuncu & Bui, 2015; Mousavi et al., 2017; Chen et al., 2018; Brudzinski & 767 

Kozłowska et al., 2019), although a uni-modal distribution around 1 (Schoenball et al., 2015; Goertz‐768 

Allmann, 2017) and a bi-modal distribution around both 1 and 2 (Igonin et al., 2018; Kettlety et al., 2019) 769 

have also been reported.  770 

In figure 18, for each case, the distribution of lengths of all fractures (figures 3c, 3f) is plotted (green), 771 

together with the power law fitting line (magenta); the distribution of lengths of the activated subset of 772 

fractures is also plotted (red), which clearly no longer obeys the power law decay, owing to that only 773 

favorably oriented fractures are induced to slip. Nonetheless, the magnitude-frequency scaling relation 774 

still holds for the induced events, as is illustrated in figure 19. For each case, the distribution of Mw, which 775 

primarily varies between -3.5 and -1.0, is shown as the histogram (yellow green); the total number of 776 

events (i.e., cumulative frequency) is shown by the blue-green dots, which is then used to fit the 777 

Gutenburg-Richter law, yielding a b-value around 2. Notice the similarities among all three cases in both 778 

figures 18 and 19, suggesting that the b-value is likely to be independent from the LSDF and poroelastic 779 

coupling. The breaking-down in the power law distribution of the length of the activated subset of 780 

fractures might be responsible for the deviation in the b-value for induced seismicity. Similar mechanical 781 

origins of the b-value elevation for induced seismicity have been suggested by other studies (Tafti et al., 782 

2013; Stormo et al., 2015). In the end, the specific b-value might be jointly determined by the fracture 783 

network itself (Eaton et al., 2014; Afshari Moein et al., 2018), the poroelastic properties (Wangen, 2019) 784 

and the stress state (Scholz. 2015).  785 

5.Summary and Conclusions  786 

I have developed a hydro-mechanical-seismological modeling framework for fluid perturbation-induced 787 

seismicity in a fluid-saturated and arbitrarily fractured nonlinear poroelastic medium. Following 788 

predefined distributions characteristic of a natural fracture system, a dual network of fractures is 789 

generated consisting large-scale deterministic fractures (LSDF) and small-scale stochastic fractures 790 

(SSSF) within the hosting rock. The modeling consists two steps, including first the quasi-static fracture-791 

poro-mechanical modeling and second the seismological modeling. In the first step, only the LSDF is 792 

resolved, using a fluid-solid fully coupled nonlinear computational poromechanical model customized for 793 

arbitrarily fractured media. This provides a LSDF-controlled full poroelastic stress tensor as a pivotal 794 

input for the second step, in which the complete dual network of fractures is then considered. The 795 

seismicity-induced shear stress loss on a source fracture is stochastically generated as a static quantity 796 

without explicitly modeling the co-seismic dynamic rupture; it is dictated by the full poroelastic stressing 797 

history in conjunction with the initial stress state. A prediction-correction type of fracture stress updating 798 
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scheme is developed accordingly and advanced in time to produce seismicity catalogs. Three progressive 799 

cases were designed to systematically showcase model capabilities as well as effects of fractures and full 800 

poroelastic coupling on the resulting fluid overpressure, solid stress as well as seismicity and its source 801 

characteristics. Compared to the prevalent fracture-free, coupling-free and diffusion-only class of 802 

statistical models, my model produces induced seismicity with more realistic spatial-temporal and 803 

statistical characteristics frequently seen in real data. It also goes beyond the scope of most current 804 

models and provides a synthetic catalog of induced events, allowing for analyzing seismic source 805 

characteristics and establishing connections between observations and model physics.     806 

Several key new findings from the numerical experiments are highlighted here.  807 

(1) The spatial-temporal evolution of the pore fluid overpressure δpp, the change in the solid effective 808 

stress tensor δσ’p, the associated stress invariants I1’ and √𝐽2
′  and the excess shear stress invariant 809 

MC= √𝐽2
′ -sin(ϕ)I1’/3, all differ in a porous medium, a fractured porous medium and a fractured 810 

poroelastic medium. In space, the presence of the hydraulically conductive LSDF leads to marked 811 

localization of these quantities around it. Poroelastic coupling tends to reduce the magnitude of δpp and I1’ 812 

near fluid-penetrated fractures but also predicts an otherwise non-existing √𝐽2
′ within the entire domain. 813 

As a result of, MC is reduced in the near field but increased in the far field. In the R-T space, δpp and I1’ 814 

share the same front which is below the front shared by √𝐽2
′ and MC.  815 

(2) In space, the LSDF leads to not only heterogeneity but also pronounced linear clustering in seismicity. 816 

The clustering occurs only near fractures favorably oriented with respect the initial stress and meanwhile 817 

subjected to sufficient excess shear stress. Poroelastic coupling further enhances the clustering; more 818 

importantly, because of the way it generates the excess shear stress, poroelastic coupling inhibits 819 

seismicity in the near field and promotes events remotely in the far field. The style of triggering is 820 

dominated by near-field triggering at an earlier time and transitions into remote triggering-dominated 821 

subsequently. Overall, poroelastic coupling significantly reduces the event population. 822 

(3) External fluid perturbations and internal seismicity are the two sources driving stress changes, and 823 

together they can drive a source fracture through multiple seismic cycles on a time scale relevant to the 824 

problem. This provides a viable mechanism of fluid-induced repeating events with characteristic stepwise 825 

stress paths. Poroelastic coupling, however, tends to inhibit the occurrence of repeaters as it does to the 826 

overall seismicity, in addition to adding nonlinearity to the associated stress paths. 827 

(4) Although collectively referred to as induced seismicity, the modeled events are indeed predominantly 828 

triggered events rather than induced events. Because the latter are sourced on unfavorably-oriented 829 

fractures that require significant excess shear stress, they concentrate near the source of fluid 830 

perturbations.  831 
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(5) Some statistical characteristics of induced seismicity appear to remain independent from the LSDF 832 

and poroelastic coupling. For the given set of parameters, the inter-event time between two consecutive 833 

repeater follows a Poisson’s distribution, the stress drop Δτ predominantly falls in between 0.1 MPa and 1 834 

MPa obeying overall similar distributions and the b-value in the magnitude-frequency scaling relation is 835 

consistently around 2, irrespective of the case. However, poroelastic coupling does favor higher Δτ due to 836 

its upward bending of the stress path, leading to some slight differences in the distributions of Δτ and Mw 837 

near the end of their distribution intervals.   838 

(6) In the complete dual fracture system, the fracture length and the frequency obey a realistic power law 839 

scaling relation with a characteristic fractal dimension; however, this relation breaks down for the 840 

activated subset of fractures since only favorably-oriented fractures are induced to slip. This mechanical 841 

origin might explain the curious deviation of the b-value from 1 to above 2 as has been commonly seen in 842 

induced seismicity catalogs.  843 
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Appendix 848 

A.1 Equivalent Poroelastic Stress Invariants for Cases 1 & 2 849 

For case 3, equations (35) - (37) are used to calculate I1’/3, √𝐽2
′ and MC shown in figure 7. For cases 1 850 

and 2 without the coupling effect, the pressure changes within the hosting from external fluid 851 

perturbations can be translated to an equivalent change in its effective normal stress change as αδpp1. This 852 

is similar to equation (3) except for the use of Biot-Willis coefficient of the hosting rock. Substituting it 853 

into equations (35) and (36) yields the following equivalent poroelastic stress invariants,   854 

  1

1 2
' 1

3 3
pI p      (A1) 855 

 2 ' 0J    (A2) 856 

Given the parameters used in this study, specifically, ν = 0.25, α = 0.8 and μs = 0.6, equation (A1) predicts 857 

that I1’/3 ≈ -0.67δpp and MC=√𝐽2
′-sin(ϕ)I1’/3 ≈ 0.34δpp for cases 1 and 2.    858 
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Nomenclature  859 

1. Domains  

Ωf, Ωm fracture domain and hosting rock (matrix) domain  

∂Ωf fracture domain boundary  

∂f fracture-hosting rock interface (also dimensionally reduced fracture domain)  

Ω, 𝛺 bulk model domain and its mixed-dimensional representation  

LSDF, 𝐿𝑆𝐷𝐹̃ a large-scale deterministic fracture network and its discrete approximation 

SSSF a small-scale stochastic fracture network  

DF a dual-scale fracture network  

FI, N Ith large-scale deterministic fracture in LSDF, total population 

fa, na ath discrete fracture in 𝐿𝑆𝐷𝐹̃, total population 

fb, nb bth discrete fracture in SSSF, total population 

  

2. Fracture domain properties & variables  

CFF Coulomb Failure Function (Coulomb stress), Pa  

| |f , 
0| |f  current and initial maximum shear stress, Pa 

0| |f f    current maximum shear stress showing decompositions, Pa  

σ’nf, σ’nf0, δσ’nf current, initial and perturbing effective normal stress, Pa 

nf unit normal vector, [-] 

μs, μd static and dynamic frictional coefficients, [-] 

σf current Cauchy total stress tensor, Pa  

σ’f, σ’f0, δσ’f current, initial and perturbing effective stress tensors, Pa  

δσ’fp, δσ’fs changes in the effective stress tensor due to external fluid perturbations and seismicity, Pa 

δσ’fxx, δσ’fyy, δσ’fzz normal components of δσ’f, Pa 

δσ’fxy, δσ’fxz, δσ’fyz shear components of δσ’f, Pa 

pf, pf0, δpf current and initial fluid pressure and fluid overpressure, Pa  

δpfp, δpfs fluid overpressure due to external fluid perturbations and seismicity, Pa 

b0 initial hydraulic aperture, m 

Cf compressibility, Pa-1 

Δτj, Δτjmax static shear stress drop from the jth episode of slip and its maximum likely value, Pa 

r a random variable, [-] 

L, W length and width, m  

D  fractal dimension, [-] 

C a site-specific parameter for characterizing fracture length distributions, [-] 

  

3. Porous hosting rock (matrix) domain properties & variables  

Km  bulk modulus of solid grains/skeleton, Pa  

Kb bulk modulus, Pa 
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α Biot-Willis coefficient, [-] 

ϕm0 initial porosity, [-] 

Cm compressibility, Pa-1 

λ, μ Lame’s constant and shear modulus, Pa 

ϕ frictional angle, ° 

km permeability tensor, m2 

σ, σ0, δσ current, initial and perturbing Cauchy total stress tensors, Pa  

δσp, δσs changes in the Cauchy total stress tensor due to external fluid perturbations and seismicity, 

Pa  

δσ’p, δpp changes in the effective stress tensor and fluid overpressure due to external fluid 

perturbations, Pa  

I1’, √𝐽2
′ first and second poroelastic stress invariants, Pa  

MC excess poroelastic shear stress, Pa  

RS remote poroelastic stress, Pa  

δup change in the displacement vector due to external fluid perturbations, m 

D elastic stiffness tensor, Pa 

  

4. Other properties and variables 

v fluid velocity vector, m/s  

η fluid viscosity, Pa·s 

s external fluid source/sink term divided by the initial fluid density, s-1 

Λ0 geometric factor reflecting effects of fractures on medium fluid storage capacity, [-] 

pg fluid Dirichlet boundary value (injection pressure), Pa 

M0 seismic moment, N·m 

Mw moment magnitude, [-] 

a, b Gutenberg-Richter constants, [-] 

  

5. Numerical discretization (fractures) 

𝐌𝐹𝐼
 fluid storage capacity matrix of the Ith large-scale deterministic fracture 

𝐊𝐹𝐼
 hydraulic conductivity matrix of the Ith large-scale deterministic fracture 

  

6. Numerical discretization (hosting rock/matrix) 

𝐌̃, M fluid storage capacity matrix in the absence and presence of fractures  

K hydraulic conductivity matrix  

C coupling matrix  

G elastic stiffness matrix  

Q a matrix for extracting fracture nodal pressure from matrix nodal pressure in a hybrid-

dimensional approach  

B standard finite element displacement-strain transformation matrix  
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𝜁𝑝, dp  nodal values of δpp and δup 

F1, F2, F3 external nodal mass vectors  

Y external nodal force vector  

R2, R3 residual vectors  

  

7. Math operators & identities 

tr(·) trace (diagonal sum) 

H(·) Heaviside function  

, (s), τ gradient, symmetric gradient and tangential gradient operators  

· divergence operator  

· dot product  

:  double tensor contraction 

⨂ Dyadic product  

1 unit identity (Kronecker delta)  
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Figure Captions  1182 

Figure 1. Schematic illustration (not to scale) of the hydro-mechanical-seismological modeling of fluid-1183 

induced seismicity plotted in the fracture effective normal stress-shear stress space. Based on the peak and 1184 

residual frictional strengths of a fracture, as are depicted by the red and green lines, the space is divided 1185 

into two parts defining the initial stress regime for a triggered event and an induced event, respectively (to 1186 

be elaborated in section 4.3.3). The blue and magenta dots are given as two examples, both located on a 1187 

Mohr circle defined by σ’f0. For either type of event, the modeling consists two steps. The first step is to 1188 

predict the fracture stress by compensating the fracture with σ’fp, which requires the pore pressure 1189 

modeling for case 1, the fracture-pore pressure modeling for case 2 and the fracture-poro-mechanical 1190 

modeling for case 3, the latter two resolving the LSDF. The outcome of this step is indicated by the green 1191 

and red arrows. The second step, which does not vary among the three cases, is to stochastically model Δτ 1192 

on source fracture as indicated by the dashed arrows to approximately account for the effect of σ’fs; 1193 

meanwhile, Δτ remains constrained on a range Δτmax as is indicated by the yellow arrows and it is 1194 

computed from the poroelastic loading history σ’fp in conjunction with σ’f0. Two consecutive seismic 1195 

cycles j and j+1 are shown, and the complete stress updating scheme is given in list 1.    1196 

Figure 2. (a) The model domain for cases 2 and 3. It consists of a LSDF embedded within an otherwise 1197 

porous matrix. The color suggests the index I (see equation (21)). For case 1, the LSDF is removed from 1198 

the domain. (b) Conforming space discretization of the fractured domain and the resulting unstructured 1199 

triangular finite elements used in arriving at the semi-discrete forms. For case 3, all elements represent the 1200 

porous hosting rock; the grey elements are the standard two-field (fluid pressure, solid displacement) 1201 

mixed FE elements; the colored elements are ‘hybrid’ mixed elements in which at least one edge is also 1202 

used as a lower-dimensional element to discretize the fractures; the color of an element indicates the Ith 1203 

deterministic fracture with which it is associated. If a hybrid element conforms to multiple fractures, only 1204 

the largest I is used for coloring. For case 2, the elements have similar meanings as in case 3 except they 1205 

are no longer mixed (i.e., only used for interpolating the fluid pressure). For case 1, all elements are the 1206 

standard single-field elements. Adapted from Jin & Zoback (2017).  1207 

Figure 3. The dual fracture network (DF, equation (42)) consisting of 12800 fractures used for the 1208 

seismicity modeling, shown together with its two subsets A and B. (a)-(c) Cases 2 and 3, and (d)-(f) case 1209 

1. In case 1, fractures are essentially explicit visualizations of seismicity seeds assigned with random 1210 

critical pore pressure values. Figures 3a shows the subset A with deterministic fracture locations and 1211 

orientations as an approximation to the LSDF shown in figure 2a; figure 3b shows the subset B as a 1212 

stochastic realization of fractures in the hosting rock; figure 3c shows the hybrid deterministic-stochastic 1213 

DF in which the fracture length distribution follows a realistic power-law scaling relation. Figures 3d-3f 1214 

resemble figures 3a-3c except for the stochastic fracture orientation in figure 3d. In all figures, the warm 1215 
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color indicates the fracture is favorably oriented with respect to σ’f0 whereas the cool color indicates 1216 

otherwise.  1217 

Figure 4. The initial stress used for the seismological modeling. In figure 4a, the initial effective normal 1218 

stress and shear stress on all fractures (figures 3c, 3f) are plotted. Because the fractures sample all likely 1219 

orientations, a Mohr circle is formed. The color indicates CFF0. The peak and the residual strengths are 1220 

also shown for reference (same as those in figure 1). The geometric meaning of CFF0 is shown for one 1221 

fracture as an example. Figures 4b, 4c show the histograms of CFF0 for case 1 and cases 2-3, 1222 

respectively. 1223 

Figure 5. Snapshots of the spatial distribution of the modeled quantities at four time steps for case 1. (a)-1224 

(d) The fluid overpressure δpp and (e)-(f) the seismicity sized with Mw and colored with Δτ. Only the 100 1225 

m × 100 m area around the center is shown. The time is indicated at the top of each plot.  1226 

Figure 6. Same as figure 5, but for case 2. The LSDF is shown in the background. 1227 

Figure 7. Snapshots of the spatial distribution of the modeled quantities at four time steps for case 3. (a)-1228 

(d) The fluid overpressure δpp, (e)-(h) the first poroelastic stress invariant I1’/3, (i)-(l) the second 1229 

deviatoric poroelastic stress invariant √𝐽2
′, (m)-(p) the excess poroelastic shear stress invariant MC=√𝐽2

′-1230 

sin(ϕ)I1’/3 and (q)-(t) the seismicity sized with Mw and colored with Δτ. Only the 100 m × 100 m area 1231 

around the center is shown. The time is indicated at the top of each plot. The LSDF is shown in the 1232 

background.  1233 

Figure 8. Space-time plots of the fluid overpressure δpp. (a) Case 1, (b) case 2 and (c) case 3. The 1234 

distance is only plotted from 0 to 45 m. The color scale is the same as in figures 5-7. Several 1235 

characteristic diffusion profiles are shown (see text) as references, including the green and magenta lines 1236 

calculated using the diffussivity of the hosting rock and the fractures, respectively. The differnces 1237 

between cases 1 and 2 show the effect of the LSDF and the differences between cases 2 and 3 show the 1238 

effect of poroelastic coupling.   1239 

Figure 9. Space-time plots of the poroelastic stress invariants for case 3. (a) I1’/3, (b) √𝐽2
′  and (c) 1240 

MC=√𝐽2
′-sin(ϕ)I1’/3. The distance is only plotted from 0 to 45 m and the characteristic diffusion profiles 1241 

are the same as those in figure 13. The color scale is the same as figure 8. The counterparts of the three 1242 

quantities in case 2 without the coupling effect can be obtained by multiplying the δpp in figure 8b with -1243 

0.67, 0 and 0.34 (appendix A.1).    1244 

Figure 10. Space-time plots of all seismic events, sized with Mw and colored with CFF0. (a), (d) Case 1, 1245 

(b), (e) case 2 and (c), (f) case 3. The distance is only plotted from 0 to 45 m and the reference 1246 

characteristic diffusion profiles are the same as those in figure 13. The differnces between cases 1 and 2 1247 
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show the effect of the LSDF and the differences between cases 2 and 3 show the effect of poroelastic 1248 

coupling.  1249 

Figure 11.  Evolution of near-field events versus remotely triggered events in the fully coupled case 3. (a) 1250 

- (h) Snapshots of the distribution of remotely triggered events (blue dots) overlaying areas undergoing 1251 

poroelastic stressing (magnitude shown by the color) and negligible pressure changes, together with near-1252 

field events (magenta dots) overlaying areas (non-colored) where pore pressure changes are present. (i) 1253 

The population of remote events (blue) relative to that of near-field events (magenta) plotted against time. 1254 

Over time, the predominant triggering style transitions from near-field triggering to remote triggering. (j) 1255 

R-T plot of the remote stress superposed with seismicity. The colored domain indicates possible space-1256 

time for remote triggering whereas non-colored domain indicates space-time for near-field triggering. 1257 

Near-field events dominates at smaller distances and earlier time while remote events take over at greater 1258 

distance and later time.  1259 

Figure 12. Repeating events sized with Mw and colored with t0. (a) Case 1, (b) case 2 and (c) case 3. Only 1260 

the 100 m × 100 m area around the center is shown. The number of groups and the total number of events 1261 

are indicated at the top left. The LSDF in the background for cases 2 and 3.  1262 

Figure 13. Representative complete stress paths. (a) Case 1, (b) case 2 and (c) case 3. The color indicates 1263 

the time. The number of seismic cycles is 6 in cases 1 and 2 and 3 in case 3. The pore pressure effect and 1264 

the poroelastic effect are indicated. 1265 

Figure 14. Characteristics of the repeating events. (a)-(b) Case 1, (c)-(d) case 2 and (e)-(f) case 3. Figures 1266 

14a, 14c and 14e show the location of each group containing repeating events, colored with the number of 1267 

events within that group (i.e., the number of seismic cycles the associated fracture has undergone). 1268 

Figures 14b, 14d and 14f are histograms showing the distribution of the inter-event time between two 1269 

consecutive repeating events.  1270 

Figure 15. Poisson’s distribution of the inter-event time between consecutive repeating events and the 1271 

associated parameters.  1272 

Figure 16. Triggered and induced events sized with Mw and colored with t0. (a)-(b) Case 1, (c)-(d) case 2 1273 

and (e)-(f) case 3. Only the 100 m × 100 m area around the center is shown. The number of events is 1274 

indicated at the top left. The LSDF is shown in the background.  1275 

Figure 17. The top row shows relationships among Mw, L and Δτ of all modeled events. Overlaying are 1276 

four contours corresponding to Δτ=0.01 MPa, 0.1 MPa, 1 MPa and 10 MPa. The bottom row shows the 1277 

histograms of Δτ together with the cumulative frequency using 1000 equal-sized bins on the range [0.01, 1278 

10] MPa. Additionally, the number of events with Δτ≤0.01 MPa, 0.01MPa<Δτ≤0.1 MPa, 0.1MPa<Δτ≤1 1279 
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MPa and Δτ>1 MPa are counted and the percentages are shown. (a), (b) Case 1, (c), (d) case 2 and (e), (f) 1280 

case 3.  1281 

Figure 18. Histogram of fracture lengths using 1000 equal-sized bins, plotted on a log-log scale as 1282 

discrete sequences. The green sequence indicates the distribution of lengths of all fractures, which follows 1283 

a power law decay as is fitted with the magenta line. The fitting parameters are also shown, specifically, 1284 

the fractal dimension D is 1. The red sequence shows the length distribution of activated fractures only 1285 

(fractures undergone at least one seismic cycle). Because it is primarily the favorably oriented fractures 1286 

that are activated, the distribution no longer follows a power law decay. (a) Case 1, (b) case 2 and (c) case 1287 

3. 1288 

Figure 19. Histogram of the modeled Mw (yellow green). The bin size is 0.05, and the y-axis is on a log-1289 

scale. The associated distribution of N follows the classic Gutenberg-Richter law (blue green); data points 1290 

with a Mw above -2 are used for fitting (the magenta line), yielding a b-value around 2, which is 1291 

commonly observed for induced micro-seismicity. (a) Case 1, (b) case 2 and (c) case 3. 1292 
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 14.
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Figure 15.
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Figure 18.
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