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Abstract

There is little scientific consensus on the importance of external climate forcings—including anthropogenic aerosols, volcanic

aerosols, and greenhouse gases (GHG)—relative to each other and to internal variability in dictating past and future Sahel

rainfall. We address this query by relating a 3-tiered multi-model mean (MMM) over the Climate Model Intercomparison

Project phase 5 (CMIP5) “20th century” and pre-Industrial control simulations to observations. The comparison of single-

forcing and historical simulations highlights the importance of anthropogenic and volcanic aerosols over GHG in generating

forced Sahel rainfall variability in models. However, the forced MMM only accounts for a small fraction of observed variance. A

residual consistency test shows that simulated internal variability cannot explain the residual observed multidecadal variability,

and points to model deficiency in simulating multidecadal variability in the forced response, internal variability, or both.
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1. Abstract 

There is little scientific consensus on the importance of external climate forcings—including 

anthropogenic aerosols, volcanic aerosols, and greenhouse gases (GHG)—relative to each other and to 

internal variability in dictating past and future Sahel rainfall. We address this query by relating a 3-tiered 

multi-model mean (MMM) over the Climate Model Intercomparison Project phase 5 (CMIP5) “20th 

century” and pre-Industrial control simulations to observations. The comparison of single-forcing and 

historical simulations highlights the importance of anthropogenic and volcanic aerosols over GHG in 

generating forced Sahel rainfall variability in models. However, the forced MMM only accounts for a 

small fraction of observed variance. A residual consistency test shows that simulated internal variability 

cannot explain the residual observed multidecadal variability, and points to model deficiency in 

simulating multidecadal variability in the forced response, internal variability, or both.  

2. Introduction 

The Sahel—the boundary between the North African Savanna and the Sahara Desert—

experienced dramatic, long-term rainfall variability in the 20th century which was unparalleled in 

the rest of the world. This variability was marked by a striking decline in rainfall between ~1960 

and the early 1980s, including devastating droughts and famine in the early 1970s and 80s, 
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which left 100,000 people dead and 750,000 dependent on food aid [1]. Scientific work 

immediately began to explore potential relationships between Sahel rainfall and a wide variety of 

local [2,3] and global [4,5] climatic factors. Giannini, et al. [6] confirmed the importance of global 

over local processes by showing that an atmospheric model forced with observed global sea 

surface temperature (SST) alone could reproduce the profile of the first principal component of 

Sahel 20th century rainfall variability, if not the amplitude, at a correlation of ~0.7. Studies since 

then have continued to focus on various global processes, reinforcing the connections between 

the Sahel and the temperature of ocean basins across the globe, and establishing links to internal 

variability—such as the El Niño Southern Oscillation (ENSO) [7-9] and the Atlantic Multidecadal 

Oscillation (AMO) [9,10]—and external forcing—such as greenhouse gases (GHG) [11-16] and 

volcanic and anthropogenic aerosols [13,17,18]. However, the relative importance of internal 

variability and different sources of external forcing remain unclear. 

There is a developing consensus in the literature that anthropogenic aerosols have 

contributed to the Sahel drought, though there is disagreement over the prominence of this 

contribution and the physical mechanism that governs it [10,11,13,16-26]. The magnitude of the 

contribution is somewhat contentious because of disagreement about the strength of the indirect 

aerosol effects [27-29], which may influence SSTs and global precipitation much more than the 

direct radiative effect [30-32], and which may cause non-linear interactions affecting both the 

spatial pattern (i.e. Polson, et al. [18] on the Asian monsoon) and even the mean [33] of the 

precipitation and temperature responses to other sources of forcing. The role of greenhouse gases 

(GHG) is even more widely debated—not just in the 20th century [12-17,22,26,30], but even in the 

future when GHG forcing dominates [11,12,15,19]. Some argue that there are also non-linear 

interactions between different effects of increasing GHG [34,35] or between GHG and other 
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external forcings [16] and internal processes [36]. Finally, many studies claim that SST and Sahel 

rainfall variation are primarily of internal origin [37-39].  

Many of the above studies on the Sahel focus on one or two types of forcing or on one 

model, or are limited to CMIP3 [40], in which most models did not include indirect aerosols 

effects. Some, such as Giannini and Kaplan [16], use a storyline approach—focusing on 

proposing physically-consistent pathways in order to avoid underestimating regional impacts 

[41]. Others [18,23] use fingerprinting, extracting distinct spatial and/or temporal patterns 

associated with different forcings and scaling the model response to match observations in order 

to correct sensitivity biases and avoid compensating errors in the models [42].   

We attempt to enrich the debate about the influence of external forcing and internal 

variability on Sahel rainfall over the 20th century by performing an attribution study using the 

Coupled Model Intercomparison Project phase 5 (CMIP5) [43], which is the first large ensemble 

of coupled models to include aerosol indirect effects and run “single-forcing” model simulations, 

in which one external source of radiative forcing—such as greenhouse gases (GHG), 

anthropogenic aerosols (AA), or natural forcing (which includes volcanic aerosols and solar and 

orbital variations, NAT)—varies historically while the other external forcings are held at 

constant pre-Industrial values. We compare the evolution of spatially- and seasonally-averaged 

July-September (JAS) observed Sahel rainfall to that of the 20th century single-forcing and 

historical simulations, in which all external forcings vary simultaneously (ALL). We determine 

the forced responses via a weighted, tiered multi-model mean (MMM) of CMIP5 simulations 

(see Methods for details), and then calculate correlation coefficients and root mean squared 

errors (RMSE, expressed as fraction of observed variance) to estimate the contributions of 

different external forcings to observed precipitation variability, using bootstrapping methods to 
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estimate uncertainty in those statistics. To estimate noise in the MMM and significance, we use 

the long pre-Industrial control (piC) simulations, in which all external radiative forcings are held 

at constant pre-industrial values. We employ spectral analysis of individual 20th century and piC 

simulations to estimate the contribution of internal variability to observed precipitation 

variability at multidecadal time scales. 

3. Results 

a. Multi-model mean performance 

For each forcing experiment, we compute the MMM as follows: (1) an average across 

individual runs gives the ensemble mean (EM) for each CMIP5 model, (2) a weighted average 

across EMs gives the institution mean (IM) for each participating research institution, (3) and a 

weighted average across IMs gives the multi-model mean (MMM). The weights are designed to 

counteract attenuation of noise in ensemble and institution means that include more runs and 

EMs, respectively, so that they will not be underrepresented in the MMM relative to their noisier 

and more variable counterparts. For a formula and its derivation, see Section 5.b: The Multi-

Model Mean.    

In Figure 1a and Figure 1b, we compare the MMM of Sahel 20th century precipitation 

anomalies for the ALL MMM (blue line) to individual ALL runs (blue-grey lines, background) 

and IMs (cyan lines), and to observations from the Global Precipitation Climatology Center [44] 

(GPCC, black line) and the Climatic Research Unit [45] (CRU, red dotted line). Despite 

disagreement in the first three years, the spatial averages of the two observational records look 

similar enough that uncertainty in area-averaged Sahelian precipitation is considered small, and 

only GPCC is used throughout the rest of the paper. Despite the spread of the IMs, the 

standardized anomalies (Figure 1a) reveal a striking similarity between observations and the 
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MMM, which captures much of the time series’ multi-decadal variation by reproducing the 

drought of the 70s and 80s and its recovery, and even many episodes of dramatic interannual 

rainfall changes, most notably near 1984, the driest year in observations. Assuming the averaging 

was successful in preferentially filtering out internal variability present in individual model 

simulations, the MMM represents a consensus, forced Sahelian rainfall profile which is 

recognizable in the observations (Figure 1a). However, the actual rainfall anomalies (Figure 1b) 

reveal substantial attenuation of variance in the ALL MMM compared to individual simulations 

and to the observations. 

Figure 1. MMM Performance: Standardized (a) and actual (b) departures from climatology of 20th century Sahel precipitation in 
Individual ALL runs (blue-grey solid lines), ALL institution means (IMs, cyan), the ALL MMM (blue), and observations from 
GPCC (black) and CRU (red dotted line). Histogram (cyan) of correlations (c) and RMSE (d) between GPCC observations and 
the IMs, actual correlation (c) and RMSE (d) of the MMM with observations (blue dot), and the bootstrapping PDFs (blue curve) 
of the correlation (c) and RMSE (d) between the ALL MMM and observations.  
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The remaining panels of Figure 1 display the correlations (Figure 1c) and the RMSE 

(Figure 1d) of individual IMs (cyan histogram) and of the MMM (blue dot) with observations. 

The blue curves show probability density functions (PDF) from bootstrapping over the IMs (see 

Methods), and represent how those statistics might change with a slightly different set of models. 

The correlation measures the similarity in the shape of one time series with respect to the other 

but is independent of relative amplitude, whereas the RMSE estimates the difference in 

amplitude of the simulated and observed yearly rainfall time series.  

The MMM performs as well as or better than most individual IMs in both metrics, 

consistent with previous studies which compared other versions of multi-model means to 

individual models [46]. Though some research institutions may appear to outperform the MMM 

in correlation and RMSE with 20th century observations (notably, GISS outperforms the MMM 

in both), as we are comparing only one variable (precipitation) to one realization of observations 

in which forced and internal variability are indistinguishable, it is unclear whether these models 

truly capture the underlying mechanisms better than the ensemble. The RMSE values for the 

MMM and the IMs are near 100% of observed variance, partially reflecting the severe 

attenuation seen in Figure 1b. 

b. Model response to different forcing experiments 

Figure 2 displays the MMMs for the three different single-forcing experiments: AA for 

anthropogenic aerosols (pink, Figure 2b), NAT for natural forcing (brown, Figure 2c), and GHG 

for greenhouse gases (green, Figure 2d); and compares them to observations (black). Figure 2a 

again displays the ALL MMM (blue). Note that the observations correspond to the black 

ordinates on the left, while forced and piC model outputs (colors, including yellow) correspond 

to the colored ordinates on the right, which have a scale a quarter the range to facilitate 
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comparison. The blue, pink, brown, and green shaded areas are the 95% range of bootstrapped 

forced MMMs. They represent agreement in the forced signal between the institutions, even 

though, due to small sample size, they do not fully capture the magnitude of noise in the MMM 

caused by coincident simulated internal variability (see Uncertainty, Bootstrapping, and 

Randomized Bootstrapping in Methods). The yellow shaded areas are also a 95% confidence 

interval, but they are obtained using randomly-chosen continuous subsequences of the piC runs 

in place of the historical simulations, where the piC simulations are taken from the same set of 

Figure 2. Forced MMMs: Forced MMM Sahel precipitation anomalies (colored lines; right, colored ordinates) and their yearly 
95% confidence intervals from bootstrapping (colored shaded areas; right, colored ordinates) over observed Sahel precipitation 
anomalies (black lines; left, black ordinates) and the 95% confidence interval of the piC runs from randomized bootstrapping 
(yellow shaded areas; right, colored ordinates). N are the number of research institutions which performed each forcing 
experiment. Panel (c) additionally identifies the dates of large volcanic eruptions which had different effects on the aerosol 
optical depth in the northern and the southern hemispheres, as well as the sign of that difference [17].  
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research institutions which provided simulations for that historical forcing experiment. The 

yellow shading thus captures the magnitude of noise in the MMM; however, it is worth note that 

it may be a slight overestimate since the MMM is less effective at filtering noise when there are 

fewer runs per model, and there is almost always only one piC run per model.   

The variance of the forced MMMs over time (solid lines) and of the bootstrapped forced 

MMMs and randomized bootstrapped piC MMMs in a given year (shaded areas) vary from panel 

to panel inversely (though not proportionally) with the square root of the number of research 

institutions which simulated each forcing experiment (N), and are all roughly a quarter of 

observed variance, consistent with many precipitation fingerprinting studies, which often scale 

simulated precipitation up by a factor of 3-5 [18,23,42,47]. Aside from a few exceptions, the yearly 

magnitudes of the forced MMMs are not significant, as they do not surpass the yellow zone 

consistent with noise in the MMM; this limits the detail with which we can examine the MMM 

directly. However, NAT (Figure 2c) and ALL (Figure 2a) are both significantly dry in 1982 (the 

year of the El Chichón eruption, near the driest observed year in 1984), and AA (Figure 2b) and 

ALL both display multi-decadal variability in the second half of the century (including a partial 

recovery) which is characteristic of the 

observations and uncharacteristic of NAT 

and GHG (Figure 2d).  

Figure 3 displays the mean padded 

power spectra (PS, lines) and 95% 

confidence intervals (shaded areas) of the 

bootstrapped forced MMMs (colors other 

than yellow), and compares them to that of 
Figure 3. Forced MMM Power Spectra: Mean (lines) and 95% 
confidence intervals (shaded areas) of padded Power spectra 
(PS) of bootstrapped forced MMMs (ALL – blue, NAT – brown, 
AA – pink, GHG – green) and randomized bootstrapped AA piC 
MMMs (yellow). (randomized) bootstrapped MMM. 
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the randomized bootstrapped piC MMMs (yellow). We calculate the piC MMM using the 

reduced set of models that contributed the AA experiment. With only 8 contributing research 

institutions, the AA MMMs filter out less noise from modelled internal variability—and thus 

have more power at all frequencies—than the MMMs associated with the other experiments. 

Thus, using this reduced set of models provides a conservative estimate of the spectral noise in 

all four forcing experiments. Figure 3 shows that the multi-decadal variability in AA (pink) and 

ALL (blue) is distinct from noise (yellow). It also confirms that the high-frequency variability in 

GHG is consistent with noise. Episodic volcanic forcing should not give rise, per se, to spectral 

peaks, though the observed pattern of large eruptions at the beginning and at the end of the 

century (see Figure 2c) may induce some spectral power at multidecadal timescales. Since we do 

not detect any meaningful spectral peak in the NAT PS (brown) associated with solar variability 

at 11 years, we interpret the NAT MMM to be mostly the result of volcanic aerosols. 

Figure 4 again displays the values (dots) and PDFs (curves) of correlation (Figure 4a) and 

RMSE (Figure 4b) between observations and the bootstrapped ALL MMMs from Figure 1c and 

Figure 1d (blue) and compares them to the values (dots) and PDFs (curves) for individual forcing 

experiments (solid curves distinguished by color) and the piC PDFs associated with the ALL 

experiment (dotted yellow curves). The piC PDFs corresponding to the three individual forcing 

experiments (which make use of only the models contributing to that experiment) are sufficiently 

similar to the ALL piC PDF that they are not plotted separately, with the exception of the AA 

piC RMSE PDF (pink dotted curve in Figure 4b), which is wider and centered at a higher RMSE 

than those of the other experiments, reflecting the high variance in the yearly values seen in the 

yellow shaded area in Figure 2b. Despite this difference, the p=.05 significance levels are still 

sufficiently similar for all four experiments for both correlation and RMSE that they are 
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represented by a single vertical grey dashed line at the p=.05 significance level of the ALL 

experiment. As the NAT and GHG MMMs contain mostly high-frequency variability – which is 

difficult to distinguish from noise remaining in the MMM (see Figure 3) – their PDFs are wider 

than the PDFs for the AA and ALL MMMs, which exhibit low-frequency variability 

uncharacteristic of noise in the MMM.  

While the GHG MMM is not significantly better than noise at matching observations in 

both correlation (r=.06) and RMSE (100% of observed variance), ALL (r=.36, RMSE=.96), AA 

(r=.26, RMSE=.97), and NAT (r=.23, RMSE=.98) all achieve significance at p=.05. The 

discrepancy between the ALL MMM and NAT and AA individually under both metrics suggests 

that both anthropogenic and volcanic aerosols contribute substantially to the performance of the 

ALL MMM. Because the metrics for both AA and NAT fall within the other’s bootstrapping 

confidence interval, according to this analysis, AA and NAT contribute roughly equally to the 

performance of the observed ALL MMM. 

Figure 4. Performance of forced MMMs: Probability density function (PDF) of correlations (a) and RMSE (b) of bootstrapped 
forced MMM 20th century Sahel precipitation (colored curves: blue = ALL, pink = AA, brown = NAT, green = GHG) and of 
randomized bootstrapped piC MMM Sahel precipitation corresponding to the ALL experiment (dotted yellow curves) and the 
AA experiment (dotted pink curve, b) with observed 20th century Sahel precipitation. Actual forced MMM values are 
represented with colored dots on the PDFs. One-sided 95% confidence level represented with grey vertical dashed lines. 



 

 11 

The ALL MMM has limited predictive power as it is nearly constant, and, according to 

the RMSE, it leaves 96% of the variance unexplained. This unexplained variance could be due 

either to model deficiency or internal variability, since the MMM is designed to filter out internal 

variability—which will have similar characteristics but different phase across individual 

simulations—in favor of forced variability. Since observations include both internal and forced 

variability, no MMM would be able to match observations exactly. In this light, the ALL MMM 

correlation with observations of 0.36 is substantial. For comparison, we may liken this to 

simulations forced with observed SST, which reflect as best as possible observed internal climate 

variability as well as forced variability. As reported in Giannini, et al. [6], the correlation of the 

unsmoothed observations with the unsmoothed mean over version 1 of the atmospheric general 

circulation model developed at NASA’s Goddard Space Flight Center in the framework of the 

Seasonal-to-Interannual Prediction Project (NSIPP1) from 1930-2000 is 0.60; the correlation of 

the ALL MMM with observations over the same period is not far behind at 0.47, suggesting that 

a large fraction of the variability that SST-forced climate models can capture is externally forced.  

c. Residual Consistency  

To test the role of internal variability in the CMIP5 fully coupled models, we cannot use 

the MMM, because internal variability will have differing phase across different simulations. 

Instead, we examine power at different frequencies in individual coupled runs. Figure 5a 

compares the padded power spectrum (PS) of 20th century observed Sahel precipitation (solid 

black) to the padded PS of the ALL simulations, first estimated for individual runs, then 

averaged across ensemble members for each model. They are colored by the difference in the 

modelled and observed rainfall climatology from 1901 to 2003, where brown is used for models 

which are drier than observations, grey is used for models whose climatologies are near the 
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observed climatology, and turquoise is used for models which are wetter than observations. As 

the individual ALL runs are single realizations, compounding forced and internal variability like 

observations, they are directly comparable to observations.  

   While there are three models (MIROC-ESM p1, MIROC-ESM-CHEM p1, and GFDL-

ESM2G p1) which nearly reach the high power of the observations at a period of 100 years, 

these models are biased wet, and also exhibit over-estimates of high-frequency variability. Figure 

Dry observed wet 

Figure 5. Residual Consistency: Power spectra (PS) of observed 20th century Sahel rainfall (solid black, a and c) and the 
residual after removing the ALL MMM (black dotted-dashed, b and d). (a) and (b): Mean PS by model of individual ALL (a) 
and piC (b) runs, colored by average JAS rainfall bias of the ALL runs compared to 20th century observations, where observed 
rainfall is grey, wet models are turquoise, and dry models are brown. piC PS (b) are additionally averaged over multiple 
subsections of the runs. (c): Tiered mean (blue dashed line) and 66% and 95% range (blue shading) of mean PS by model of 
individual ALL runs which were first rescaled to match 20th century observed JAS rainfall. Also displayed are the tiered means 
over PS of individual forced AA, NAT, and GHG runs (colored dashed lines). The black dashed line shows the sum of the tiered 
mean piC PS (from panel d) and the ALL MMM PS (i.e. Figure 3). (d): Tiered mean (orange dashed line) and 66% and 95% 
range (yellow shading) of mean PS by model of individual piC runs which were first rescaled so their corresponding ALL runs 
match 20th century observed yearly rainfall, as in (c). 
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5b displays the PS of the estimate of observed internal variations implied by the MMM, 

calculated as the residual of observations with respect to the ALL MMM (black dashed-dotted 

line), and compares it to its modeled counterpart, estimated as the mean PS by model of the 

individual piC runs, colored by the same rainfall biases used in Figure 5a. Since there is often 

only one piC simulation per model, in order to reduce uncertainty in the PS, the long piC runs are 

divided into continuous, non-overlapping sections, and PS are taken separately for each section 

and then averaged together. We again see that wet models overestimate high-frequency 

variability, and no model matches the low-frequency power of the residual, pointing to 

inconsistency between model simulations, their MMM, and observations. If the models 

underestimate forced variability, or if the MMM underestimates the magnitude of the modelled 

forced variability, this will cause the estimate of observed internal variability to be too large; so 

while this comparison allows us to make a statement about consistency, it does not determine 

whether it is simulated internal variability or our estimate of forced variability that is incorrect. 

However, it is clear that modelled internal variability does not contribute substantial power at 

low frequencies. 

The PS for both the forced and piC runs are clearly stratified by modelled precipitation 

climatology. To investigate whether any of the models capture the observed distribution of 

power across different frequencies, in Figure 5c and Figure 5d we rescale the simulations by 

model before taking the PS and the mean by model so that the climatology of each model’s ALL 

simulations matches observed rainfall climatology. This mostly destroys the stratification in the 

previous panels (see Figure S1). The distribution of model-mean scaled ALL and piC PS are 

represented by blue and yellow shaded areas in Figure 5c and Figure 5d, respectively. The blue 

and orange dashed lines in Figure 5c and Figure 5d mark the centers of these distributions with 
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3-tiered, unweighted means over the PS of the ALL and piC runs, respectively. The other colored 

dashed lines in Figure 5c mark the tiered means over the PS of all runs in each of the three 

individual forcing experiments (magenta=AA, brown=NAT, green=GHG) for comparison.  

The black dashed line in Figure 5c shows the sum of the tiered mean piC PS (orange 

dashed line from Figure 5d) and the PS of the ALL MMM (i.e. the blue line in Figure 3). If the 

MMM accurately represented the simulated forced power when scaled to the observed 

climatology, we would expect this sum to match the tiered mean ALL PS (blue dashed line). 

Instead, it falls short at low frequency, suggesting that the ratio of the variance of the ALL 

MMM to observed climatology underestimates the ratios of simulated forced variance to 

climatological Sahelian precipitation in CMIP5 models. This may be because the ensemble is 

biased dry, or because differing responses to forcing between models cause the consensus forced 

response to have lower variance than exhibited in individual models. In addition to any 

implications for the RMSE calculations displayed earlier, this means that the residual spectrum 

in Figure 5d is an overestimate of internal variability in observations as implied by the CMIP5 

ensemble. 

However, it is still clear that even scaled piC simulations do not exhibit any increase in 

power at low frequency (Figure 5d). Even though the inclusion of external forcing introduces 

low-frequency variance (Figure 5c), the CMIP5 models are unable to capture the scale of the 

increase in power at low frequency in the observed PS, which exceeds the 95th percentile of 

rescaled ALL PS at periods longer than 65 years. Of the different forced experiments, ALL and 

AA are the only ones that exhibit substantial multi-decadal variability. Thus, while the variance 

of the ALL MMM is somewhat underestimated, the vast majority of the discrepancy in low-

frequency power between simulations and observations is not due to attenuation in the MMM, 
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but rather to model deficiency, whether in capturing the full magnitude of the forced response to 

AA, or in detailing the true character and magnitude of the other forced responses, low-

frequency internal variability, and their interactions. 

4. Discussion 

The analysis in this study shows that the consensus response of Sahelian precipitation to 

20th century external forcing in CMIP5 simulations, as defined by the 3-tiered multi-model mean 

(MMM), correlates significantly with observations. It further shows that both anthropogenic 

aerosols (AA) and volcanic aerosols (NAT) contribute significantly and substantially to making 

the CMIP5 MMM similar to observations, with AA mostly responsible for the multidecadal 

forced variability. Given that the performance of the ALL MMM can apparently be explained 

with AA and NAT alone, we conclude that GHG do not contribute to the consensus forced 

response of Sahel seasonal precipitation in CMIP5 models. This does not mean that GHG do not 

influence Sahelian precipitation in any way, or that GHG will not play a significant role in the 

future as the magnitude of the forcing increases. While some individual models have indicated a 

role for GHG in the recovery since the mid 1990s [15], it is possible that the models as an 

ensemble do not yet capture the effects of GHG on Sahelian rainfall because the magnitude of 

the forcing is still too small over the historical period. Alternatively, competition between the 

mechanisms linking GHG forcing to Sahelian rainfall may have masked the effects of GHG by 

cancelling within individual simulations [26] or between models [34] in the MMM. Finally, it has 

been suggested that the response to GHG is inherently non-linear (e.g. different circulation 

responses to different magnitudes of warming in Neupane and Cook [36]), or interacts non-

linearly with other forcings (e.g. the interaction of an “upped ante” and changing moisture 

supply, as suggested by Giannini and Kaplan [16]). These non-linearities are difficult to test 



 

 16 

without the ability to compare the ALL MMM to “all but GHG” simulations, which are not 

widely available in CMIP5. 

While the root mean squared error (RMSE) of the ALL MMM with observations is also 

significantly different from noise, it is 96% of the observed rainfall variance, meaning that 

modelled forced variability can hardly account for observed variability since the ALL MMM is 

hardly better than a constant prediction. Our residual consistency test showed that while the 

MMM is somewhat over-attenuated relative to the forced response in individual models, the 

discrepancy between total observed variability and total modelled variability is an order of 

magnitude larger, and modelled internal variability cannot account for the difference between the 

simulated forced response and observations.  

Since modelled internal variability does not show substantial low-frequency variability 

while the AA MMM does, it is tempting to attribute the full magnitude of observed multi-

decadal variability to AA, as many previous studies have done by focusing only on standardized 

trends [11], correlations [16], or detectability in a fingerprinting framework [18,23]. However, such 

a claim would rely heavily on assumed grid-point linearity of the climate response to different 

forcings, which is disputed for tropical rainfall (i.e. Giannini and Kaplan [16] on GHG and 

anthropogenic aerosols, Polson, et al. [18] on the indirect aerosol effect and spatial trend patterns 

in the Asian Monsoon, Lohmann and Feichter [33] on feedbacks involving the indirect aerosol 

effects, Neupane and Cook [36] on GHG-induced circulation changes over Africa, and Meehl, et 

al. [48] on non-linear feedbacks between solar forcing and GHG), as well as on the accuracy of 

simulated forced and internal variability. In fact, it is not possible to say without further 

investigation into the physical pathways influencing Sahelian precipitation whether the model 

deficiency is in the modelled response to forcing or in modelled internal variability. Given the 
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strong link between Sahelian rainfall and North Atlantic SST [13,14,16,38,49], it is perhaps not a 

coincidence that models lack strong low-frequency variability both in Sahel rainfall and in 

internally-generated Atlantic Multidecadal Variability in SST (AMV) [50]. The community is 

currently still debating whether the observed AMV is forced by AA [20,22,30] or is an internal 

phenomenon which is linked to ocean circulation variability [37,51-54] and is dramatically 

underestimated in most models [50].  

Future work that focuses on characterizing and quantifying the mechanisms of influence 

on Sahelian precipitation in simulations and observations and using the next generation of 

climate models [55] might shed new light on whether the model/observation discrepancy 

documented here is due to an underestimate in the strength of the precipitation response to AA or 

a failure of CMIP5-class climate models to capture low-frequency internal variability.  

5. Methods 

a. Data 

Our index of Sahel rainfall variability is land-averaged precipitation anomalies for the 

monsoon season (July – September; JAS) over the region 12°-18°N, 20°W-40°E. For 

precipitation observations we use the Global Precipitation Climatology Center (GPCC) dataset 

[44], which is quite similar to the Climate Research Unit (CRU) [45] dataset in average 

precipitation over the Sahel (see Figure 1a and b). The two are compared in Figure 1, and GPCC 

is used for the rest of the paper. Model simulations come from the Coupled Model 

Intercomparison Project phase 5 (CMIP5) [43], which includes simulations by over 50 models 

from 20 different research institutions. Not all models contribute simulations to all four historical 

experiments; we use all available runs (between 1 and 10 for a given model) from all models 

(distinct name or physics number) and research institutions that have complete data from 1901 
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(where the observed rainfall record begins) to 2003 (where some models stop their historical 

simulations). There are 14 models from 8 institutions that contributed model simulations to the 

AA experiment, 21 models from 15 institutions that contributed to the GHG experiment, 22 

models from 15 institutions that contributed to the NAT experiment, and 51 models from 20 

institutions that contributed to the ALL experiment (Table S1). Here, if the physics number is 

changed, it is treated as a different model under the same institution. 

b. The Multi-Model Mean 

The MMM is defined as a 3-tiered, weighted average: (1) across individual simulations 

(runs) to get an ensemble mean (EM) for each model, (2) across EMs to get an institution mean 

(IM) for each research institution, and (3) across IMs to get the multi-model mean (MMM) for 

that experiment. While any averaging helps to filter internal variability from the MMM, the first 

tier focuses on reducing internal variability present in the individual runs, the second tier focuses 

on reducing variability between models from uncertainty in parameter values, and the third tier 

focuses on reducing variability between institutions from uncertainty in parameterization. Tiers 

are necessary to prevent over-representation of particular parameterizations and parameter 

choices in the MMM.  

If a random variable (such as the internal variability component of yearly JAS Sahel 

precipitation) has a variance of 𝜎!, then the mean over n realizations of that variable will have a 

variance of 𝜎!/𝑛. The forced variability component may experience some attenuation as well 

due to differences in the simulated response to forcing between models. Given that the forced 

signal ought to be similar across simulations, we expect attenuation of internal variability to 

overwhelm attenuation in forced variability. Thus, means over models with more runs or over 

institutions with more models will have a higher signal (forced variability) to noise (internal 
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variability) ratio than their counterparts. However, they will also have less total variability, 

causing them to (counterproductively) contribute less to the MMM than their more noisy 

counterparts. We counteract this by using weights which are inversely proportional to the 

expected attenuation of noise in the MMM tiers.  

For a weighted mean ∑ 𝑤"𝑋"" 	between independent random variables Xi with mean 𝜇", 

variance 𝑎"𝜎!, and weight wi, where ∑ 𝑤"" = 1, we find that: 

𝜎∑ $!%!!
! = E[(∑ 𝑤"𝑋"" )!] − E[∑ 𝑤"𝑋"" ]! = ∑ 𝑤"!" (E[𝑋"!] − 𝜇"!) = 𝜎!∑ 𝑤"!𝑎""   

Thus, to counteract the attenuation from a previous tier, captured in ai, we define the weights as  

𝑤" = 𝑎"&.(/∑ 𝑎"&.( ∝ 	𝑎"&.(" . Specifically, let f, i, m, r, Nf, Nfi, and Nfim be such that each forcing 

experiment f is simulated by Nf institutions, with Nfi models from each institution i, and Nfim runs 

from each model m, and assume that the JAS Sahel precipitation in a given year for each run r 

has a variance of 𝜎!. In the first tier, where 𝑎)"*+ = 1 and 𝑤)"*+ =
,

-"!#
 (an unweighted mean), 

we find that the variances of the EMs are 𝜎./"!#
! = 𝜎! ∑ ,

-"!#
$+ = 0$

-"!#
, giving 𝑎)"* = ,

-"!#
 for 

the second tier. To combat this attenuation, in the second tier we define weights 𝑤)"* =

1-"!#
∑ 1-"!##

= 1-"!#
/"!

∝ 3𝑁)"*, where  𝑀)" = ∑ 3𝑁)"**  is the normalization constant for those 

weights. Using these weights, the variances of the IMs are 𝜎2/"!
! = 𝜎! ∑ -"!#

/"!
$ 	

,
-"!#

	* = -"!
/"!
$ 𝜎!, 

giving 𝑎)" =
-"!
/"!
$  for the third tier. Then in the third tier, 𝑤)" ∝

/"!

1-"!
. 

c. Approach 

MMMs are compared to observations using correlations, which capture similarity in 

frequency and phase, and root mean squared errors (RMSE), which capture differences in 

magnitude and are expressed as a fraction of observed variance. When comparing the 
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observations to themselves, the correlation would be 1 and the RMSE would be 0; when 

comparing the observations to a constant prediction, the correlation would be 0 and the RMSE 

would be 1 (or 100% of observed variance). 

d. Uncertainty, Bootstrapping, and Randomized Bootstrapping 

Estimates of sampling uncertainty over all possible model parameterizations are obtained 

by bootstrapping (resampling with replacement) available forced IMs before calculating the 

MMM and corresponding correlations and RMSE, yielding probability density functions (PDF) 

around the MMM correlation and RMSE. This PDF can also be interpreted as a measure of 

agreement between CMIP5 models.  

To test the null hypothesis—that all results from the forced experiments are consistent 

with noise in the MMM derived from modelled internal variability alone—we measure 

uncertainty in the MMM by repeating the bootstrapping procedure once for each of the four 

forced experiments, using the long, constant-forcing pre-Industrial control (piC) runs from the 

set of models contributing historical simulations to that experiment, choosing random, 

continuous, 103-year subsets before each bootstrap (referred to as “randomized bootstrapping”).  

In addition to uncertainty derived from model parameterization, the MMM still contains 

noise from lingering coincident internal variability, and because bootstrapping underestimates 

variance when sample size is small, this procedure does not capture the full magnitude of that 

uncertainty (when randomizing is not used while boostrapping the piC MMMs, for comparison, 

the piC confidence interval contains high-frequency variability similar to that seen around the 

forced MMMs in Figure 2, not pictured). However, the length of the piC runs allows us to 

effectively increase the sample size of 103-year runs in the randomized bootstrapping method 

enough to give an accurate estimate of noise uncertainty in the MMM: this is evident from the 
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nearly-uniform confidence intervals of the piC MMMs (yellow, Figure 2), which contain no 

time-varying signal by construction.  

e. Residual Consistency 

We evaluate consistency between modelled and observed internal and externally-forced 

variability by examining and comparing the power spectra (PS) of individual ALL and piC 

simulations. For increased sampling of frequencies we zero-pad the time series before taking the 

PS, and for clarity and decreased uncertainty, we average across PS from the same model before 

presenting the PS. This is less effective for the piC simulations, which usually contain only one 

(long) simulation per model. To help reduce uncertainty in the piC PS, we divide them into 

consecutive, non-overlapping segments of 103 years, calculate the PS of the segments separately, 

and average them together. To calculate the rescaled PS, we scale the individual ALL and piC 

runs from a given model by (mean observed 20th century precipitation)/(mean precipitation from 

the ALL runs for that model) before taking the PS. We then average the PS by model and present 

the 66% and 95% range of the PS. We also present 3-tiered, unweighted means over all 

simulations of the rescaled ALL, AA, NAT, and GHG PS. The mean PS are not weighted 

because different realizations of internal variability in the simulations do not cause attenuation of 

the spectral peaks characterizing that variability. 

Since spectral power follows a chi-squared distribution, we compare the difference 

between square roots of the observed PS and the mean ALL PS to the difference between square 

roots of the residual PS and the mean piC PS to validate the magnitude of the ALL MMM. 

6. Data Availability 

Global Precipitation Climatology Center (GPCC) [44] observational data is freely 

available online (see https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html) and CMIP5 [43] 
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model data is freely available through the Earth System Grid (see https://esgf-

node.llnl.gov/projects/esgf-llnl/).  
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Figure S1 shows the scaled power spectra (PS) from Figures 5c and 5d in the style of 

Figures 5a and 5b, where the PS for each model (averaged over the runs for that model, and in 

the case of the piC, over different sections of the long piC run) are represented separately, 

colored by the rainfall bias of that model’s ALL runs relative to observations. While the 

correction seems to completely get rid of the stratification by total rainfall bias at medium and 

low frequency in the ALL simulations, it seems to overcorrect the power in the simulations of 

the driest models at high frequency in the ALL simulations, and at all frequencies in the piC 

simulations. This is perhaps not surprising, as when a model is particularly dry, normal 

variability may make up a larger fraction of the total rainfall. As this correction is imperfect, we 

do not use it in the calculation of the MMM; rather, only to facilitate comparison of the models 

in Figure 5. 
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Table S1 displays the models and runs used in this study, as well as their institution 

classifications.  

Figure S1. Scaled Stratification: Same as Figures 5c and 5d but displayed as in Figures 5a and 5b. 
 
Power spectra (PS) of observed 20th century Sahel rainfall (solid black, a) and the residual after removing the 
ALL MMM (black dotted-dashed, b), and mean PS by model of individual ALL (a) and piC (b) runs which 
were first rescaled by model so their corresponding ALL runs match 20th century observed JAS rainfall, 
colored by original simulated average JAS rainfall bias of the ALL runs compared to 20th century 
observations, where observed rainfall is grey, wet models are turquoise, and dry models are brown. piC PS 
are averaged over multiple segments of the simulations. 

Dry observed wet 
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 Table S1. Models and runs used in this paper for the different forcing experiments. “p” is the physics number – different physics 
numbers within the same model are treated as different models. Blank spaces exist in the chart where there were no runs from 
that model under that forcing experiment. *no accompanying piC run. Doubled lines divide different research institutions.  
 

 ALL  AA GHG NAT 

Models p 

Num 
runs 
used  runs excluded reason p 

Num 
runs 
used  

runs 
excluded reason p 

Num 
runs 
used  

runs 
excluded reason p 

Num 
runs 
used  

ACCESS1-0  1 1             
ACCESS1-3  1 1       1 1   1 3 
bcc-csm1-1  1 3       1 1   1 1 
bcc-csm1-1-m  1 3             
BNU-ESM  1 1       1 1   1 1 
CanCM4*  1  all no data 

before 1961 
          

CanESM2  1 5  4 5   1 5   1 5 

CCSM4  1 6   10 3   1 3   1 4 
    14          

CESM1-BGC  1 1    2 r6i1p14 access 
error 

      
CESM1-CAM5  1 3   10 3  1 1 r1i1p1, 

r2i1p1 
contain 
NaN 

1 3 
CESM1-CAM5-1-FV2*  1 4           
CESM1-FASTCHEM  1 3             
CESM1-WACCM  1 1 r4i1p1, r3i1p1, r2i1p1 no data 

before 1955 
          

CMCC-CESM  1 1            
CMCC-CM  1 1             
CMCC-CMS  1 1             
CNRM-CM5  1 10       1 6   1 6 
CNRM-CM5-2  1 1             
CSIRO-Mk3-6-0  1 10   4 5   1 5   1 5 
EC-EARTH  1 1             
FGOALS-g2  1 4 r2i1p1 no data 

before 1902 
1 1   1 1   1 3 

FGOALS-s2  1 3            
FIO-ESM  1 3             
GFDL-CM3  1 5   1 3   1 3   1 3 
GFDL-ESM2G  1 3             
GFDL-ESM2M  1 1   5 1   1 1   1 1 

GISS-E2-H  1 6   107 5   1 5   3 5 
2 5   310 5       1 5 

GISS-E2-H-CC  1 1             

GISS-E2-R  
1 6   107 5   1 5   3 5 
2 5   310 5       1 5 
3 5             

GISS-E2-R-CC  1 1             
HadCM3* 1 10             
HadGEM2-AO  1 1             
HadGEM2-CC  1 1 r3i1p1, r2i1p1 no data 

before 1960 
          

HadGEM2-ES  1 4      1 4   1 4 
inmcm4  1 1             
IPSL-CM5A-LR  1 6   3 1   1 3   1 3 
IPSL-CM5A-MR  1 3       2 3     
IPSL-CM5B-LR  1 1             
MIROC-ESM  1 3       1 3   1 3 
MIROC-ESM-CHEM  1 1       1 1   1 1 
MIROC4h 1  all no data 

before 1950 
          

MIROC5  1 5            
MPI-ESM-LR  1 3             
MPI-ESM-MR  1 3             
MPI-ESM-P  1 2             

MRI-CGCM3  1 3       1 1   1 1 
2 2             

MRI-ESM1* 1 1             
NorESM1-M  1 3   1 1   1 1   1 1 
NorESM1-ME  1 1             
Total Models used 51 14 21 22 


