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Kristina Fröhlich1,1, Mikhail Dobrynin1,1, Katharina Isensee1,1, Claudia Gessner2,2, Andreas
Paxian1,1, Holger Pohlmann1,1, Helmuth Haak3,3, Sebastian Brune4,4, Barbara Früh1,1, and
Johanna Baehr4,4

1Deutscher Wetterdienst
2ETH Zürich
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Abstract

Seasonal prediction is one important element in a seamless prediction chain between weather forecast and climate projections.

After several years of common development in collaboration with Universität Hamburg and Max Planck Institute for Meteoro-

logy, the Deutscher Wetterdienst performs operational seasonal forecasts since 2016 with the German Climate Forecast System,

now in Version 2 (GCFS2.0). Here, the configuration of previous system GCFS1.0 and the current GCFS2.0 are described and

the performance of the two systems is compared over the common hindcast period of 1990-2014. In GCFS2.0, the forecast skill

is improved compared to GCFS1.0 during boreal winter, especially for the Northern Hemisphere where the Pearson correlation

has doubled for the North Atlantic Oscillation index. During boreal summer, overall a similar performance of GCFS2.0 in

comparison to GCFS1.0 is assessed. Future developments for climate forecasts need a stronger focus on the performance of

seasonal dependent processes in a model system.
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Abstract12

Seasonal prediction is one important element in a seamless prediction chain between weather13

forecast and climate projections. After several years of common development in collabo-14

ration with Universität Hamburg and Max Planck Institute for Meteorology, the Deutscher15

Wetterdienst performs operational seasonal forecasts since 2016 with the German Climate16

Forecast System, now in Version 2 (GCFS2.0). Here, the configuration of previous system17

GCFS1.0 and the current GCFS2.0 are described and the performance of the two systems18

is compared over the common hindcast period of 1990-2014. In GCFS2.0, the forecast19

skill is improved compared to GCFS1.0 during boreal winter, especially for the Northern20

Hemisphere where the Pearson correlation has doubled for the North Atlantic Oscillation21

index. During boreal summer, overall a similar performance of GCFS2.0 in comparison to22

GCFS1.0 is assessed. Future developments for climate forecasts need a stronger focus on23

the performance of seasonal dependent processes in a model system.24

Plain Language Summary25

An information about the expected departure from the climate of an upcoming sea-26

son would be tremendously valuable for many sectors of the society. In Germany, three27

institutes join their expertise to build a forecast system for a climate prediction several28

months ahead. We use the Earth system model of the Max Planck Institute for Meteo-29

rology. It describes the atmosphere, land and rivers as well as the ocean and the sea ice30

in their interaction. This model is well designed for climate studies on a much longer31

timescale than a season. Universität Hamburg and the National Meteorological Service32

Deutscher Wetterdienst develop the methods that are necessary for such a forecast system33

and operationally perform the seasonal predictions. Here we compare two versions of our34

forecast system. We investigate especially the forecast quality during different seasons.35

The expectation, that the second model system is much better than the first system is not36

entirely fulfilled. We discuss possible reasons and suggest for future model development a37

stronger focus on the model quality for seasonal varying processes.38

1 Introduction39

Over the last two decades, seasonal climate prediction evolved from a scientific re-40

search topic into full-fledged operational systems. Today, seasonal prediction systems41

are mostly operationally run at large weather centres like ECMWF (European Centre for42
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Medium-Range Weather Forecasts) [Johnson et al., 2019] or the British Met Office [MacLach-43

lan et al., 2015], issuing real-time seasonal forecasts. The number of global producing44

centres (GPC’s) submitting long-range forecasts to the World Meteorological Organization45

WMO lead centre in South Korea currently counts 13 GPC’s. Since 2011, the German46

National Meteorological Service Deutscher Wetterdienst (DWD), Universität Hamburg47

(UHH) and the Max Planck Institute for Meteorology (MPI-M) have been developing a48

system for seasonal climate prediction [Baehr et al., 2015]. Since October 2016, the Ger-49

man Climate Forecast System (GCFS) operationally produces seasonal predictions, which50

are published every month at DWDs homepage. In 2017 DWD became the 13th GPC of51

the WMO’s multi-model ensemble for long-range forecasts.52

Predicting seasonal climate aims for a time horizon of more than one month up to53

one year, which is considerably longer than short-term weather prediction (1 to 10 days)54

and considerably shorter than climate projections (decades to centuries). As such, seasonal55

prediction systems lie between the initial value problem and the boundary value problem.56

State-of-the-art seasonal prediction systems are thus build on global coupled Earth system57

models (ESM) which are often also used for climate projections [Ban et al., 2016]. In or-58

der to get the best estimate of the initial conditions for the seasonal forecasts, observations59

are assimilated into the ESM prior to the start of the predictions, a similar approach as for60

weather predictions.61

Seasonal predictions are probabilistic climate forecasts. This means that the future62

guidance describes a probable deviation from a known climate [White et al., 2017]. It im-63

plies model ensemble predictions for both, the chosen climate period (so called hindcasts)64

and the real-time forecasts. The hindcast data provide the basis for the assessment of the65

prediction skill in the past as well as the mean model climate. A reference climate is pro-66

vided by a reanalysis data set.67

The inherent uncertainty of seasonal predictions is adressed by the initialisation of68

an ensemble of predictions and the use of probabilistic evaluation methods. Furthermore,69

a multi-model ensemble, consisting of different prediction systems, may outperform any of70

the single ensemble models with respect to seasonal or longer term forecasts (e.g. Stock-71

dale [2012], Scaife et al. [2014], Athanisiadis and Bellucci [2017]).72

Any operational seasonal climate prediction system will try to skillfully predict vari-73

ables, such as temperature, precipitation, wind and pressure, on a time scale of a few74
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months. These quantities may be related to large scale coupled physical processes such75

as El-Niño-Southern-Oscillation (ENSO) as well as the North Atlantic Oscillation (NAO),76

which impact the seasonal time scale.77

Improving seasonal predictions bases on the understanding of predictable processes,78

the ability of the coupled model to represent them and a sufficient data base for statis-79

tical evaluation purposes. Scaife et al. [2014] showed an improved NAO prediction over80

its predecessor model for the boreal winter after elaborating on the ocean resolution, the81

representation of the stratosphere, and the sea ice physics in their model system. The cur-82

rent ECMWF system was able to improve the ENSO forecast quality considerably from83

their System4 to System5 [Johnson et al., 2019]. Seasonal prediction skill can also be im-84

proved by a number of statistical and post processing methods, such as bias adjustment85

and recalibration [Manzanas et al., 2019] or by using teleconnection patterns for ensemble86

subsampling [Dobrynin et al., 2018].87

Here, we describe the performance of first two German Climate Forecast Systems88

(GCFS) which are developed in cooperation between Max Planck Institute for Meteorol-89

ogy, Universität Hamburg and Deutscher Wetterdienst.90

At the Max Planck Institute, the Earth system model (MPI-ESM, Giorgetta et al.91

[2013], Mauritsen et al. [2018]) is developed and tuned over many model-years under pre-92

industrial conditions (referring to climate conditions of 1850), until it is decided that a93

best match of the known state of the Earth’s climate system is found while keeping the94

balance of the atmosphere’s radiation [Mauritsen et al., 2012]. This balanced model state95

serves as basis for any study on introduced anthropogenic changes within the following96

centuries. With increasing model resolution the goal of a well-adjusted model climate be-97

comes a computational and time demanding challenge.98

At Universität Hamburg, assimilation and ensemble generation methods are devel-99

oped for the use in GCFS. Deutscher Wetterdienst adapts and maintains the whole system100

for operational performance and operationally issues the seasonal forecasts.101

In the following, we will describe the configuration of the two versions GCFS1.0102

and GCFS2.0, analyze both systems with respect to the representation and prediction skill103

of NAO, ENSO, surface temperature and geopotential height at 500 hPa and compare104

them with the focus on differences in the model physics and the respective hindcast skill.105
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We will discuss GCFS’s strengths and weaknesses and possible approaches for the future106

development and conclude with our main findings.107

2 Configuration of the operational systems108

2.1 Model configuration109

The first version of GCFS1.0 was based on MPI-ESM-LR [Giorgetta et al., 2013],110

with an atmosphere resolution of T63 (corresponding to approximately 150 km at around111

50◦ N) and 47 levels reaching up to 0.01 hPa and an ocean resolution of nominally 1.5◦112

in the horizontal and 40 levels in the vertical down to approximately 5000 m [Jungclaus113

et al., 2013]. The ocean model is connected to a dynamic and thermodynamic sea-ice114

model and the biogeochemical sub-model HAMOCC [Ilyina et al., 2013] (the latter switched115

off in GCFS). Coupling between ocean and atmosphere was set to once a day for GCFS1.0.116

The land and vegetation model JSBACH also hosts a hydrological runoff model. In GCFS1.0,117

MPI-ESM uses the external forcing like greenhouse gases, ozone and aerosols based on118

Phase 5 of the Coupled Model Intercomparison Project CMIP5 [Taylor et al., 2012] for119

historical data and future scenarios. The so-called historical period within CMIP5 ended120

in 2005, therefore all simulations of GCFS1.0 starting from 2006 onwards used the RCP4.5121

scenario as the set up for the external data.122

The version GCFS2.0 is based on the MPI-ESM-HR (Müller et al. [2018] and Mau-123

ritsen et al. [2018]) with a T127 spectral resolution in the atmosphere corresponding to124

approximately 70 km at around 50◦ N, with 95 levels covering the same vertical column125

up to 0.01 hPa and an ocean resolution of nominally 0.4◦ in the horizontal and, simi-126

lar to GCFS1.0, 40 levels in the vertical. Coupling between ocean and atmosphere in127

GCFS2.0 takes places on hourly basis. The land and vegetation model JSBACH in MPI-128

ESM-HR includes vertical soil moisture transport [Hagemann and Stacke, 2015]. For the129

low-resolution version MPI-ESM-LR it has been shown, that this contributes to an im-130

provement of European summer temperatures [Bunzel et al., 2017]. A detailed description131

of all model developments of the new and higher resolved version is provided by Mau-132

ritsen et al. [2018]. For GCFS2.0 we use external forcing from Phase 6 of the Coupled133

Model Intercomparison Project CMIP6 [Eyring et al., 2016], where the historical period134

has been extended until 2014. Scenario data were not available before mid 2018, there-135
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fore the external forcing has been set constant starting in 2015 up to present time. Table 1136

gives an overview on both systems.137

Table 1. Overview of GCFS1.0 and GCFS2.0 configuration138

Component Subcomponent GCFS1.0 GCFS2.0

Model Atmosphere/ECHAM T63L47 T127L95

Land surface vegatation /JSBACH bulk soil moisture 5 layer soil moisture

Ocean/MPIOM GR15 TP04

Coupler / OASIS3 MCT once a day hourly

External data historical CMIP5 1981-2005 CMIP6 1981- 2014

scenarios CMIP5 RCP 4.5 from 2006 onwards CMIP6 constant 2014 values from 2015 onwards

Ensemble generation Atmosphere Perturbation of uppermost atmospheric layer Perturbation of uppermost atmospheric layer

Ocean Bred vectors over 12 months Bred vectors over 6 months

Assimilation Atmosphere nudging of ERA-Interim variable fields nudging of ERA-Interim variable fields

Ocean nudging ORAS4 and NSIDC variable fields nudging of ORAS5 variable fields

Hindcast Period 1981-2014 1990-2017

Forecast duration 12 months 6 months

Ensemble member 15 30

Forecast Forecast duration 12 months 6 months

Ensemble member 30 50

In order to give an idea of the different model behaviour purely due to the changed139

model configuration and physics, Figure 1 shows biases of 2m temperature of the two cli-140

mate model versions CMIP5 MPI-ESM-LR and CMIP6 MPI-ESM-HR with respect to141

ERA-Interim for the time range 1990-2014. Displayed are ensemble means from the 10142

member ensemble of the respective historical experiments (in total running from 1850-143

2014) and splitted up into the two seasons of December/January/February DJF in Fig. 1144

(top) and June/July/August JJA Fig. 1 (bottom) months.145
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The striking feature of the CMIP6 version for both seasons are the much warmer146

tropical oceans compared to the reanalysis and the reduced cold tongue in the tropical147

Pacific in Fig. 1 (b,d). Although this error pattern has not disappeared completely, it is148

much smaller for the DJF months than for the JJA months. Further, the warm bias of the149

Amazon basin is considerably reduced in the CMIP6 model version. Seasonal differences150

also show up, as for instance the reduced cold boreal summer bias in northern Russia151

and northern Africa in the new and higher resolved model system. The bias pattern over152

northern America also changes between the model versions and the two different seasons,153

but no clear error reductions are visible there. Europe exhibits a cold bias in the CMIP6154

version for DJF and JJA, while the CMIP5 version produced a warm DJF bias. The Eu-155

ropean cold JJA bias is slightly reduced in the CMIP6 version. Although some of these156

biases can be adressed during data assimilation, most will re-emerge in the seasonal hind-157

casts and forecasts.158

Figure 1. Difference of the 2 metre temperature between the historical experiment of CMIP5 MPI-ESM-

LR (left) and CMIP6 MPI-ESM-HR (right) to ERA-Interim for DJF (top) and JJA (bottom) between 1990-

2014.

159

160

161
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2.2 Assimilation162

In order to bring the model system close to the (re)analysed state of the climate163

system the assimilation method of a continuous nudging is used which produces the ini-164

tial conditions for the retrospective and current forecasts. This method is the same as de-165

scribed in Baehr et al. [2015]. Assimilation for both versions starts in 1979.166

The data requirements for initial conditions differ for hindcast and real-time fore-167

cast. Reanalysis (or other observational) data are used for the hindcasts while either near-168

real-time ocean analyses or real-time atmospheric analyses are taken for the forecast pro-169

duction. For the hindcast production both GCFS1.0 and GCFS2.0 use ERA-Interim [Dee170

et al., 2011]. The model atmosphere is nudged towards vorticity, divergence, temperature171

and mean sea level pressure. For real-time forecasts initial conditions are taken from the172

analyses of the IFS weather-forecast model.173

Ocean initial states for GCFS1.0 are provided by 3D ocean temperature and salin-174

ity of ORAS4 [Mogensen et al., 2012] and sea ice concentration from the National Snow175

and Ice Data Center NSIDC [Fetterer et al., 2002]. Also, the near-real-time (nrt) analysis176

system ORAS4 provided data for GCFS1.0 forecasts.177

Pragmatical considerations for sea-ice data in terms of availability and consistency178

led to the choice of ORAS5 data [Zou et al., 2017] for all oceanic variables in GCFS2.0.179

ORAS5 now also provides the near-real-time data for GCFS2.0 forecasts.180

Additionally, GCFS2.0 makes use of a decadal assimilation with MPI-ESM-HR from181

the German decadal climate prediction project MiKlip [Pohlmann et al., 2019]. Techni-182

cal details are described in Polkova et al. [2019], where the authors used MPI-ESM-LR183

for their study. The decadal MPI-ESM-HR assimilation begins already in 1960. By using184

restart fields of this decadal assimilation GCFS2.0 starts in 1979 with an ocean and a land185

surface already adapted to permanently nudged atmospheric and oceanic conditions.186

2.3 Ensemble generation187

Ensemble members are generated by applying perturbations both to atmosphere and188

ocean. In the ocean the ensemble is initialised through bred vectors in all vertical levels189

[Baehr and Piontek, 2014]. The initial ensemble is generated by applying the lagged day190

initialisation. At the end of the first hindcast the ensemble members serve as perturba-191
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tions for the breeding cycle. After approximately two years the bred vectors have lost their192

memory of the initial perturbations [Baehr et al., 2015].193

For GCFS1.0 with the end of the forecast after one year, the generated ocean restart194

file of each of the 15 ensemble member provides the perturbation for the next start date.195

With the increase of GCFS2.0’s ensemble size to 30 the duration of each single hindcast196

and forecast and therefore the breeding time is reduced to 6 months.197

Within the atmosphere the perturbation of a physical parameter - the diffusion co-198

efficient of the uppermost model layer - forces slightly different atmospheric conditions199

of the applied member. The perturbation value varies every fifth member in the hindcast200

ensemble and every tenth member in the forecast ensemble of GCFS2.0201

2.4 Hindcasts202

In GCFS1.0 the hindcast ensemble of 15 members started each month of the year203

beginning in 1981 up to 2015. The hindcast duration for each start date was 12 months.204

The size of the GCFS2.0 ensemble has been increased from 15 to 30. The doubling205

of the ensemble size together with a higher resolution leads to a considerable increase206

in computational cost, therefore the period of hindcasts and the hindcast duration had to207

be shortened. The 30 members of GCFS2.0 hindcasts now start in 1990 and end in 2017208

while performing 6 months of retrospective forecasts for each calendar month in all years.209

In this way more than 25 years of hindcasts are achieved.210

The whole set of ensemble hindcast data for each calendar start month over many211

years (here 1990-2014) provides the basis for several purposes. First, for each of the 12212

hindcast sets an ensemble and multi-year mean is derived and serves as model climate.213

Second, each of the 12 multi-year ensemble hindcast data sets can be assessed for its fore-214

cast quality in both, deterministic and probabilistic scores.215

2.5 Forecasts216

GCFS1.0 forecasts ran with 30 ensemble members started at the first of each month,217

with a forecast duration of one year.218

With GCFS2.0 50 ensemble members are integrated over half a year, again all mem-219

bers starting on the first day of the month.220
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Figure 2 sketches the workflow of the seasonal forecast system GCFS2.0 from the222

generation of the initial conditions to the hindcast and forecast ensembles. This figure and223

a simple description of the system can also be found under https://www.dwd.de/EN/224

ourservices/seasonals_forecasts/project_description.html.

Figure 2. Workflow of GCFS2.0 seasonal forecasts.221

225

2.6 Communication of seasonal predictions226

Seasonal predictions are provided as anomaly forecasts, with respect to a defined227

model climatology. Ensemble mean anomalies, for instance, are created by subtracting the228

lead-time dependent ensemble-mean model-climate from the chosen reference hindcast pe-229

riod. A bias corrected forecast is obtained by adding the observational based climatology230

of the same reference period to each ensemble member-anomaly.231
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A probabilistic outlook checks, how many members cluster in a defined event cate-232

gory. For seasonal forecasts, commonly terciles out of the climatological reference period233

define the cold/normal/warm or dry/normal/wet events.234

Seasonal forecasts are usually averaged over 3 months. The first month is discarded235

in most cases to account for an initialision shock so that the first forecast period starts236

with the second to the fourth forecast month, and so on. Therefore, a DJF forecast is is-237

sued in November predicting anomalies for the upcoming December, January and Febru-238

ary. Likewise, the May forecasts give the outlook for the months June, July and August.239

To account for the low skill and huge uncertainty in seasonal predictions, informa-240

tion about the forecast quality is best provided along with the forecast itself. Uncertainty241

estimates are provided via probabilistic representations.242

2.7 Evaluation metrics of seasonal hindcasts243

A simple but instructive first measure is the difference between the reanalysis and244

each hindcast data set for a given variable. The reduction of differences between the simu-245

lations and a reference data set is usually considered as a success in a better description of246

climate processes which is expected to result in improved prediction skill.247

To further evaluate the predictive skill of each forecast system, deterministic as well248

as probabilistic measures are used.249

As a conventional deterministic score we apply the Pearson correlation or so-called250

anomaly correlation coefficient (ACC) to the ensemble mean hindcasts averaged over 3251

months. This measure of linear correlation between the ensemble mean and the reanalysis252

varies between −1 (anti-correlation) and 1 (high correlation), where 0 means no correla-253

tion. Here, bias corrected hindcast data in cross-validation are used for the ACC. As such,254

the anomaly for each member is created by subtracting the model climatology where the255

corresponding member and year is excluded.256

As probabilistic measures for this study we chose the fair ranked probability skill257

score RPSS [Ferro, 2014]. The RPSS is calculated over all defined events or categories258

(usually 3) of the ensemble hindcasts. While the ranked probability score RPS is the mean259

square error of probabilistic multi-category forecasts, the RPSS shows the improvement of260

using probabilistic forecasts versus using a climatological value. The score is called fair as261

–11–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

it is adapted to the finite ensemble size. The perfect score is 1, values below 0 denote that262

the climatology performes better than the respective hindcast ensemble. Further metrics263

to estimate the reliability, resolution and sharpness of the ensemble system are reliability264

diagrams, Brier scores or ROC curves or maps. These are as well calculated for GCFS but265

not shown here for lack of space. For more details on skill measures and scores we refer266

to Wilks [1995].267

3 Comparison of GCFS1.0 and GCSF2.0 hindcasts268

3.1 Comparison setup269

In order to have a common hindcast period of GCFS1.0 and GCFS2.0 the reference270

time of 1990 − 2014 is chosen. We focus our assessment on temperature and geopotential271

fields. Mean sea level pressure is used for the evaluation of the NAO prediction. The ref-272

erence data set is the ERA-Interim reanalysis except for the evaluation of the Niño3.4 re-273

gions, where the NOAA Optimum Interpolation Sea Surface Temperature Version 2 NCEP274

OIv2 is used.275

3.2 JJA mean state and hindcast skill276

We present the mean state of the models by looking at the vertical structure of the279

atmosphere as well as at the surface and the level of 500 hPa. We consider the ensemble280

mean and time mean of the respective 3 months hindcasts over the time period of 1990-281

2014.282

Figure 3 visualises in a latitude-height-plot the bias of temperature of GCFS1.0285

(left) and GCFS2.0 (right) with respect to ERA-Interim. The vertical and the latitudinal286

temperature structure in the two panels is quite different. In stratospheric levels around/above287

35 km a dipole feature of the boreal summer stratospheric temperature bias of GCFS1.0288

(Fig. 3a) points to a wrong position of the ozone layer. This feature is weakened in GCFS2.0289

(Fig. 3b). However, the middle atmosphere is characterized by a cold bias in the summer290

Northern Hemisphere and a strong warm bias in the winter Southern Hemisphere, pointing291

to difficulties in the description of the ozone layer and the non-orographic gravity wave292

parameterization.293

In lower layers, the comparison shows, that the tropospheric cold bias in GCFS1.0294

during the JJA months is reduced in GCFS2.0, revealing almost a bias-free Southern Hemi-295
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a) b)

Figure 3. Temperature differences of a) GCFS1.0 ensemble mean and b) GCFS2.0 ensemble mean to

ERA-Interim with respect to JJA hindcasts during 1990-2014.

277

278

a) b)

Figure 4. Difference of the 2m temperature forecasts a) GCFS1.0 and b) GCFS2.0 to ERA-Interim for JJA

hindcasts in 1990-2014.

283

284

sphere. In the Northern Hemisphere however, a considerable warm bias in the middle tro-296

posphere extends from the northern polar latitudes into the tropics. The maximum of the297

positive bias is placed above the North Pole while in the lowermost layers the cold bias298

of the Arctic remains. The warm-bias Northern Hemisphere region is accompanied by a299

positive humidity bias (not shown here).300

JJA hindcast temperature biases at 2m height are displayed in Figure 4. The cold301

bias of Northern Hemisphere land masses in GCSF1.0, which can also be seen in the 10302

member ensemble of [Baehr et al., 2015], is greatly reduced, but is in some regions re-303

placed by a warm bias in GCFS2.0, as e.g. over North-America. The error in the Amazon304
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basin is strongly reduced in GCFS2.0. The cold tongue in the tropical Pacific, present in305

GCFS1.0, completely vanished thanks to the nudging but is replaced by a strong warm306

bias in the upwelling region west of South American and South African coasts.307

Figure 5. Top panel: Anomaly correlation coefficient (ACC) of hindcasts for June, July, August with re-

spect to ERA-Interim during 1990 − 2014: a) 2m temperature and b) geopotential height at 500 hPa pressure

level. Dots represent significant values at the 95% confidence level. Middle panels show the difference of

ACC skill between GCFS1.0 and GCFS2.0 c) 2m temperature and d) geopotential height at 500 hPa. Bottom

panels show the difference of GCFS1.0 and GCFS2.0 for the Fair Ranked Probability Skill Score RPSS for e)

2m temperature and f) geopotential height at 500 hPa.

308

309

310

311

312

313
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The change of the bias patterns seems to lead to a neutral behaviour of the GCFS2.0314

hindcast skill, the ACC. Figure 5a) shows, that for central Europe no hindcast skill in315

temperature can be expected, while the situation is better in North-America, the Mediter-316

ranean and some Asian regions, where significant correlation values appear, represented317

by dots if at the 95% confidence level. In the middle troposphere the ACC for the geopo-318

tential height (Figure 5b) shows negative values over Europe. Again, western US, Green-319

land and Central Asia exhibit significant positive skill outside the tropical regions.320

The middle panels, Figures 5c,d), show the change in skill from GCFS1.0 to GCFS2.0.321

For the inter-model comparison GCFS2.0 is mapped onto the coarse grid of GCFS1.0. If322

regions appear in reddish colours GCFS2.0 is superior over its predecessor GCFS1.0. At323

the surface relevant improvements for the temperature correlation can be seen over Alaska,324

the west Sibirien Plain and the Amazon region. A slight improvement is gained in north-325

ern Europe. At 500 hPa the correlation for the geopotential height is now stronger over326

Greenland and parts of Siberia as well as over parts of Antarctica. The negative skill over327

Europe is a pattern which has not changed much in comparison to GCFS1.0.328

The difference in the probabilistic measure RPSS between the two model systems331

is shown in the bottom panels of Figure 5, again for temperature on the left in Figure 5e)332

and geopotential on the right in Figure 5f). As before, the red-coloured regions highlight333

the domains where the probabilistic hindcasts of GCFS2.0 for all event categories are bet-334

ter than the GCFS1.0 ensemble. The differences between the systems are stronger at the335

surface than in 500 hPa. GCFS2.0 probabilistic hindcasts have improved over the North336

and Baltic sea and its surroundings, in the Sahel zone and again over the Amazon region.337

Degradation is seen for the central tropical Pacific, tropical Atlantic and the Indonesian338

Archipelago. For geopotential at 500 hPa probabilistic hindcasts are now slightly worse339

around the tropics, while the North Atlantic shows neutral to slightly improved behaviour.340

341

The structure of one of the prominent European summer features, the summer block-342

ing events, remains also similar between the two systems as seen in Figure 6. Blocking is343

diagnosed from daily values of geopotential at 500 hPa of the hindcasts started in May by344

using the a combination of two methods based on Tibaldi and Molteni [1990] and Bar-345

riopedro et al. [2010]. The ERA-Interim reanalysis shows (Fig. 6a) that the European346

blocking has its maximum over northern Scandinavia. The region where events are present347
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a)

b) c)

Figure 6. Analysis of blocking frequency in JJA during 1990-2014 for a) ERA-Interim reanalysis, b)

GCFS1.0 ensemble mean and c) GCFS2.0 ensemble mean.

329

330

for more than 15% of the summer days during the considered time range extends from348

Greenland to the Ural mountains and from Spitsbergen down south to Poland and Ukraine.349

While the general shape and the location of the central core of summer blockings match350

quite well between reanalysis and forecast systems, the extension and especially the am-351

plitude of the GCFS1.0 and GCFS2.0 blockings are smaller. GCFS1.0 blockings reach352

farther south than GCFS2.0, while the newer system exhibits more Greenland events. This353

result is consistent with Fig. 5d), where the ACC of geopotential at 500 hPa for GCFS2.0354

over Europe shows a neutral behaviour or a slight degradation but a considerable improve-355

ment over Greenland. The underestimation of this phenomenon is however not unexpected356
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as blocking processes are known to evolve properly only at horizontal grid resolutions of357

about 40 km as shown in, e.g. Jung et al. [2012].358

3.3 DJF mean state and hindcast skill359

As before, the ensemble and time means of GCFS1.0 and GCFS2.0 are compared362

by using the corresponding ERA-Interim period of December, January and February 1990-363

2014, computed from the November start date. The year is related to the start of the sea-364

son, namely December.

a) b)

Figure 7. Temperature differences of a) GCFS1.0 ensemble mean and b) GCFS2.0 ensemble mean to

ERA-Interim with respect to DJF hindcasts during 1990-2014.

360

361

365

a) b)

Figure 8. Difference of the T2m hindcasts a) GCFS1.0 and b) GCFS2.0 to ERA-Interim for DJF hindcasts

between in 1990-2014.

366

367
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Again, we show first the vertical structure of the temperature differences in Figure368

7 for the DJF climate. For GCFS1.0 (Figure 7a) a strong cold bias is seen in the upper369

troposphere extending with weaker values up into the stratosphere. In the GCFS2.0 tro-370

posphere (Figure 7b), the cold bias is considerably reduced. In tropical and subtropical371

latitudes a minor warm bias is now present with a maximum at the tropopause.372

The middle atmosphere of the GCFS1.0 Southern Hemisphere is too warm up until373

35 km, while above a strong cold bias is visible suggesting again a misplacement of the374

ozone layer. In contrast, the winter stratosphere in the Northern Hemisphere in the same375

height appears to be too warm. This dipole structure is strongly reduced in GCFS2.0, due376

to the new ozone climatology and the higher resolution. Unfortunately, the warm bias in377

the winter polar stratosphere extends now from about 100 hPa up to 1 hPa. This seems378

to be related to a too strong (gravity) wave activity decelerating the polar vortex by wave379

breaking (personal communication with M. Giorgetta).380

At the surface the bias distribution has also changed as is displayed in Figure 8. The381

tropical oceans now show a general warm bias for GCFS2.0 (8b), as seen before in the382

historical experiment (Fig. 1), but in the Pacific the cold tongue again vanishes as sim-383

ulations start from an analysed climate state. Other strong biases from the GCFS1.0 are384

now also considerably reduced, like the warm bias over Europe, the Amazon region and385

southern Africa or the cold bias over northern Africa.386

With these improvements comes a better representation of the jet in the storm track393

region (compare with Figure 10 of Müller et al. [2018]). This leads to a good skill pattern394

in ACC of 2m temperature as seen in Figure 9a and also for the geopotential height at 500395

hPa pressure level (Figure 9b). While ACC values over Europe in DJF are not apparent,396

the skill in the Arctic region, over Greenland and northern America shows significant val-397

ues up to 0.8 (Figure 9a). However, directly south of Greenland appears an oceanic region398

with negative skill. This is a new pattern in GCFS2.0 and is most probable not a model399

feature but stems from assimilating the ocean reanalysis data ORAS5 from ECMWF. The400

same negative Pearson correlation appears in the DJF hindcast skill of ECMWF’s fore-401

cast model System 5 [Johnson et al., 2019], see their Figure 19a. The authors also discuss402

ORAS5 as the reason of skill degradation. At the level of 500 hPa again the strongest403

positive values are found in the tropics. However, regions with considerable positive and404

significant skill are found over the eastern North-Pacific extending into North-America,405
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Figure 9. Top panel: Anomaly correlation coefficient (ACC) of hindcasts for December, January, February

with respect to ERA-Interim: a) 2m temperature and b) geopotential height at 500 hPa pressure level. Dots

represent significant values at the 95% confidence level. Middle panels show the difference of skill between

GCFS1.0 and GCFS2.0 for the same variables c) 2m temperature and d) geopotentialxs height at 500 hPa.

Bottom panels show the difference of GCFS1.0 and GCFS2.0 for the Fair Ranked Probability Skill Score for

e) 2m temperature and f) geopotential height at 500 hPa.

387

388

389

390

391

392

as well as over Greenland and Arctic regions. Also the North-Atlantic shows a patch of406

significant positive skill.407

The middle panels of Figure 9 highlight as before the change in skill in the ACC408

between the two versions GCFCS1.0 and GCFS2.0. Considerable skill has been gained409
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at the surface, represented by the 2m temperature (Figure 9c). Greenland and large parts410

of Eurasia benefit from the new version. Europe partly gains skill, especially for the very411

north and the southern regions and partly loses skill, especially over central Europe. A412

substantial gain in skill is further evident for the geopotential in the storm track level in413

the North Atlantic, Arctic regions (Figure 9d), as well as over Eurasia. The improvement414

over central Europe is gained by replacing negative ACC values with weak positive ones.415

The bottom panels in Figure 9 present the difference of the two systems in terms of416

the probabilistic hindcast skill score RPSS as previously shown in Figure 5. Skill differ-417

ences are stronger at the surface for temperature than for the middle troposphere in 500418

hPa. During DJF GCFS2.0 probabilistic hindcasts are more skillful for eastern and south-419

ern Europe as well as eastern Russia. The skill amendment over Europe is seen as well420

in 500 hPa. A region, where GCFS2.0 forecasts are worse than its predecessor is the cen-421

tral tropical Pacific. The strongest gain in skill is seen over central Africa extending into422

the Indian Ocean. Improvements over the ocean are also visible for the subtropical south-423

eastern Pacific and the Agulhas basin.424

a) b)

Figure 10. NAO time series of ERA-Interim, Model ensemble mean and the single ensemble members

averaged over December, January, February during 1990 − 2014, a) GCFS1.0 and b) GCFS2.0. The labeled

years refer to January of the considered DJF.

425

426

427

The improved conditions in the Northern Hemisphere show up as well in a doubling428

of skill in GCFS2.0 when predicting the North Atlantic Oscillation (NAO) for the upcom-429

ing DJF or boreal winter season, as shown in Figure 10. The NAO index has been cal-430

culated using an empirical orthogonal function (EOF) like in Dobrynin et al. [2018]. A431

considerably higher skill is also present for a reduced ensemble size down to the same432

number as in GCFS1.0 (not shown here). This highlights again, that beside enhancing the433
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ensemble size the improvements of the model dynamics and physics have the potential for434

long range forecasts in the mid-latitudes as shown by Scaife et al. [2014].435

3.4 ENSO hindcasts436

The assessment of ENSO hindcasts in Figure 11 for the Niño3.4 region shows a437

strong seasonal dependence of skill in GCFS2.0. However, considering all 12 start months438

predictive skill has shrunk in GCFS2.0. The general structure of difficult hindcast start439

months March, April, May and June can be seen as well in GCFS1.0 and is also known440

for other models as ”spring predictability barrier” (see e.g. Wang-Chun Lai et al. [2017]),441

making ENSO predictions difficult for forecast systems in general. This feature has not442

been improved in GCFS2.0. However, in all other start months from July to December443

GCFS2.0 performs with a comparable forecast quality to GCFS1.0.444

a) b)

Figure 11. Anomaly correlation of the SST forecasts for the ENSO 3.4 region for a) GCFS1.0 and b)

GCFS2.0, both wrt NCEP reanalysis for all 12 start months and all 6 lead months in 1990-2014.

445

446

The decreased ENSO skill in GCFS2.0 together with the strong tropical warm bias447

brings up the question, whether a code correction of the ocean mixing mentioned in Mau-448

ritsen et al. [2018] is able to alleviate the warm bias and also to improve the ENSO pre-449

dictive skill. This ’bugfix’ was implemented and tuned for the low resolution version450

CMIP6 MPI-ESM-LR but for the high resolution version MPI-ESM-HR it was decided451

to leave out this further tuning connected with the ocean correction.452

–21–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Johnson et al. [2019] also report a warm bias of the ECMWF’s seasonal forecast453

model System 5 during JJA hindcasts in the eastern Pacific basin (compare with their454

Figure 1d). The warm structure of System 5 is stronger pronounced north of the equator455

and much more confined to the South American coast. Their ENSO predictive quality im-456

proved with the higher resolution of the model.457

To investigate the impact of the ocean code correction onto the CMIP6 MPI-ESM-458

HR climate an experiment is set up. Here, MPI-ESM-HR is run again for approximately459

100 years under pre-industrial control conditions with correct ocean mixing in order to al-460

low a spin-up for the ocean. Afterwards, a historical experiment simulates the time range461

from 1850 up to 2014. However, the comparison between the original historical run and462

the bugfixed version did not show the desired result of a cooler tropical belt. The revised463

ocean mixing in CMIP6 MPI-ESM-HR revealed a small improvement but no change of er-464

ror pattern in the tropical Pacific similar to the change seen in Figure 1. Except for Arctic465

regions temperature differences between these two CMIP6 versions remain mostly below466

1K and are hard to recognise. The reason for the tropical warm bias is thus suspected to467

derive from the revised atmospheric parameterizations. Required diagnostics and tuning468

experiments are currently beyond available resources.469

4 Conclusions470

To summarize, we have shown that the second version of the German Climate Fore-471

cast System brings some improvements over its predecessor. However, a version change472

does not necessarily lead to improvement everywhere and for every variable, which is cer-473

tainly true here. During JJA, overall a similar behaviour of GCFS2.0 in comparison to474

GCFS1.0 is assessed. Skill degradation in JJA forecasts is prominent in the tropical Pa-475

cific and in the skill for ENSO. During DJF, hindcast quality is improved, especially for476

Northern Hemisphere where e.g. NAO skill for the winter months has doubled.477

We have learned again with this version, increasing the model resolution is not per478

se a solution to many forecast problems as it requires an intense work and evaluation of479

the model physics on the new grid. Similar challenges are observed for the new system 5480

at ECMWF [Johnson et al., 2019], where many issues come up with the new resolution.481

Scaife et al. [2019] even recommend to invest more into the ensemble size, vertical resolu-482

tion or ocean resolution than in increasing the atmospheric horizontal resolution. As can483
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be seen from our results, any changes on the model grid need carefull adaptation of the484

model physics.485

For a future system, besides taking into account a well tuned climate and climate486

sensitivity of the Earth-System-Model, which is the key for climate experiments and cli-487

mate projections, a comprehensive performance testing is needed depending on different488

time-scale applications of this model [Schmidt et al., 2017]. In that way, processes active489

in different seasons or timescales can be accounted for during the model tuning.490

Acknowledgments491

Large parts of this work have been performed under the Copernicus Service Contracts492

C3S-433 and C3S-330. The version of ECHAM6 in MPI-ESM is https://svn.zmaw.493

de/svn/echam6/tags/echam-6.3.04p1, the version of MPIOM in MPI-ESM is https:494

//svn.zmaw.de/svn/mpiom/tags/mpiom-1.6.3. Hindcast data used for this study and495

scripts to generate the figures are available by request to the first author under https://496

doi.org/10.5281/zenodo.3697080. GCFS2.0 data used for this study are available on497

the C3S climate data store https://climate.copernicus.eu/seasonal-forecasts.498

References499

Athanisiadis, P. J., and A. Bellucci (2017), A multisystem view of wintertime nao seasonal500

predictions, Journal Of Climate, 30, 1461–1475, doi:10.1175/JCLI-D-16-0153.1.501

Baehr, J., and R. Piontek (2014), Ensemble initialization of the oceanic component of a502

coupled model through bred vectors at seasonal-to-interannual timescales, Geoscientific503

Model Development, 7(1), 453–461, doi:10.5194/gmd-7-453-2014.504

Baehr, J., K. Fröhlich, M. Botzet, D. I. V. Domeisen, L. Kornblueh, D. Notz, R. Piontek,505

H. Pohlmann, S. Tietsche, and W. A. Müller (2015), The prediction of surface tem-506

perature in the new seasonal prediction system based on the mpi-esm coupled climate507

model, CLIMATE DYNAMICS, 44(9-10), 2723–2735, doi:10.1007/s00382-014-2399-7.508

Ban, R. J., E. Dunlea, A. Ravishankara, D. Halpern, J. Francis, and A. Staudt (2016), Next509

Generation Eart System Prediction: Strategies for Subseasonal to Seasonal Forecasts, Na-510

tional Academies of Science, Engineering and Medicine, Washington, DC: The National511

Academic Press, doi:10.17226/21873.512

Barriopedro, D., R. Garcia-Herrera, and R. Trigo (2010), Application of blocking diag-513

nosis methods to general circulation models. part i: a novel detection scheme, Climate514

–23–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Dynamics, 35(7-8), 1373–1391, doi:10.1007/s00382-010-0767-5.515

Bunzel, F., W. A. Müller, M. Dobrynin, K. Fröhlich, S. Hagemann, H. Pohlmann,516

T. Stacke, and J. Baehr (2017), Improved seasonal prediction of european summer tem-517

peratures with new five-layer soil-hydrology scheme, Geophysical Research Letters,518

45(1), 346–353, doi:10.1002/2017GL076204.519

Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae,520

M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de521

Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haim-522

berger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köh-523

ler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park,524

C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart (2011), The era-525

interim reanalysis: configuration and performance of the data assimilation system, Quar-526

terly Journal of the Royal Meteorological Society, 137(656), 553–597, doi:10.1002/qj.527

828.528

Dobrynin, M., D. I. V. Domeisen, W. A. Müller, L. Bell, S. Brune, F. Bunzel, A. Düster-529

hus, K. Fröhlich, H. Pohlmann, and J. Baehr (2018), Improved teleconnection-based530

dynamical seasonal predictions of boreal winter., Geophys. Res. Lett., 45, 3605–3614,531

doi:doi.org/10.1002/2018GL077209.532

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Tay-533

lor (2016), Overview of the coupled model intercomparison project phase 6 (cmip6) ex-534

perimental design and organization, Geoscientific Model Development, 9(5), 1937–1958,535

doi:10.5194/gmd-9-1937-2016.536

Ferro, C. (2014), Fair scores for ensemble forecasts. , Q.J.R. Meteorol. Soc., 140, 1917–537

1923.538

Fetterer, F., K. Knowles, W. Meier, and M. Savoie (2002), Sea ice index, doi:10.7265/539

N5QJ7F7W.540

Giorgetta, M. A., J. Jungclaus, C. H. Reick, S. Legutke, J. Bader, M. Böttinger,541

V. Brovkin, T. Crueger, M. Esch, K. Fieg, K. Glushak, V. Gayler, H. Haak, H.-D.542

Hollweg, T. Ilyina, S. Kinne, L. Kornblueh, D. Matei, T. Mauritsen, U. Mikolajew-543

icz, W. Mueller, D. Notz, F. Pithan, T. Raddatz, S. Rast, R. Redler, E. Roeckner,544

H. Schmidt, R. Schnur, J. Segschneider, K. D. Six, M. Stockhause, C. Timmreck,545

J. Wegner, H. Widmann, K.-H. Wieners, M. Claussen, J. Marotzke, and B. Stevens546

(2013), Climate and carbon cycle changes from 1850 to 2100 in mpi-esm simulations547

–24–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

for the coupled model intercomparison project phase 5, Journal of Advances in Modeling548

Earth Systems, 5(3), 572–597, doi:10.1002/jame.20038.549

Hagemann, S., and T. Stacke (2015), Impact of the soil hydrology scheme on simulated550

soil moisture memory, Clim. Dyn., 44, 1731–1750, doi:10.1007/s00382-014-2221-6.551

Ilyina, T., K. D. Six, J. Segschneider, E. MaierReimer, H. Li, and I. NunezRiboni (2013),552

Global ocean biogeochemistry model hamocc: Model architecture and performance as553

component of the mpi earth system model in different cmip5 experimental realizations,554

J. Adv. Modelling Earth Syst. (JAMES), 5, 287–315, doi:10.1029/2012MS000178.555

Johnson, S. J., T. N. Stockdale, L. Ferranti, M. A. Balmaseda, F. Molteni, L. Magnus-556

son, S. Tietsche, D. Decremer, A. Weisheimer, G. Balsamo, and S. P. E. Keeley (2019),557

Seas5: the new ecmwf seasonal forecast system, Geosci. Model Dev, 12, 1087–1117,558

doi.org/10.5194/gmd-12-1087-2019.559

Jung, T., M. Miller, T. Palmer, P. Towers, N. Wedi, D. Achuthavarier, J. Adams, E. Alt-560

shuler, B. Cash, J. Kinter, L. Marx, C. Stan, , and K. Hodges (2012), High-resolution561

global climate simulations with the ecmwf model in project athena: Experimental562

design, model climate, and seasonal forecast skill., J. Climate, 25, 3155–3177, doi:563

10.1175/JCLI-D-11-00265.1.564

Jungclaus, J. H., N. Fischer, H. Haak, K. Lohmann, J. Marotzke, D. Matei, U. Mikola-565

jewicz, D. Notz, and J. S. von Storch (2013), Characteristics of the ocean simulations566

in the max planck institute ocean model (mpiom) the ocean component of the mpi-567

earth system model, Journal of Advances in Modeling Earth Systems, 5(2), 422–446,568

doi:10.1002/jame.20023.569

MacLachlan, C., A. Arribas, K. Peterson, A. Maidens, D. Fereday, A. Scaife, M. Gordon,570

M. Vellinga, A. Williams, R. E. Comer, J. Camp, and P. Xavier (2015), Global Seasonal571

forecast system version 5 (GloSea5): A high resolution seasonal forecast system , Quar-572

terly Journal of the Royal Meteorological Society, 141, 1072–1084, doi:10.1002/qj.2396.573

Manzanas, R., J. Gutierrez, J. Bhend, S. Hemri, F. Doblas-Reyes, V. Torralba, E. Pen-574

abad Ramos, and A. Brookshaw (2019), Bias adjustment and ensemble recalibration575

methods for seasonal forecasting: A comprehensive intercomparison using the c3s576

dataset., Climate Dynamics, doi:10.1007/s00382-019-04640-4.577

Mauritsen, T., B. Stevens, E. Roeckner, T. Crueger, M. Esch, M. A. Giorgetta, H. Haak,578

J. Jungclaus, D. Klocke, D. Matei, U. Mikolajewicz, D. Notz, R. Pincus, H. Schmidt,579

and L. Tomassini (2012), Tuning the climate of a global model, Journal of Advances in580

–25–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Modeling Earth Systems, 4, 1–18.581

Mauritsen, T., J. Bader, T. Becker, J. Behrens, M. Bittner, R. Brokopf, V. Brovkin,582

M. Claussen, T. Crueger, M. Esch, I. Fast, S. Fiedler, D. Fläschner, V. Gayler, M. Gior-583

getta, D. S. Goll, H. Haak, S. Hagemann, C. Hedemann, C. Hohenegger, T. Ilyina,584

T.Jahns, D. J. de la Cuesta Otero, J. Jungclaus, T. Kleinen, S. Kloster, D. Kracher,585

S. Kinne, D. Kleberg, G. Lasslop, L. Kornblueh, J. Marotzke, D. Matei, K. Meraner,586

U. Mikolajewicz, K. Modali, B. Möbis, W. A. Müller, J. E. M. S. Nabel, C. C. W. Nam,587

D. Notz, S.-S. Nyawira, H. Paulsen, K. Peters, R. Pincus, H. Pohlmann, J. Pongratz,588

M. Popp, T. Raddatz, S. Rast, R. Redler, C. H. Reick, T. Rohrschneider, V. Schemann,589

H. Schmidt, R. Schnur, U. Schulzweida, K. D. Six, L. Stein, I. Stemmler, B. Stevens, J.-590

S. von Storch, F. Tian, A. Voigt, P. de Vrese, K.-H. Wieners, S. Wilkenskjeld, A. Win-591

kler, and E. Roeckner (2018), Developments in the mpi-m earth system model ver-592

sion 1.2 (mpi-esm1.2) and its response to increasing co2, J. Adv. Modelling Earth Syst.593

(JAMES), 11, 998–1038, doi:10.1029/2018MS001400.594

Mogensen, K., M. A. Balmaseda, and A. Weaver (2012), The nemovar ocean data assimi-595

lation system as implemented in the ecmwf ocean analysis for system 4, Shinfield Park,596

Reading, 59 pp.597

Müller, W. A., J. H. Jungclaus, T. Mauritsen, J. Baehr, M. Bittner, R. Budich, F. Bunzel,598

M. Esch, R. Ghosh, H. Haak, T. Ilyina, T. Kleine, L. Kornblueh, H. Li, K. Modali,599

D. Notz, H. Pohlmann, E. Roeckner, I. Stemmler, F. Tian, and J. Marotzke (2018),600

A higher-resolution version of the max planck institute earth system model (mpi-601

esm1.2-hr), Journal of Advances in Modeling Earth Systems, 10(7), 1383–1413, doi:602

10.1029/2017MS001217.603

Pohlmann, H., W. A. Müller, M. Bittner, S. Hettrich, K. Modali, K. Pankatz, and604

J. Marotzke (2019), Realistic quasibiennial oscillation variability in historical and605

decadal hindcast simulations using cmip6 forcing., Geophys. Res. Lett., 46, 14,118–606

14,125, doi:10.1029/2019GL084878.607

Polkova, I., S. Brune, C. Kadow, V. Romanova, G. Gollan, J. Baehr, R. Glowienka Hense,608

R. J. Greatbatch, A. Hense, S. Illing, A. Köhl, J. Kröger, W. A. Müller, K. Pankatz, and609

D. Stammer (2019), Initialization and ensemble generation for decadal climate predic-610

tions: A comparison of different methods, Journal of Advances in Modeling Earth Sys-611

tems, 11, 149–172, doi:10.1029/2018MS001439.612

–26–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Scaife, A., J. Camp, R. Comer, P. Davis, N. Dunstone, M. Gordon, C. MacLchlan,613

N. Martin, Y. Nie, H.-L. Ren, M. Roberts, W. Robinson, D. Smith, and P. Vidale614

(2019), Does increased atmospheric resolution improve seasonal climate predictions?,615

Atmospheric Science Letters, 20, 1–10, doi:10.1002/asl.922.616

Scaife, A. A., A. Arribas, E. Blockley, A. Brookshaw, R. T. Clark, N. Dunstone, R. Eade,617

D. Fereday, C. K. Folland, M. Gordon, L. Hermanson, J. R. Knight, D. J. Lea,618

C. MacLachlan, A. Maidens, M. Martin, A. K. Peterson, D. Smith, M. Vellinga,619

E. Wallace, J. Waters, and A. Williams (2014), Skillful long-range prediction of eu-620

ropean and north american winters, Geophysical Research Letters, 41(7), 2514–2519,621

doi:10.1002/2014GL059637.622

Schmidt, G. A., D. Bader, L. J. Donner, G. S. Elsaesser, J.-C. Golaz, C. Hannay,623

A. Molod, R. B. Neale, and S. Saha (2017), Practice and philosophy of climate model624

tuning across six us modeling centers, Geoscientific Model Development, 10(9), 3207–625

3223, doi:10.5194/gmd-10-3207-2017.626

Stockdale, T. N. (2012), The eurosip system - multi-model approach, conference paper.627

Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and628

the experiment design, Bull. Amer. Meteor. Soc., 93(4), 485–498, doi:10.1175/629

bams-d-11-00094.1.630

Tibaldi, S., and F. Molteni (1990), On the operational predictability of blocking, Tellus A,631

42(3), 343–365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.632

Wang-Chun Lai, A., M. Herzog, and H. Graf (2017), Enso forecasts near the spring pre-633

dictability barrier and possible reasons for the recently reduced predictability., J. Cli-634

mate, 31, 815–838, doi:10.1175/JCLI-D-17-0180.1.635

White, C., H. Carlsen, A. Robertson, R. Klein, J. Lazo, A. Kumar, F. Vitart, E. Cough-636

lan de Perez, A. Ray, V. Murray, S. Bharwani, D. MacLeod, R. James, L. Fleming,637

A. Morse, B. Eggen, R. Graham, E. Kjellström, E. Becker, K. Pegion, N. Holbrook,638

D. McEvoy, M. Depledge, S. Perkins-Kirkpatrick, T. Brown, R. Street, L. Jones, T. Re-639

menyi, I. Hodgson-Johnston, C. Buontempo, R. Lamb, H. Meinke, B. Arheimer, and640

S. Zebiak (2017), Potential applications of subseasonal-to-seasonal (s2s) predictions,641

Met. Apps., 24, 315–325, doi:10.1002/met.1654.642

Wilks, D. (1995), Statistical Methods in the Atmospheric Sciences, 467 pp., Academic643

Press and San Diego.644

–27–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Zou, H., M. Balmaseda, and C. Mogensen (2017), The new eddy-permitting orap5 ocean645

reanalysis: description, evaluation and uncertainties in climate signals, Climate Dynam-646

ics, 49, 791–811.647

–28–


