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Abstract

Accounting for uncertainty in statistical model parameters is an essential part of geostatiscal reservoir characterization. While

parameter uncertainty may be assessed in its ergodic form; the non-ergodic is a better characterization of the variability in

the random field. Assessing non-ergodic parameter uncertainty requires re-sampling (bootstrapping) techniques. Existing

techniques for such non-ergodic re-sampling are plagued with some limitations/complications. This paper therefore presents

a spatial bootstrap algorithm that overcomes the limitations/complication. For a discretized field, the algorithm implements

simultaneous displacements (shiftings) of all sampling points through the same distance vector. The shiftings are done across

the dimensions of the field subject to the dimensionality of the sampling. In each dimension, the sampling points are shifted

successively through a distance equivalent to the gridblock length in that dimension. At each shifting, a shifted sampling grid,

of similar configuration as the original sampling grid, is generated. Using the shifted sampling grid, the algorithm re-samples

a full-grid simulated realization of the field. The assumption of second-order stationarity implies that a sample from a shifted

sampling grid is considered a repeated sample of the original sample. The algorithm has been scripted in R statistical computing

environment and applied to an irregularly-sampled 3-D field with satisfactory results.
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Abstract 

Accounting for uncertainty in statistical model parameters is an essential part of geostatiscal reservoir 

characterization. While parameter uncertainty may be assessed in its ergodic form; the non-ergodic is a better 

characterization of the variability in the random field. Assessing non-ergodic parameter uncertainty requires re-

sampling (bootstrapping) techniques. Existing techniques for such non-ergodic re-sampling are plagued with some 

limitations/complications. This paper therefore presents a spatial bootstrap algorithm that overcomes the 

limitations/complication. 

For a discretized field, the algorithm implements simultaneous displacements (shiftings) of all sampling points 

through the same distance vector. The shiftings are done across the dimensions of the field subject to the 

dimensionality of the sampling. In each dimension, the sampling points are shifted successively through a distance 

equivalent to the gridblock length in that dimension. At each shifting, a shifted sampling grid, of similar 

configuration as the original sampling grid, is generated. Using the shifted sampling grid, the algorithm re-samples 

a full-grid simulated realization of the field. The assumption of second-order stationarity implies that a sample from 

a shifted sampling grid is considered a repeated sample of the original sample. The algorithm has been scripted in 

R statistical computing environment and applied to an irregularly-sampled 3-D field with satisfactory results. 
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1. Introduction 

The estimation of natural resource volumes is a major objective of geological modeling. The assessment of 

uncertainty inherent in such volumetric estimates is in the domain of geostatistical modeling and stochastic 

simulation. Often, considerations for uncertainty in resource volume estimation are limited to attributes uncertainty. 

Several geostatistical realizations of volumetric attributes (porosity, net-to-gross thickness, saturation etc.) are 

simulated using fixed values of statistical model parameters such as sample mean, representative histogram and 

empirical variogram. Obtaining the true values of these statistical model parameters would require an exhaustive 

sampling of the geological field; this is prohibitive. In reality, estimates of these statistical model parameters are 

obtained from limited sample data. Estimates of statistical model parameters obtained from limited field sample 

data are necessarily uncertain (Babak and Deutsch, 2009). Random variations across samples would necessarily 

confer statistical uncertainty on the estimates obtained (Pardo-Iguzquiza and Dowd, 2001). More so, preferential 

and sparse or unrepresentative sampling introduces uncertainty into the estimates. Hence, the use of fixed values of 

uncertain model parameters in stochastic simulations would necessarily lead to a bias in the resource volume global 

uncertainty. Such bias would cause an underestimation of resource volume global uncertainty. While the subject 

matter of this paper is applicable to all statistical model parameters; its implementation in this paper is specifically 

on the uncertainty inherent in the sample mean. The sample mean is essential in defining the probability 

distributions of geological attributes. 

While the subject matter of this paper is applicable to all statistical model parameters; it is here introduced within 

the context of the uncertainty in empirical (sample) variogram. Empirical variogram is very essential in geostatiscal 

modeling as it is required in optimal interpolation of attributes values at unsampled locations in a geological field. 

In a thorough assessment of uncertainty in empirical variogram, a distinction is made between ergodic variogram 

and non-ergodic variogram. Ergodic variogram is that which is averaged over multiple realizations of the random 

process (variogram model and conditioning data) that generated the field. Non-ergodic variogram is that which is 

averaged over multiple samples of a single realization of the random field. In essence, ergodic variogram is that of 

the random process that generated the field while non-ergodic variogram is that of the field itself; these two are not 

necessarily equal. The non-ergodic variogram is of more practical interest in geostatistical modelling because it 

better characterises the variability inherent in the field (Isaaks and Srivastava, 1988; cited in Brus and de Gruijter, 

1994). Each of these variogram types has its associated uncertainty (fluctuations). Ergodic variogram uncertainty 

refers to the fluctuations of variogram estimates over multiple realizations of the random process underlying the 

field. On the other hand, non-ergodic variogram uncertainty refers to the fluctuations of variogram estimates over 

multiple samples of a single realization of the field. The uncertainty in non-ergodic variogram estimates is entirely 

due to sampling (i.e., random variations across samples). However, uncertainty in ergodic variogram encompasses 

fluctuations due to random variations of the random variables (over multiple realizations), in addition to sampling 

fluctuations. For both variogram measures, variogram uncertainty at a given lag interval is assessed as variance of 

multiple variogram estimates at that lag interval. Obtaining multiple variogram estimates at a given lag interval 

would necessarily require a technique for generating multiple (repeated) sample sets from the original sample set. 
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In statistical parlance, such techniques are known as re-sampling or bootstrap techniques. The methodology for 

obtaining multiple samples for ergodic variogram and associated uncertainty is straightforward. Multiple 

realizations of the random field are simulated using a plausible variogram model; each realization is sampled at the 

same set of sampling points. A plausible variogram model is a model that fits the empirical variogram of the data 

reasonably well. Non-ergodic multiple samples are obtained from a single realization of the random field but at 

multiple sets of sampling points. The existing techniques of obtaining multiple samples (re-sampling) of a single 

realization are plagued with some limitations/complications. The paper therefore presents a spatial bootstrap 

algorithm that overcomes the limitations and complications of the existing techniques. First, a concise review of the 

evolution of the previous re-sampling/bootstrap techniques and associated limitations/complications is presented. 

Thereafter, the description, functionality and procedure of the new algorithm formulated in this work are presented. 

Finally, the application of the algorithm to a certain irregularly-sampled 3-D geological field is presented.   

2. Limitations of Existing Re-sampling Techniques 

In classical statistics, a common technique for generating multiple sample sets from a given sample set is known as 

bootstrap (Efron and Tibshirani, 1993). The bootstrap technique assumes data independence; however, attributes 

data in a geological field are spatially correlated (dependent). Results presented by Deutsch (2004) show that the 

assumption of independence, in resampling correlated data, leads to underestimation of parameter uncertainty. 

Consequently, spatial bootstrap technique was developed to accommodate data correlation (Deutsch, 2004; Journel 

and Bitanov, 2004; Feyen and Caers, 2006). Babak and Deutsch (2009) pointed out two questionable aspects of the 

spatial bootstrap technique: a disregard for conditioning data and for the finite field domain. These lead to 

overestimation of variogram uncertainty as the unconditional simulation (underlying spatial bootstrap) give very 

different realizations with increasing spatial correlation (Babak and Deutsch, 2009).  Moreover, the spatial 

bootstrap program (Deutsch, 2004) is in the league of ergodic re-sampling techniques as it entails multiple 

stochastic simulations of the random process in generating the several sample sets. The stochastic simulation 

occurs as the program draws sets of independent Gaussian values from the standard normal distribution. The 

random fluctuations due to the stochastic simulations also add to the variogram uncertainty. In essence, the 

unconditional nature of the simulation is not the only reason for the overestimation of variogram uncertainty when 

spatial bootstrap (Deutsch, 2004) is used. The use of stochastic realizations (even if conditional) would still 

necessarily lead to such overestimation; results presented in Section 4 of this paper support this assertion. 

Derakhshan and Leuangthong (2006) generated multiple sample sets from a single simulated full-grid realization of 

a field by moving (shifting) a sampling grid over the field. While this shifting-like movement of the sampling grid 

is very easy to implement for regularly sampled fields, Derakhshan and Leuangthong (2006) noted that it could be 

highly intractable to implement in an irregularly-sampled field with clustered sample points. In reality, 

hydrocarbon reservoirs are commonly sampled irregularly with sampling bias for high porosity/permeability 

regions of the field. Babak and Deutsch (2009) proposed the concept of conditional finite-domain (CFD) to 

overcome the questionable aspects of spatial bootstrap. The CFD as a re-sampling technique is anchored on a 

notion similar to the movement of sampling grid as done by Derakhshan and Leuangthong (2006). However, 
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instead of the shifting-like movement, Babak and Deutsch (2009) generated multiple sample sets by arbitrarily 

rotating the original sample points around an arbitrary center. While the CFD technique could work for irregularly 

sampled fields, its implementation by rotation of data locations has some limitations. First, the rotation of data 

location is very difficult to implement (Rezvandehy, 2016). This difficulty would even be more pronounced in a 3-

D field as two rotation axes (azimuth and dip) would then be required. This could limit the CFD technique to 2-D 

fields only. Also, there are only very few number of such rotations possible before some of the sample locations are 

rotated outside the finite domain; hence only few re-sampling opportunities. Ensuring sample points do not fall 

outside the domain would increase the complexity of the technique; this is not discussed by the proponents of the 

technique. Increasing the re-sampling opportunities might require multiple full-grid realizations and repetition of 

the rotation; this would increase the variogram uncertainty. Finally, the rotation of data locations could not be 

implemented for anisotropic random fields as it assumes isotropy.  

Among all these existing resampling techniques, the shifting-based technique of Derakhshan and Leuangthong 

(2006) appears to be the simplest; except for the stated difficulty in implementing it for irregularly-sampled fields. 

Also, the shifting-based technique is the only one that is strictly non-ergodic as it utilizes a single simulated 

realization of the field. It is to this end that this work now develops a simple algorithm to implement the shifting of 

both regular and irregular sampling grids within the context of 1-D, 2-D and 3-D random fields. This algorithm is 

known as Sampling Grid Shifting Algorithm (SGSA). The significance of the algorithm presented in this paper lies 

in its use for assessing the important non-ergodic uncertainty in statistical model parameters. In geostatiscal 

modelling, non-ergodic parameter uncertainty is a more realistic measure than its ergodic counterpart. Also, the 

non-ergodic variogram uncertainty obtained through this algorithm would be useful in assessing the adequacy of 

sampling designs.     

   

3. Description of Sampling Grid Shifting 

Given a sampling grid configuration (regular or irregular) and a set of sample data, the SGSA generates a suite of 

spatial coordinates for each of all possible shiftings of the sampling grid. Thereafter, the algorithm generates a 

repeated set of sample data by sampling a simulated full-grid realization of the field at each shifted sampling grid. 

Definitions of terms are needful here. Here, sampling grid configuration refers to the spatial position of all sample 

points relative to one another, in terms of separation distance and direction. In other words, the configuration of a 

sampling grid encapsulates both the number of sample points and the separation distance vector between the points. 

Shifting refers to the simultaneous movement/displacement of all sample points through same distance in the same 

direction. As long as all points are displaced equally in the same direction, the separation distance vector between 

them would not change; hence the configuration would not change. Therefore, a shifted sampling grid (obtained by 

shifting an original sampling grid) would have the same configuration with the original sampling grid. Truly, the 

spatial coordinates of sample points in the sampling grid change as a result of shifting; but the grid configuration 

remains the same. A shifting therefore refers to the resulting sampling grid at any instance of such displacement. 

The concept of sampling grid shifting is illustrated in Figure 1 with a three-point sampling grid in a 6×5 discretized 

2-D field. Shifting 1 is obtained by an eastward displacement of all sample points through a distance equivalent to 
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gridblock thickness in east direction. Shifting 2 is obtained by a southward displacement of all sample points 

through a distance equivalent to gridblock thickness in south direction. There are other possible shiftings for this 

sampling grid in this field. All sampling grids (original and shifted) have same configuration. Again, the SGSA 

generates the spatial coordinates for each of all such possible shiftings. Multiple samples of a single realization of 

the field are then obtained by sampling the simulated full-grid field at such suites of spatial coordinates. The 

assumption of second-order stationarity makes it possible to consider a sample obtained from a shifted sampling 

grid as being equivalent to a repeated sample of the original sample. By the assumption of stationarity, all samples 

with same configuration will have same mean, same covariance matrix, and consequently same distribution (Babak 

and Deutsch, 2009). Also, by the assumption of intrinsic stationarity, the resulting variogram estimates from these 

multiple samples would belong to the same distribution. 

 

 

Figure 1: A depiction of sampling grid shifting 

 

4. Functionality of the SGSA 

The SGSA implements the sampling grid shiftings in a systematic and ordered sequence. The resulting suite of 

spatial coordinates for each shifting is stored in that ordered sequence. For a sampling grid, the suite of spatial 

coordinates may contain up to seven (7) items depending on dimensionality: the x-, y-, z-indices; the natural 

ordering indices and the easting, northing and depths (altitude) coordinates. First, the entire field is discretized into 

gridblocks of desired dimensions. A full-grid (exhaustive) realization of the random field is then conditionally 

simulated using the original sample data and the variogram model obtained from the data. The indices of 

gridblocks containing sample points (i.e. sample gridblocks) are thereafter obtained, both in engineering ordering 

(x, y, z) and natural ordering. The index of the outermost sample gridblock in each cardinal direction (westward, 

eastward, southward, northward, upward, downward) are identified. Based on these outermost sample gridblocks, 

the numbers of shifting steps permissible up to the last gridblock in each direction are determined thus: 
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𝑊𝑆 = 𝑊𝑆𝐵𝐼𝑥 …………………………………………………………………………………1 

𝐸𝑆 =  𝑛𝑥 − 𝐸𝑆𝐵𝐼𝑥 …………………………………………………………………………… .2 

𝑆𝑆 =  𝑆𝑆𝐵𝐼𝑦 ……………………………………………………………………………………3 

𝑁𝑆 =  𝑛𝑦 − 𝑁𝑆𝐵𝐼𝑦 ……………………………………………………………………………4 

𝑈𝑆 =  𝑈𝑆𝐵𝐼𝑧 ………………………………………………………………………………… . .5 

𝐷𝑆 = 𝑛𝑧 − 𝐷𝑆𝐵𝐼𝑧 …………………………………………………………………………… .6 

𝑆𝑇𝑜𝑡𝑎𝑙 = (𝑊𝑆 + 𝐸𝑆) × (𝑆𝑆 + 𝑁𝑆) × (𝑈𝑆 + 𝐷𝑆)…………………………………………7 

In the equations above, 𝑊𝑆, 𝐸𝑆, 𝑆𝑆, 𝑁𝑆, 𝑈𝑆 and 𝐷𝑆 are the number of possible westward, eastward, southward, 

northward, upward and downward shiftings, respectively. 𝑊𝑆𝐵𝐼𝑥 , 𝐸𝑆𝐵𝐼𝑥 , 𝑆𝑆𝐵𝐼𝑦 , 𝑁𝑆𝐵𝐼𝑦 , 𝑈𝑆𝐵𝐼𝑧  𝑎𝑛𝑑 𝐷𝑆𝐵𝐼𝑧  are the 

indices of the outermost sample block in the indicated direction. 𝑆𝑇𝑜𝑡𝑎𝑙  is the total number of possible shiftings in 

the entire field; this includes the original sample grid. These indices are illustrated for a 10×10 discretised 2D field 

depicted in Figure 2. Also, 𝑛𝑥, 𝑛𝑦 𝑎𝑛𝑑 𝑛𝑧 are the numbers of gridblocks in the discretized field along the indicated 

directions.  

 

   Figure 2: Depiction of outermost sample block indices 

The algorithm works out these shiftings in a sequence/hierarchy of directions. In the first-tier shiftings, the 

westward shiftings are first implemented; the original sampling grid is taken as the first of the westward shiftings. 

Thereafter, the eastward shiftings are implemented. The suites of spatial coordinates resulting from all westward 

and eastward shiftings are then aggregated into a single unit known as the latitudinal shiftings. In the second-tier 
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shiftings, each suite of the aggregated latitudinal shifting is subjected to longitudinal (southward and northward) 

shiftings. Again, the suites of spatial coordinates from these longitudinal shiftings are aggregated into a single unit 

known as planar shiftings. In the third-tier shiftings, the planar shiftings are subjected to vertical (upward and 

downward) shiftings. The suites of spatial coordinates of the planar shiftings and the vertical shiftings thereof are 

ultimately aggregated into a single unit known as grand shiftings. The following equations capture the number of 

possible shiftings in each hierarchy. 

𝑆𝑙𝑎𝑡 =  𝑊𝑆 + 𝐸𝑆 ………………………………………………………………………………………8 

𝑆𝑙𝑜𝑛𝑔𝑖𝑡 =  𝑆𝑆 + 𝑁𝑆…………………………………………………………………………………… .9 

𝑆𝑃𝑙𝑎𝑛𝑎𝑟 = 𝑆𝑙𝑜𝑛𝑔𝑖𝑡 × 𝑆𝑙𝑎𝑡 ………………………………………………………………………………10 

𝑆𝑇𝑜𝑡𝑎𝑙 = (𝑈𝑆 + 𝐷𝑆) × 𝑆𝑃𝑙𝑎𝑛𝑎𝑟 ……………………………………………………………………… .11 

where 𝑆𝑙𝑎𝑡, 𝑆𝑙𝑜𝑛𝑔𝑖𝑡 , 𝑆𝑃𝑙𝑎𝑛𝑎𝑟  are the number of possible latitudinal, longitudinal and planar shiftings.  

In each tier of the hierarchical shiftings, the implementation of the shifting is very straightforward. Looping 

through the number of possible shiftings in any direction, the algorithm successively adds/subtracts 1 to/from the 

directional index (i, j or k) in the concerned direction. Similarly, successive additions/subtractions of 1, 𝑛𝑥 or 𝑛𝑥𝑛𝑦 

are made to/from the natural ordering indices (Norder) in first-, second- and third-tier shiftings, respectively. Also, 

gridblock dimensions ∆𝑥, ∆𝑦 𝑎𝑛𝑑 ∆𝑧 are successively added/subtracted to/from the coordinates (eastings, northings 

or depths) in the concerned directions. The expressions in Table 1 summarise these implementations. The 

superscripts are the loop counter corresponding to successive shiftings in a given direction. For each shifting 

implemented, the algorithm samples the simulated full-grid realization at the spatial coordinates generated for that 

shifting. Each suite of spatial coordinates generated as well as the data sampled thereat makes up a repeated sample 

of the field. As a repeated sample is generated, its content (coordinates and data) is written to a file of desired 

format (e.g. .csv). These files are the runtime output of the algorithm. However, the grand shifting being the suites 

of coordinates for all shiftings, is the final output of the algorithm.      

 

Table 1: SGSA implementation expressions 

Latitudinal shiftings Longitudinal shiftings Vertical shiftings 

𝑖𝑐+1 = 𝑖𝑐 ± 1 𝑖𝑐+1 = 𝑖𝑐 𝑖𝑐+1 = 𝑖𝑐 

𝑗𝑐+1 = 𝑗𝑐  𝑗𝑐+1 = 𝑗𝑐 ± 1 𝑗𝑐+1 = 𝑗𝑐  

𝑘𝑐+1 = 𝑘𝑐 𝑘𝑐+1 = 𝑘𝑐 𝑘𝑐+1 = 𝑘𝑐 ± 1 

𝑁𝑜𝑟𝑑𝑒𝑟
𝑐+1 = 𝑁𝑜𝑟𝑑𝑒𝑟

𝑐 ± 1 𝑁𝑜𝑟𝑑𝑒𝑟
𝑐+1 = 𝑁𝑜𝑟𝑑𝑒𝑟

𝑐 ± 𝑛𝑥 𝑁𝑜𝑟𝑑𝑒𝑟
𝑐+1 = 𝑁𝑜𝑟𝑑𝑒𝑟

𝑐 ± 𝑛𝑥𝑛𝑦 

𝐸𝑎𝑠𝑡𝑖𝑛𝑔𝑐+1 = 𝐸𝑎𝑠𝑡𝑖𝑛𝑔𝑐 ± ∆𝑥 𝐸𝑎𝑠𝑡𝑖𝑛𝑔𝑐+1 = 𝐸𝑎𝑠𝑡𝑖𝑛𝑔𝑐  𝐸𝑎𝑠𝑡𝑖𝑛𝑔𝑐+1 = 𝐸𝑎𝑠𝑡𝑖𝑛𝑔𝑐  

𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔𝑐+1 = 𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔𝑐  𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔𝑐+1 = 𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔𝑐 ± ∆𝑦 𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔𝑐+1 = 𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔𝑐  

𝐷𝑒𝑝𝑡ℎ𝑐+1 = 𝐷𝑒𝑝𝑡ℎ𝑐 𝐷𝑒𝑝𝑡ℎ𝑐+1 = 𝐷𝑒𝑝𝑡ℎ𝑐 𝐷𝑒𝑝𝑡ℎ𝑐+1 = 𝐷𝑒𝑝𝑡ℎ𝑐 ± ∆𝑧 
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The shiftings are numbered and their respective suites of spatial coordinates are arranged in the grand shiftings in a 

logical order. The spatial coordinates of the original sampling grid is positioned at the middle (not necessarily the 

median location) of the arrangement. This original grid is then flanked at the left by the westward shiftings, starting 

with the first westward shifting. This same arrangement is implemented for the eastward shifting flanking the 

original grid at the right. Subsequently, the southward shiftings are made to flank the westward shiftings at the left 

while the northward shiftings are made to flank the eastward shiftings at the right. Finally, the upward shiftings are 

placed to the left of the southward shiftings, and the downward shiftings are positioned on the right of the 

northward shiftings. This arrangement is illustrated in Figure 3 for a three-point sampling grid in a 6×5×3 three-

dimensional field. For this simple case, there are twenty seven (27) possible shiftings as computed using Equation 

7. Only the nine (9) planar shiftings (Shiftings 10 – 18) are presented in the figure. Shiftings 1 – 9 are the upward 

shiftings while Shiftings 19 – 27 are the downward shiftings. 

 

Figure 3: An array of all possible planar shiftings in a certain 3D field 

5. SGSA Workflow 

The foregoing functionality of the SGSA is now summarized in the following step-by-step procedure. 

i. Load the file containing the coordinates and data of the original sample. 

ii. Discretize the entire domain into gridblocks of desired dimensions. 

iii. Simulate (conditionally) a full-grid realization using the data and a variogram model obtained from the 

data. 

iv. Obtain indices of sample gridblocks. Append the indices to the coordinates. 

v. Compute number of possible shiftings in each direction, hierarchy, and the total possible shiftings using 

Equations 1 – 11. 

 

Westward Shiftings (starting with the original grid) 

vi. Determine the beginning and end of the range of positions for the westward shiftings. 

𝑊𝑒𝑠𝑡𝑒𝑛𝑑𝑠 = [(𝑈𝑆 − 1)𝑆𝑃𝑙𝑎𝑛𝑎𝑟] + [(𝑆𝑆 − 1)𝑆𝑙𝑎𝑡] + 𝑊𝑆 

𝑊𝑒𝑠𝑡𝑏𝑒𝑔𝑖𝑛𝑠 = 𝑊𝑒𝑠𝑡𝑒𝑛𝑑𝑠 − 𝑊𝑆 + 1 

vii. Implement the following steps in a repetitive loop counting from 1 to 𝑊𝑆. Let 𝑤 be the loop counter. 

a) Determine the position for the 𝑤𝑡ℎ westward shifting of the original sampling grid: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤𝑒𝑠𝑡 =  𝑊𝑒𝑠𝑡𝑒𝑛𝑑𝑠 − (𝑤 − 1) 
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b) Generate the suite of spatial coordinates for the 𝑤𝑡ℎ westward shifting using equations in Table 1 

c) Assign the generated spatial coordinates to the appropriate position on the latitudinal and planar 

shiftings placeholders. 

d) Sample the full-grid realization at the generated spatial coordinates. 

e) Write the generated spatial coordinates and the sampled data to a .csv file.  

 

Eastward Shiftings 

viii. If 𝐸𝑆 > 0, perform Steps ix – x; else, move to Step xi 

ix. Determine the beginning and end of the range of positions for the eastward shiftings. 

𝐸𝑎𝑠𝑡𝑏𝑒𝑔𝑖𝑛𝑠 = [(𝑈𝑆 − 1)𝑆𝑃𝑙𝑎𝑛𝑎𝑟] + [(𝑆𝑆 − 1)𝑆𝑙𝑎𝑡] + 𝑊𝑆 + 1 

𝐸𝑎𝑠𝑡𝑒𝑛𝑑𝑠 = 𝐸𝑎𝑠𝑡𝑏𝑒𝑔𝑖𝑛𝑠 + 𝐸𝑆 − 1 

x. Implement the following steps in a repetitive loop counting from 1 to 𝐸𝑆. Let 𝑒 be the loop counter. 

a) Determine the position for the 𝑒𝑡ℎ eastward shifting: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑎𝑠𝑡 = 𝐸𝑎𝑠𝑡𝑏𝑒𝑔𝑖𝑛𝑠 + (𝑒 − 1) 

b) Generate the suite of spatial coordinates for the 𝑒𝑡ℎ eastward shifting using equations in Table 1. 

c) Assign the generated spatial coordinates to the appropriate position on the latitudinal and planar 

shiftings placeholders. 

d) Sample the full-grid realization at the generated spatial coordinates. 

e) Write the generated spatial coordinates and the sampled data to a .csv file. 

 

Southward Shiftings 

xi. If 𝑆𝑆 > 1, perform Steps xii – xiii; else, move to Step xiv 

xii. Determine the beginning and end of the range of positions for the southward shiftings. 

𝑆𝑜𝑢𝑡ℎ𝑒𝑛𝑑𝑠 = [(𝑈𝑆 − 1)𝑆𝑃𝑙𝑎𝑛𝑎𝑟] + [(𝑆𝑆 − 1)𝑆𝑙𝑎𝑡] 

𝑆𝑜𝑢𝑡ℎ𝑏𝑒𝑔𝑖𝑛𝑠 = 𝑆𝑜𝑢𝑡ℎ𝑒𝑛𝑑𝑠 − [(𝑆𝑆 − 1)𝑆𝑙𝑎𝑡] + 1 

xiii. Implement the following steps in a two-tier nested repetitive loop. The outer loop counts from 1 to 𝑆𝑆 − 1 

while the inner loop counts from 1 to 𝑆𝑙𝑎𝑡 . Let 𝑠 and 𝑙 be the outer and the inner loop counters, respectively. 

a) Determine the position for the 𝑠𝑡ℎ southward shifting of the 𝑙𝑡ℎ latitudinal shifting: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑜𝑢𝑡ℎ = 𝑆𝑜𝑢𝑡ℎ𝑒𝑛𝑑𝑠 − [(𝑠 − 1)𝑆𝑙𝑎𝑡] − (𝑙 − 1) 

b) Generate the suite of spatial coordinates for the 𝑠𝑡ℎ southward shifting of the 𝑙𝑡ℎ latitudinal 

shifting using equations in Table 1 

c) Assign the generated spatial coordinates to the appropriate position on the planar shiftings 

placeholder. 

d) Sample the full-grid realization at the generated spatial coordinates. 

e) Write the generated spatial coordinates and the sampled data to a .csv file. 

 

Northward Shiftings 
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xiv. If 𝑁𝑆 > 0 perform Steps xv – xvi; else, move to Step xvii 

xv. Determine the beginning and end of the range of positions for the northward shiftings. 

𝑁𝑜𝑟𝑡ℎ𝑏𝑒𝑔𝑖𝑛𝑠 = [(𝑈𝑆 − 1)𝑆𝑃𝑙𝑎𝑛𝑎𝑟] + 𝑆𝑆 × 𝑆𝑙𝑎𝑡 + 1 

𝑁𝑜𝑟𝑡ℎ𝑒𝑛𝑑𝑠 = 𝑁𝑜𝑟𝑡ℎ𝑏𝑒𝑔𝑖𝑛𝑠 + 𝑁𝑆 × 𝑆𝑙𝑎𝑡 − 1 

xvi. Implement the following steps in a two-tier nested repetitive loop. The outer loop counts from 1 to 𝑁𝑆 

while the inner loop counts from 1 to 𝑆𝑙𝑎𝑡 . Let 𝑛 and 𝑙 be the outer and the inner loop counters, 

respectively. 

a) Determine the position for the 𝑛𝑡ℎ northward shifting of the 𝑙𝑡ℎ latitudinal shifting: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑡ℎ = 𝑁𝑜𝑟𝑡ℎ𝑏𝑒𝑔𝑖𝑛𝑠 + [(𝑛 − 1)𝑆𝑙𝑎𝑡] + (𝑙 − 1) 

b) Generate the suite of spatial coordinates for the 𝑛𝑡ℎ northward shifting of the 𝑙𝑡ℎ latitudinal 

shifting using equations in Table 1 

c) Assign the generated spatial coordinates to the appropriate position on the planar shiftings 

placeholder. 

d) Sample the full-grid realization at the generated spatial coordinates. 

e) Write the generated spatial coordinates and the sampled data to a .csv file. 

 

Upward Shiftings 

xvii. If 𝑈𝑆 > 1 perform Steps xviii – xix; else, move to Step xx 

xviii. Determine the beginning and end of the range of positions for the upward shiftings. 

𝑈𝑝𝑒𝑛𝑑𝑠 = [(𝑈𝑆 − 1)𝑆𝑃𝑙𝑎𝑛𝑎𝑟] 

𝑈𝑝𝑏𝑒𝑔𝑖𝑛𝑠 = 1 

xix. Implement the following steps in a three-tier nested repetitive loop. The outermost loop counts from 1 to 

𝑈𝑆 − 1; the middle loop counts from 1 to 𝑆𝑙𝑜𝑛𝑔𝑖𝑡; and the innermost loop counts from 1 to 𝑆𝑙𝑎𝑡 . Let 𝑢, 𝑝 

and 𝑙 be the outermost, middle and the innermost loop counters, respectively. 

a) Determine the position for the 𝑢𝑡ℎ upward shifting of the 𝑝𝑡ℎ longitudinal shifting of the 𝑙𝑡ℎ 

latitudinal shifting: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑢𝑝 = 𝑈𝑝𝑒𝑛𝑑𝑠 − [(𝑢 − 1)𝑆𝑃𝑙𝑎𝑛𝑎𝑟] − [(𝑝 − 1)𝑆𝑙𝑎𝑡] − (𝑙 − 1) 

b) Generate the suite of spatial coordinates for the 𝑢𝑡ℎ upward shifting of the 𝑝𝑡ℎ longitudinal 

shifting of the 𝑙𝑡ℎ latitudinal shifting using equations in Table 1. 

c) Assign the generated spatial coordinates to the appropriate position on the upward shiftings 

placeholder. 

d) Sample the full-grid realization at the generated spatial coordinates. 

e) Write the generated spatial coordinates and the sampled data to a .csv file. 

 

Downward Shiftings 

xx. If 𝐷𝑆 > 0 perform Steps xxi – xxii; else, move to Step xxiii 

xxi. Determine the beginning and end of the range of positions for the downward shiftings. 
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𝐷𝑜𝑤𝑛𝑏𝑒𝑔𝑖𝑛𝑠 = 𝑈𝑆 × 𝑆𝑃𝑙𝑎𝑛𝑎𝑟 + 1 

𝐷𝑜𝑤𝑛𝑒𝑛𝑑𝑠 = 𝑆𝑇𝑜𝑡𝑎𝑙 

xxii. Implement the following steps in a three-tier nested repetitive loop. The outermost loop counts from 1 to 

𝐷𝑆; the middle loop counts from 1 to 𝑆𝑙𝑜𝑛𝑔𝑖𝑡; and the innermost loop counts from 1 to 𝑆𝑙𝑎𝑡   Let 𝑑, 𝑝 and 𝑙 

be the outermost, middle and the innermost loop counters, respectively. 

a) Determine the position for the 𝑑𝑡ℎ downward shifting of the 𝑝𝑡ℎ longitudinal shifting of the 𝑙𝑡ℎ 

horizontal shifting: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑜𝑤𝑛 = 𝐷𝑜𝑤𝑛𝑏𝑒𝑔𝑖𝑛𝑠 + (𝑑 − 1)𝑆𝑃𝑙𝑎𝑛𝑎𝑟 + (𝑝 − 1)𝑆𝑙𝑎𝑡 + (𝑙 − 1) 

b) Generate the suite of spatial coordinates for the 𝑑𝑡ℎ downward shifting of the 𝑝𝑡ℎ longitudinal 

shifting of the 𝑙𝑡ℎ horizontal shifting using equations in Table 1. 

c) Assign the generated spatial coordinates to the appropriate position on the downward shiftings 

placeholder. 

d) Sample the full-grid realization at the generated spatial coordinates. 

e) Write the generated spatial coordinates and the sampled data to a .csv file. 

 

Final Aggregation 

xxiii. Aggregate the upward shiftings, planar shiftings and downward shiftings into the grand shifting and write 

to a .csv file. 

The flowcharts for this procedure are here presented in Figures 4 – 7. 
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Figure 4: SGSA flowchart – preliminary steps 
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Figure 5: SGSA flowchart – first-tier shiftings 
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Figure 6: SGSA flowchart – second-tier shiftings 
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Figure 7: SGSA flowchart – third-tier shiftings 
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6. SGSA Implementation in R 

The SGSA has been scripted in version 3.6.3 of R (R Core Team, 2020), a language and environment for statistical 

computing and graphics. The source code is presented as a function named ‘sgsa’ and is available for download at 

the GitHub repository of the primary author (https://github.com/TTOWG/sgsa).  The function file 

(function_sgsa.R) can be downloaded into users’ R workspace and then be loaded into the calling 

environment with the command source(“function_sgsa.R”). Once loaded, the function can be called 

using the command sgsa() with required arguments  (input parameters) listed in the parenthesis. The input 

parameters and the output files of sgsa are here described.  

The first input of sgsa is sampledata. It is a data frame (data table) containing the sample point coordinates 

and the attribute values of the original sample data to be bootstrapped. Depending on the dimensionality at hand, 

sampledata may contain up to four columns (4). Relevant coordinate values should occupy the first set of 

columns in the order x-, y-, z-coordinates. Attributes values should occupy the last column. The column headers 

should be named as x_coord, y_coord, z_coord, and attribute, respectively. Any direction not relevant 

to the field (e.g., z-direction in an x-y 2D field) should simply be omitted in sampledata. The function 

accommodates cases of redundant directions – the field being of higher dimensionality than the sampling grid. For 

example, a field may be 3-D (x-, y-, z-directions) in space while the attribute is invariant in z-direction and 

therefore sampled only in x-y plane. This makes the z-direction relevant to the field but redundant in the context of 

bootstrapping the sample data. In such cases, sampledata should still be prepared as a 3-D case with the 

redundant coordinate values set to a constant value for all the data points. The constant value may be set as the 

value of the redundant direction corresponding to the sampling plane. The next three input parameters of sgsa are 

x_origin, y_origin and z_origin. These specify the coordinates of the origin of the field. The default 

values of these origin coordinates have been set to zero. Hence, users may omit any or all of these inputs in a call to 

sgsa, if the default values are appropriate. Irrelevant or redundant direction(s) should also be omitted. The 

numbers of gridblocks into which the field should be discretized are to be specified using inputs nx, ny, nz. Each 

of these has been set to a default value of 1. The default value, 1, is appropriate for any direction that is not relevant 

to the field at hand and/or any direction that is redundant in the context the bootstrapping task at hand. Hence, in 

calling sgsa, users should omit any of  nx, ny, nz corresponding to an irrelevant or redundant direction. The 

gridblock sizes are specified in the next three inputs: deltaX, deltaY and deltaZ. These also have been set to 

default values of zero. The default value of zero is appropriate for a direction that is not relevant to the field. 

Hence, users should specify non-default values for directions relevant to the field being considered and simply omit 

the irrelevant direction(s). Concisely, leaving the number and size of gridblock at default values (of 1 and 0, 

respectively) for any direction would render that direction irrelevant to the field being considered. However, 

leaving the number of gridblock at default value (of 1) but specifying a non-default value (> 0) for gridblock size in 

any direction would render that direction relevant to the field but redundant in the context of sampling and 

bootstrapping.  

The last four input parameters of sgsa are vargmodel, beta,  nmin and nmax.  These respectively correspond 

to model, beta, nmin and nmax parameters of gstat function in gstat – an open-source R package for 

https://github.com/TTOWG/sgsa
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geostatistical simulations (Pebesma, 2004). In the sgsa function script, the gstat function is called to create an 

object that contains all information required for the full-grid simulation of the field. Parameter vargmodel should 

be the variogram model obtained from the data and should be defined by calling vgm in the gstat package. 

Parameter beta is only applicable if the full-grid simulation of the field is to be based on simple kriging. In that 

case, it should be specified as the expected value of the attribute.  Parameters nmin and nmax are the minimum 

and maximum number of nearest data observations to be used in simulation, respectively. The values of these 

fourteen (14) arguments of sgsa could be listed in the order of their positions as discussed here, if none is to be 

omitted in the sgsa call. In such positional listing, the parameter names need not be indicated as the function 

would assign the listed values to their respective names. However, the arguments should be listed with names and 

values, if some are to be omitted in the call. 

The runtime output files of function sgsa are delimited data files of the .csv format. Each of these files contain 

the sample gridblocks indices, sample points coordinates and attribute values for a particular repeated sample 

generated. In other words, there are as many of these files as there are repeated sample generated. The name of 

each file indicates the order (position) of the sampling grid shifting that generated the file; for example, Sample_1.  

7. Application to Sample Mean Uncertainty in an Irregularly-sampled 3-D Field 

In order to demonstrate its applicability, the SGSA is here implemented to assess the uncertainty in the sample 

mean of porosity attribute of a bitumen field. The field, located at Agbabu, south-west Nigeria, has been the subject 

of recent spatial correlation studies (Mosobalaje et al., 2019a, 2019b, 2019c). The application of the SGSA to non-

ergodic variogram uncertainty has been earlier reported in Mosobalaje et al. (2019c) and is therefore not duplicated 

here. The sample mean and empirical variogram are the parameters required to fully define the probability 

distribution of spatially-correlated attributes that follow multivariate Gaussian distribution. Incorporating the 

uncertainty in these parameters into geostatistical simulations would reduce bias in the resource volumes global 

uncertainty. 

7.1 Field and Sample Data Description 

Agbabu field is part of the vast deposits of heavy oil and natural bitumen in the Dahomey Basin. The Dahomey 

basin is a costal sedimentary basin that spans from Ghana-Ivory Coast border to western Nigeria.  Figure 8 is the 

geologic map of the outcrop sections of the deposits showing the Agbabu field. A comprehensive review of the 

geographical extent, geology, lithology and stratigraphy of the Dahomey basin and of the Agbabu field is presented 

in Mosobalaje et al. (2019a). In the Agbabu area, sand/shale sequences deposited in the Afowo formation and in the 

lower parts of Araromi formation are bitumen-saturated. The bitumen-saturated sand deposits (tar sands) have been 

observed to occur in both Horizon X and Horizon Y. These two horizons are separated by an organic-rich shale 

layer (oil shale). Adegoke et al. (1980) drilled forty (40) wells on the 17km
2
 study area from which some 583 tar 

sand and oil shale core samples were obtained at various depths. The investigation proceeded to determine the 

weight percent bitumen and water saturations of each core sample. Figure 9 shows the locations of the wells within 

the Agbabu field. Mosobalaje et al. (2019a) deployed basic principle of volumetric proportions to compute and 
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generate reservoir porosity database from the existing Adegoke et al. (1980) raw database. The descriptive analyses 

by Mosobalaje et al. (2019a) were conducted only on bituminous sand Horizons X and Y 443 data points. 

Consequent on the exclusion of certain spurious data points, only 408 data points from 33 wells were included in 

the analyses. Furthermore, exploratory spatial data analysis conducted by Mosobalaje et al. (2019b) detected some 

spatial outlier pairs in the 408-points porosity database. These spatial outlier pairs were excluded from the 

estimation and modeling of porosity variogram. The resulting database containing 362 core porosity data as well as 

the sampling points’ coordinates is the subject of the application of SGSA reported in this paper. 

 
Figure 8: Geologic map of the outcrop sections of the Nigerian bitumen deposits. 

Adapted from Enu (1985) 

 

  

 

Figure 9: Location map of the study area showing well locations Adapted from Falebita et al. (2014)  
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7.2 Re-sampling and Sample Mean Computation  

Non-ergodic multiple samples of the Agbabu field porosity attribute was generated by calling function sgsa. The 

original 362-point sample data (coordinates and porosity values) was prepared as a .csv file and imported into the R 

workspace via the following command: 

 sampledata = read.csv(file.choose(),header=T).  

The gridblock dimension intended for this call was 100ft, 100ft. and 1ft. in the x-, y-, and z-direction, respectively. 

This dimension would give rise to a 160 × 52 × 100 3-D grid on the study area. The plausible variogram model for 

the original sample data has been reported in Mosobalaje et al. (2019b) as follows: 

𝛾 =  0.0024 + 0.0016𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥  =3500

𝑎ℎ𝑚𝑖𝑛
=1500

𝑎𝑣𝑒𝑟𝑡=15

(ℎ⃗ ) + 0.0005𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥  =3500

𝑎ℎ𝑚𝑖𝑛
=1500

𝑎𝑣𝑒𝑟𝑡=∞

(ℎ⃗ ) − − − − − 12  

This variogram model was set up in R workspace using the vgm function in gstat package thus: 

library(gstat) 

library(sp) 

zonalanisomodel = vgm(psill = 0.0005, "Sph", range = 1000000000, anis = c(0,90,0,3.5

e-6,1.5e-6)) 

Integrated3Dmodel = vgm(nugget = 0.0024, psill = 0.0016, range = 3500, model = "Sph"

, anis=c(90,0,0,0.4286,4.286e-3), add.to = zonalanisomodel) 

On the basis of the foregoing, the call to function sgsa was made thus: 

Allshifts = sgsa(sampledata = sampledata, x_origin = 700000, y_origin = 732500, z_or

igin = 0, nx = 160, ny = 52, nz = 100,  deltaX = 100, deltaY = 100, deltaZ = 1, varg

model = Integrated3Dmodel, nmin = 20, nmax = 50) 

The indices of the outermost sample blocks in this discretized field warranted a total of 1,001 possible shiftings of 

the sampling grid. Accordingly, the call to sgsa generated 1,001 non-ergodic repeated samples of the original 

porosity sample data. Each repeated sample contains 362 spatially correlated data points. According to the 

functionality built into function sgsa, each repeated sample is generated as .csv file domiciled in the working 

directory. 

Once the 1,001 .csv files were generated, the following lines of codes were implemented to access each file and 

compute the mean of the repeated sample contained therein. All the computed mean values were stored in a data 

frame pre-created for that purpose. Similar lines can be written for other statistics of interest such as empirical 

variogram. 

TotalPossibleshifts = 1001 
 
# Pre-creating data frame for sample means 
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AllShiftingsmeanporoHolder= data.frame(matrix(0,TotalPossibleshifts,2)) 
names(AllShiftingsmeanporoHolder) = c("Shifting ID", "MeanPoro") 
 
for (i in 1:TotalPossibleshifts){ 
# Accessing each file   

ShiftSamplePointsandData = read.csv(paste0("Sample_",i,".csv"),header=T) 
   

# Sample mean computation 
  Shift_meanporo = mean(ShiftSamplePointsandData$attribute) 
   
  #Sending the computed mean to pre-created data frame. 
  AllShiftingsmeanporoHolder[i,1]=i 
  AllShiftingsmeanporoHolder[i,2]=Shift_meanporo 
} 

 

7.3 Uncertainty Assessment  

The sampling distribution of the computed sample means is here presented as Figure 10. First, the histogram of the 

sample mean values is observed to exhibit reasonable degrees of symmetry. Hence, the sampling distribution of the 

sample mean can be approximated as Normal (Gaussian) distribution. This observation fits well into theoretical 

expectations. The porosity attribute of the Agbabu field has been observed to follow Normal distribution 

(Mosobalaje et al., 2019a). Expectedly therefore, the mean porosity follows the Normal distribution. Furthermore, 

considering the size of each sample (362); the central limit theorem warrants that the sample means be normally 

distributed (Walpole et al., 2012).   The uncertainty in the sample mean is here quantified to be 0.005 being the 

standard deviation of the sampling distribution of the mean porosity. This standard deviation value as well as the 

mean of the mean porosity (0.24) could be used to define the distribution of mean porosity for the Agbabu field. 

Such distribution captures the uncertainty in the mean porosity. Values drawn from such distribution could 

therefore be deployed in stochastic simulations of the attributes, instead of using a single fixed value. 
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Figure 10: Sampling distribution of the computed sample means 

   

8. Conclusions 

A new spatial bootstrap algorithm that overcomes the limitations and complications of existing techniques has been 

developed and scripted as a function in R statistical computing environment. The algorithm is based on the 

translation (shifting) of sampling grid over the entire domain of the field to be sampled. It is applicable to 1-D, 2-D 

and 3-D isotropic/anisotropic fields being sampled with regular or irregular sampling grid. The functionality of the 

algorithm ensures each shifted sampling grid retains the configuration of the original grid. Consequently, the 

sample obtained from each shifted grid is deemed a repeat of the sample from the original grid. Given that a field is 

adequately discretized, the algorithm is capable of generating a number of repeated samples sufficient to yield 

realistic statistical inference on the sampling distribution. The function script has been written to simplify the art of 

specifying its input arguments. When applied to an irregularly-sampled 3-D field, the algorithm yielded results 

considered satisfactory and useful.   
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Nomenclature 

 

𝑎ℎ𝑚𝑎𝑥
   Major horizontal correlation range 

𝑎ℎ𝑚𝑖𝑛
   Minor horizontal correlation range 

𝑎𝑣𝑒𝑟𝑡    Vertical correlation range 

c  Shifting counter 

DS  Number of possible downward shifting of a sampling grid 

𝐷𝑆𝐵𝐼𝑧    z-index of the upward outermost sample block in a discretized random field 

ES  Number of possible eastward shifting of a sampling grid 

𝐸𝑆𝐵𝐼𝑥   x-index of the eastward outermost sample block in a discretized random field 

i, j, k  Gridblock indices; engineering ordering 

Norder  Natural ordering index of a gridblock in a discretized random field 

NS  Number of possible northward shifting of a sampling grid 

𝑁𝑆𝐵𝐼𝑦   y-index of the northward outermost sample block in a discretized random field 

𝑛𝑥, 𝑛𝑦 , 𝑛𝑧  Number of gridblock in x-, y- and z-direction in a discretized random field 

SGSA  Sampling Grid Shifting Algorithm 

𝑆𝑃𝑙𝑎𝑛𝑎𝑟   Number of possible planar shifting of a sampling grid 

SS  Number of possible southward shifting of a sampling grid 

𝑆𝑆𝐵𝐼𝑦   y-index of the southward outermost sample block in a discretized random field 

𝑆𝑇𝑜𝑡𝑎𝑙    Total number of possible shiftings 

𝑆𝑙𝑎𝑡    Number of possible latitudinal shifting of a sampling grid 

𝑆𝑙𝑜𝑛𝑔𝑖𝑡    Number of possible longitudinal shifting of a sampling grid 

US  Number of possible upward shifting of a sampling grid 

𝑈𝑆𝐵𝐼𝑧    z-index of the downward outermost sample block in a discretized random field 

WS  Number of possible westward shifting of a sampling grid 

𝑊𝑆𝐵𝐼𝑥  x-index of the westward outermost sample block in a discretized random field 

∆𝑥, ∆𝑦, ∆𝑧  Gridblock dimensions 

𝛾(ℎ⃗ )  Variogram, squared unit of attribute 
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