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Abstract

Snow disappearance date (SDD) has a substantial impact on the ecohydrological dynamics of montane forests, by affecting

soil moisture, ecosystem water availability, and fire risk. The forest canopy modulates SDD through competing processes, such

as intercepting snowfall and enhancing longwave radiation (LWR) versus reducing near surface shortwave radiation (SWR)

and wind speed. Limited ground-based observations of snow presence and absence have restricted our ability to unravel the

dominant processes affecting SDD over mountains with complex forest structure. We apply a lidar-derived method to estimate

fractional snow cover area (fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountain.

Our analyses show that warm sites and lower elevations are characterized by higher LWR and canopy snow interception leading

to less snow retention under dense forest canopy. In contrast, snow retention in colder forests can be longer in open or under

canopy depending on interactions between vegetation structure and topography. These colder climates have greater under

canopy snow retention on north-facing slopes and under low vegetation density areas, but greater snow retention in open areas

at lower elevations and south-facing slopes. We develop a new conceptual model to incorporate the role of topography and

vegetation structure into existing climate-based frameworks. The inferences into the interacting energy and mass controls,

derived from our lidar datasets give opportunities to improve hydrological modeling and provide targeted forest management

recommendations.
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Key Points: 12 

 Lidar datasets show the interacting role of topography and forest structure in differential 13 

snow retention in open vs. under canopy areas. 14 

 Warm forests have increased interception and ablation from LWR, promoting snow 15 

retention in open areas, especially on south-facing slopes. 16 

 Cold forest is influenced by SWR and wind sheltering, promoting snow retention under 17 

canopy, especially under lower vegetation density.  18 
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Abstract 20 

Snow disappearance date (SDD) has a substantial impact on the ecohydrological dynamics of 21 

montane forests, by affecting soil moisture, ecosystem water availability, and fire risk. The forest 22 

canopy modulates SDD through competing processes, such as intercepting snowfall and 23 

enhancing longwave radiation (LWR) versus reducing near surface shortwave radiation (SWR) 24 

and wind speed. Limited ground-based observations of snow presence and absence have 25 

restricted our ability to unravel the dominant processes affecting SDD over mountains with 26 

complex forest structure. We apply a lidar-derived method to estimate fractional snow cover area 27 

(fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky 28 

Mountain. Our analyses show that warm sites and lower elevations are characterized by higher 29 

LWR and canopy snow interception leading to less snow retention under dense forest canopy. In 30 

contrast, snow retention in colder forests can be longer in open or under canopy depending on 31 

interactions between vegetation structure and topography. These colder climates have greater 32 

under canopy snow retention on north-facing slopes and under low vegetation density areas, but 33 

greater snow retention in open areas at lower elevations and south-facing slopes. We develop a 34 

new conceptual model to incorporate the role of topography and vegetation structure into 35 

existing climate-based frameworks. The inferences into the interacting energy and mass controls, 36 

derived from our lidar datasets give opportunities to improve hydrological modeling and provide 37 

targeted forest management recommendations. 38 

Plain Language Summary 39 

Snow disappearance timing is a fundamental control on water availability for forest ecosystems 40 

and downstream water resources. In forested areas, trees intercept snowfall, shade the snowpack, 41 

and reduce wind speed. Warm trees also emit thermal (longwave) radiation that can melt the 42 

snowpack. Competition among these drivers controls variable snow disappearance timing in 43 

open areas versus under the tree canopy depending on climate, topography, and forest structure. 44 

In this paper we investigate how snowpack retention differs in the open versus under trees using 45 

novel snow-on and snow-off lidar observations. Our results show that snow disappears earlier 46 

under the canopy than in open areas in warmer, denser forests where the tree’s thermal radiation 47 

and interception reduce under canopy snow retention. However, colder forests experience more 48 
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complicated tradeoffs between drivers of snowfall interception, shading, and wind sheltering. 49 

Snow retention in cold forests is greater under canopy areas on north-facing slopes, but switches 50 

to greater snow retention in open areas on south-facing slopes and at lower elevations. A unique 51 

lidar-derived dataset allows these process inferences, suggesting that tree canopy removal would 52 

benefit warm sites (especially south facing) for fire resilience and have the least benefit at cold 53 

sites (especially north facing).  54 

1 Introduction 55 

About 20% of global water supply is provided by melting ice and snow (Barnett et al., 2005), of 56 

which 40% falls in northern hemisphere forests (Stueve et al., 2011). Snowmelt timing and 57 

disappearance date have substantial impacts on the ecohydrological response of montane forests, 58 

by affecting soil moisture and deeper recharge (Bales et al., 2011; Conner et al., 2015; 59 

Flerchinger et al., 1992; Harpold et al., 2015b; Huntington and Niswonger, 2012; Pavlovskii et 60 

al., 2019), ecosystem water availability and streamflow timing (Harpold, 2016; Kormos et al., 61 

2017, Stewart et al., 2004), growing season length (O’Leary et al., 2018; Harpold, 2016), spring 62 

phenology (O’Leary et al., 2018; Pederseng et al., 2018), soil greenhouse gas emission 63 

(Blankinship et al., 2018), and surface-atmosphere energy fluxes exchange (Knowles et al., 64 

2014; Peichl et al., 2013; Slater et al., 2001). Since climate change portends shorter snow 65 

duration in montane forests (Bach et al., 2018; Cooper et al., 2016; Dibike et al., 2018; Li et al., 66 

2017), improving predictions of snow retention is critical. However, processes and factors 67 

controlling the fate of seasonal snowpack are complex and strongly influenced by local climate, 68 

forest structure, and topography (Broxton et al., 2015; Dickerson-Lange et al., 2017; Lundquist 69 

et al., 2013; Tennant et al., 2017, Varhola et al., 2010).  A lack of detailed snow observations 70 

across climate and topographic gradients in mountain forests has limited our ability to unravel 71 

the interacting processes that affect snow disappearance.   72 

The influence of forest canopy on the duration of snowpack is complex, and results from 73 

tradeoffs between biophysical processes that reduce snow accumulation (e.g. snow interception 74 

and sublimation) versus processes that alter snowpack ablation (e.g. shading from shortwave 75 

radiation, (SWR), and sheltering from wind). Dense forests can intercept >50% of total snowfall 76 

in the winter (Ellis et al., 2011; Moeser et al., 2016; Roth and Nolin, 2017). Snow interception 77 

https://onlinelibrary.wiley.com/doi/10.1002/hyp.10400#hyp10400-bib-0029


Confidential manuscript submitted to Water Resources Research 

4 

 

and subsequent loss by sublimation and melt are the main factors causing longer snow duration 78 

in the open than under canopy locations in denser, warmer forests (Varhola et al., 2010) where 79 

interception efficiency is high (Dickerson‐Lange et al., 2017; Storck et al., 2002). Decreased 80 

interception efficiency in windy cold forests (Roth and Nolin, 2017) and higher sublimation rates 81 

and blowing snow loss in cold, windy open locations cause snow to last longer in adjacent under 82 

canopy locations (Dickerson‐Lange et al., 2017). Using a simple set of models, Lundquist et al. 83 

(2013) demonstrated a radiative paradox between LWR and SWR, specially at warmer sites 84 

where LWR is the primary radiative component of energy budget, controlling snow 85 

disappearance timing (Pomeroy et al., 2009; Lundquist et al., 2013). The increased role of LWR 86 

at the warm sites caused snow to disappear one to two weeks earlier under tree canopies 87 

compared to adjacent open areas (Lundquist et al., 2013), in spite of the canopy shading snow 88 

from SWR. High emissivity of warm trees enhances LWR emission toward the snowpack that 89 

frequently exceeds atmospheric LWR by 150% (Todt et al., 2018; Webster et al., 2016a; Perrot 90 

et al., 2014). Net LWR is typically positive under 100% canopy cover and can affect the energy 91 

budget of snowpack within one-half nearby tree heights (Musselman et al., 2017), whereas it is 92 

typically negative in the open locations (Lundquist et al., 2013). Incoming SWR is modulated by 93 

solar zenith angle, cloudiness and aerosol concentrations in the atmosphere (Musselman et al., 94 

2015) and it can be reduced by tall and dense canopy cover and terrain shading at the snow 95 

surface (Jonas and Essery, 2011; Malle et al., 2019; Webster et al., 2016b). In late winter and 96 

spring, when the solar zenith angle decreases (i.e. the Sun is higher in the sky), SWR shading can 97 

delay snowmelt under forest canopies, especially in cold climates (Strasser et al., 2011; 98 

Lundquist et al., 2013). Besides the radiative influence of trees on the snowpack energy budget, 99 

sensible and latent heat gradient between trees and the snowpack are not negligible and can 100 

substantially contribute to the snowpack energy budget specifically at cold windy sites (Harder et 101 

al., 2019; Webster et al., 2016b; Todt et al., 2018). The tradeoffs of these processes on the 102 

differential timing of snow disappearance in open and under canopy areas has primarily been 103 

investigated at point scale (Lundquist et al., 2013; Dickerson‐Lange et al., 2017) and not 104 

considered forest structure.   105 

The interactions between forest structure and topography (e.g. elevation, aspect, and slope) 106 

differentially alters the energy and mass balance of open and under canopy snowpack in ways 107 
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that are challenging to observe and predict across varying climates. The current paradigm for 108 

predicting differential snow disappearance under canopy and in open areas shows that locations 109 

with December-February (DJF) mean air temperature above -1°C have earlier snow 110 

disappearance under canopy areas (Lundquist et al., 2013), whereas sites with DJF mean air 111 

temperatures below that threshold exhibit earlier snow disappearance in open areas. This 112 

paradigm was developed from plot-scale observations and has not been applied across gradients 113 

in elevation or slope-aspect typical of larger montane, forested areas. For example, elevation is 114 

often the primary control on snow duration, as higher elevations have more precipitation and 115 

lower temperatures, causing greater snow to rain ratios, and higher cold content of the snowpack 116 

(Lundquist et al., 2013; Molotch and Meromy, 2014; Roth and Nolin, 2017). Similarly, warmer 117 

northern-hemisphere areas have longer snow retention on northern slopes (Lopez-Moreno et al., 118 

2014; Maxwell et al., 2019; Seyednasrollah et al., 2013) due to differential partitioning of 119 

incoming SWR and LWR.  Heterogeneous forest canopy structure (e.g. height and leaf area) and 120 

differences in inter-canopy gaps are important factors controlling fine-scale snow retention 121 

(Jonas and Essery, 2011; Webster et al., 2016b). The first-order effects of topography and forest 122 

structure on snow retention (Malle et al., 2019; Webster et al., 2016b), suggest that a more 123 

sophisticated prediction tool beyond air temperature may be necessary to provide information on 124 

snow disappearance in montane forests.   125 

New remote sensing tools, like airborne-based Light Detection and Ranging (lidar), could 126 

revolutionize our understanding of snow disappearance timing in forests with complex terrain, 127 

where only limited plot-scale field observations have been available to date. Ground‐based 128 

observation such as snow courses, temperature loggers, and time-lapse cameras (Dickerson-129 

Lange et al., 2015b; Raleigh et al., 2013) can be used to estimate snow disappearance date (SDD, 130 

defined as the first date when snow disappears after peak SWE). Dickerson‐Lange et al. (2015a; 131 

2017) collected spatially distributed snow data and show that cameras can detect snow presence 132 

or absence with higher spatial resolution than ultrasonic snow depth sensors, however their 133 

installation over larger extents is challenging. Other ground-based methods that are capable of 134 

measuring snow disappearance over larger extents, like distributed temperature sensing (DTS) 135 

(Tyler et al., 2009), are typically too costly to maintain, automate, and operate over large 136 

domains (Dickerson-Lange et al., 2015b; Fujihara et al., 2017). One of the major limitations of 137 
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passive (i.e. optical) remote sensing techniques is their inability to detect under canopy 138 

snowpack presence/absence due to occlusion by the canopy (Raleigh et al., 2013; Coons et al., 139 

2014).  Most of remote sensing prediction estimate fractional snow cover area, fSCA, or the 140 

percentage of a given area covered by snow, but assume that open and under canopy fSCA are 141 

identical (Molotch and Margulis, 2008; Raleigh et al., 2013). A new method based on “snow on” 142 

and “snow off” lidar datasets showed that under canopy fSCA was typically much less than open 143 

fSCA in a northern Sierra Nevada site, but that relationship varied with topography (Kostadinov 144 

et al., 2019). Snow disappearance and fSCA are inter-related, as fSCA decreases snow must be 145 

disappearing from the landscape; thus, lidar-based fSCA estimates can potentially elucidate 146 

differential snow retention in open versus under canopy locations during ‘snap shot’ lidar 147 

collections (Kostadinov et al., 2019). Because lidar can also map topography and vegetation 148 

structure, these methods are ideally suited for understanding the interactions of forest structure 149 

and topography in controlling snow retention in montane forests (Deems et al., 2013; Revuelto et 150 

al., 2015; Harpold et al., 2015a; Tennant et al., 2017; Kostadinov et al., 2019).  151 

In this paper we aim to unravel how winter climate interacts with topography and vegetation 152 

structure to alter snow disappearance in open versus under canopy locations. We leverage 153 

existing snow-on and snow-off lidar observations at two relatively warm sites in the Sierra 154 

Nevada (Sagehen Creek Watershed, California and Kings River Experimental Watersheds, 155 

California) and two colder sites in the Rocky Mountains (Boulder Creek, Colorado and Jemez 156 

River Basin, New Mexico) to map fSCA over large spatial extents using the technique proposed 157 

by Kostadinov et al. (2019). This analysis allows us to answer three questions:  158 

1) How do open and under canopy fSCA and snow disappearance date (SDD) vary based 159 

on slope/aspect and elevation at sites with different climate?  160 

2) Does vegetation structure have greater impact on under canopy fSCA and SDD in some 161 

climates and/or topographic conditions than in others?  162 

3) What are the inferred energy and mass balance drivers causing differences in fSCA and 163 

SDD across open versus under canopy areas in warmer and colder climates?  164 

Our results provide insights into the role that topography and forest structure play in modulating 165 
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snow retention across a climatic gradient of montane forests. 166 

2 Study Sites and Data 167 

We chose four sites, two in the USA Rocky Mountains: Boulder Creek, Colorado, CO and Jemez 168 

River Basin, NM, and two in the Sierra Nevada: Sagehen Creek Watershed, CA, Kings River 169 

Experimental Watersheds, CA (Figure 1). These sites represent strong climate and vegetation 170 

gradients, have snow-on and snow-off lidar datasets and detailed point observations of snow 171 

depths for multiple years, including years that overlap with the lidar flights acquisition. Site 172 

characteristics are shown in Table 1, including average watershed slope and aspect, field 173 

observation and lidar data acquisition years, vegetation type and average forest height (Harpold 174 

et al., 2015b; Tennant et al., 2017; O'Geen et al., 2018; Kostadinov et al., 2019).  175 

2.1 Boulder Creek, CO (Boulder) 176 

Boulder Creek, hereafter referred as Boulder, is located 35 km west of the city of Boulder, 177 

Colorado, USA, and is part of the U.S. National Science Foundation network of Critical Zone 178 

Observatories (CZOs). Boulder is the coldest of the four study sites with an average annual air 179 

temperature of 10°C (Harpold et al., 2015) and mean winter (DJF) air temperature of −5.4°C 180 

(Table 1). The mean annual ratio of incoming shortwave radiation to incoming net radiation is 181 

0.43 (SWR↓:NetR↓= 149.6 /(149.6+199.9), Table 1, Tennant et al., 2017). The average wind 182 

speed in winter is 6.5 m/s and the total annual precipitation is 1300 mm, of which 80% is snow 183 

(Harpold et al., 2015a). The site is equipped with ultrasonic snow depth sensors in the open and 184 

under canopy sites; snow depth data were recorded from 2007 to 2011. Snow depth in-situ data 185 

is used to track the snow disappearance date for five continuous years. In this site snow depth has 186 

a positive relationship with elevation with a rate of 0.73 ± 0.2 cm per 100 m increase in elevation 187 

(Tennant et al., 2017).  A Snow Telemetry (SNOTEL) site is located within 1 km of the snow 188 

depth sensors. The dominant vegetation is subalpine fir (Abies lasiocarpa), Engelman spruce 189 

(Picea engelmannii) and lodgepole pine (Pinus contorta). The snow‐off lidar survey for Boulder 190 

was conducted in a 600 km
2
 area within the Boulder Creek Watershed in August 2010. The lidar 191 

snow-on surveys were acquired in May 5, 9, 20, and 21, 2010, and were combined together for 192 

the same area as the snow‐off lidar survey (Table 2). The lidar products are  available at Open 193 
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Topography (http://opentopo.sdsc.edu/datasets) in the NAD83 datum and are composed of 1-m 194 

Digital Terrain Models, and LAS-formatted point cloud tiles with an average point density of 10 195 

points/m
2
.  196 

 197 

Figure 1: Location, lidar-based terrain elevation and the extent of processed lidar data at the four 198 

study sites: Sagehen Creek Watershed, CA, Kings River Experimental Watersheds, CA, Boulder 199 

Creek, CO and Jemez River Basin, NM.  200 

2.2 Jemez River Basin, NM (Jemez) 201 

The Jemez River Basin, hereafter referred as Jemez, is a CZO site at the southern end of the 202 

Rocky Mountains in northern New Mexico, USA. The average winter temperature and wind 203 

speed are −3.3°C and 3.9 m/s, respectively. The ratio of SWR↓:NetR↓ is 0.44, which is the 204 

highest among our sites (Tennant et al., 2017). The total annual precipitation in the basin is 205 

around 1980 mm of which 66% is snowfall. In-situ data measurement includes ultrasonic snow 206 

depth sensors under canopy and in the open, which are used to track the snow disappearance 207 

date. The snow depth observations were recorded from 2005 to 2011 (excluding 2007) at an 208 

elevation of 3060 MASL at Jemez (Tennant et al., 2017). Forest covers 33% of the basin with 209 

various types of conifers, including Douglas fir (Pseudotsuga menziesii), white fir (Abies 210 

concolor), blue spruce (Picea pungens), limber pine (Pinus flexilis) and ponderosa pine (Pinus 211 

http://opentopo.sdsc.edu/datasets
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ponderosa) (Harpold et al., 2015b). High-resolution snow-off lidar surveys were carried out in 212 

June and July 2010 by the National Center for Airborne Laser Mapping (NCALM), covering an 213 

area of 722 km
2
 in northern New Mexico. Lidar products have an average cloud point density of 214 

9.08 points/m
2
. The point cloud data are provided in LAS format in the NAD83 datum at open 215 

Topography (http://opentopo.sdsc.edu/datasets); 1-m Digital Surface Model (DSM) and 1-m hill 216 

shade dataset derived from DEM are also provided. The Jemez snow-on lidar dataset was 217 

collected in March and April 2010 (Table 2). 218 

2.3 Kings River Experimental Watershed, CA (Kings) 219 

Kings River Experimental Watersheds, hereafter referred as Kings, is mostly located within the 220 

Providence Creek in the west slope of the southern Sierra Nevada in California, USA. Kings has 221 

an average elevation of 1846 MASL. Annual precipitation in the watershed is about 2000 mm, of 222 

which 75%-90% falls as snow. We use ultrasonic snow depth sensors at Kings between 2010 and 223 

2012 to determine the presence or absence of snow under canopy and in the open. Average 224 

winter wind speed and SWR↓:NetR↓ in the watershed are about 1.6 m/s and 0.36, respectively 225 

(Tennant et al., 2017). Average annual and winter (DJF) air temperatures are 8°C and 2.2°C, 226 

respectively (O'Geen et al., 2018). This domain is mostly covered by mixed-coniferous forest 227 

(60%), consisting of white fir (Abies concolor), ponderosa pine (Pinus ponderosa), Jeffrey pine 228 

(Pinus jeffreyi), California black oak (Quercus kelloggii), sugar pine (Pinus 229 

lambertiana Douglas), and incense cedar (Calocedrus decurrens) (O'Geen et al., 2018). Kings 230 

lidar flights were part of a larger Southern Sierra CZO effort acquired in 2010, comprising of 231 

two flights, a snow-on flight in March and a snow-off one in August. The lidar product 232 

projection is UTM Zone 11 N with datum NAD83 (Table 2). This dataset includes a 1-m digital 233 

surface model (DSM) and a LAS-formatted cloud point with an average point density of 11.6 234 

point/m
2
 in 1 km by 1 km tiles. 235 

  236 
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Table 1: Characteristics of the study sites 237 

Characteristics 

Kings River 

Experimental 

Watershed, CA  

Sagehen Creek 

Watershed, CA 
Jemez River Basin, NM 

Boulder Creek, 

CO 

Latitude (at the center of 

lidar dataset domain) 
37°5′N 39°25′53″N 35°53’18″N 40°0’53″N 

Longitude (at the center of 

lidar dataset domain) 
119°28’W 120°14′23″W 106°31’55″W 105°16’14″W 

Mean elevation (MASL – 

in lidar dataset domain) 
1846 2200 2702 3109 

Slope (degrees) ~ 22 15.8 7.0 ± 3.7 7.3 ± 3.5 

Aspect (from N) ~ 312 ~159 164 ± 105 94 ± 61 

Average winter1 

temperature (°C)2 
2.2 ~ -1 −3.3 ± 0.3 −5.4 ± 2.6  

Total winter Precipitation 

(mm) 2 
2000 590 580 1300 

Average daily winter 

incoming SWR (W/m2) 2  
209.1 127.97 150.6 149.6 

Average daily winter 

incoming LWR (W/m2) 2 
251.3 254.4 201.6 199.9 

Vegetation type Mixed conifer Mixed conifer  Mixed conifer Mixed conifer 

Average forest height (m) 2 13.3 15 7.7 ± 4.4 7.2 ± 2.8 

Average vegetation 

density (in areas with 

slope < 30o) 2 

0.59 0.3 0.4 0.47 

Temperature lapse rate 

equation3 

 0.003 × elevation 

+ 7.29 

TMar =  0.001 × 

elevation + 2.79 

TApr =  0.001 × 

elevation + 2.05 

TMay =  0.002 × 

elevation + 5.25 

 0.005 × elevation + 

8.67 

  0.007 × 

elevation + 17.82 

Precipitation lapse rate 

equation3 

0.06 × elevation - 

13.978 

0.08 × elevation - 

130.65 
0.006 × elevation + 15.52 

0.03 × elevation  

- 68.98 

Source of climate data 

used 

https://www.fs.fed.us/

psw/topics/water/kings

river/data.shtml 

https://www.wcc.nrcs.

usda.gov/snow/snotel-

data.html 

https://www.nrcs.us

da.gov/wps/portal/w

cc/home/snowClima

teMonitoring/ 

 

https://criticalzone.org/catali

na-

jemez/infrastructure/field-

area/jemez-river-basin/ 

https://www.wcc.nrcs.usda.

gov/snow/snotel-data.html 

https://www.nrcs.u

sda.gov/wps/portal/

wcc/home/snowCli

mateMonitoring/ 

https://wcc.sc.egov.

usda.gov/nwcc/site

?sitenum=663 
1 Averaged over December, January, and February. 238 
2 Calculated over the entire domain. 239 
3 details given in section 3.  240 

https://www.fs.fed.us/psw/topics/water/kingsriver/data.shtml
https://www.fs.fed.us/psw/topics/water/kingsriver/data.shtml
https://www.fs.fed.us/psw/topics/water/kingsriver/data.shtml
https://www.wcc.nrcs.usda.gov/snow/snotel-data.html
https://www.wcc.nrcs.usda.gov/snow/snotel-data.html
https://www.wcc.nrcs.usda.gov/snow/snotel-data.html
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://criticalzone.org/catalina-jemez/infrastructure/field-area/jemez-river-basin/
https://criticalzone.org/catalina-jemez/infrastructure/field-area/jemez-river-basin/
https://criticalzone.org/catalina-jemez/infrastructure/field-area/jemez-river-basin/
https://criticalzone.org/catalina-jemez/infrastructure/field-area/jemez-river-basin/
https://www.wcc.nrcs.usda.gov/snow/snotel-data.html
https://www.wcc.nrcs.usda.gov/snow/snotel-data.html
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=663
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=663
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=663
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Table 2: Lidar dataset properties for each study sites 241 

Properties 

Kings River 

Experimental 

Watershed, CA  

Sagehen Creek 

Watershed, CA1 

Jemez River Basin, 

NM 

Boulder Creek, 

CO 

Organization 

acquired the flight 

National Center for 

Airborne Laser 

Mapping, funded by 

National Science 

Foundation 

And Southern Sierra 

Critical Zone 

Observatory 

National Center for 

Airborne Laser 

Mapping, Funded 

by USDA Forest 

Service and U.S. 

Geological Survey 

National Center for 

Airborne Laser 

Mapping, Jemez 

River Basin and 

Santa Catalina 

Mountains Critical 

Zone Observatory, 

University of 

California, Merced, 

Funded by National 

Science Foundation 

Boulder Creek 

CZO and the 

National Center 

for Airborne 

Laser Mapping 

(NCALM), 

funded by the 

National Science 

Foundation (NSF) 

Sensor 

Optech GEMINI 

Airborne Laser Terrain 

Mapper mounted in 

either a twin-engine 

Cessna Skymaster 

(N337P) or Piper Twin 

PA-31 Chieftain 

Optech Gemini 

Airborne Laser 

Terrain Mapper 

(ALTM) mounted 

in a twin-engine 

Piper Navajo PA-

31 

Optech GEMINI 

Airborne Laser 

Terrain Mapper 

mounted in either a 

twin-engine Cessna 

Skymaster (N337P) 

or Piper Twin PA-

31 Chieftain 

Optech Gemini 

Airborne Laser 

Terrain Mapper 

(ALTM) mounted 

in a Piper Twin 

PA-31 Chieftain 

Flight altitude 600 m 600 m 600m 600m 

Laser wavelength 1047 nm 1047 nm 1047 nm 1047 nm 

Average point 

density 
11.65 points/m2 8.93 points/m2 9.08 points/m2 8 - 10 points/m2 

Swath overlap 50% >50% 50% 50% 

Vertical accuracy 5 - 30 cm; 1 sigma 5 - 30 cm; 1 sigma 
5 - 30 cm; 1 

sigma 
 

5 - 30 cm; 1 

sigma 
 

Horizontal accuracy 
1/5,500 x altitude (m 

AGL); 1 sigma 

1/5,500 x altitude 

(m AGL); 1 sigma 

1/5,500 x altitude 

(m AGL); 1 sigma 

1/5,500 x altitude 

(m AGL); 1 sigma 

Vertical datum 
NAVD88 (GEOID 

12A) 

NAVD88 (GEOID 

12A) 

NAVD88 (GEOID 

12A) 

NAVD88 

(GEOID 12A) 

Horizontal datum 
UTM Zone 11N 

NAD83 

UTM Zone 10N 

NAD83 (2011) 

UTM Zone 13N 

NAD83 

UTM Zone 13N 

NAD83 

Time of Acquisition 

Snow-off 
August 2010 August 2014 June and July 2010 August 2010, 

Time of Acquisition 

snow-on 
March, 2010 

March, April, and 

May 2016  

March and April 

2010 

May 5, 9, 20, and 

21, 2010 
1 information provided here is same for all Sagehen flights 242 

  243 
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2.4 Sagehen Creek Watershed, CA (Sagehen) 244 

Sagehen Creek Watershed, hereafter referred as Sagehen, has a drainage area of 28 km
2
 and is 245 

located in the northern Sierra Nevada, California. The average elevation is 2200 MASL ranging 246 

between 1800 and 2700 MASL. Average winter temperature is approximately -1.2 °C and the 247 

mean annual precipitation is 1215 mm, of which 70% is snowfall (WRCC, 2020). Sagehen is a 248 

forested montane watershed covered by mixed conifers including White Fir (Abies concolor), 249 

Red Fir (A. magnifica), Lodgepole Pine (Pinus contorta), Jeffrey Pine (P. jeffreyi), Sugar Pine 250 

(P. lambertiana), Western White Pine (P. monticola), and Ponderosa Pine (P. ponderosa) 251 

(Godsey and Kirchner, 2014; Li and Nieber, 2017). The snow-off surveys were conducted by 252 

NCALM (USFS, 2015) in the summer of 2014, as part of the USFS Tahoe National Forest lidar 253 

collection (Table 2). Snow-on datasets were acquired in March 26, April 17, and May 18, 2016, 254 

by the NASA Airborne Snow Observatory (ASO) (Painter et al., 2016). In-situ distributed 255 

temperature sensor (DTS) is used as ground-based observation data to assess the presence or 256 

absence of snow under canopy and in the open. DTS records near-continuous temperatures along 257 

a fiber optic cable by applying a Raman spectrum scattering and time-domain reflectometry 258 

techniques (Tyler et al. 2009). The DTS instrumentation in Sagehen recorded ground 259 

temperature every 30 min between March 10 and May 18, 2016, every 0.25 m along a 1500-m 260 

stretch of fiber optic cable. At each 0.25-m point along the DTS cable, we assume snow is on the 261 

ground if the daily air temperature is between -1 and 1°C and the daily standard deviation of 262 

observed temperatures is less than 0.35 °C. The cable was georeferenced to the UTM WGS84 263 

coordinate system and converted to NAD83 to match the lidar dataset (Kostadinov et al. 2019). 264 

More details on the DTS measurements and data processing can be found in Kostadinov et al. 265 

(2019). 266 

3 Materials and Methods  267 

3.1 Vegetation and Snow Presence/Absence Classification 268 

Vegetation and snow presence classifications introduced by Kostadinov et al. (2019) are used to 269 

estimate under canopy and open fSCA at all sites. Point-cloud lidar data is aggregated to a raster 270 

resolution of 1-m grid cells to classify vegetation structure and snow presence/absence within 271 
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each study site. To enhance the accuracy of the vegetation and snow presence classification, 272 

slopes greater than 30
°
 are excluded from the analysis, as the uncertainty in elevation estimates 273 

increases significantly (Kostadinov et al. 2019). At each site, a small section of a road that is 274 

maintained snow-free, is selected and used to compare snow-on and snow-off flights to eliminate 275 

any potential vertical bias between the snow-on lidar return elevations and the snow-off digital 276 

terrain model (DTM). The comparisons show that snow-on elevation returns in each grid cell 277 

over roads are 0.28 m, 0.08 m, and 0.03 m higher than snow-off returns for Kings, Jemez and 278 

Boulder respectively. Kostadinov et al. (2019) made the same analysis for three flights over 279 

Sagehen and concluded three mean vertical biases of 0.23 m, 0.26 m, and 0.38 m for the March 280 

26, April 17 and May 18, 2016, respectively. These biases are subtracted from all snow-on return 281 

elevations (see Kostadinov et al. (2019) for details).  282 

Vegetation presence is classified using the snow-off lidar. A 1-m grid cell is defined as tree-283 

covered if there is any lidar return above 2 m in the grid. If the tree-covered grids have any return 284 

between 0.15 and 2 m, those grids are classified as tree-covered with low branches. The latter 285 

grid cells are removed from the analysis because low branches can be confused with the snow 286 

surface during the snow-on flights (Kostadinov et al. 2019). Grid cells with all returns below 287 

0.15 m are classified as open sites. To determine snow presence/absence under the canopy and in 288 

the open, the snow-on flights’ classification is informed by the vegetation classification. If a tree-289 

covered grid cell (low branches grid cells excluded) has returns with elevation between 0.15 m 290 

and 5 m, it is classified as snow-covered (presence). If the return’s elevation is between -0.3 m 291 

(i.e. below the 1-m mean grid cell elevation) and 0.15 m, the grid cell is classified as snow-free. 292 

Same approach is used to classify open grid cells as snow-covered. More details on the 293 

classification approach are presented by Kostadinov et al. (2019). Under canopy fSCA is 294 

calculated by dividing the number of vegetated grid cells classified as snow-covered by the total 295 

number of tree-covered grid cells within the entire domain of a site. Whereas fSCA in the open is 296 

calculated by dividing the number of ‘open’ (i.e. non-vegetated) grid cells classified as snow-297 

covered by the total number of ‘open’ grid cells in the entire lidar coverage domain. fSCA in 298 

open and under canopy sites are then computed over different sub-domains with different 299 

elevation and vegetation characteristics (see section 4.2). 300 

Vegetation density is calculated by dividing the number of lidar returns that hit the canopy (i.e. 301 
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height >2 m) by the number of total returns in each 1-m grid cell (Broxton et al., 2015). If the 302 

vegetation density is below 0.4 the pixel is classified as a low vegetation density (lowVD) and 303 

greater than 0.6 is classified as high density (highVD). We exclude grid cells with moderate 304 

vegetation density from 0.4 - 0.6 from the analysis, because our goal is to investigate and 305 

differentiate the effect of low and high vegetation density on SDD.  306 

3.2 Topographic Classification 307 

To investigate the impact of aspect and slope on open and under canopy fSCA and snow 308 

disappearance date (SDD), a northness index (Amatull et al., 2018) is calculated from the DTM  309 

for each site, so that:  310 

Northness = cos(aspect) х sin(slope)  311 

where slope and aspect are given in radians, and aspect is measured clockwise from true north. 312 

Northness is +1 on north-facing terrain with steep slopes of 90
°
, and −1 on south-facing terrain 313 

with slopes of 90
°
. Northness is 0 for flat terrain. Grid cells are classified as “exposed” if 314 

Northness < -0.1, “flat” if -0.1 < Northness < 0.1, and “sheltered” if Northness > 0.1. In the 315 

extratropical Northern Hemisphere, terrain with Northness < -0.1 is exposed to more solar 316 

radiation during afternoon heat for locations with the same latitude. 317 

Each domain is binned into ten elevation bands to study the effect of elevation on open and 318 

under canopy fSCA. These bands cover ranges of 2820-3050 MASL, 2800-3130 MASL, 2100-319 

2400 MASL and 1600-1850 MASL for Boulder, Jemez, Sagehen and Kings, respectively (Figure 320 

1). Relationships between elevation and air temperature and precipitation (i.e. lapse rates) for 321 

each site-flight are developed using observed (mean daily) air temperature and precipitation from 322 

local weather stations (Table 1) from December 1
st
 to the date of the flights (we did not consider 323 

cold air drainage or temperature inversion in our analysis). These relationships are used to 324 

estimate mean air temperature at each sites’ elevation bands. Classified grid cells within each site 325 

and elevation band are then divided into 100 areas and from each sub-division area a random 326 

sample (sample size =100 grid cells) is choses. We repeat this random sub-sampling for 100 327 

times, and average them. The under canopy and open fSCA is calculated for each averaged sub-328 

sample within each sub-division. Then, the Wilcoxon signed-rank test at a 5% level of 329 
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significance is conducted to examine whether under canopy and open fSCA are statistically 330 

different using the 100-samples per each subdivision in each elevation band. The p-values from 331 

the 100-samples are averaged at each subdivision and elevation band to estimate if the under 332 

canopy and open fSCA are statistically different. 333 

3.3. Random Forest Modeling to Analyze Vegetation and Climate Impacts on FSCA 334 

A machine learning approach based on a regression type of random forest model (RFM) is used 335 

to examine the importance of radiative and mass fluxes in controlling under canopy vs. open 336 

fSCA. RFM utilizes an ensemble of regression trees to build a predictive model based on a series 337 

of predictors and a response variable (here, fSCAopen – fSCAunderCanopy). RFM is also used to rank 338 

predictors’ importance. Six RFMs are developed for each lidar flight (three for Sagehen and one 339 

for each remaining domain) to predict the difference between fSCAopen and fSCAunderCanopy at 340 

100-m resolution. Included predictor variables are vegetation density, incoming SWR and LWR, 341 

precipitation and mean winter air temperature. We did not include topographic variables, such as 342 

elevation and aspect/slope, because they are already captured in air temperature and SWR 343 

predictor variables. The average air temperature and precipitation of each 1-m grid cell are 344 

calculated using lapse rate equations described in the previous section and shown in Table 1. 345 

Then, averaged precipitation and winter air temperature are computed in the scale of 100 m grid 346 

cells for the RFMs. Hourly incoming SWR and LWR at the top of the canopy are calculated 347 

using the pre-processing toolbox of the Snow Physics and Lidar Mapping model (SnowPALM; 348 

Broxton et al., 2015) at 1-m spatial resolution. SnowPALM is forced with hourly incoming SWR 349 

and LWR from phase-2 of the National American Land Data Assimilation System (NLDAS-2; 350 

Xia et al., 2012). SWR is spatially distributed using the potential surface SWR as estimated by 351 

the method from Kumar et al. (1997) and corrected for terrain shadowing. Incoming SWR and 352 

LWR are averaged to daily 100-m grid cells from December 1
st
 to the date of each flight. The 353 

number of trees in our RFM is 200, as higher number of trees does not change the accuracy of 354 

results. We randomly select 70% of our data to train the model and the remaining 30% data for 355 

verification. To lower bias in selection of the training and verification data, we apply K-fold 356 

(here 10-fold) cross-validation procedure. This technique splits the dataset into 10 random 357 

groups that train and test the model independently. K-fold is one of the resampling approaches 358 
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which is commonly used to avoid RFM overfitting (Cawley and Talbot, 2010). The mean 359 

absolute error (MAE) metric is used to evaluate the accuracy of the RFM’s predictions: 360 

MAE =  √
∑ |𝑥𝑖−𝑦𝑖|𝑛

𝑖=0

𝑛
  361 

where xi is the observed [fSCAopen – fSCAunderCanopy], yi is the modeled [fSCAopen – 362 

fSCAunderCanopy] and 𝑛 is the number of the 100-m grid cells.  363 

To explore the importance of our predictors across a range of fSCA, grid cells are classified into 364 

four bins for each flight, fSCA<0.3, 0.3<=fSCA<0.55, 0.55<=fSCA<0.8 and 0.8<=fSCA to have 365 

a roughly same number of grid cells in each bin, and simultaneously exclude grid cells with 366 

fSCA>0.99 and fSCA<0.01. This classification allows a better comparison between predictor 367 

variables among sites with highly variable snow disappearance date.  368 

4 Results 369 

4.1 Observed differences in open and under canopy snow disappearance 370 

We use ultrasonic snow depths observation at Boulder, Jemez and Kings, and DTS data at 371 

Sagehen to determine snow disappearance date (SDD, first date when snow disappears after peak 372 

SWE) in open and under canopy sites. Snow generally lasts longer under canopy at the colder 373 

Jemez and Boulder sites (TDJF < -1°C), but not in the warm and dry years of 2006 at Jemez, and 374 

2007 and 2010 at Boulder. Mean SDD, including both open and under canopy, is approximately 375 

two months later at Boulder than at Jemez (Figure 2). The average standard deviation of snow 376 

disappearance across the sensor locations at Jemez is relatively small in the open and under 377 

canopy (1.5 and 5.0 days, respectively). One mean standard deviation of SDD at Boulder is 7.8 378 

days under canopy sites and 3.8 days in the open sites. In contrast, snow lasts 5.0 and 7.3 days 379 

longer on average in the open at the warmer Sagehen and Kings sites (TDJF > -1°C), respectively. 380 

SDD happens about 41 days earlier in Sagehen than Kings. The mean standard deviation of SDD 381 

is larger for open and under canopy in Sagehen (15.2 and 18.1 days respectively) than Kings (5.8 382 

and 10.6 days, respectively) and the colder sites (note that we consider each DTS point as a 383 

single sensor, and calculate standard deviation of SDD for a sample of 1500 DTS points). 384 
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385 
Figure 2:  SDD (snow disappearance day) under canopy and in the open sites in different years at 386 

Sagehen (a), Kings (b), Jemez (c) and Boulder (d) sites. We used snow depth observations from 387 

the ultrasonic sensors at Boulder, Jemez and Kings, and DTS data at Sagehen to determine SDD. 388 

Since snow must be disappearing off the landscape for fSCA to decline, decreased fSCA on a 389 

given date is related to earlier SDD, i.e. if fSCA is lower, this implies SDD must be earlier in the 390 

season. We explore the relationship between SDD and fSCA at Sagehen to help interpret later 391 

fSCA-based analyses. The relationship between fSCA and SDD is estimated by calculating 392 

fSCA and SDD every 10 m of the DTS cable for every day in the melting season. We assume 393 

every 10 m of DTS cable as a grid cell, and snow presence/absence data is sampled every 25 cm, 394 

hence there are 40 values of snow presence (1) or absence (0). For instance, if the number of “1” 395 

values equal 20, then fSCA is 20/40 = 0.5. Figure 3 depicts fSCA-SDD relationship at Sagehen 396 

a b 

c d 
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on the day of lidar flights in April 17 (a) and the slopes of daily sigmoid fSCA-SDD 397 

relationships for fSCA between 0.2 to 0.8 from April 2 to April 28, 2016 in Sagehen. A fitted 398 

sigmoidal relationship between fSCA and SDD has the highest correlation with observed data 399 

(R
2
=0.76) on April 17, when a decline of fSCA from 0.8 to 0.2 is equivalent to 20±3.1 days 400 

change in SDD. The correlation of fSCA-SDD relationships is much weaker in March and May 401 

2016. This relationship is from a single site within Sagehen with low variation in topography 402 

(Kostadinov et al. 2019), thus, we expect this to be a conservative estimate for the sensitivity 403 

(e.g. slope) of SDD to fSCA across more extreme snow or energy gradients.  404 

 405 

Figure 3: Relationship between fSCA and SDD in a small site within Sagehen on April 17, 2016 406 

(a) and the slopes of daily sigmoid fSCA-SDD relationships for fSCA between 0.2 and 0.8 from 407 

April 2 to April 28, 2016 (b). 408 

4.2 Lidar-derived relationships of snow retention differences and topography 409 

Binary snow presence or absence, calculated at 1m resolution with lidar observations, is used to 410 

determine under canopy and open area fSCA in each TDJF band for the six lidar flights (Figure 411 

4): Boulder in May 2010, Jemez in April 2010, Kings in March 2010, and Sagehen in March 26, 412 

April 17 and May 18, 2016. In general, fSCA is higher when TDJF is colder (i.e. elevation 413 

increases) at all sites. fSCA under canopy is significantly higher than that in the open at the 414 

coldest Boulder site in TDJF bands < -7 °C (Figure 4-f), though this difference is insignificant at 415 

the coldest TDJF band. At Jemez, there are not large differences between under canopy and open 416 

fSCA in TDJF bands <-5°C, primarily because fSCA is close to 100%. Conversely, fSCA in the 417 
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open is significantly higher than under the canopy (Figure 4-e) for TDJF bands > -5.5 °C at 418 

Jemez. At the warmer sites of Sagehen and Kings, fSCA is generally larger in the open relative 419 

to under canopy. However, in warmer TDJF bands of Kings (TDJF > +2°C) where fSCA is <40%, 420 

under canopy is higher than open fSCA (Figure 4-d). There are little differences (mostly 421 

insignificant) between under canopy and open fSCA at Sagehen on March 26, 2016, in the colder 422 

TDJF bands (TDJF < -1.8°C), because fSCA is close to 100% (Figure 4-a). As snowmelt 423 

progresses into April and May at Sagehen, fSCA declines and it becomes greater in the open 424 

than under canopy in all but the coldest bands (TDJF < -2°C), where fSCA remains close to 100%.  425 

 426 

Figure 4: Under canopy and open fSCA in each TDJF band for lidar flights over Sagehen on 427 

March 26, April 17 and May 18, 2016 (a, b, c), Kings in March 2010 (d), Jemez in April 2010 428 

(e), and Boulder in May 2010 (f). “+” signs in all panels represent statistically different under 429 

canopy and open fSCA, based on Wilcoxon signed-rank test. Note that the x axes are different 430 

for each site.  431 
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  432 

Figure 5: [fSCAopen – fSCAunderCanopy]/ fSCAopen for south-facing and north-facing slopes over 433 

different TDJF bands for each Lidar flight over Sagehen in March 26, April 17 and May 18, 2016 434 

(a, b, c); Kings in March 2010 (d); Jemez in April 2010 (e); and Boulder in May 2010 (f). “+” 435 

signs indicate statistically significant difference between [fSCAopen – fSCAunderCanopy]/ fSCAopen 436 

(y axis value) in south- and north-facing slopes. 437 

Figure 5 depicts the ratio of the difference in open and under canopy fSCA to the open fSCA (i.e. 438 

[fSCAopen – fSCAunderCanopy]/ fSCAopen) for south-facing (northness<-0.1) and north-facing 439 

(northness>0.1) slopes over different TDJF bands for the different lidar flights and sites. Each site 440 

shows different interactions with elevation and slope/aspect; however, north-facing slopes have 441 

consistently higher fSCA than south-facing slopes (not showed in Figure 5). Generally, south-442 

facing slopes show greater differences between open and under canopy fSCA than north facing 443 

slopes in most of the sites. At the coldest Boulder site and in the coldest TDJF bands (TDJF < -9°C) 444 

fSCA is higher in the open than under canopy in south-facing slopes (Figure 5-f). Conversely, 445 

north-facing slopes in colder bands (TDJF < -8°C) at Boulder have higher under canopy fSCA 446 

More snow  

in the open 

More snow  

under canopy 
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than open fSCA (except for the colder TDFJ band). In warmer TDJF bands at Boulder (TDJF > -447 

7.5°C), open fSCA is higher than under canopy on north-facing slopes (except for the warmest 448 

TDFJ band), but opposite on south-facing slopes (Figure 5-f). Colder TDJF bands (TDJF < -5°C) at 449 

Jemez show virtually no differences between open and under canopy fSCA in either south-facing 450 

or north-facing slopes. Warmer TDJF bands at Jemez act similar to warmer parts of Boulder, 451 

fSCA in the open is higher than under canopy on north-facing slopes and vice versa for south-452 

facing slopes (Figure 5-e). In Kings, fSCA in the open is higher than under canopy in colder TDJF 453 

bands, but reverses in warmer TDJF bands (Figure 5-d) across north and south-facing slopes. At 454 

Sagehen, open fSCA is higher than under canopy fSCA on both north-facing and south-facing 455 

slopes for most warmer bands (TDJF >-2 C) during March and April 2016 (Figure 5-a-b).  456 

4.3 Lidar-derived relationships of snow retention differences and forest structure 457 

We classify fSCA as either low vegetation density (lowVD, 0.01<vegetation density<0.4) or 458 

high vegetation density (highVD, vegetation density>0.6) for each site (Figure 6). In general, 459 

under canopy fSCA is higher under lowVD compared to highVD (Figure 6) on both north and 460 

south-facing slopes, except for south-facing slopes in Jemez. In the colder Boulder and Jemez 461 

sites, over colder TDJF bands (TDJF < -6.5°C for Boulder, and TDJF < -4.5°C for Jemez), this 462 

pattern is more prevalent; while in warmer TDJF bands, fSCA is higher under highVD for both 463 

south- and north-facing slopes (Figure 6-e and 6-f). At the warmest Kings site and the warmest 464 

TDJF bands (TDJF > 2°C) fSCA is highest under highVD in south-facing slopes and lowest under 465 

lowVD in north-facing slopes (Figure 6-d). At Sagehen over all TDJF bands, there is a large 466 

difference between fSCA on south-facing and north-facing slopes under either lowVD or 467 

highVD (Figure 6-a, 6-b and 6-c). This difference between fSCA on south- and north-facing 468 

slopes at Sagehen increases in warmer months and warmer TDJF bands. fSCA at Sagehen is 469 

highest in north-facing slopes under lowVD and lowest in south-facing slopes under highVD. 470 

The effects of canopy and slope/aspect converge in May as fSCA approaches zero in warmer 471 

TDJF bands (TDJF > -1.5°C) (Figure 6-c).  472 

Here we explored the impact of two vegetation density classifications on fSCA which does not 473 

completely indicate the importance of vegetation density. Since vegetation density should be 474 

considered as a continuous variable, We develop a Random Forest model (RFM) to isolate the 475 
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effects of vegetation density, in addition to average incoming shortwave (SWR) and longwave 476 

(LWR), precipitation (P), and temperature (T) in fSCA differences between paired under canopy 477 

and open areas.   478 

 479 

Figure 6: Under canopy fSCA for south-facing and north-facing slopes with low and high 480 

vegetation density (lowVD and highVD, respectively) across TDJF bands for each lidar flight over 481 

Sagehen in March 26, April 17 and May 18, 2016 (a, b, c), Kings in March 2010 (d), Jemez in 482 

April 2010 (e), and Boulder in May 2010 (f).  483 

4.4 Inferring controls on differences between under canopy and open fSCA with a 484 

Random Forest model  485 

We develop a Random Forest model (RFM) to predict fSCAopen – fSCAunderCanopy from the 486 

same 100-m grid cell. The average RFM mean absolute errors (MAEs) for Sagehen in March 26, 487 

April 17 and May 18, 2016, Kings, Jemez, and Boulder are 0.07, 0.06, 0.05, 0.12, 0.10, and 0.11 488 

(absolute fSCA units, i.e. fractions or %), respectively. The RFM indicates that vegetation 489 
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density is the most important variable for predicting fSCA differences in the colder sites (Figure 490 

7). However, the role of vegetation density generally declines with declining fSCA across sites. 491 

In general, the influence of LWR and SWR on controlling fSCA differences in open and under 492 

canopy areas is same as the influence of vegetation density at warmer and lower fSCA bins at 493 

Kings and Sagehen (Figure 7a-d). The importance of precipitation and temperature is largest in 494 

the lowest fSCA bins, except for Sagehen (Figure 7). 495 

 496 

Figure 7: Importance of five predictors: vegetation density (VD), average incoming shortwave 497 

(SWR) and longwave (LWR) radiation, total precipitation (P) and average temperature (T), from 498 

December 1
st
 to the day of lidar overflights for predicting [fSCAopen - fSCAunderCanopy] in fSCA 499 

bins of fSCA<0.3, 0.3<=fSCA<0.55, 0.55<=fSCA<0.8 and 0.8<=fSCA for each lidar flight: 500 

Sagehen in March 26, April 17 and May 18, 2016 (a, b, c), Kings in March 2010 (d), Jemez in 501 

April 2010 (e), and Boulder in May 2010 (f). 502 
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503 
Figure 8: Prediction of [fSCAopen – fSCAunderCanopy] across all sites using the RFM for 20

th
 and 504 

80
th

 percentile of mean DJF incoming SWR across different vegetation densities, and the mean 505 

of incoming LWR, precipitation and temperature for each lidar flight over Sagehen in March 26, 506 

April 17 and May 18, 2016 (a, b, c), Kings in March 2010 (d), Jemez in April 2010 (e), and 507 

Boulder in May 2010 (f). 508 

We use the RFM models to predict the difference between open and under canopy fSCA for the 509 

0.3<fSCA<0.8 bin across vegetation density (Figure 8). The 20
th

 and 80
th

 percentile of SWR data 510 

and the mean of all other predictor variables is used to represent low and high insolation 511 

environments. We select 90 as a minimum number of 100-m grid cells; if the number of 100-m 512 

grid cells is less than 90, we do not show in Figure 8. Most of the sites do not have at least 90 513 

grid cells with vegetation density>0.7 (except for Kings), hence the maximum number is 0.7 in 514 

x-axis in Figure 8, with the exception of Kings. fSCA in the open is higher than under canopy 515 

across all vegetation densities at the warm sites of Kings and Sagehen, with an exception of 80
th

 516 

percentile of SWR scenario in lower vegetation density (<0.4) at Kings. The RFM models show 517 

fundamental differences among colder sites, such as higher fSCA under canopy than open across 518 

More snow in the open 

More snow under canopy 
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lower vegetation density areas at Boulder and the opposite effect of vegetation density at Jemez. 519 

Areas with higher vegetation density (vegetation density > 0.4) generally have higher open fSCA 520 

relative to under canopy fSCA at all sites except for Jemez. Similarly, as vegetation density 521 

approaches ~0.4, differences between open and under canopy fSCA stabilize at all sites except 522 

Jemez and April 17 in Sagehen to a lesser degree.  It is worth noting the Jemez site had the 523 

largest relative uncertainties in fSCA prediction (Figure 8).  524 

5 Discussion 525 

Leveraging a new method of snow-on airborne lidar analysis into a multi-site analysis allows for 526 

new process insights into the causes of inter- and intra-site differences in open vs. under canopy 527 

snow retention. Our smallest lidar dataset has 2.6 million 1-m
2
 grid cells (Kings), compared to 528 

the typical small sample size of around ~5-10 ground-based sensors per site (Figure 2). Lidar 529 

surveys have an obvious advantage for accurate determination of snow presence or absence 530 

spatially, though only provides a snapshot in time; whereas ground-based observations provide a 531 

continuous time-series over a much smaller domain. Large extent lidar datasets from multiple 532 

sites present opportunities to investigate snow processes over wide elevation and slope/aspect 533 

gradients at sites with various climates that are infeasible with ground-based measurements. The 534 

large number of points also provides statistical power (i.e. decreases noise/uncertainties), that 535 

otherwise could be overwhelming the signal with only a small ground-based dataset. As the 536 

availability of snow-on lidar datasets increases (Deems et al., 2013; Painter et al., 2016), the 537 

method pioneered by Kostadinov et al. (2019) can be improved and expanded in several ways. 538 

For example, the detection of snow surface versus low canopy branches is a fundamental 539 

challenge in very dense canopy unless the method or datasets are improved. Sites with multi-540 

temporal snow-on lidar datasets (like Sagehen ASO flights, Painter et al., 2016) offer the 541 

potential to track fSCA (or snow disappearance) directly, which was only preliminarily explored 542 

here. Collection of additional lidar datasets could expand and improve our method, facilitating 543 

our understanding of snow retention that were not possible with other existing datasets.   544 

In contrast to previous conceptual models, our findings suggest that local site characteristics, like 545 

vegetation density, can be a greater driver of differences in under canopy and open snow 546 

retention than climatic factors, like winter air temperature (Lundquist et al., 2013). For example, 547 
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at the coldest and windiest Boulder site we observe that increased vegetation density leads to a 548 

shift from greater snow retention under canopy at lower vegetation density to greater snow 549 

retention in open at high vegetation density. We show that open fSCA is higher than under 550 

canopy fSCA at Jemez where TDJF is between -5.5 to -4 
o
C (Figure 4). Ground-based sensors are 551 

impractical for observing snow presence across gradients of vegetation density. Vegetation 552 

density was shown to be the primary predictor of fSCA differences by the RFM (Figure 7), 553 

suggesting that, in general, denser forests cause earlier snow disappearance under canopy 554 

regardless of climate or slope and aspect (Figure 6 and 8). The lidar-based method shows 555 

interesting patterns that have been challenging to detect with ground observations, like a shift 556 

from greater snow retention under low vegetation density during mid-melt season to greater 557 

snow retention under high vegetation density at the end of melt season at Kings and parts of 558 

Jemez (Figure 6). These novel observations of fSCA in open and under canopy areas allow for 559 

new insights into the competition between snow accumulation and ablation processes across 560 

gradients in topography and vegetation density. 561 

Our results suggest that the processes controlling open and under canopy snow retention are 562 

strongly influenced by the interaction of vegetation structure and topography. Generally, 563 

sheltering from wind and shortwave radiation (SWR) increases under canopy snow retention, 564 

whereas longwave radiation (LWR) enhancement and snow interception decrease under canopy 565 

snow retention (Lundquist et al., 2013). Tree canopy can emit more LWR than the surrounding 566 

atmosphere, which efficiently ablates the snowpack at sites like Sagehen in forest patches where 567 

vegetation density is >0.4 and air temperatures are relatively warm (Todt et al., 2018; Webster et 568 

al., 2017). LWR is likely the dominant energy flux during the ablation at the warmer sites (Todt 569 

et al., 2018). Denser canopies also intercept more snowfall, leading to lower SWE and less 570 

energy required to melt the snowpack. Interception of warm snowfall is higher than cold 571 

snowfall or rain (Roth and Nolin, 2017), which is consistent with greater interception (and lower 572 

under canopy fSCA) at warmer sites, implied by Figure 8. Forest canopy also reduces wind 573 

speed and turbulent energy fluxes at the snowpack surface (Kremsa et al., 2015), decreases 574 

blowing snow sublimation and redistribution, and thus, increases under canopy fSCA 575 

(Dickerson‐Lange et al., 2017, Tennant et al., 2017). We infer wind sheltering from canopy as an 576 

important driving mechanism at our windiest site Boulder, where fSCA under canopy is higher 577 
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than in the open (Erickson et al., 2005). Shading effects from SWR is the highest on south-facing 578 

slopes in early summer when solar zenith angle is lower (Strasser et al., 2011). Surprisingly, 579 

increased SWR on south-facing slopes causes greater ablation under canopy at colder sites 580 

because of inferred interception and LWR enhancement of warmer, dense vegetation (vegetation 581 

density>0.4) (Todt et al., 2018; Webster et al., 2017) (Figure 8). Vegetation density and 582 

topography mediate the feedbacks between SWR and LWR, which is outside of previous 583 

temperature-based frameworks for predicting snow retention (Lundquist et al. 2013). 584 

Interestingly, both warm and cold sites show relatively little sensitivity to energy and mass 585 

budgets when vegetation density is greater than 0.6 (i.e. leveling off in Figure 8), with the 586 

exception of Jemez. We interpret that the relationship of the canopy interception efficiency and 587 

canopy emissivity saturate at high vegetation densities; although there are relatively few 100-m 588 

areas with high vegetation density (Figure 8). It is worth noting that open forest areas can be 589 

differentially shaded by the adjacent trees, depending on forest height and density (Musselman et 590 

al., 2015). Future studies may consider a more exact definition of an open site, or a better 591 

definition that considers the adjacent forest canopy. Overall, our inferences are consistent with 592 

snow-forest processes that control differences between open and under canopy fSCA, and 593 

provide a better understanding of snow retention across gradients of climate, topography and 594 

vegetation structure. 595 

We develop a new conceptual framework that takes advantage of our process insights to better 596 

explain how topography and vegetation structure interact to control open and under canopy snow 597 

retention across sites with different climates. Despite relationships between air temperature and 598 

snowpack energy fluxes (Ohmura, 2001), differences between open and under canopy fSCA are 599 

not well predicted by thresholds in TDJF. More snow retention in open compared to nearby 600 

under canopy areas is found when TDJF varies between -4.5 to 1.5 oC, likely because LWR 601 

from warm canopy is more important (Table 3). Denser tree cover intercepts more snowfall and 602 

has greater thermal mass, causing greater snow retention in open compared to under canopy 603 

locations, specifically at warm sites (Table 3). Areas warmer than 2 °C experience higher under 604 

canopy snowpack in the melt season (i.e. Kings; Figure 4, 5; table 3), suggesting that later 605 

persisting snowpack may experience a transition from LWR- to SWR-limited retention as the 606 

solar zenith angle decreases.  Interception, wind effects, and shading from SWR are the 607 



Confidential manuscript submitted to Water Resources Research 

28 

 

dominant processes at the colder sites, leading to more variable snow retention dynamic 608 

compared to the warmer sites. One of our key findings is that slope and aspect can accentuate or 609 

mediate the effects of local climate on the snowpack energy budget. Snow retention is higher 610 

under canopy on north-facing slopes in colder climates, where wind sheltering and SWR shading 611 

are the dominant drivers. However, open area snow retention is higher than under canopy areas 612 

in lower elevations in colder areas, indicating that LWR and efficient snow interception makes 613 

these cold, low elevation areas behave more like ‘warm’ sites in the climate based Lundquist et 614 

al. (2013) framework (Table 3). South-facing slopes accentuate the local energy budget and lead 615 

to more consistent snow retention properties than north-facing slopes. For example, south-facing 616 

slopes that receive substantial SWR have greater snow retention in open versus under canopy 617 

areas than north facing slopes at Kings and Sagehen (Table 3). Only in the coldest and windiest 618 

Boulder site we observe greater snow retention under lower vegetation density than under high 619 

VD canopy, because of SWR and wind sheltering (Table 3).  620 

Our new conceptual model, explaining the interacting energy-mass controls on differential snow 621 

retention in open and under canopy locations, could inform forest management actions. 622 

Increasing snow retention on the landscape delays the input of water, results in long recession in 623 

soil moisture (Harpold and Molotch, 2015), and limits the water stress period for ecosystems 624 

(Harpold, 2016). Later snowmelt similarly delays the dry down of surface fuels and thus, reduces 625 

extreme wildfire activity (Westerling et al., 2006). Forest management actions (e.g. tree removal 626 

and controlled fire) with the goal of retaining snow on the landscape have a long history 627 

(Alexander et al., 1985; Anderson, 1983; Golding and Swanson, 1986; Varhola et al., 2010). 628 

However, our insights using a lidar-derived dataset allow more spatially explicit management 629 

strategies that account for natural variability of complex topography and forest structure. For 630 

example, thinning or gap‐cutting, which decreases LWR and canopy snow interception, could 631 

help retain snowpack at the warm and dense canopy sites of Sagehen. Similarly, lower elevations 632 

of colder areas may experience limited snow retention benefits of tree removal (e.g. Boulder). 633 

However, colder south-facing slopes with low canopy density (especially at higher, windier 634 

elevations) might experience reductions in snow retention following tree removal from fire or 635 

thinning. There remains potential to expand the machine learning (i.e. RFM) approaches to better 636 

infer process insights that take advantage of multi-temporal and multi-site datasets. Moreover, an 637 
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approach that moves beyond binary classifications (e.g. vegetation density, open versus under 638 

canopy, etc.) might provide better understanding of controlling processes. We believe our 639 

conceptual framework offers an important advancement in our understanding of snow retention 640 

in montane forests that should be refined with new process-based knowledge. An important 641 

future step will be to apply snowpack energy balance models to better identify physical 642 

mechanisms controlling differential snow retention. 643 

Table 3: Conceptual model illustrating how the interactions between vegetation structure, 644 

topography and climate shape the energy and mass budgets resulting in differences in snow 645 

cover between open and under canopy. 646 

Canopy 

density 

Mass & energy drivers in warmer 

areas 
Mass & energy drivers in colder areas 

Lower 

vegetation 

density 

(LowVD) 

 

South 

facing 

slopes (SF) 

 

 More snow in open (more 

than NF slopes) 

 LWR dominates 

 Lower snow Interception 

efficiency compared to NF 

slopes and HighVD 

 RFL*:  

 Sagehen26Mar, ER*: 1940-

2560 MASL 

 Sagehen17Apr, ER: 2130-2560 

MASL 

 Sagehen18May, ER: 2370-

2560 MASL 

 Kings ER: 1650-2050 MASL 

South 

facing 

slopes (SF) 

 

 More snow under canopy 

 Shading from SWR 

 RFL 

 Boulder, EL: 2800-3220 MASL 

 Boulder, ER: lower than 2775 

MASL 

 Jemez, ER: lower than 2800 

MASL 

North 

facing 

slopes (NF) 

 

 More snow in open  

 LWR effect 

 Less SWR exposure 

 Higher interception 

efficiency compared to SF 

slopes 

 RFL: 

 Sagehen26Mar, ER: 1940-2560 

MASL 

 Sagehen17Apr, ER: 2130-2560 

MASL 

 Sagehen18May, ER: 2130-

2560 MASL 

 Kings ER: 1750-2050 MASL 

North 

facing 

slopes (NF) 

 

 In higher elevation more snow 

under canopy  

 Shading from SWR 

 Less SWR exposure 

 Wind sheltering 

 RFL: 

 Jemez, ER: 2650-3400 MASL 

 Boulder, ER: 2800-3220 MASL 

 In lower elevation, more snow 

in open 

 Less SWR exposure 

 LWR effect 

 Fairly efficient interception 

 RFL: 

 Jemez, ER: lower than 2600 

MASL 

 647 
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Table 3-continued: Conceptual model illustrating how vegetation structure and topographic 648 

features interact with climate to shape energy budget resulting in higher snow cover in the open 649 

or under canopy. 650 

Canopy density 
Mass & energy drivers in 

warmer areas 

Mass & energy drivers in colder 

areas 

Higher vegetation 

density (HighVD)

 

South 

facing 

slopes (SF) 

 

 More snow in open 

(more than NF slopes; 

less than LowVD) 

 LWR dominates 

 Efficient Interception 

 RFL: 

 Sagehen26Mar, ER: 

1940-2560 MASL 

 Sagehen17Apr, ER: 

2130-2560 MASL 

 Sagehen18May, ER: 

2370-2560 MASL 

 Kings ER: 1650-2050 

MASL 

South 

facing 

slopes (SF) 

 

 More under the canopy 

 Shading from SWR 

dominates 

 Fairly efficient 

interception 

 Higher wind sheltering  

 RFL: 

 Jemez, ER: lower than 

2800 MASL 

 Boulder, ER: lower than 

2775 MASL 

North 

facing 

slopes (NF) 

 

 More snow in open 

(less than LowVD) 

 LWR effect 

 Less SWR exposure 

 Most efficient 

Interception compared 

to SF slopes 

 RFL: 

 Sagehen26Mar, ER: 

1940-2560 MASL 

 Sagehen17Apr, ER: 

2130-2560 MASL 

 Sagehen18May, ER: 

2130-2560 MASL 

 Kings ER: 1750-2050 

MASL 

North 

facing 

slopes 

(NF) 

 

 In higher elevation 

more snow under 

canopy  

 Shading from SWR  

 Highest Wind sheltering  

 Most efficient 

interception 

 RFL: 

 Jemez, ER: 2650-3400 

MASL 

 Boulder, ER: 2800-3220 

MASL 

 In lower elevation, more 

snow in open 

 Less SWR exposure 

 LWR effect 

 Efficient interception 

 RFL: 

 Jemez, ER: lower than 

2600 MASL 

 Boulder, ER: lower than 

2775 MASL 

*RFL: reference locations; ER: elevation range.  651 

Orange color shows more snow in the open; green color shows more snow under canopy; and 652 

purple color shows mass and energy budget processes that drive snow dynamics. 653 
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 654 

 655 

6 Conclusions 656 

Altering forest canopy structure is one of the few ways to control the timing of snow 657 

disappearance and its ecohydrological consequences. Our new conceptual framework shows that 658 

areas where longwave radiation (LWR) and snow interception dominate, are characteristic of 659 

‘warm’ climate and have less snow under canopy versus in the open. Conversely, colder areas 660 

where shortwave radiation (SWR) and turbulent energy fluxes are the main drivers, can have 661 

greater under canopy snowpack. This indicates that forest disturbances that reduce canopy cover 662 

will have different effects under different local climate, but in ways that are strongly mediated by 663 

topography. Colder and denser forests are likely to experience tradeoffs between interception, 664 

reducing snow retention, and SWR and wind sheltering (Varhola et al., 2010). This is consistent 665 

with the lack of snowpack response to tree removal in the Rocky Mountains in previous studies 666 

of insect-caused tree mortality (Biederman et al., 2014) and fire caused canopy loss (Harpold et 667 

al., 2014). This makes the effects of vegetation disturbance on snowpack highly dependent on 668 

the remaining vegetation and its co-variation with slope-aspect and elevation. In warmer areas 669 

more efficient LWR and snow interception work together to reduce snowpack cold content and 670 

increase ablation. Therefore, warmer areas with dense vegetation typically have potential for 671 

canopy removal to increase snow retention, especially on south-facing slopes. These process 672 

inferences have the potential to be strengthened by expanding to additional sites and times during 673 

the ablation season, as well as pre- and post-disturbance investigations. Given the few tools 674 

available to monitor under canopy snow disappearance over large spatial extents, lidar-based 675 

inferences should prove critical to improve our predictive models of snow-forest interactions in a 676 

changing world. 677 

All snow-on and snow-off lidar datasets for Jemez, Boulder and Kings and snow-off lidar dataset 678 

for Sagehen are freely available from https://portal.opentopography.org/datasets public data 679 

servers.  680 

https://portal.opentopography.org/datasets
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