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Abstract

Parameterizations of unresolved turbulent processes in the ocean compromise the fidelity of large-scale ocean models used in

climate change projections. In this work, we use a Bayesian approach for evaluating and developing turbulence parameterizations

by comparing parameterized models with observations or high-fidelity numerical simulations. The method obtains optimal

parameter values, correlations, sensitivities, and, more generally, likely distributions of uncertain parameters. We demonstrate

the approach by estimating the uncertainty of parameters in the popular ‘K-Profile Parameterization’, using an ensemble of large

eddy simulations of turbulent penetrative convection in the ocean surface boundary layer. We uncover structural deficiencies

and discuss their cause. We conclude by discussing the applicability of the approach to Earth system models.
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Abstract13

Parameterizations of unresolved turbulent processes often compromise the fidelity of large-14

scale ocean models. In this work, we argue for a Bayesian approach to the refinement15

and evaluation of turbulence parameterizations. Using an ensemble of large eddy sim-16

ulations of turbulent penetrative convection in the surface boundary layer, we demon-17

strate the method by estimating the uncertainty of parameters in the convective limit18

of the popular ‘K-Profile Parameterization’. We uncover structural deficiencies and pro-19

pose an alternative scaling that overcomes them.20

Plain Language Summary21

Climate projections are often compromised by significant uncertainties which stem22

from the representation of physical processes that cannot be resolved – such as clouds23

in the atmosphere and turbulent swirls in the ocean – but which have to be parameterised.24

We propose a methodology for improving parameterizations in which they are tested against,25

and tuned to, high-resolution numerical simulations of subdomains that represent them26

more completely. A Bayesian methodology is used to calibrate the parameterizations against27

the highly resolved model, to assess their fidelity and identify shortcomings. Most im-28

portantly, the approach provides estimates of parameter uncertainty. While the method29

is illustrated for a particular parameterization of boundary layer mixing, it can be ap-30

plied to any parameterization.31

1 Introduction32

Earth System Models (ESMs) require parameterizations for processes that are too33

small to resolve. Uncertainties arise both due to deficiencies in the scaling laws encoded34

in the parameterizations and the nonlinear interactions with resolved model components,35

sometimes leading to unanticipated and unphysical results. The first challenge can be36

addressed by improving the representation of the unresolved physics (e.g. Schneider, Lan,37

et al., 2017), while the second requires ‘tuning’ of the parameterizations when implemented38

in the full ESM (e.g. Hourdin et al., 2017). In this paper, we illustrate how to leverage39

recent advances in computation and uncertainty quantification to make progress toward40

the first challenge. Our focus will be on oceanic processes, but the approach can be ap-41

plied to any ESM parameterization, provided that a high-resolution submodel can be con-42

structed.43

The traditional approach to the formulation of parameterizations of subgrid-scale44

processes is to derive scaling laws that relate the net effect of such processes to variables45

resolved by the ESMs. These scaling laws are then tested with either field observations (e.g.46

Price et al., 1986; Large et al., 1994), laboratory experiments (e.g. Deardorff et al., 1980;47

Cenedese et al., 2004) or results from a high resolution simulations (e.g. Wang et al., 1996;48

Harcourt, 2015; Reichl et al., 2016; Li & Fox-Kemper, 2017). Rarely are parameteriza-49

tions tested over a wide range of possible scenarios due to the logistical difficulty and50

high cost of running many field experiments, the time necessary to change laboratory51

setups, and computational demand. The computational limitations have become much52

less severe over the last few years through a combination of new computer architectures53

such as Graphic Processing Units (GPUs; Besard et al., 2019), new languages that take54

advantage of these architectures (e.g Julia; Bezanson et al., 2017) and improved Large55

Eddy Simulation (LES) algorithms (Sullivan & Patton, 2011; Verstappen, 2018). Mod-56

ern computational resources have opened up the possibility of running libraries of LES57

simulations to explore a vast range of possible scenarios. This paper discusses how such58

computational advances can be applied to assess parameterizations in ocean models.59

LES simulations alone are not sufficient to formulate parameterizations. Statisti-60

cal methods are needed to extract from the LES solutions the functional relationships61
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between small-scale processes and coarse variables available in ESMs. A common approach62

is to rely on well-established scaling laws and use the LES solutions to constrain the non-63

dimensional parameters that cannot be determined from first principles. In this approach,64

only a few LES simulations are necessary to find the optimal parameter values. How-65

ever, it is rare that scaling laws and associated parameterizations perfectly capture the66

functional dependencies of large-scale variables – if they did, they would be referred to67

as solutions rather than parameterizations. In general, it is necessary to run a large en-68

semble of LES simulations to estimate optimal parameter values and test whether those69

values hold for different scenarios, thereby supporting the functional dependencies.70

State-estimation, which has a long tradition in geophysics (Wunsch, 2006), has been71

used to constrain parameter values. A loss function is chosen to quantify the mismatch72

between the prediction of the parameterization and observations. Uncertain parameters73

are then adjusted to minimize the loss function. One can also estimate the standard de-74

viation around the optimal values by computing the Hessian of the loss function (Thacker,75

1989; Sraj et al., 2014).76

An alternative approach, based on the seminal work of (Bayes, 1763) and its mod-77

ern incarnation (Jaynes, 2003), is arguably better suited to constrain the transfer prop-78

erties of turbulent processes. The Bayesian method allows one to estimate the entire joint79

probability distribution of all parameters. The method is a crucial extension over state-80

estimation, because the statistics of turbulent processes are generally far from Gaussian (Frisch,81

1995) and thus are not fully characterized by the first and second moments alone. In the82

Bayesian approach, one defines a prior parameter distribution, based on physical con-83

siderations, and a ‘likelihood function’ which measures the mismatch between the pa-84

rameterized prediction and the LES simulation. Based on this information, Bayes’ for-85

mula shows how to compute the posterior distribution of the parameters consistent with86

the LES simulations and the parameterization. If the posterior distribution is narrow87

and peaked, then one can conclude that a unique set of parameters can be identified which88

can reproduce all LES results. In this limit, the Bayesian approach does not provide more89

information than state-estimation. However, the power of Bayes’ formula is that it can90

reveal distinct parameter regimes, the existence of multiple maxima, relationships be-91

tween parameters, and the likelihood of parameter values relative to optimal ones.92

The Bayesian approach can also be used to test the functional dependence of the93

parameterization on large-scale variables. One estimates the posterior distribution on94

subsets of the LES simulations run for different scenarios. If the posterior probabilities95

for the different scenarios do not overlap, the functional form of the parameterization96

must be rejected. We will illustrate how this strategy can be used to improve the for-97

mulation of a parameterization.98

Bayesian methods are particularly suited to constrain ESM parameterizations of99

subgrid-scale ocean processes. Most of these processes, such as boundary layer or geostrophic100

turbulence, are governed by well understood fluid dynamics and thermodynamics. Thus101

LES simulations provide credible solutions for the physics. The atmospheric problem is102

quite different where leading order subgrid-scale processes such as cloud microphysics103

are governed by poorly understood physics that may not be captured by LES simula-104

tions.105

In this paper, we will apply Bayesian methods to constrain and improve a param-106

eterization for the surface boundary layer turbulence that develops when air-sea fluxes107

cool the ocean. LES simulations that resolve all the relevant physics will be used as ground-108

truth to train the parameterization. Our paper is organized as follows: In section 2 we109

describe the physical setup and the LES model. In section 3 we introduce Bayesian pa-110

rameter estimation for the parameters in the K-Profile Parameterization (KPP). We then111

perform the parameter estimation in the regime described by section 2 and show how112
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the Bayesian approach provides insight on how to improve the KPP parameterization.113

Finally, we end with a discussion in section 4.114

2 Large eddy simulations and K-Profile Parameterization of penetra-115

tive convection116

During winter, high latitude cooling induces near-surface mixing by convection which117

generates a ‘mixed layer’ of almost uniform temperature and salinity which can reach118

depths of hundreds of meters: - see (Marshall & Schott, 1999) for a review. At the base119

of the mixed layer, convective plumes can penetrate further into the stratified layer be-120

low – called the ‘entrainment layer’ – where plume-driven turbulent mixing between the121

mixed layer and stratification below cools the boundary layer. This process, in which the122

layer is cooled both at the surface and by turbulent mixing from the entrainment layer123

below, is called penetrative convection. Here we evaluate the ability of the K-Profile Pa-124

rameterization (Large et al., 1994) to capture penetrative convection by comparing pre-125

dictions based on it against large eddy simulations (LES) of idealized penetrative con-126

vection into a resting stratified fluid. It provides the context in which we outline the Bayesian127

approach to parameter estimation which we advocate.128

2.1 Penetrative convection into a resting stratified fluid129

We suppose a constant surface cooling Qh > 0 to a resting, linearly stratified bound-
ary layer with the initial state

u|t=0 = 0 and b|t=0 = 20αg +N2z +N (0, 10−10αg) exp(4z/Lz), (1)

where z ∈ [−Lz, 0], u = (u, v, w) is the resolved velocity field simulated by LES, b is
buoyancy, N2 is the initial vertical buoyancy gradient, and N (0, αg10−10) is a Gaussian
white noise process added to induce a transition to turbulence. The surface buoyancy
flux Qb is related to the imposed surface cooling Qh, which has units W m−2, via

Qb =
αg

ρrefcp
Qh, (2)

where α = 2 × 10−4 (◦C)−1 is the thermal expansion coefficient (assumed constant),130

g = 9.81 m s−2 is gravitational acceleration, ρref = 1035 kg m−3 is a reference density,131

and cp = 3993 J/(kg ◦C) is the specific heat capacity. Our software and formulation of132

the large eddy simulation model is discussed in Appendix A.133

Results from a large eddy simulation of turbulent penetrative convection in a do-
main Lx = Ly = Lz = 100 meters and 256× 256× 512 grid cells, respectively, is pre-
sented in Figure 1. The resulting horizontally averaged temperature profiles are not af-
fected by the domain size. The left panel shows the three-dimensional temperature field
θ = θ0 + b/αg associated with the buoyancy b, where θ0 = 20◦C is the surface tem-
perature at z = 0. The right panel shows the horizontally averaged buoyancy profile

b̄(z, t) ≡ 1

LxLy

∫ Lx

0

∫ Ly

0

b(x, y, z, t)dxdy. (3)

The visualization reveals the two-part boundary layer produced by penetrative con-134

vection: close to the surface, cold and dense convective plumes organized by surface cool-135

ing sink and mix ambient fluid, producing a well-mixed layer that deepens in time. Be-136

low the mixed layer, the momentum carried by sinking convective plumes leads them to137

overshoot their level of neutral buoyancy (nominally, the depth of the mixed layer), ‘pen-138

etrating’ the stably stratified region below the surface mixed layer and generating the139

strongly stratified entrainment layer. The total depth of the boundary layer is h and in-140

cludes the mixed layer and the entrainment layer of thickness ∆h. Turbulent fluxes are141

assumed negligible below z = −h.142
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Figure 1. A 3D simulation of the LES model of the Boussinesq equations and its horizontal

average at t = 2 days. The ∆h region of the figure on the right corresponds to the entrainment

layer, h−∆h corresponds to the mixed layer, and h corresponds to the boundary layer depth.

In figure 2 we show the evolution of h(t) defined as the first depth from the bot-
tom where the stratification is equal to a weighted average of the maximum stratifica-
tion and the initial stratification1. The dotted line confirms that the evolution after an
initial transient is best fit by the formula,

h '
√

3.0
Qb
N2

t, (4)

where N2 is the initial stratification and the numerical factor is a best-fit parameter.143

Equation 4 is easily understood through dimensional considerations (up to pref-
actors), but more information flows from an analysis of the horizontally-averaged buoy-
ancy equation,

∂tb = −∂z
(
wb+ q(z)

)
, (5)

where b is the horizontally averaged buoyancy, wb is the horizontally averaged vertical
advective flux and q(z) is the horizontally averaged vertical diffusive flux. Integrating the
equation in time between t′ = 0 and some later time t′ = t, and in the vertical be-
tween the surface, where q(z) = −Qb, and the base of the entrainment layer where all
turbulent fluxes vanish, one finds,∫ 0

−h

[
b̄(z, t)− b̄(z, 0)

]
dz = −Qbt. (6)

1 The weights are 2/3 for the initial stratification N2 and 1/3 for the maximum stratification N2
m so

that h satisfies ∂zb(−h) = 2N2
b /3 + N2

m/3. This guarantees that h is a depth where the local stratification

lies between the background stratification and the maximum stratification since it is defined as the first

depth starting from the bottom that satisfies such a criteria.
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Figure 2. Boundary layer depth and its evolution in time after initial transients. The blue

squares are the analytic scaling 4, the red line is an estimate of the boundary layer depth directly

from the LES (described in the text), and the purple line is the classic scaling which ignores the

entrainment layer 8.

Substituting b̄(z, 0) = b0 + N2(z + h) and b̄(z, t) = b0 + ∆b, an approximation of the
profile shown in Fig. 1b except at very early times in the simulation, yields

1
2N

2h2 − h∆b = Qbt. (7)

The first term on the left of equation 7 describes boundary layer deepening due to buoy-144

ancy loss at the surface, while the second term corresponds to the further cooling caused145

by turbulent mixing in the entrainment layer. Other authors have also arrived at a sim-146

ilar expression for the boundary layer depth upon taking into account turbulent entrain-147

ment. See, for example, Appendix F in (Van Roekel et al., 2018).148

Ignoring turbulent mixing in the entrainment layer, i.e. setting ∆b = 0, yields the
deepening rate

h =

√
2.0

Qb
N2

t, (8)

which differs by roughly 20% from the best fit expression 4 due to the effects of turbu-149

lent mixing in the entrainment layer. Equation 8 is the deepening rate associated with150

a convective adjustment parameterization and is known as the empirical law of free con-151

vection. We now review how these processes are represented in the KPP model.152

2.2 The K-Profile Parameterization of penetrative convection153

In penetrative convection in a horizontally-periodic domain, the K-Profile Param-
eterization models the horizontally-averaged temperature profile, θ̄(z, t) with the cou-
pled equations

∂tT = −∂zF (T, h;C) (9)

0 = D(T, h;C), (10)

where T (z, t) is the modeled temperature meant to approximate θ̄(z, t), h(t) is the bound-154

ary layer depth, C = {CS , CN , CD, CH} is a set of free parameters, F (T, h;C) is the155

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

parameterized temperature flux, and D(T, h;C) is a nonlinear constraint that determines156

the boundary layer depth at each time t. Our formulation, which isolates the four free157

parameters {CS , CN , CD, CH}, is superficially different but mathematically equivalent158

to the formulation in (Large et al., 1994) (see Appendix C for details). Finally, we em-159

phasize that the K-Profile parameterization is deemed successful only if it accurately mod-160

els the evolution of the entire observed temperature profile θ̄(z, t), rather than, say, the161

boundary layer depth or the buoyancy jump across the base of the mixed layer.162

The K-Profile Parameterization (KPP) represents F through the sum of a down-
gradient flux and a non-local flux term (Large et al., 1994),

F = −CDδ1/3w?h
z
h

(
1 + z

h

)2︸ ︷︷ ︸
≡K

∂zT + CNQθ zh
(
1 + z

h

)2︸ ︷︷ ︸
≡Φ

, (11)

for −h ≤ z ≤ 0 and 0 otherwise, and δ = min{CS , z/h}. Here w? = (Qbh)1/3 is the163

convective turbulent velocity scale, h is the boundary layer depth, z
h

(
1 + z

h

)2
is the ‘K-164

profile‘ shape function (K is the namesake downgradient diffusivity of the K-Profile Pa-165

rameterization) and Φ is a ‘non-local’ flux term that models convective boundary layer166

fluxes not described by downgradient diffusion.167

The KPP model estimates the boundary layer depth h using the nonlinear constraint
(10). The boundary layer geometry introduced in the right panel of figure 1 motivates
the form of nonlinear constraint. The jump in buoyancy, ∆b, is the difference between
the buoyancy in the mixed layer and the base of the entrainment region. The buoyancy
jump may thus be written in terms of the entrainment region thickness, ∆h, and the en-
trainment region buoyancy gradient, N2

e , as ∆b = N2
e∆h. Using the plume theory out-

lined in Appendix B to motivate the scaling ∆h ∝ w?/Ne, we thus find

C̃H =
∆b

w?Ne
(12)

for some universal proportionality constant C̃H . KPP posits that the boundary layer depth168

h is the first such depth from the surface at which equation 12 holds.169

Large et al. (1994) estimate the mixed layer buoyancy with an average over the ‘sur-

face layer’, 1
CSh

∫ 0

−CSh
B(z)dz where B = αgT , and 0 < CS < 1 is a free parameter

that defines the fractional depth of the surface layer relative to the total boundary layer
depth, h. The buoyancy jump becomes, therefore

∆b =
1

CSh

∫ 0

−CSh

B(z)dz −B(−h) . (13)

Large et al. (1994) then express the stratification in the entrainment region, Ne, in terms
of the stratification at the base of the boundary layer, such that

Ne ∝
√

max [0, ∂zB(−h)] . (14)

The scaling in equation 14 introduces a new free parameter in addition to C̃H ; however
because this free parameter is not independent from C̃H , we combine the two into a new
free parameter CH , which we call the ‘mixing depth parameter’. To prevent division by
zero, the small dimensional constant 10−11m2 s−2 is added to the demoninator of equa-
tion 12 (Griffies et al., 2015). Combining equations 12, 13 and 14, we can write

0 = CH −
1

CSh

∫ 0

−CSh
B(z)dz −B(−h)

(hQb)
1/3
√

max [0, ∂zB(−h)] + 10−11m2s−2
. (15)

Equation 15 is the implicit nonlinear constraint in equation 10 that determines the170

boundary layer depth, h. In Appendix B we discuss the physical content of equation 15171

for the case of penetrative convection.172

–7–
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The boundary layer depth criteria in equation 15 is often referred to as the bulk173

Richardson number criteria, because in mechanically forced turbulence the denomina-174

tor is replaced by an estimate of the mean shear squared and CH becomes a critical bulk175

Richardson number (Large et al., 1994). In penetrative convection there is no mean shear176

and CH is not a Richardson number. See Appendix C for more details.177

The representation of penetrative convection in KPP has four free parameters: the
surface layer fraction CS, the flux scalings CN and CD in equation 11, and the mixing
depth parameter CH in equation 15. Ranges for their default values are reported in (Large
et al., 1994). We choose reference parameters within those ranges as

(CS , CN , CD, CH) = (0.1, 6.33, 1.36, 0.96). (16)

These parameters are not the original set of independent parameters proposed by Large178

et al. (1994), but rather algebraic combinations thereof. Nevertheless, we emphasize that179

our formulation is mathematically identical to that proposed by Large et al. (1994). The180

mapping between the current set of parameters and the original are one-to-one, hence181

no information is lost in transforming from the current set of parameters to the origi-182

nal ones, see Appendix C for details. With regard to the numerical implementation, we183

do not use enhanced diffusivity as explained in the appendices of Large et al. (1994). Our184

objective is to calibrate the free parameters C = (CS , CN , CD, CH) by comparing KPP185

temperature profiles T (z, t;C) with the LES output θ̄(z, t).186

3 Model calibration against LES solutions187

We outline a Bayesian method for optimizing and estimating the uncertainty of the
four free parameters through a comparison of the parameterization solution for T (z, t;C)
and the output θ(z, t) of the LES simulations. First we introduce a loss function to quan-
tify the parameterization-LES difference,

L(C) = max
t∈[t1,t2]

{
1

Lz

∫ 0

−Lz

[
T (z, t;C)− θ(z, t)

]2
dz

}
. (17)

We choose the square error in space to reduce the sensitivity to vertical fluctuations in188

the temperature profile. We take the maximum value of the squared error in time for189

t ∈ [t1, t2] to guarantee that the temperature profile never deviates too far from the LES190

simulation at each instant in time. The parameterization is taken to be the KPP model191

given by equations 9 through 15, and the data are the horizontally averaged LES out-192

put. The initial time t1 is chosen after the initial transition to turbulence of the LES sim-193

ulations.194

A natural way to extend the concept of loss functions to account for parameter un-195

certainty is to introduce a likelihood function for the parameters. Similar to how the form196

of the loss function is critical to the estimation of optimal parameters, the form of the197

likelihood function is critical for estimating the parameter uncertainties. The likelihood198

function quantifies what we mean by “good” or “bad” parameter choices. The Bayesian199

method uses this information to estimate parameter uncertainties. These estimates are200

only as good as the choice of likelihood function, much like optimal parameters are only201

as good as the choice of the loss function. See, for example, van Lier-Walqui, Vukicevic,202

& Posselt, 2012; Zedler, Kanschat, Korty, & Hoteit, 2012; Urrego-Blanco, Urban, Hunke,203

Turner, & Jeffery, 2016; Sraj, Zedler, Knio, Jackson, & Hoteit, 2016; Schneider, Teix-204

eira, et al., 2017; Nadiga, Jiang, & Livescu, 2019; Morrison, van Lier-Walqui, Kumjian,205

& Prat, 2020 for definitions of likelihoods in various geophysical / fluid dynamical con-206

texts. In Appendix D we discuss in detail the rationale for the choices made in this pa-207

per.208
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Following Schneider, Lan, et al. (2017) we introduce the likelihood function as the
probability that parameter values explain the data P(data|C), as:

P(data|C) ∝ exp

(
−L(C)

L0

)
(18)

where L (C) is the loss function which depends both on data and parameters C, and L0 >
0 is a hyperparameter associated with the likelihood function as opposed to a parame-
ter in the parameterization. The posterior distribution, P(C|data), is then given by Bayes
formula

P(C|data) ∝ P(C)P(data|C) (19)

where P(C) is the prior distribution. In terms of probability densities, letting P(C) ∝
ρ0(C) and P(C|data) ∝ ρ(C) denote our prior and posterior distributions for the pa-
rameters2 C, Bayes formula becomes

ρ (C) ∝ ρ0(C) exp

(
−L(C)

L0

)
. (20)

In our context Bayes’ formula updates prior guesses about KPP parameter values and209

yields a posterior distrbution based on the LES data.210

We choose the hyperparameter L0 as the minimum of the loss function L(C). The
minimum is found using a modified simulated annealing procedure3 (Kirkpatrick et al.,
1983). Once the parameter values C∗ that minimize the loss functions have been found,
i.e. L0 = L(C∗), the likelihood of any other parameter choice C1 is given by,

ρ(C1)/ρ(C∗) = exp

(L0 − L(C1)

L0

)
. (21)

For example, if the choice C1 increases the minimum of the loss function by a factor of211

two, i.e. L(C1) = 2L0, then it is 1/e less likely. The probability distribution ρ(C) is212

then sampled with a Random Walk Markov Chain Monte Carlo (RW-MCMC) algorithm213

(Metropolis et al., 1953), described further in Appendix E.214

To illustrate our choices, as well as the RW-MCMC algorithm, we show a typical215

output from an RW-MCMC algorithm for a 2D probability distribution of the form in216

equation 18. We use the probability density function for the KPP parameterization pre-217

sented in the next section, but keep two of the four parameters fixed (CD and CH) to218

reduce the problem from four to two parameters (CN and CS). The prior distributions219

for CN and CS are uniform over the ranges reported at the end of this section. The pa-220

rameters CD and CH are set to the values that minimize the loss function. We show re-221

sults for two arbitrary values of L0 for illustrative purposes. Starting from a poor ini-222

tial guess, the RW-MCMC search proceeds towards regions of higher probability (lower223

loss function) by randomly choosing which direction to go. Once a region of high prob-224

ability is found, in this case parameter values in the “blue” region, the parameters hover225

around the minimum of the loss function as suggested by the high values of the likeli-226

hood function. The orange hexagons represent the process of randomly walking towards227

the minimum of the loss function and correspond to the “burn-in” period. The burn-228

in period is often thrown away when calculating statistics since it corresponds to an ini-229

tial transient before the RW-MCMC settles around the minimum of the likelihood func-230

tion. We see that the choice of L0 does not change the overall structure of the proba-231

bility distribution but does affect how far from optimal parameters the random walk is232

allowed to drift.233

2 The proportionality sign is introduced, because Bayes’ formula applies to probabilities, while ρ0(C) is

a probability density function.
3 In simulated annealing one finds the minimum of the loss function decreasing L0 to zero as one ex-

plores the parameter space through a random walk. Here we keep updating L0 to the new local minimum

every time the random walk stumbles on a set of parameters, for which L(C) < L0.
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L0 = 10L(C⇤)
<latexit sha1_base64="laKuyjD+hs71WjLoOxrEnNwjp3A=">AAACFXicbZDLSsNAFIYn9VbrLerSzWARqkhJqqAbodiNCxcV7AXaGCbTSTt0cmFmIpSQl3Djq7hxoYhbwZ1v4yTNorb+MPDxn3OYc34nZFRIw/jRCkvLK6trxfXSxubW9o6+u9cWQcQxaeGABbzrIEEY9UlLUslIN+QEeQ4jHWfcSOudR8IFDfx7OQmJ5aGhT12KkVSWrZ/2PSRHGLH4NrENeAVNA85YlYwdN24kDyfHtl42qkYmuAhmDmWQq2nr3/1BgCOP+BIzJETPNEJpxYhLihlJSv1IkBDhMRqSnkIfeURYcXZVAo+UM4BuwNXzJczc2YkYeUJMPEd1pkuK+Vpq/lfrRdK9tGLqh5EkPp5+5EYMygCmEcEB5QRLNlGAMKdqV4hHiCMsVZAlFYI5f/IitGtV86xauzsv16/zOIrgAByCCjDBBaiDG9AELYDBE3gBb+Bde9ZetQ/tc9pa0PKZffBH2tcvhpudyg==</latexit>

L0 = L(C⇤)
<latexit sha1_base64="LEia7RSb1BovA8vO9fA1e/6jxaM=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VoXZSkCroRit24cFHBPqCNYTKdtEMnD2YmQgn5Bjf+ihsXirh15c6/cZJmUVsPDJw5517uvccJGRXSMH60wsrq2vpGcbO0tb2zu6fvH3REEHFM2jhgAe85SBBGfdKWVDLSCzlBnsNI15k0U7/7SLiggX8vpyGxPDTyqUsxkkqy9erAQ3KMEYtvE9uAV3DuX8m448bN5OG0autlo2ZkgMvEzEkZ5GjZ+vdgGODII77EDAnRN41QWjHikmJGktIgEiREeIJGpK+ojzwirDg7KYEnShlCN+Dq+RJm6nxHjDwhpp6jKtMlxaKXiv95/Ui6l1ZM/TCSxMezQW7EoAxgmg8cUk6wZFNFEOZU7QrxGHGEpUqxpEIwF09eJp16zTyr1e/Oy43rPI4iOALHoAJMcAEa4Aa0QBtg8ARewBt41561V+1D+5yVFrS85xD8gfb1CzVMnSs=</latexit>

Figure 3. An example of a RW-MCMC search trajectory based on a sample probability dis-

tribution for KPP parameters using 105 RW-MCMC iterations. The trajectories starts from a

region of very low probability (white areas) and moves toward progressively higher probabilities

(the darker the blue shading, the higher the probability). The blue probability distributions on

the left side and the top are the corresponding marginal distributions of CH and CD, respec-

tively. The green star is the best known optimal of the probability distribution (i.e, the mode of

the probability distribution). The value of L(C∗) is the value of the loss function at the green

star.
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Parameterizations such as KPP exhibit a dependence on resolution in addition to234

nondimensional parameters. Here we perform all calculations for a vertical resolution235

∆z = 6.25 m and timestep ∆t = 10 minutes representative of those used in state of236

the art ESMs. We do not use enhanced diffusivity as in (Large et al., 1994) for this res-237

olution. The parameterization is relatively insensitive to halving ∆z and ∆t, for a fixed238

set of parameters, but the results are sensitive to doubling either one. Thus the optimal239

parameter values and their uncertainties are only appropriate for the resolution used for240

the calibration and would need to be updated especially if the parameterization was run241

at a coarser resolution. This dependence on resolution could be handled within the Bayesian242

method by introducing ∆z and ∆t as additional parameters in the probability distribu-243

tion, but we do not pursue this approach.244

The temporal window used to compute the loss function is from t1 = 0.25 days
(so as to eliminate initial transients in the LES) to the final simulation day chosen to
be when h ≈ 70 meters. We apply the Bayesian parameter estimation procedure to KPP
using data from one LES simulation in section 3.1 and from multiple LES simulations
using different initial stratifications in section 3.2. We use a uniform prior distributions
for the KPP parameters over the following ranges:

0 ≤ CS ≤ 1, 0 ≤ CN ≤ 8, 0 ≤ CD ≤ 6, and 0 ≤ CH ≤ 5. (22)

The surface layer fraction CS , being a fraction, must stay between zero and one. The245

other parameter limits are chosen to span the whole range of physically plausible val-246

ues around the reference values given in equation (16). The choice of uniform distribu-247

tions is made to avoid favoring any particular value at the outset.248

3.1 Calibration of KPP parameters from one LES simulation249

In this section we apply the Bayesian calibration method to the LES simulation250

of penetrative convection described in section 2.1 and quantify uncertainties in KPP pa-251

rameters in section 2.2. The horizontal averages from the LES simulations are compared252

with predictions from solutions of the KPP boundary layer scheme, equations 9 and 10.253

The boundary and initial conditions for KPP are taken to be the same as those for the254

LES simulation, i.e., 100 W/m
2

cooling at the top, ∂zT = 0.01◦C m−1 at the bottom,255

and an initial profile Tp(z, 0) = 20◦C + 0.01◦C m−1z.256

To estimate the full probability distribution function, we use the RW-MCMC al-257

gorithm with 106 iterations to sample the probability distributions of the four KPP pa-258

rameters (CS , CN , CD, CH). The large number of forward runs is possible because the259

forward model consists of a one-dimensional equation, namely, KPP in single column mode.260

The Markov chain leads to roughly 104 statistically independent samples as estimated261

using an autocorrelation length, see Sokal (1997). The RW-MCMC algorithm generates262

the entire four dimensional PDF, equation 18.263

The parameter probability distribution can be used to choose an optimal set of KPP264

parameters. Of the many choices, we pick the most probable value of the four dimen-265

sional probability distribution, the mode, because it minimizes the loss function, see Ap-266

pendix D for the detailed calculation. In figure 4a we show the horizontally averaged tem-267

perature profile from the LES simulation (continuous line) and the temperature profiles268

obtained running the KPP parameterization with reference and optimal parameters (squares269

and dots) at t = 8 days. The optimized temperature profiles are more similar to the270

LES simulation than the reference profiles especially in the entrainment region. Figure271

4b confirms that the square root of the instantaneous loss function, the error, grows much272

faster with the reference parameters. The oscillations in the error are a consequence of273

the coarseness of the KPP model: only one grid point is being entrained at any given274

moment.275
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Figure 4. KPP and horizontally averaged LES temperature profiles for different point esti-

mates of parameters at t=8 days as well as the error in time. In the left plot, the blue squares

correspond to reference parameter choices, the red circles correspond to the optimized parame-

terization (using the mode of the probability distribution), and the blue line to the horizontally

averaged LES solution, all at time t=8 days. On the right plot we show the instantaneous error

at each moment in time. We see that the “optimal” parameter does indeed reduce the bias over

the time period. The loss function is the largest square of the error over the time interval.

The improvement in boundary layer depth through optimization of the parame-276

ters is about 10%, or 10 m over 8 days. As discussed in section 2.1, the rate of deepen-277

ing can be predicted analytically within 20% by simply integrating the buoyancy bud-278

get over time and depth and assuming that the boundary layer is well mixed everywhere,279

i.e. ignoring the development of enhanced stratification within an entrainment layer at280

the base of the mixed layer. KPP improves on this prediction by including a parame-281

terization for the entrainment layer. The reference KPP parameters contribute a 10%282

improvement on the no entrainment layer prediction, and the optimized parameters con-283

tribute another 10%. While these may seem like modest improvements, they can pre-284

vent large biases for the boundary layer depth when integrated over a few months of cool-285

ing in winter rather than just 8 days. We will return to this point in the next section when286

we discuss structural deficiencies in the KPP formulation.287

To visualize the probability distribution we focus on 2D marginal distributions, e.g.,

ρ2DM (CH , CS) =

∫ ∫
ρ(C) dCDdCN , (23)

along with the other five possible pairings, as well as the 1D marginal distributions such
as

ρM (CH) ≡
∫∫∫

ρ(C) dCSdCDdCN , (24)

and similarly for the other three parameters.288

The marginal distribution can intuitively be thought of as the total of a param-289

eter (or pair of parameters) while taking into account the total uncertainty of other pa-290
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rameters. Furthermore, the marginal distribution takes into account potential compen-291

sating effects that different parameters may have on one another. The marginal distri-292

bution does not capture the effect of individually varying a parameter while keeping all293

the other parameters fixed at a particular value4. That is an effect represented by a con-294

ditional distribution.295

Constructing the marginal distributions only requires constructing histograms of296

the trajectories generated by the RW-MCMC algorithm. The 2D marginal distributions297

are visualized with heatmaps in figure 5 and the 1D marginal distributions of the cor-298

responding parameters are shown along the outermost edges. For the 2D marginal dis-299

tributions, the dark blue regions correspond to regions of high probability and the light300

blue regions are regions of low probability. The white space corresponds to regions that301

the RW-MCMC algorithm never visited. The 2D marginal distributions show that pa-302

rameters must be changed in tandem with one another in order to correspond to a sim-303

ilar model output. Furthermore their structure is distinctly non-Gaussian.304

The 1D marginal distribution of the mixing depth parameter CH (the bottom left305

rectangular panel) is much more compact than that of the other three parameters sug-306

gesting that it is the most sensitive parameter. The mixing depth parameter’s impor-307

tance stems from its control over both the buoyancy jump across the entrainment layer308

and the rate-of-deepening of the boundary layer. (Again it may be useful to remember309

that CH is often referred to as the bulk Richardson number in the KPP literature, even310

though it takes a different meaning in convective simulations, see Appendix C.) The pa-311

rameters CD and CN set the magnitude of the local and nonlocal fluxes. Results are not312

sensitive to their specific values, as long as they are large enough to maintain a well-mixed313

layer. The value of the surface layer fraction CS is peaked at lower values but is less sen-314

sitive to variations than CD or CH .315

The uncertainties of the parameters can be used to infer the uncertainties of the316

temperature profile at each depth and time, predicted by KPP. To do this, we subsam-317

ple the 106 parameter values down to 104 and evolve KPP forward in time for each set318

of parameter choices. We construct histograms for the temperature field at the final time319

for each location in space individually. We then stack these histograms to create a vi-320

sual representation of the model uncertainty. This uncertainty quantifies the sensitiv-321

ity of the parameterization with respect to parameter perturbations as defined by the322

parameter distributions.323

The histogram of temperature profiles at time t = 8 days as calculated by both324

our prior distribution (uniform distribution) and the posterior distribution (as obtained325

from the RW-MCMC algorithm) is visualized in figure 6. We see that there is a reduc-326

tion of the uncertainty in the temperature profile upon taking into account information327

gained from the LES simulation. The salient features of the posterior distribution tem-328

perature uncertainty are329

1. 0-10 meter depth: There is some uncertainty associated with the vertical profile330

of temperature close to the surface.331

2. 20-60 meter depth: The mean profile of temperature in the mixed layer is very well332

predicted by KPP.333

3. 60-70 meter depth: The entrainment region contains the largest uncertainties.334

4. 70-100 meter depth: There is virtually no uncertainty. The unstratified region be-335

low the boundary layer does not change from its initial value.336

4 That is, unless the other parameters have essentially delta function 1D marginal distributions.

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 5. Marginal Distributions for KPP Parameters. The dark blue regions correspond to

regions of high probability and the light blue regions are regions of low probability. The white

space corresponds to regions that the RW-MCMC algorithm never visited. The corresponding 1D

marginal distributions (corresponding to integrals of the 2D marginal distributions) are displayed

on the left and on top of the plots for reference.
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Figure 6. Uncertainty propagation of the temperature profile with respect to the prior and

posterior probability distributions. The use of probability distributions for parameters has the

consequence that the temperature field is no longer a point estimate, but rather a probability

distribution at each moment in space and time. By sampling from the parameter probability dis-

tributions and evolving the parameterization forward in time, we obtain a succinct representation

of what it means to “fiddle” with parameters. The legend on the right shows what the colors

correspond to in terms of the base 10 logarithm of the probability distributions.
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Now that we have applied the Bayesian methodology to one LES simulation and337

explored its implications, we are ready to apply the method to multiple LES simulations338

covering different regimes in the following section.339

3.2 Calibration of KPP parameters from multiple LES simulations340

We now use our Bayesian framework to explore possible sources of bias in the KPP341

model. To this end we investigate what happens when we change the initial stratifica-342

tion in penetrative convection simulations. This is motivated by recent work on bound-343

ary layer depth biases in the Southern Ocean (DuVivier et al., 2018; Large et al., 2019).344

In those studies, KPP failed to simulate deep boundary layers in winter when the sub-345

surface summer stratification was strong.346

We perform 32 large eddy simulations and calculate parameter distributions for each347

case. In the previous section we saw that CH is the most sensitive parameter. Thus our348

focus now will be on the optimization and uncertainty quantification of CH . In the back-349

ground, however, we are estimating all parameters. We keep the surface cooling constant350

at 100 W/m2 for all regimes, and only vary the initial stratification. The integration time351

was stopped when the boundary layer depth filled about 70% of the domain in each sim-352

ulation. We used 1283 grid points in the LES, ≈ 0.8 meter resolution in each direction5.353

We use a lower resolution for the LES in these trend studies as compared to those in the354

previous section, but results were not sensitive to this change. In the Bayesian inference,355

each one of the probability distributions were calculated 105 iterations of RW-MCMC,356

leading to an effective sample size on the order of 103. The stratifications ranged from357

N2 ≈ 1× 10−6 to N2 ≈ 3.3× 10−5s−2.358

We find, as visualized in figure 7, that CH is not constant but depends on the back-359

ground stratification, N2. The blue dots are the median values of the probability dis-360

tributions and the stars are the modes (minimum of the loss function). The error bars361

correspond to 90% probability intervals, meaning that 90% of parameter values fall be-362

tween the error bars. The large discrepancy between the median and the mode is due363

to the mode being the optimal value of the entire four dimensional distribution whereas364

the median only corresponds to the marginal distribution. The reference KPP value is365

plotted as a dashed line.366

The median values and optimal values increase monotonically with the initial strat-367

ification revealing a systematic bias. Furthermore, it exposes where the systematic bias368

comes from: no single value of CH , equation 15, can correctly reproduce the deepening369

of the boundary layer for all initial stratifications. This suggests that the scaling law for370

the boundary layer depth criteria is incommensurate with the LES data.371

The failure of equation 15 can be understood by going back to the buoyancy bud-
get in equation 7. Using the KPP estimate for the buoyancy jump across the entrain-
ment layer,

∆b ≡ 1

CSh

∫ 0

−CSh

B(z)dz −B(−h), (25)

and introducing N2
h ≡ ∂zB(−h) for the stratification at the base of the entrainment

layer to distinguish it from the interior stratification N2, we find that the boundary layer
depth criterion, equation 15, implies,

h∆b ' CHh4/3 (Qb)
1/3

Nh. (26)

5 Although the parameter estimates will vary upon using less LES resolution, the qualitative trends are

expected to be robust.
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Figure 7. Mixing depth parameter optimized across various background stratification. The

dots are the median values, the stars are the mode, and the error bars correspond to 90% prob-

ability intervals. The horizontal dashed line is the default value of the mixing depth parameter

for reference. Here one can see that the mixing depth parameter when estimated across various

regimes produces different results. This is a signature of a systematic bias in the parameteriza-

tion.

Substituting this expression in the buoyancy budget, equation 7, one obtains an implicit
equation for the evolution of the boundary layer depth h,(

1

2
N2 − CH (Qb)

1/3
h−2/3Nh

)
h2 ' Qbt. (27)

The LES simulation described in section 2.1, and many previous studies of penetrative372

convection, e.g. (Van Roekel et al., 2018; Deardorff et al., 1980), show that the bound-373

ary layer depth grows as
√
t. To be consistent, Nh would have to scale as h2/3, but this374

is not observed in the LES simulations nor supported by theory. This suggests that we375

must modify the formulation of boundary layer depth, as we now describe.376

3.3 Modification of the KPP parameterization to reduce biases377

From the multi-regime study of the previous section we found that there is no op-
timal KPP mixing depth parameter CH that works for arbitrary initial stratification.
This prompted us to look for an alternative formulation of the depth criterion which sat-
isfies the well known empirical result that the boundary layer depth deepens at a rate,

h '
√
c
Qb
N2

t, (28)

where c is a dimensionless constant found to be close to 3.0 with the LES simulation in
section 2.1. Furthermore, c was found to be close to 3.0 across all the numerical exper-
iments from section 3.2. Substituting this expression into the buoyancy budget, equa-
tion 7, we find that,

∆b

hN2
'
(

1

2
− 1

c

)
. (29)
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Figure 8. The modified mixing depth parameter optimized across various background stratifi-

cation. The dots are the median values, the stars are the mode, and the error bars correspond to

90% probability intervals. The dashed line corresponds to 1/6, the theoretical expectation based

on equation 31. This is similar to figure 7, but using the modification from section 3.3. Here

one can see that there mixing depth parameter when estimated across various regimes produces

similar results. This is a desirable feature in a parameterization.

This expression can then be used as a new boundary layer depth criterion to replace equa-
tion 15,

C? =
h
(

1
CSh

∫ 0

−CSh
B(z)dz −B(−h)

)
N2h2 + 10−11m2s−2

, (30)

where C? replaces CH as the dimensionless parameter whose value sets the boundary
layer depth. The value of N2 here is the background stratication. Based on equation 29
and our LES data, we expect

C? '
(

1

2
− 1

c

)
' 1

6
. (31)

Equation 30 is an implicit equation for h which guarantees that equation 28 holds.378

We now repeat the model calibration in section 3.2 but using this new boundary379

layer depth criterion to test whether there is an optimal value of C? that is independent380

of initial stratification. We estimate all KPP parameters and show the new mixing depth381

parameter for simulations with different initial stratifications in figure 8. Encouragingly382

there is no obvious trend in the optimal values of C? and the error bars overlap for all383

cases. This supports the new criterion in the sense that parameters estimated in differ-384

ent regimes are now consistent with one another. The uncertainties in C? translate into385

an uncertainty in boundary layer depth prediction. In particular, values between 0.05 ≤386

C? ≤ 0.2 imply a boundary layer depth growth in the range
√

2.22tQb/N2 ≤ h ≤387 √
3.33tQb/N2.388

Additionally, one can check if the constants estimated following the methodology389

of section 3 are consistent with an independent measure directly from the diagnosed LES390
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simulation. In particular the LES simulations suggest that C? ' 1/6 as per equation391

31. From figure 8 we see that the optimal C? is smaller than 1/6 = 0.167 (the dashed392

black line) and the value 1/6 is not within the confidence intervals for many of the sim-393

ulations. There are several potential reasons for the discrepancy, e.g., the neglect of cur-394

vature in the buoyancy budget (since we assumed a piece-wise linear buoyancy profile)395

or the finite resolution of the parameterization. Perhaps the most likely explanation is396

the difference in how the boundary layer depth was diagnosed in the LES, which need397

not have the same meaning as the one in KPP. A different definition in the LES simu-398

lation, such as the depth of maximum stratification, would yield a different scaling law,399

but still proportional to
√
t. Whatever the choice, the Bayesian parameter estimation400

bypasses these ambiguities/inconsistencies by direct comparison with the entire horizon-401

tally average temperature profile from the LES.402

We do not explore other modifications to the boundary layer depth criterion as this403

would greatly expand the scope of this article. Furthermore, biases in KPP are not lim-404

ited to the cases explored here, see Van Roekel et al. (2018) for discussions and reme-405

dies. The criterion described in this section assumes a constant initial stratification and406

a constant surface heat loss, which leads to the
√
t growth of the boundary layer depth.407

It would be interesting to extend the criterion to arbitrary initial stratification, variable408

surface heat fluxes, not to mention the interaction with wind-driven mixing. The goal409

here is not to derive a new parameterization, but rather to illustrate and argue for a Bayesian410

methodology in the refinement and assessment of parameterizations.411

4 Discussion412

We presented a Bayesian approach to assess the skill of the K-Profile Parameter-413

ization (KPP) for turbulent convection triggered by surface cooling in an initially sta-414

bly stratified ocean. The KPP model for this physical setting consists of a one dimen-415

sional model with an algebraic constraint for the mixing-layer depth together with four416

non-dimensional parameters. These parameters consisted of an algebraic reorganization417

of the original KPP parameters so that terms in the equations could be associated with418

choices of parameters. Parameters were estimated by reducing the mismatch between419

the vertical buoyancy profile predicted by KPP and the area-averaged buoyancy profile420

simulated with a three dimensional LES code for the same initial conditions and surface421

forcing. Using Bayes’ formula we further estimated the full joint probability distribu-422

tion of the four parameters. Furthermore, the probability distribution was used to quan-423

tify inter-dependencies among parameters and their uncertainty around the optimal val-424

ues.425

Repeating the Bayesian parameter optimization and uncertainty quantification for426

different initial stratifications, we found that no unique set of parameters could capture427

the deepening of convection in all cases. This implied that the KPP formulation does428

not capture the dependence of convection on the initial stratification in the simple test429

case considered here: constant surface cooling, constant initial stratification, no wind,430

and no background flow. The parameter that required re-tuning for each case was the431

one associated with the boundary layer depth criterion, thereby suggesting that this cri-432

terion has the wrong functional dependence on stratification. We thus reformulated the433

boundary layer depth criterion to capture the semi-analytical result, supported by the434

LES simulations, that the boundary layer depth deepens as the square root of time when435

the initial stratification is constant. The validity of the new formulation was vindicated436

because the Bayesian approach was able to find a set of parameters which captured the437

evolution of the boundary layer, as compared to the LES simulations, for all initial str-438

tatifications. In this way, the Bayesian methodology allowed us identify and remove a439

bias in KPP formulation.440
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The methodology outlined here could be as easily applied to other parameteriza-441

tions of boundary layer turbulence, such as those reviewed in CVMix (Griffies et al., 2015),442

Pacanowski and Philander (1981), Mellor and Yamada (1982), Price et al. (1986), and443

Kantha and Clayson (1994) . It is expected that the inclusion of additional physics, such444

as wind-driven mixing and its interaction with convection, would also be amenable to445

the techniques described in this manuscript. Our experience is that progress is faster if446

one starts with simple idealized setups, like the ones considered here, and then move to447

progressively more realistic ones which accounted for variable stratification and surface448

heat fluxes, wind-stress forcing, background shear, surface waves, etcetera. The Bayesian449

method would then provide a rigorous evaluation of parameter uncertainty, parameter450

dependencies, and biases in the formulation of the parameterization.451

Ultimately, our hope is that parameter probability distributions estimated in lo-452

cal regimes will serve as useful prior information for calibration/tuning of Earth System453

Models (ESMs). Local simulations of turbulence must be carefully designed and incor-454

porate suites of subgrid-scale processes that have leading order impact in global ocean455

dynamics: surface and bottom boundary layer turbulence, surface wave effects, deep con-456

vection, mesoscale and submesoscale turbulence, and so forth. Bayesian calibration of457

parameterization for each subgrid-scale process will then result in probability distribu-458

tions for all the nondimensional parameters associated with the parameterizations. These459

distributions can then be used as prior information for what is a reasonable range of val-460

ues that each parameter can take, when the parameterizations are implemented in an461

ESMs.462

With regards to calibration of ESMs, the parameterizations of different subgrid-463

scale processes may nonlinearly interact with each other and with the resolved physics.464

Additional calibration is then required for the full ESM. Presently this is achieved by465

perturbing the parameters within plausible ranges (Mauritsen et al., 2012; Schmidt et466

al., 2017). The Bayesian approach provides an objective approach to determine a plau-467

sible range. The same algorithm cannot be used to calibrate the ESM, because the method-468

ologies described here are not computationally feasible when applied to larger systems.469

Promising approaches to address this challenge through the use of surrogate models are470

described in Sraj et al. (2016) and Urrego-Blanco et al. (2016). Such models bring in-471

ternal sources of uncertainty and it is not clear to what extent one can trust a surrogate472

of a full ESM. One potential way to address this additional challenge is the Calibrate,473

Emulate, and Sample (CES) approach outlined in Cleary et al. (2020). There the sur-474

rogate model’s uncertainty is estimated through the use of Gaussian processes and in-475

cluded as part of a consistent Bayesian calibration procedure.476

Should the global problem still exhibit significant biases, even when all available477

prior information about parameterizations and about global data are leveraged utiliz-478

ing emulators or traditional methods of tuning, then one would have to conclude that479

there is a fundamental deficiency in our understanding of how the different components480

of the climate system interact with one another, or that perhaps the models do not in-481

clude some key process. For example, Rye et al. (2020) argue that glacial melt might be482

one such missing process which is not currently represented in ESMs. The advantage of483

the systematic calibration approach outlined here is that it allows us to quantify uncer-484

tainty in ESM projections and identify the sources of such uncertainty.485

Appendix A Oceananigans.jl486

Oceananigans.jl (Ramadhan et al., 2020) is open source software for ocean process
studies written in the Julia programming language (Bezanson et al., 2017; Besard et al.,
2019). For the large eddy simulations (LESs) reported in this paper, Oceananigans.jl is
configured to solve the spatially-filtered, incompressible Boussinesq equations with a tem-
perature tracer. Letting u = (u, v, w) be the three-dimensional, spatially-filtered ve-
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locity field, θ be the conservative temperature, p be the kinematic pressure, f be the Cori-
olis parameter, and τ and q be the stress tensor and temperature flux due to subfilter
turbulent diffusion, the equations of motion are A1–A3,

∂tu+ (u · ∇)u+ fẑ × u+∇p = bẑ −∇ · τ , (A1)

∂tθ + u · ∇θ = −∇ · q, (A2)

∇ · u = 0. (A3)

The buoyancy b appearing in A1 is related to conservative temperature by a linear equa-
tion of state,

b = αg (θ0 − θ) , (A4)

where θ0 = 20◦C is a reference temperature, α = 2 × 10−4 (◦C)−1 is the thermal ex-487

pansion coefficient, and g = 9.81 m2 s−1 is gravitational acceleration at the Earth’s sur-488

face.489

A1 Subfilter stress and temperature flux490

The subfilter stress and momentum fluxes are modeled with downgradient closures,
such that

τij = −2νeΣij and q = −κe∇θ, (A5)

where Σij ≡ 1
2 (∂iuj + ∂jui) is the strain rate tensor, and νe and κe are the eddy vis-491

cosity and eddy diffusivity of conservative temperature. The eddy viscosity νe and eddy492

diffusivity κe in equation A5 are modeled with the anisotropic minimum dissipation (AMD)493

formalism introduced by (Rozema et al., 2015) and (Abkar et al., 2016), refined by (Verstappen,494

2018), and validated and described in detail for ocean-relevant scenarios by (Vreugdenhil495

& Taylor, 2018). AMD is simple to implement, accurate on anisotropic grids (Vreugdenhil496

& Taylor, 2018), and relatively insensitive to resolution (Abkar et al., 2016).497

A2 Numerical methods498

To solve equations A1–A3 with the subfilter model in equation A5 we use the soft-499

ware package ‘Oceananigans.jl’ written in the high-level Julia programming language500

to run on Graphics Processing Units, also called ‘GPUs’ (Bezanson et al., 2017; Besard501

et al., 2019; Besard et al., 2019). Oceananigans.jl uses a staggered C-grid finite vol-502

ume spatial discretization (Arakawa & Lamb, 1977) with centered second-order differ-503

ences to compute the advection and diffusion terms in equation A1 and equation A2, a504

pressure projection method to ensure the incompressibility of u, a fast, Fourier-transform-505

based eigenfunction expansion of the discrete second-order Poisson operator to solve the506

discrete pressure Poisson equation on a regular grid (Schumann & Sweet, 1988), and second-507

order explicit Adams-Bashforth time-stepping. For more information about the staggered508

C-grid discretization and second-order Adams Bashforth time-stepping, see section 3 in509

(Marshall et al., 1997) and references therein. The code and documentation are avail-510

able for perusal at https://github.com/CliMA/Oceananigans.jl.511

Appendix B Parcel Theory Derivation for the KPP Boundary Layer512

Depth Criterion513

Here we summarise the derivation of the KPP boundary layer depth criterion for
penetrative convection, because we could not find a succinct description in the published
literature. Following (Deardorff et al., 1980) we consider the vertical momentum equa-
tion for a parcel punching through the entrainment layer,

w′
dw′

dz
' −(b′ − b̄) (B1)
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where b′ is the buoyancy of the parcel, assumed to be equal to the mixed layer value, and
b̄ is the area mean buoyancy profile in the entrainment layer. This equation holds if the
area occupied by sinking plumes is small compared to the total area so that b̄ is a good
proxy for the buoyancy in the environment around the plumes and b′−b̄ represents the
buoyancy force experienced by the parcel. The parcel velocity decelerates from w′ ≡ we
at the mixed layer depth (z = −h + ∆h) to zero at the boundary layer depth (z =
−h) where turbulence vanishes. Assuming that the background stratification N2

e is ap-
proximately constant in the entrainment layer we also have b′ − b̄ = N2

e (−h + ∆h) −
N2
e z. The momentum equation can then be integrated from z = −h+ ∆h to z = −h,

(we)
2 ' N2

e∆h2, (B2)

assuming that the background stratification N2
e is constant in the entrainment layer. In-

troducing ∆b as the difference between the environment buoyancy in the mixed layer and
that at the base of the entrainment layer, we have ∆b = N2

e∆h, and hence,

∆b ∝ w∗Ne, (B3)

and (Deardorff et al., 1980) assumes that we ∝ w∗(−h+ ∆h). The criterion for diag-
nosing the boundary layer depth follows from this relationship; h is defined as the first
depth z below the ocean surface where,

∆b(−h)

w∗(−h)Ne(−h)
= CH , (B4)

for some universal constant CH . In the main text we show this scaling fails to predict514

the rate of deepening of the boundary layer depth in LES simulations. Further analy-515

sis, not reported here, show that this failure stems from relationship (B3) which is not516

supported by the simulations.517

Equation (B4) is often referred to as a critical Richardson number criterion which
may seem odd given that no Richardson number appears in the expression. This is best
understood if one extends the criterion to the case when there is a momentum shear in
the boundary layer, typically induced by mechanical stresses, such that in addition to
a density jump ∆b(z) there is also a momentum jump ∆u(z) across the entrainment layer.
The entrainment layer base is then found where the Richardson number matches a crit-
ical value Ric,

Ric =
∆b(−h)

(∆u(−h))2 + CH

Ric
w∗(−h)Ne(−h)

. (B5)

The rationale behind this extended criterion can be found in (Large et al., 1994). For518

the purely convective limit ∆u(−h) = 0 and the dependence on Ric drops out.519

Appendix C Relationship between the model in section 2.2 and Large520

et al. (1994)’s formulation of KPP521

The formulation of KPP in Section 2.2 represents an algebraic reorganization of522

the formulation proposed by Large et al. (1994). The two formulations are mathemat-523

ically equivalent. In this appendix, we discuss in detail how the four free parameters CH ,524

CS , CD, and CN are algebraically related to the free parameters proposed by Large et525

al. (1994).526

Large et al. (1994)’s formulation of KPP for the case of penetrative convection with527

no horizontal shear introduces six nondimensional parameters: the Von Karman constant528

κ = 0.4, the ratio of the entrainment flux to the surface flux βT = 0.2, a constant that529

sets the amplitude of the non-local flux C∗ = 10, a constant that ensures the continu-530

ity of the buoyancy flux profile cs = 98.96, the surface layer fraction ε = 0.1, and a531
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parameter that controls the smoothing of the buoyancy profile at the base of the bound-532

ary layer depth Cv. Large et al. (1994) argue that Cv can take any value between 1 and533

2. We set the reference value Cv = 1.7, which corresponds to the strong stratification534

limit in the model proposed by Danabasoglu et al. (2006) and given by equation (8.184)535

in Griffies et al. (2015).536

In our formulation we introduce four parameters which are related to the original
Large et al. (1994) parameters as follows,

CH =
Cv(βT )1/2

(csκ4ε)1/6
, CS = ε, CD = (csκ

4)1/3, and CN = C∗(csκ
4ε)1/3. (C1)

We are able to reduce the number of parameters from six (ε, cs, CV , βT , κ, C
∗) to four537

(CH , CS , CD, CN ), because in the case of penetrative convection the two combinations538

Cv(βT )1/2 and csκ
4 always appear together.539

Using the reference KPP parameter values reported above, our parameters take the
values:

CH = 0.956, CS = 0.1, CD = 1.36, CN = 6.3275. (C2)

We refer to these as the reference parameters.540

It is worth commenting why the critical Richardson number, the focus of much lit-
erature on KPP, does not appear when considering penetrative convection. The bound-
ary layer depth is determined implicitly through equations (21) and (23) in Large et al.
(1994),

Rib(z) =
(Br −B(z))(−z)
|Vr − V (z)|2 + V 2

t (z)
and V 2

t (z) =
Cv(βT )1/2

Ricκ2
(csε)

−1/2(−z)Nws, (C3)

where B is buoyancy and Br is the average of B between the surface and the depth εz.
The boundary layer depth is defined as the depth z = −h where Rib(−h) = Ric. For
convection without shear, the case considered in this paper, |Vr−V (z)|2 = 0 and ws =
w∗(csε)1/3κ4/3. The two equations can therefore be combined together:

Cv(βT )1/2

κ2/3
(csε)

−1/6 =
(Br −B(−h))h

hNw∗
. (C4)

and the critical Richardson number drops out from the expression. This expression fur-541

ther supports our decision to introduce the single parameter CH in favor of the combi-542

nation of original parameters appearing on the left hand side of (C4). In penetrative con-543

vection it is the parameter CH that controls the boundary layer depth rather than the544

critical Richardson number.545

The optimal parameters and probability distributions for (CH , CS , CD, CN ) can
be mapped onto (ε, Cv(βT )1/2, csκ

4, C∗) using the inverse transformation,

ε = CS , csκ
4 = (CD)3, C∗ =

CN

CD(CS)1/3
, and Cv(βT )1/2 = CH(CD)1/2(CS)1/6. (C5)

Appendix D A Primer on Uncertainty Quantification546

The probability distribution of the parameters in a parameterization must quan-547

tify the likelihood that the parameters take on values other than those that minimize548

the loss function L. To achieve this the probability distribution must satisfy two key prop-549

erties:550

1. In the limit of no uncertainty, the probability distribution should collapse to a delta551

function centered at the optimal parameter values that minimize the loss function.552
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2. The uncertainty of a parameter value C should increase proportionally to the value553

of L(C).554

There are many probability distributions that satisfy the above properties. We choose
the following:

ρ(C) ∝ ρ0(C) exp (−L(C)/L0) , (D1)

where ρ0 is a uniform prior distribution, L is a loss function, and L0 is a hyperparam-555

eter.556

The hyperparameter L0 sets the shape of the likelihood function exp (−L(C)/L0)557

and its associated uncertainty quantification. The limit L0 → 0 corresponds to no un-558

certainty, because the likelihood function and the probability distribution collapse to a559

delta function peaked at the optimal parameter values that minimize the loss function.560

The limit L0 →∞ instead corresponds to a likelihood function that adds no informa-561

tion to reduce the uncertainty and the posterior distribution ρ(C) is equal to the prior562

one ρ0(C). Thus L0 must take finite values between zero and infinity, if the likelihood563

function is to add useful information.564

For any finite value of L0, the probability distribution has its mode (maximum)
at the optimal parameters, if the prior distribution is uniform. This can be easily demon-
strated. Let C∗ denote the parameter values for which the loss function has its global
minimum and C denote any other set of parameter values. It is then the case that ρ(C)
is smaller than ρ(C∗) for any C,

L(C∗) ≤ L(C) ⇒ exp (−L(C)/L0) ≤ exp (−L(C∗)/L0)⇒ ρ(C) ≤ ρ(C∗). (D2)

Hence the most probable value of the probability distribution is achieved at the mini-565

mum of the loss function independent of L0 for a uniform prior distribution.566

As mentioned in section 3, it is convenient to set the hyperparameter L0 to be equal567

to the minimum of the loss function L(C∗). This choice satisfies two key requirements.568

First, the uncertainties of parameters should be independent of the units of the loss func-569

tion. Second, the hyperparameter L0 should be larger the larger the loss function L(C∗),570

because the latter is a measure of the parameterization bias and the former should be571

larger if there is more uncertainty about acceptable parameter values.572

In practice it is seldom possible to find the global minimum of L and instead we573

adopt a “best guess” of the optimal parameters C̃ and set L̃0 = L(C̃). Since L(C∗) ≤574

L(C̃), our choice is conservative because a larger L0 corresponds to more uncertainty.575

Appendix E Random Walk Markov Chain Monte Carlo576

We use the Random Walk Markov Chain Monte Carlo Method (RW-MCMC) in-577

troduced by Metropolis et al. (1953) to sample values from the probability distribution.578

While other more efficient algorithms exist, our parameter space is only four dimensional579

and computational cost is not an issue. The RW-MCMC samples the probability func-580

tion by taking a random walk through parameter space. The algorithm generates a se-581

quence of sample parameter values Ci in such a way that, as more and more sample val-582

ues are produced, the distribution of values more closely approximates the joint param-583

eter probability distribution of the parameters. At each iteration, the algorithm picks584

a candidate parameter set for the next sample value based on the current sample value.585

Then, with some probability, the candidate parameter set is either accepted (in which586

case the candidate value is used in the next iteration) or rejected (in which case the can-587

didate value is discarded, and current values reused in the next iteration). The criterion588

for acceptance and its relation to the probability distribution is best described by sketch-589

ing the algorithm:590
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1. Choose a set of initial parameter values C0. We pick our best guess at the set of591

values that minimize the log-likelihood function as estimated from standard min-592

imization techniques.593

2. Choose a new set of candidate parameters by adding a Gaussian random variable594

with mean zero and covariance matrix Σ to the inital set, C̃1 = C0 + N (0,Σ).595

The algorithm is guaranteed to work independently of the choice of Σ as long as596

it is nonzero and does not vary throughout the random walk. However suitable597

choices can speed up convergence and will be discussed below.598

3. Calculate ∆` = `(C0) − `(C̃1). This is a measure of how much more likely C̃1599

is relative to C0.600

4. Draw a random variable from the interval [0, 1], e.g, calculate u = U(0, 1). If log(u) <601

∆` accept the new parameter values and set C1 = C̃1. Otherwise reject the new602

parameter values C1 = C0. This is the “accept / reject” step. Note that if ∆` >603

0, i.e. if the proposed parameter produces a smaller output in the negative log-604

likelihood function, the proposal is always accepted.605

5. Repeat steps 2-4 , replacing C0 → Ci and C1 → Ci+1, to generate a sequence606

for Ci of parameter values.607

The sequence of parameter values generated by the algorithm can then be used to con-608

struct any statistics of the probability distribution 18, including empirical distributions,609

marginal distributions, and joint distributions. In the context of KPP it can generate610

the uncertainty of the temperature value at any depth and time as well as the uncertainty611

of the boundary layer depth at a given time.612

To guide the choice of an appropriate value for Σ, one diagnoses the “number of613

independent samples” by using approximations of the correlation length as described by614

Sokal (1997). If Σ is too small then the acceptance rate is too large since each candidate615

parameter is barely any different from the original one. Too large a Σ yields too low ac-616

ceptance rates. To find an appropriate compromise we perform a preliminary random617

walk and estimate the covariance matrix of the resulting distribution. We then set Σ equal618

to this covariance matrix.619

Last, in order to sample parameters within a finite domain, we artificially make the620

parameter space periodic and the random walk is therefore guaranteed to never leave the621

desired domain.622
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