# Fresnel integration $\backslash \&$ diffraction amplitude 

Han Geurdes ${ }^{1}$<br>${ }^{1}$ Geurdes data science \& consultancy

November 22, 2022


#### Abstract

The Fresnel integral is used in diffraction of wave phenomena. It is demonstrated that the ordinary Fresnel integral has additional yet unkown $\$ \backslash \mathrm{pm} 1 \$$ multivaluedness. This result gives new insight in diffraction.


# . Fresnel integration \& diffraction amplitude 

Corresponding author: Han Geurdes, Geurdes datascience kvk64522202, C vd Lijnstraat 164, 2593 NN, the Hague, Netherlands (han.geurdes@gmail.com)

No data was used in this methodological / mathematical paper.

2 Abstract. The Fresnel integral is used in diffraction of wave phenomena.
3 It is demonstrated that the ordinary Fresnel integral has additional yet un-
${ }_{4}$ kown $\pm 1$ multivaluedness. This result gives new insight in diffraction.

## 1. Introduction

${ }_{22} \int_{0}^{\infty} e^{i a x^{2}} d x=e^{i \pi / 4} \sqrt{\frac{\pi}{4|a|}}$
${ }_{23}$ and $a \in \mathbb{R}$ with $|a| \neq 0$. Let us subsequently define the integral equation
${ }_{24} \quad F=\int_{0}^{\infty} d \xi \int_{-\xi}^{\infty} d x e^{i(x+\xi)^{2}} e^{2 i \xi^{2}}$
${ }_{25}$ Because in the $x$ integral we can perform the substitution $z=x+\xi$, it follows from (1)
${ }_{26}$ that
${ }^{27} \int_{-\xi}^{\infty} d x e^{i(x+\xi)^{2}}=\int_{0}^{\infty} d z e^{i z^{2}}=e^{i \pi / 4} \sqrt{\frac{\pi}{4}}$
${ }_{28}$ Therefore, with the $\xi$ integral and $a=2$, the $F$ in (2) is equal to
${ }_{29}^{29} \quad F=\left(e^{i \pi / 4} \sqrt{\frac{\pi}{4 \times 2}}\right) \times\left(e^{i \pi / 4} \sqrt{\frac{\pi}{4}}\right)=\frac{i \pi}{4 \sqrt{2}}$
${ }_{30}$ We will continue to rewrite (2) and make use of (4) to obtain Fresnel integral forms.
${ }_{31}$ Define the transformation
${ }_{32} \quad u=x+\xi$
${ }_{33} \quad v=x-\xi$
${ }_{34}$ The jacobian determinant of the transformation (5) is
$\left.{ }_{35} \quad \| J \xi, x ; u, v\right)\|=\| \begin{aligned} & \frac{\partial \xi}{\partial u} \frac{\partial x}{\partial v} \\ & \frac{\partial \xi}{\partial v} \frac{\partial x}{\partial u}\end{aligned} \|=$
${ }_{36}=\left|\left(\frac{1}{2} \times \frac{1}{2}\right)-\left(\frac{1}{2} \times \frac{-1}{2}\right)\right|=\frac{1}{2}$
${ }_{40}$ If we transform $v \rightarrow-v$ then
${ }_{41} \quad F=\frac{1}{2} \int_{0}^{\infty} d u \int_{-u}^{\infty} d v e^{i u^{2}} e^{\frac{i}{2}(u+v)^{2}}$
${ }_{42}$ Subsequently, for (8) the following crucial transformation is used.
${ }_{43} \quad \alpha=-u v$
${ }_{44} \quad \beta=\frac{1}{2}\left(u^{2}+v^{2}\right)$
${ }_{45}$ The jacobian determinant of (9) is
${ }_{46} \quad\|J(u, v ; \alpha, \beta)\|=\left\|\begin{array}{l}\frac{\partial u}{\partial \alpha} \frac{\partial u}{\partial \beta} \\ \frac{\partial v}{\partial \alpha} \frac{\partial v}{\partial \beta}\end{array}\right\|$
${ }_{47}$ To compute (10), firstly
${ }_{48} \quad \beta-\alpha=\frac{1}{2}(u+v)^{2} \geq 0$
${ }_{49} \beta+\alpha=\frac{1}{2}(u-v)^{2} \geq 0$
${ }_{50}$ Secondly, because, $v \geq-u$ and $u \geq 0$, we have $u+v \geq 0$. With $-u \leq v \leq u$ it follows,
${ }_{51} \quad u-v \geq 0$ and for $u \leq v<\infty$ we have $u-v \leq 0$. Therefore, there is a $\eta_{0}= \pm 1$ such that
${ }_{52} \quad u-v=\eta_{0} \sqrt{2(\beta+\alpha)}$.
${ }_{53}$ To find the entries of the jacobian (10) we employ $\partial / \partial \alpha$ and $\partial / \partial \beta$ respectively on (11).
${ }_{54}$ The two differential quotients entries with $\partial / \partial \alpha$ are
${ }_{55} \frac{\partial u}{\partial \alpha}=\frac{v}{u^{2}-v^{2}}$
${ }_{56} \frac{\partial v}{\partial \alpha}=\frac{-u}{u^{2}-v^{2}}$
${ }^{57}$ Employing $\partial / \partial \beta$ on the equations in (11) gives
${ }_{58} \frac{\partial u}{\partial \beta}=\frac{u}{u^{2}-v^{2}}$
${ }_{59} \frac{\partial v}{\partial \beta}=\frac{-v}{u^{2}-v^{2}}$
${ }_{60}$ The determinant follows from (10), (12) and (13). It is
${ }_{61} \quad\|J(\alpha, \beta ; u, v)\|=\left|\left(\frac{\partial u}{\partial \alpha} \frac{\partial v}{\partial \beta}\right)-\left(\frac{\partial u}{\partial \beta} \frac{\partial v}{\partial \alpha}\right)\right|=$
${ }_{62} \quad=\left|\frac{v}{u^{2}-v^{2}} \frac{-v}{u^{2}-v^{2}}-\frac{u}{u^{2}-v^{2}} \frac{-u}{u^{2}-v^{2}}\right|=$
${ }_{63} \quad=\left|\frac{u^{2}-v^{2}}{\left(u^{2}-v^{2}\right)^{2}}\right|=\left|\frac{1}{u^{2}-v^{2}}\right|=\frac{1 / 2}{\sqrt{\beta^{2}-\alpha^{2}}}$
${ }_{64}$ Here, $|u-v|=\sqrt{2(\beta+\alpha)}$. Thirdly, please look at $\exp \left[\frac{i}{2}(u+v)^{2}\right]$. From Euler's and 65 the DeMoivre's rule [Deshpande, 1986], it follows
${ }_{66} \quad e^{i(u+v)^{2}}=\left\{e^{\frac{i}{2}(u+v)^{2}}\right\}^{2}$
${ }_{67}$ With $\eta_{1}= \pm 1$, we arrive at
${ }_{68} \quad \eta_{1}^{2} e^{2 i(\beta-\alpha)}=e^{i(u+v)^{2}}=\left\{e^{\frac{i}{2}(u+v)^{2}}\right\}^{2}$
${ }_{69}$ Then $\eta_{1}^{2}=1$ and, $2(\beta-\alpha)=(u+v)^{2}$. This implies for the integral in (8)

70 $e^{\frac{i}{2}(u+v)^{2}}=\eta_{1} e^{i(\beta-\alpha)}$

Fourthly, the $u^{2}$ exponent in (8) must be given in terms of $\alpha$ and $\beta$. We have, $u^{2}=2 \beta-v^{2}$.
If it is noted that $v=-\frac{\alpha}{u}$ we can have, $0<\epsilon \leq u \leq \infty$, and, $0<\epsilon \rightarrow 0$, then via $u^{2}=2 \beta-\left(\frac{\alpha^{2}}{u^{2}}\right)$ the following $u$ polynomial is obtained
${ }^{74} \quad u^{4}=2 \beta u^{2}-\alpha^{2}$
${ }_{75}$ Writing $y=u^{2}$ we have, $y\left(\eta_{2}\right)=\beta+\eta_{2} \sqrt{\beta^{2}-\alpha^{2}} \geq 0$ and $\eta_{2}= \pm 1$. Note that $y\left(\eta_{2}=\right.$
$\left.{ }_{76}-1\right) \geq 0$. Hence, two forms $\eta_{2}= \pm 1$, apply
${ }_{77} e^{i u^{2}}=e^{i\left(\beta+\eta_{2} \sqrt{\beta^{2}-\alpha^{2}}\right)}$
${ }_{78}$ With the transformation (9)-(19) equation (8) can be written
${ }^{79} \quad F=\frac{\eta_{1}}{2^{2}} \int_{-\infty}^{+\infty} d \alpha \times$
${ }_{80} \times \int_{|\alpha|}^{+\infty} d \beta \frac{e^{i(\beta-\alpha)} e^{i\left(\beta+\eta_{2} \sqrt{\beta^{2}-\alpha^{2}}\right)}}{\sqrt{\beta^{2}-\alpha^{2}}}$
${ }_{81}$ with $|\alpha|=\max \{\alpha,-\alpha\}$.
${ }_{82}$ Subsequently a linear transformation is applied. It is
${ }_{83} \quad \lambda=\beta+\alpha \geq 0$
${ }_{84} \zeta=\beta-\alpha \geq 0$
${ }_{85}$ Recall that, $\lambda=\beta+\alpha=\frac{1}{2}(u+v)^{2} \geq 0$, and, $\zeta=\beta-\alpha=\frac{1}{2}(u-v)^{2} \geq 0$. The jacobian
${ }_{86}$ here is $\|J(\lambda, \zeta ; \alpha, \beta)\|=1 / 2$. This transforms the equation (20) to
${ }_{87} \quad F=\frac{\eta_{1}}{2^{3}} \int_{0}^{+\infty} d \lambda \int_{0}^{+\infty} d \zeta \frac{1}{\sqrt{\lambda \zeta}} e^{i \zeta} e^{i\left(\frac{\lambda+\zeta}{2}+\eta_{2} \sqrt{\lambda \zeta}\right)}$
${ }_{88}$ Continuing

89 $\quad p=\sqrt{\lambda} \geq 0$
9. $\quad q=\sqrt{\zeta} \geq 0$
${ }_{91}$ The jacobian is: $\|J(p, q ; \lambda, \zeta)\|=4 p q$. Equation (22) therefore is
${ }_{92} \quad F=\frac{\eta_{1}}{2} \int_{0}^{+\infty} d q \int_{0}^{+\infty} d p e^{i q^{2}} e^{i\left\{\frac{1}{2}\left(p^{2}+q^{2}\right)+\eta_{2} p q\right\}}$
${ }_{93}$ Then, $\frac{1}{2}\left(p+\eta_{2} q\right)^{2}-\frac{1}{2} q^{2}=\frac{1}{2} p^{2}+\eta_{2} p q$. Hence,
${ }_{94} \quad F=\frac{\eta_{1}}{2} \int_{0}^{+\infty} d q e^{i q^{2}} \int_{0}^{+\infty} d p e^{\frac{i}{2}\left(p+\eta_{2} q\right)^{2}}$
${ }_{95}$ Using $r=p+\eta_{2} q, d p=d r$ and $r(p=0)=\eta_{2} q$
${ }_{9} \quad F=\frac{\eta_{1}}{2} \int_{0}^{+\infty} d q e^{i q^{2}} \int_{\eta_{2} q}^{+\infty} d r e^{i r^{2} / 2}$

97
This gives
${ }_{98} \int_{\eta_{2} q}^{+\infty} d r e^{i r^{2} / 2}=e^{i \pi / 4} \sqrt{\frac{\pi}{2}}-\eta_{2} \int_{0}^{q} d r e^{i r^{2} / 2}$

99
${ }_{100} \quad F=\frac{\eta_{1}}{2}\left(e^{i \pi / 4} \sqrt{\frac{\pi}{4}} \times e^{i \pi / 4} \sqrt{\frac{\pi}{2}}\right)+$
${ }_{101}-\frac{\eta_{1} \eta_{2}}{2} \int_{0}^{+\infty} d q e^{i q^{2}} \int_{0}^{q} d r e^{i r^{2} / 2}$

102
${ }^{103} \quad \int_{0}^{\infty} e^{i r^{2} / 2} d r=\int_{0}^{q} e^{i r^{2} / 2} d r+\int_{q}^{\infty} e^{i r^{2} / 2} d r$
104 then,
${ }^{105} \quad I=\lim _{0<\epsilon^{\prime} \rightarrow 0} \int_{\epsilon^{\prime}}^{+\infty} d q e^{i q^{2}} \int_{q}^{\infty} d r e^{i r^{2} / 2}=$
106

$$
\begin{equation*}
=\frac{i \pi}{2 \sqrt{2}}\left(1-\eta_{2}+\eta_{1} \eta_{2}\right) \tag{29}
\end{equation*}
$$

107

## 3. Discussion

108
To harmonize (29) with (1) we claim the proportionality

109
${ }_{110}^{i \pi / 4} \sqrt{\left(\frac{\pi}{2}\right)} \lim _{0<\epsilon \rightarrow 0}\left\{\left(1-\eta_{2}+\eta_{1} \eta_{2}\right)^{1-\theta(\epsilon-q)}\right.$

$$
\left.+f_{\epsilon}(q)\right\}
$$

112

113
${ }_{114} \int_{0}^{\infty} d r e^{i r^{2} / 2}=e^{i \pi / 4} \sqrt{\left(\frac{\pi}{2}\right)}$

115

116
${ }_{117}\left\{\int_{\epsilon^{\prime}}^{\infty} d q\left(1-\eta_{2}+\eta_{1} \eta_{2}\right)^{1-\theta(\epsilon-q)} e^{i q^{2}}\right.$
$\left.{ }_{118} \quad \int_{\epsilon^{\prime}}^{\infty} d q+f_{\epsilon}(q) e^{i q^{2}}\right\}=$
${ }_{119} \quad=e^{i \pi / 4} \sqrt{\left(\frac{\pi}{4}\right)}\left(1-\eta_{2}+\eta_{1} \eta_{2}\right)$
${ }_{120}$ Only if $q=0 ;(0 \leq q \leq \epsilon)$, we have
${ }^{121} \lim _{0<\epsilon \rightarrow 0}\left(1-\eta_{2}+\eta_{1} \eta_{2}\right)^{1-\theta(\epsilon-q)}=1$.

122

123
124 $\lim _{0<\epsilon \rightarrow 0} \lim _{0<\epsilon^{\prime} \rightarrow 0:\left(\epsilon<\epsilon^{\prime}\right)} \int_{\epsilon^{\prime}}^{\infty} d q f_{\epsilon}(q) e^{i q^{2}}=0$
${ }_{125}$ As an example of the function $f_{\epsilon}$
${ }^{126} \quad f_{\epsilon}(q)=2 q \sin \left(q^{2} / \epsilon\right)+2 q \cos \left(q^{2} / \epsilon\right)$
${ }_{127}$ with, $f_{\epsilon}(0)=0$. Equation (33) gives, with $y=q^{2}$ and $y \geq 0$ and $\epsilon<\epsilon^{\prime}$ together with
${ }_{128} \epsilon^{\prime 2}<\epsilon,\left(\right.$ e.g. $\left.\epsilon^{\prime}=\sqrt{2} \epsilon\right)$.
${ }^{129} \quad I_{\epsilon, \epsilon^{\prime}}=\int_{\epsilon^{\prime 2}}^{\infty} d y\left\{e^{(i-\epsilon) y} \sin (y / \epsilon)\right\}$

130
For practical purposes $\epsilon^{\prime 2} \approx 0$ :
${ }^{131} \quad I_{\epsilon, 0}=I_{\epsilon} \approx \frac{\frac{1 / \epsilon}{(i-\epsilon)^{2}}}{1+\frac{1 / \epsilon^{2}}{(i-\epsilon)^{2}}}=\frac{\epsilon^{2}(i-\epsilon)^{2}}{\epsilon^{2}(i-\epsilon)^{2}} \frac{\frac{1 / \epsilon}{(i-\epsilon)^{2}}}{1+\frac{1 / \epsilon^{2}}{(i-\epsilon)^{2}}}$
132

$$
=\frac{\epsilon}{1+\epsilon^{2}(i-\epsilon)}
$$

This implies $\lim _{0<\epsilon \rightarrow 0} I_{\epsilon}=0$. Subsequently, cos in (34) gives

$$
\begin{align*}
\lim _{0<\epsilon \rightarrow 0} & \lim _{0<\epsilon^{\prime} \rightarrow 0:\left(\epsilon<\epsilon^{\prime}\right)} \int_{\epsilon^{\prime 2}}^{\infty} d y\left\{e^{(i-\epsilon) y} \cos (y / \epsilon)\right\}  \tag{37}\\
& =-\lim _{0<\epsilon \rightarrow 0} \frac{1}{i-\epsilon}+\lim _{0<\epsilon \rightarrow 0} \frac{1 / \epsilon}{i-\epsilon} I_{\epsilon}=0
\end{align*}
$$

With $\lim _{0<\epsilon \rightarrow 0} \lim _{0<\epsilon^{\prime} \rightarrow 0:\left(\epsilon<\epsilon^{\prime}\right)}$, (33) is observed. Therefore, (30) is correct viz. (34).

## 4. Conclusion

We conclude that the Fresnel integral used by Capolini and Maci [1995]
$F(q)=e^{i q^{2}} \int_{q}^{\infty} d r e^{i r^{2} / 2}$
depends on, previously unknown, $\pm 1$ variables. The crucial transformation is (9). This multivaluedness was not accounted for previously, [Capolini and Maci, 1995] - [Legendre, Marsault, Velé and Cueff, 2011]. It affects the use of generalized Fresnel integrals [Albeverio and Mazzuchi, 2005] and leads to a multivalued amplitude diffraction coefficient, viz. [Tabakcioglu and Kara, 2009] in general. More specific, it may add to insight into bending angle errors [Hordyniec, Norman, Rohm, Huang and Le Marshall, 2019] and supplement methodology.

## References

J.W. Goodman, "Introduction to Fourier Optics", McGraw-Hill, 1996.
M.V. Vesnik, Efficiency of different heuristic approaches to calculation of electromagnetic diffraction by polyhedrons and other scatterers, Radio Science, 49, 2014, pp. 945-953.
E. Costa and S. Basu, A radio wave scattering algorithm and irragularity model for scintillation predictions, Radio Science, 37, 2002, pp. 18-1-18-13.
F. Capolini and S. Maci, "Simplified closed-form expressions for computing the generalized Fresnel integral and their application to vertex diffraction", Microwave Opt. Technol. Lett., 9, 1995, pp.32-37.
P. Vaudon and B. Jecko, "A further development on uniform asymptotic expansions", Microwave Opt. Technol. Lett., 6, 1993, pp. 253-255.
J.F. Legendre, T. Marsault, T. Velé and D. Cueff, Heuristic uniform 2D double wedge diffraction based on generalized Fresnel integral, Microwave Opt. Technol. Lett., 53, 2011, pp.1841-1846.
H. Kleinert, "Path Integrals, in quantum mechanics, statistics, polymer physics and financial markets", Freie Universität Berlin, 2009.
C.D. Olds, "The Fresnel integrals", The Amer. Math. Month., 75, 1968, pp. 285-286.
J.V. Deshpande, Complex Analysis, McGraw Hill Int., New Dehli 1986.
S. Albeverio and S. Mazzuchi, "Generalized Fresnel integrals", Bull. Sci. Math., 129, 2005, pp.1-23.
M.B. Tabakcioglu and A. Kara, Comparison of improved slope uniform theory of diffraction with some geometrical optic and physical optic methods for multiple building diffractions, Electromagnetics, 29, 2009, pp. 303-320.
P. Hordyniec, R. Norman, W. Rohm, C.-Y, Huang and J. Le Marshall, Effects of Liquid Clouds on GPS Radio Occultation Profiles in Superrefractions, Earth and Space Science, 6, 2019, pp.1498-1511.
H. Tamura, K. Kawaguchi and T. Fujiki, Phase coherence amplification of ocean swells over submarine canyons, J. Geophys. Res. Oceans, 125, 2020, e2019JC015301, doi:10.10299/2019JC015301.

