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Abstract

We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network

(CNN) to forecast several basic atmospheric variables on a global grid. New developments in this framework include an offline

volume-conservative mapping to a cubed-sphere grid, improvements to the CNN architecture, and the minimization of the

loss function over multiple steps in a prediction sequence. The cubed-sphere remapping minimizes the distortion on the cube

faces on which convolution operations are performed and provides natural boundary conditions for padding in the CNN. Our

improved model produces weather forecasts that are indefinitely stable and produce realistic weather patterns at lead times of

several weeks and longer. For short- to medium-range forecasting, our model significantly outperforms persistence, climatology,

and a coarse-resolution dynamical numerical weather prediction (NWP) model. Unsurprisingly, our forecasts are worse than

those from a high-resolution state-of-the-art operational NWP system. Our data-driven model is able to learn to forecast

complex surface temperature patterns from few input atmospheric state variables. On annual time scales, our model produces

a realistic seasonal cycle driven solely by the prescribed variation in top-of-atmosphere solar forcing. Although it currently

does not compete with operational weather forecasting models, our data-driven CNN executes much faster than those models,

suggesting that machine learning could prove to be a valuable tool for large-ensemble forecasting.
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Key Points:6

• A convolutional neural net (CNN) is developed for global weather forecasts on the7

cubed sphere8

• Our CNN produces skillful global forecasts of key atmospheric variables at lead9
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Abstract13

We present a significantly-improved data-driven global weather forecasting framework14

using a deep convolutional neural network (CNN) to forecast several basic atmospheric15

variables on a global grid. New developments in this framework include an offline volume-16

conservative mapping to a cubed-sphere grid, improvements to the CNN architecture,17

and the minimization of the loss function over multiple steps in a prediction sequence.18

The cubed-sphere remapping minimizes the distortion on the cube faces on which con-19

volution operations are performed and provides natural boundary conditions for padding20

in the CNN. Our improved model produces weather forecasts that are indefinitely sta-21

ble and produce realistic weather patterns at lead times of several weeks and longer. For22

short- to medium-range forecasting, our model significantly outperforms persistence, cli-23

matology, and a coarse-resolution dynamical numerical weather prediction (NWP) model.24

Unsurprisingly, our forecasts are worse than those from a high-resolution state-of-the-25

art operational NWP system. Our data-driven model is able to learn to forecast com-26

plex surface temperature patterns from few input atmospheric state variables. On an-27

nual time scales, our model produces a realistic seasonal cycle driven solely by the pre-28

scribed variation in top-of-atmosphere solar forcing. Although it currently does not com-29

pete with operational weather forecasting models, our data-driven CNN executes much30

faster than those models, suggesting that machine learning could prove to be a valuable31

tool for large-ensemble forecasting.32

Plain Language Summary33

Recent work has begun to explore building global weather prediction models us-34

ing only machine learning techniques trained on large amounts of atmospheric data. We35

develop a vastly-improved machine-learning algorithm capable of operating like tradi-36

tional weather models and predicting several fundamental atmospheric variables, includ-37

ing near-surface temperature. While our model does not yet compete with the state-38

of-the-art in numerical weather prediction, it computes realistic forecasts that perform39

well and execute extremely quickly, offering a potential avenue for future developments40

in probabilistic weather forecasting.41
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1 Introduction42

Though still in its infancy, the application of machine learning (ML) to various as-43

pects of weather forecasting is receiving increasing attention and yielding promising re-44

sults. Machine learning has been used in concert with output from numerical weather45

prediction (NWP) models in attempts to improve forecasts. While neural networks (NN)46

have been used for many years to post-process NWP output (e.g., Chapman, Subrama-47

nian, Delle Monache, Xie, & Ralph, 2019; Davò et al., 2016; Kuligowski & Barros, 1998),48

recent advances in data and computation have also enabled successful ensemble prob-49

abilistic post-processing of NWP (Rasp & Lerch, 2018). Meanwhile, Rodrigues, Oliveira,50

Cunha, and Netto (2018) demonstrated the ability of deep NNs to down-scale the out-51

put of general circulation models (GCMs) to higher horizontal resolution, and Scher and52

Messori (2018) used NNs to estimate the uncertainty in weather forecasts. Deep NNs53

have also been used to identify extreme weather and climate patterns in observed and54

modeled atmospheric states (Kurth et al., 2019; Lagerquist, McGovern, & Gagne, 2019;55

Liu et al., 2016), to predict extreme weather events (e.g., Herman & Schumacher, 2018),56

and to provide operational guidance and risk assessment for severe weather (McGovern57

et al., 2017). Larraondo, Renzullo, Inza, and Lozano (2019) developed deep NNs to ex-58

tract spatial patterns in precipitation from gridded atmospheric fields, while Chattopad-59

hyay, Nabizadeh, and Hassanzadeh (2020) showed that deep NNs can skillfully predict60

extreme heat patterns several days ahead with relatively minimal input information. An-61

other machine-learning effort has focused on the improvement of physics parameteriza-62

tions in GCMs for both weather forecasting and climate prediction (Brenowitz & Brether-63

ton, 2018; Rasp, Pritchard, & Gentine, 2018).64

With several decades of reliable weather data from satellite observations, widely65

available open-source software for machine learning, and efficient graphics processing unit66

(GPU) computing, recent studies have also begun to address the question of whether it67

is possible to develop purely data-driven models to forecast the weather using advanced68

ML algorithms such as deep learning , without explicitly enforcing the known physical69

laws governing atmospheric dynamics and physics. Dueben and Bauer (2018) used deep70

NNs trained on several years of reanalysis data to predict 500 hPa geopotential height71

on the globe at relatively coarse 6-degree resolution, demonstrating the ability of ML to72

produce modestly skillful atmospheric forecasts. Using convolutional neural networks (CNNs),73

Scher (2018) and Scher and Messori (2019) trained an algorithm on simulations from a74
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simplified GCM that significantly outperformed baseline metrics and effectively captured75

the simplified-GCM dynamics.76

Weyn, Durran, and Caruana (2019), hereafter WDC19, trained CNNs similar to77

those of Scher (2018) and Scher and Messori (2019) with over 20 years of historical re-78

analysis data to produce forecasts of 500 hPa height and 300–700 hPa thickness over the79

northern hemisphere. Their best CNN formulation was able to outperform a climato-80

logical benchmark for root-mean-squared error (RMSE) in the 500 hPa height field out81

to about 5 days of forecast lead time. However, the WDC19 model was applied only to82

the northern hemisphere on a latitude-longitude grid, and did not have appropriate bound-83

ary conditions at the north pole and the equator. In this study, we significantly improve84

on several aspects of the the previous best WDC19 model. Most notably, we use a volume-85

conservative mapping to project global data from latitude-longitude grids onto a cubed86

sphere, and design CNNs which operate on the cube faces, improving upon similar tech-87

niques used for processing 360◦ imagery in the ML community (e.g., Li, Xu, Zhang, &88

Callet, 2019). The cubed-sphere mapping helps minimize distortion for planar convo-89

lution algorithms while also providing closed boundary conditions for the edges of the90

cube faces. We further improve upon the CNN encoder-decoder architecture used in WDC1991

and employ sequence prediction techniques to improve forecasts at longer time scales.92

Finally, surface-based atmospheric fields have been added to provide forecasts of surface93

temperature, a parameter of great importance in operational forecasting.94

The remainder of this paper is organized as follows. In Section 2 we detail our new95

CNN-based weather forecasting model. The data and data processing are described in96

Section 3. Results and evaluation of the model are presented in Section 4. Finally, con-97

clusions and discussion are provided in Section 5.98

2 The DLWP model99

As in WDC19, which introduced our Deep Learning Weather Prediction (DLWP)100

model, the model presented herein uses deep convolutional neural networks (CNNs) for101

globally-gridded weather prediction. A global weather prediction model must be given102

an initial multi-dimensional atmospheric state x(t) and yield the state of the atmosphere103

at a future time, x(t+∆t). To step the model forward in time, the predicted state must104

include all of the features of the input state. Dynamical models of the atmosphere com-105
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pute tendencies of physical variables determined by equations of motion and physical pa-106

rameterizations and then integrate forward in time. Following the methodology of WDC19,107

DLWP directly maps x(t) to an estimate of its future state y(t+∆t) by learning from108

historical observations of the weather. By feeding the predicted atmospheric state back109

as inputs to the model, DLWP algorithms can be iteratively propagated forward with-110

out explicitly using a numerical time-stepping scheme. As detailed in section 2.3, DLWP111

uses a much larger time step than allowed for numerical stability in typical GCMs.112

This new work presents multiple significant improvements to the core DLWP model113

framework, which are detailed in turn in the following subsections. First, our model is114

adapted to operate on global data re-mapped to a cubed-sphere grid representation. Sec-115

ond, we use an improved neural network architecture based on the U-Net. Finally, we116

use sequence prediction techniques to improve DLWP for forecasts on medium-range and117

longer time scales.118

2.1 The cubed sphere in DWLP119

2.1.1 Description of the grid120

One of the most natural coordinate systems for indexing data on the spherical Earth121

is a latitude-longitude grid, but this system has singularities at the north and south poles122

that makes it difficult to use CNNs on this grid. A truncated expansion in spherical har-123

monic functions (Durran, 2010) provides one elegant way to eliminate the polar singu-124

larities when approximating data on the sphere, but this representation, while poten-125

tially useful for deep learning on spherical data (Cohen, Geiger, Koehler, & Welling, 2018),126

is inherently non-local and therefore not intuitive for applying CNNs to the gridded at-127

mosphere. To preserve spatial locality we approximate data on the globe using the equian-128

gular gnomomic cubed sphere (Ronchi, Iacono, & Paolucci, 1996). This projection has129

been shown to give more uniformly-sized grid cells than the alternative gnomomic equidis-130

tant projection and to also produce better solutions to finite-difference (Ronchi et al.,131

1996) and discontinuous Galerkin approximations (Nair, Thomas, & Loft, 2005) to par-132

tial differential equations on the sphere. The cubed sphere is used for state-of-the-art133

numerical weather prediction such as in the FV3 dynamical core of the National Oceanic134

and Atmospheric Administration’s Global Forecast System model (Harris & Lin, 2013).135
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Figure 1. a) The gnonomic equiangular cube sphere grid with 20×20 grid cells on each face,

reproduced with permission from Purser and Tong (2017). Blue lines show the boundaries be-

tween faces; gray lines show latitudes and longitudes. b) Example 2-m temperature map for 00

UTC 5 Jan 2018 on the flattened cubed sphere. Gray lines outline individual faces of the cube.

c) Points drawn for padding the green face with upper (blue) and right (orange) boundary con-

ditions, after Eder et al. (2019). The resulting flattened grid following the arrow shows that the

corner point is ambiguous. If the green points are an equatorial face, then the ambiguous corner

is assigned the same value as the rightmost polar (blue) point.
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The gnonomic cubed-sphere geometry is illustrated in Fig. 1a. As an example, the136

field of air temperature 2 m above ground level is displayed on the six flattened cube faces137

in Fig. 1b. Note that the construction of the cube faces ensures that each face has nat-138

ural approximate boundary conditions provided by data in neighboring faces.139

In our DLWP application, all of the remapping between latitude-longitude coor-140

dinates and the the cubed-sphere grid is performed offline in the data pre-processing and141

post-processing pipeline. We use the Tempest-Remap library (Ullrich, Devendran, & Jo-142

hansen, 2016; Ullrich & Taylor, 2015) to perform both forward and inverse globally mass-143

conservative remapping. Transforming from the latitude-longitude grid to the cubed sphere144

yields a three-dimensional horizontal spatial grid where the first dimension indexes the145

six cube faces, and the other two dimensions provide an x-y-like indexing of the cells on146

each face. We use a cubed sphere with 48 grid cells on the sides of each face, with an147

effective resolution of about 1.9◦ near the equator.148

2.1.2 The cubed sphere for convolutions in a CNN149

Convolution operations within the DLWP CNN are performed individually on each150

cube face, enabling us to use existing powerful software libraries for two-dimensional con-151

volutions optimized for GPU hardware. As an important consideration when applying152

cubed-sphere CNNs to weather prediction, DLWP learns separate weights and biases for153

the four faces centered on the equator and the two polar faces. Using one set of CNN154

weights for the equatorial faces and another for the poles enables the algorithm to re-155

produce the dramatically different evolution of weather patterns across the cube faces156

in those regions. While the weights and biases for the Arctic face are identical to those157

for the Antarctic face, the construction of the cubed-sphere map shown in Fig. 1b re-158

sults in atmospheric motions that are clockwise in the Antarctic and counterclockwise159

in the Arctic. To reflect the change in the sense of cyclonic motion between the two poles,160

data on the Arctic face is flipped prior to applying each convolution operation, then flipped161

back.162

It is necessary to pad the edges of the grid when performing a 2-D convolution op-163

eration with a filter size greater than 1 × 1 to avoid the loss of spatial dimensionality164

after the operation. We exploit this padding to create connections between the six faces165

by applying approximate boundary conditions from neighboring faces before each con-166
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volution operation to maintain continuity across the edges of the cube. The padding is167

illustrated in Fig. 1c. Padding points for the green (equatorial) face are drawn from the168

neighboring blue (polar) and orange (equatorial) faces. This process leaves the corner169

points ambiguous, a known issue for cube map convolutions (e.g., Eder et al., 2019). How-170

ever, even in our complex weather prediction problem, this ambiguity does not appear171

to pose any problems for the CNN. On the equatorial faces, the ambiguous corners are172

drawn from the data on the polar faces (blue points) to maintain west-east periodicity.173

For efficiency, the corner points on the polar faces are filled using the same algorithm174

(fill upper and lower buffer rows first, then fill the left and right rows), however, the up-175

per and lower sides are not meaningful distinctions on the polar faces, so the net effect176

of the corner-filling is more arbitrary. We did not find evidence that this efficient but ar-177

bitrary approach caused any difficulties.178

2.1.3 Applications of CNNs on the sphere in the literature179

Applying standard two-dimensional convolution operations within CNNs on faces180

of a cubed sphere is not unprecedented, as there are a number of examples of “cube map”181

convolutions applied to 360◦ images and videos within the computer science literature182

(Li et al., 2019; Monroy, Lutz, Chalasani, & Smolic, 2018; Ruder, Dosovitskiy, & Brox,183

2018). Notably, Cheng et al. (2018) use a CNN applied to a cube map, along with padding184

the cube faces, to produce saliency maps from 360◦ images and videos, demonstrating185

that it is able to propagate saliency maps across edges of the cube map and outperform186

CNNs applied to standard equirectangular grids. Boomsma and Frellsen (2017) apply187

a CNN with a cube map representation to classification of three-dimensional molecular188

models, likewise showing an improvement in performance over an equirectangular CNN.189

To the best of our knowledge, our DLWP on the cubed sphere represents the first ap-190

plication of CNNs on a cubed-sphere grid for a multi-dimensional regression problem and191

the first application of a volume-conservative cubed-sphere mapping for deep learning,192

and additionally offers the novel contribution of unique weights learned for the equato-193

rial and polar faces.194

There are also many other methods of sampling data on a sphere within CNNs that195

may have good performance in a data-driven weather prediction model. Cohen et al. (2018)196

developed convolution algorithms using spherical harmonics for rotation-invariant clas-197

sification tasks. While elegantly suited for spherical data, regression of weather patterns198
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requires fixed polar orientation of the globe and preservation of local interactions, which199

are not inherently accounted for in this method. Other studies have proposed several meth-200

ods of applying convolutions on icosohedral grids, which promise to have less distortion201

than the cubed sphere (Jiang et al., 2019; Lee, Jeong, Yun, Cho, & Yoon, 2019; Zhang,202

Liwicki, Smith, & Cipolla, 2019); however, these methods require complex adaptation203

of existing CNN software libraries and are likewise unproven for regression tasks. Finally,204

Coors, Condurache, and Geiger (2018) and Eder et al. (2019) propose alterations of con-205

volution kernels that can be directly applied to equirectangular data but which account206

for the mapping between a latitude-longitude grid and the sphere. Coors et al. (2018)207

show that their method performs marginally better than a CNN on the cubed sphere.208

While these techniques may be promising for future work, our choice of CNNs on a cubed209

sphere is motivated by physical constraints of the atmospheric system and by the suc-210

cessful application of cubed-sphere grids in operational NWP models; as will be discussed211

in section 4, it appears to perform very well.212

2.2 CNN architecture213

DLWP uses a fully-convolutional neural network to map the state of the atmosphere214

from one time step to the next. In simplistic terms, convolution operations within a CNN215

learn a prescribed number of R×S stencils, or “filters,” that are translated across an216

image (in this case a 2-D atmospheric field), producing an output image of each R×S217

input image area multiplied by the filters. The filter weights are learned by gradient back-218

propagation during training of the CNN. Filters often extract certain types of features219

from the input images, such as edges or recognizable patterns. By also representing spatially-220

localized interactions – that is, individual grid points in the output are only determined221

by the neighboring grid points within the convolutional stencil – convolution operations222

are ideally-suited for recognizing spatial features in maps of the atmosphere and captur-223

ing localized advection. Nevertheless, large-scale processes are inherently accounted for224

by the sharing of convolutional filters across the input domain. It is also worth noting225

that a fully-convolutional architecture has a relatively low number of trainable param-226

eters: our DLWP CNN has about 700,000 parameters (see Table 1), while by compar-227

ison, a neural network which fully connects all input features to all output features would228

have 18 billion parameters, an untenable number.229
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128

64

32

1×1
conv

3×3 convolution
2×2 average pooling
2×2 up-sampling
skip connection

Figure 2. Schematic illustrating the architecture of our DLWP CNN based on the U-Net

architecture. Each red arrow represents a 2-D convolution operating on each cube sphere face.

Green and purple arrows indicate average-pooling and up-sampling operations, respectively. The

blue-to-yellow lines represent skip connections, whereby the blue state is copied exactly to the

yellow state vector and concatenated to the new blue state vector along the channels dimension.

The final gray arrow is a 1 × 1 convolution. The blue numbers indicate the number of convolu-

tional filters (channels) at each stage of the network (channel width is to scale).
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The specific CNN architecture used herein is modeled on the popular U-Net archi-230

tecture (Ronneberger, Fischer, & Brox, 2015), a variation on traditional encoder-decoder231

networks (Baldi, 2012) that has shown good success in image segmentation tasks. Lar-232

raondo et al. (2019) tested several auto-encoder CNNs for the task of diagnosing pre-233

cipitation from geopotential height fields in reanalysis data and found the U-Net to per-234

form best. Figure 2 shows our CNN architecture schematically. Each blue rectangle rep-235

resents a state tensor at a stage of the CNN, as tabulated in Table 1. In an encoder-decoder236

network, the first few convolutional operations (represented by red arrows in Fig. 2) in237

the network are followed by spatial pooling operations (green arrows) which reduce the238

spatial dimensionality of the state by a factor of 2 in both horizontal coordinates by tak-239

ing an average value within each 2×2 sub-grid. By applying convolution operations with240

the same filter size (3 × 3) on states with progressively coarser spatial resolution, the241

CNN is able to learn filters representing larger-scale atmospheric patterns. The last few242

layers of the CNN are a mirrored up-sampling process (shown by purple arrows), whereby243

each spatial point of the image is copied to a 2×2 sub-grid, doubling the spatial dimen-244

sionality until the final convolutional operation yields an output state with the same di-245

mensions as the input. This encoding-decoding process results in a loss of some spatial246

information, possibly resulting in a CNN prediction that is overly smoothed. To miti-247

gate this, the U-Net concatenates the tensor state of the CNN at each encoding step to248

the tensor state immediately following each up-sampling operation in the decoding phase,249

thus allowing high-resolution information to flow freely through the network. The com-250

bination of multi-scale interactions from the encoder-decoder architecture and the skipped251

connections in the U-Net make this CNN architecture aptly suited for the complex, multi-252

scale weather prediction task.253

Each convolution operation in the DLWP CNN, except for the final output layer,

is followed by the application a nonlinear activation function R(x), in our case a mod-

ified leaky rectified linear unit (ReLU), to each value x in the state tensor such that

R(x) =


0.1x x ≤ 0

x 0 ≤ x ≤ 10

10 x ≥ 10,

(1)

Models which did not have the cap in R(x) at large positive values tended to produce254

physically unrealistic states after several weeks of forecast integration. The DLWP CNN255
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is trained using the efficient Adam version of stochastic gradient descent optimization256

(Kingma & Ba, 2014), with a default learning rate of 10−3, and using mean-squared-error257

loss. To ensure that a suitable loss minimization is obtained, we train for a minimum258

of 100 epochs followed by early stopping conditioned on the validation set loss. If no new259

validation loss minimum is observed within 50 epochs, training stops and the model weights260

which yielded the smallest validation loss are restored.261

The DLWP CNNs are built using the open-source Keras library for Python (Chol-262

let & Others, 2015) with Google’s TensorFlow backend (Abadi & Others, 2015). We also263

acknowledge the open-source xarray project (Hoyer & Hamman, 2017) for much of the264

data processing pipeline. The code for this project will be available upon publication at265

github.com/jweyn/DLWP-CS.266

2.3 Sequence prediction267

Drawing from knowledge of current NWP model frameworks, it may seem intuitive

to train a CNN to produce the best possible single-step forecast from a given atmospheric

state, i.e., to minimize some error function J [x(t+ ∆t),y(t+ ∆t)], where y(t+∆t) is

the model prediction from the prior atmospheric state x(t), and x(t + ∆t) is the cor-

rect evolved state from the training data. In practice this can yield a model that per-

forms well for short-range forecasts but diverges from reality (or even blows up to un-

realistic physical values) for longer-range predictions (e.g., McGibbon & Bretherton, 2019).

This is because there are no constraints on the CNN, physical or mathematical, that would

prevent it from diverging from reality when its prediction fed back in as inputs no longer

resembles an atmospheric state in the training data. In order to nudge the DLWP model

towards learning to predict longer-term weather and improve its long-term stability, we

train the model to minimize error on multiple iterated predictive steps using a multi-time-

step loss function similar to the strategies in Brenowitz and Bretherton (2018) and McGib-

bon and Bretherton (2019). The predicted state y is an iterative sequence mapped by

the DLWP CNN, denoted M , such that

y(t+ n∆t) =


M(x(t)) n = 1

M(y[t+ (n− 1)∆t]) n ≥ 2,

(2)
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Figure 3. Schematic of the time stepping and loss function computation in the DLWP model.

Input fields at times t − 6 h and t, represented by illustrative contour lines, are concatenated in

the channels dimension (purple arrows) and then fed into the CNN algorithm. The algorithm

yields a prediction ỹ (blue) for times t + 6 and t + 12, which can then be fed back into the algo-

rithm to predict the next two steps, and so on. Verifying data are known at each time (green),

from which the mean squared error loss (J , denoted as the squared L2 norm) is computed; the

total loss is the sum of the losses for two consecutive iterations through the algorithm.

and n = 1, 2, ...N indexes the number of forward steps. The loss function minimized

over T time steps may be written

Jtotal =

T∑
n=1

αnJ [x(t+ n∆t),y(t+ n∆t)] , (3)

where αn is an arbitrary prescribed weight. The user-specified parameter T is a tun-268

able hyperparameter for the model framework. Because the CNN training time scales269

linearly with T as a result of (2), we choose T = 2 for computational efficiency. Our270

tests also gave some indication that using large values of T can produce a model that271

makes overly smooth predictions tending towards climatology. The weights α are also272

adjustable should one choose to train a model that performs better on the earlier or later273

iteration steps of the model, but for simplicity we choose α1 = α2 = 1.274

Informed by the results of WDC19, we find that the CNN performs better when275

its input includes two time steps and it is tasked with predicting two output time steps.276

This can be represented by replacing the state vectors x and y in (2) and (3) with mod-277

ified vectors x̃ and ỹ, where x̃(t−∆τ, t) and ỹ(t−∆τ, t) replace x(t) and y(t), respec-278

tively. As in WDC19, we choose ∆τ = 6 h and ∆t = 12 h, in which case the model279
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steps forward in 12-h intervals, while predicting the atmospheric variables with a tem-280

poral resolution of 6 h, implying that the loss function (3) is minimized over a 24-hour281

forecast, equally weighting every 6-h snapshot of the evolving atmospheric state. A schematic282

of the time-stepping procedure and the computation of the total loss function is shown283

in Fig. 3.284

3 Data285

The historical atmospheric data for DLWP is the European Centre for Medium-286

Range Weather Forecasts (ECMWF) ReAnalysis version 5 (ERA5, C3S, 2017). The data287

were retrieved through the Copernicus Climate Change Service (C3S) and re-gridded to288

a global 2-degree latitude-longitude grid through the Meteorological Archival and Re-289

trieval System (MARS) toolkit. Data from 1979–2018 were retrieved every 3 hours. Note290

that while the ERA5 data were independently retrieved and processed, WeatherBench291

(Rasp et al., 2020) also uses the same ERA5 data, so our results can be readily compared292

with those from other models using WeatherBench data. Since the time resolution for293

the DLWP model is 6 h, there are samples in the data that only contain 00Z, 06Z, 12Z,294

and 18Z data and others which only have 03Z, 09Z, 15Z, and 21Z data. All data are re-295

gridded to a cubed sphere with 48 points on each side of the cube faces, which corresponds296

to roughly 1.9◦ grid spacing in latitude and longitude in the center of the equatorial faces.297

Data from 2017–2018 were set aside for the test set used in final model performance298

evaluation. We used the time periods from 1979–2012 (about 100,000 samples) for model299

training and 2013–2016 (about 12,000 samples) for model validation. Distinct periods300

for training, validation, and testing were selected to avoid including in the evaluation data301

times that have high correlation with neighboring times in the training data. We assume302

that any climatological shifts in weather-pattern evolution over the 1979–2018 period are303

negligible.304

3.1 Evolving variables and prescribed fields305

There are four two-dimensional input-output fields in the model: geopotential height306

at 500 hPa (Z500) and at 1000 hPa (Z1000), 300–700-hPa geopotential thickness (τ300−700),307

and 2-meter temperature (T2). The geopotential height fields are vital to identifying the308

structure of mid-latitude weather systems, while τ300−700, which is dynamically related309
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to mid-tropospheric temperatures, provides information about the growth and decay of310

weather systems (WDC19). We include 2-m temperature as an impacts-based variable,311

which is vital for prediction of surface weather impacts such as heat waves, cold spells,312

and drought. Moreover, over the ocean the 2-m temperature is strongly influenced by313

the sea-surface temperatures (SST), so its prediction is essentially a proxy prediction of314

SST. Because the inputs to our DLWP model are all atmospheric variables, such proxy315

predictions are likely to contain errors that might be ameliorated by the inclusion of ap-316

propriate oceanic variables in a more advanced version of the model. Each variable is317

scaled by removing its global climatological mean and dividing by its global mean stan-318

dard deviation. By scaling with the global mean we retain local spatial differences in vari-319

ability, ensuring that the CNN loss function appropriately weights regions of high vari-320

ability. Since the CNN predicts scaled variables, an inverse scaling is applied to the model’s321

output to forecast dimensional atmospheric variables, which are used for model evalu-322

ation.323

We also input three additional prescribed fields: top-of-atmosphere incoming so-324

lar radiation (insolation), a land-sea mask, and topographic height. These fields are not325

part of the model’s output. Insolation is incorporated to give the model information about326

the diurnal and annual cycles, which are particularly important for predicting 2-m tem-327

perature. The land-sea mask is zero over ocean, one over land, and varies proportion-328

ately between 0 and 1 in coastal cells according to the fraction of their area covered by329

land. The topographic height is from ECMWF data regridded to the 2-degree latitude-330

longitude grid using the MARS toolkit. In validation, adding these prescribed fields im-331

proved the performance of the model.332

3.2 Benchmarks333

Benchmarks are necessary to contextualize the performance of DLWP. These bench-334

marks were inspired in part to facilitate comparisons with the aforementioned Weath-335

erBench dataset (Rasp et al., 2020):336

1. climatology calculated relative to daily means from 1979–2010337

2. persistence338

3. a T42 spectral resolution version of the ECMWF Integrated Forecast System (IFS)339

model. This is a fully-dynamical atmospheric model with 62 vertical levels and340
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an approximate horizontal resolution of 2.8◦ in latitude and longitude near the equa-341

tor and is thus slightly coarser than our DLWP model. The model was initialized342

with the same ERA5 data as our model, but on a coarser grid. Data were avail-343

able for forecast lead times up to 7 days. The forecasts were initialized weekly within344

2017–2018, with the first forecast at 00 UTC 1 Jan 2017, for a total of 105 fore-345

casts. In subsequent weeks the initialization time alternates between 00 and 12346

UTC.347

4. a T63 spectral resolution version of the IFS model. Unlike the T42 IFS this ver-348

sion has 137 vertical levels and an approximate horizontal resolution of 1.9◦ in lat-349

itude and longitude near the equator, thus being closer in horizontal resolution350

to our DLWP model. Also unlike the T42 IFS, this model was initialized with ECMWF351

analysis data and is coupled to an ocean wave model. As a result of the difference352

between initialization and verification data, this model has a noticeable error at353

early lead times. The T63 IFS was initialized at the same times as the T42 IFS,354

but forecast lead times up to 10 days were available.355

5. the operational subseasonal-to-seasonal (S2S) version of the ECMWF IFS. This356

is likewise a fully-dynamical model, with a fine horizontal resolution of 16 km that357

increases to 31-km after forecast lead times of 15 days. This model is fully-coupled358

to ocean and sea ice models, targeting predictions for time scales of 2 weeks to 2359

months. This model is available as an ensemble but only the control forecast is360

evaluated. Like the T63 IFS model, some error at early lead times is is produced361

by minor differences between the initialization and verification data. The S2S model,362

2018 version, is available twice weekly starting 00 UTC 1 Jan 2017 through 31 Dec363

2017, and 1 Jan 2018 through 31 Dec 2018, for a total of 210 forecasts. All fore-364

casts are initialized at 00 UTC, on dates of 1 Jan, 4 Jan, 8 Jan, and so on.365

The ECMWF S2S model should produce better forecasts than our DLWP model because366

it makes predictions using many variables, many vertical levels, and high horizontal res-367

olution. The T42 and T63 IFS models also include many variables and vertical levels,368

but are not at higher horizontal resolution than our model. An additional cautionary369

note applies for these IFS models: they use the same physics parameterizations for pro-370

cesses including radiation, convection, and boundary layer turbulence as the operational371

high-resolution IFS model run by ECMWF for medium-range forecasts. Such param-372

eterizations are specifically tuned to perform well for the high-resolution operational model373
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and therefore cannot be expected to perform well within the lower-resolution IFS sim-374

ulations.375

To mitigate differences in model grids, all of the forecasts and the verifying ERA5376

data were forward mapped from the latitude-longitude resolution at which they are pro-377

vided to the cubed sphere and then inverse mapped back to the regular 2◦ latitude-longitude378

grid on which the forecasts are verified. This allows a uniform comparison to our DLWP379

model which operates on the cubed-sphere grid. In comparison to the alternative of map-380

ping the IFS data directly to the 2◦ latitude-longitude grid, the scores of the IFS mod-381

els are slightly improved by our procedure. Our DLWP model is also initialized at the382

same times as the S2S operational model for direct comparison. Despite slightly differ-383

ent initialization times for the T42 and T63 IFS models, because we average at least 100384

forecasts across all seasons for each model, the sample is representative of the average385

distribution of forecasts across the test set.386

4 Results387

In the following section, we detail the spatially- and temporally-averaged error in388

DLWP and the benchmark forecasts as a function of forecast lead time. We then exam-389

ine the structure of several key forecast fields in an example 4-week forecast. Finally, to390

evaluate the long-term behavior of our forecasts, we consider the evolution of 500-hPa391

geopotential from a free-running one-year forecast.392

4.1 Globally averaged forecast error393

The DLWP model and the benchmarks are evaluated using two key measures for

forecast accuracy, both of which are used to assess the performance of state-of-the-art

operational NWP models (Vitart, 2004). The root-mean-squared error (RMSE) of a fore-

cast vector f(t) at some time t is defined as

RMSE =

√
(f(t) − o(t))

2
, (4)

where o(t) is the observed state, the overbar denotes a spatial average, and the dot prod-

uct of a vector with itself is denoted as the square of the vector. The RMSE gives a good

point-by-point metric of the accuracy of a forecast. The other metric used for evalua-
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Figure 4. Forecast error for DLWP (blue lines) and all of the benchmarks, as labeled, as a

function of forecast lead time during 2017–2018. The error is globally-averaged and area-weighted

in latitude. a) Root-mean-squared error in Z500. b) Anomaly correlation coefficient in Z500.

c) Root-mean-squared error in daily-averaged T2. d) Anomaly correlation coefficient in daily-

averaged T2. For daily averages, the value for day 0 is the average of hours 0, 6, 12, and 18.

Other days follow suit. Errors at lead times up to 2 days, especially in T2, from the IFS T42, IFS

T63, and ECMWF S2S models are in part due to gridding differences and, for the IFS T63 and

ECMWF models, different initialization data from the ERA5 verification, and are therefore not

directly comparable to the DLWP errors.
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tion is the anomaly correlation coefficient (ACC), defined as

ACC =
(f(t) − c(t)) · (o(t) − c(t))√
(f(t) − c(t))

2
(o(t) − c(t))

2
, (5)

where c(t) is the climatological value for the verification time (daily climatological val-394

ues are used herein). A perfect forecast has an ACC score of 1, while a score of 0 indi-395

cates a forecast with no skill relative to climatology. Where the RMSE penalizes large396

differences in actual forecast state, the ACC penalizes incorrect patterns of anomalies397

and is agnostic to the magnitude of the anomalies. In particular, the ACC may be used398

to determine whether the forecasts capture meaningful patterns of spatial variations or399

simply produce smooth states resembling climatology.400

Let us first examine the globally-averaged forecast errors in the 500-hPa height field,401

which are plotted as a function of forecast lead time up to two weeks in Fig. 4. As noted402

in Section 3.2, these errors are averaged over more than 100 forecast initialization times403

in the test set (2017–2018). The RMSE in Z500 (Fig. 4a) shows that DLWP significantly404

outperforms persistence at all lead times, climatology out to more than 7 days, and the405

T42 IFS at all available lead times. On the other hand, DLWP is outperformed by the406

T63 IFS and the operational S2S, the latter of which has errors that are lower than cli-407

matology out to more than 9 days. It is not particularly surprising that the S2S and even408

the T63 IFS perform well because Z500 is not difficult to forecast with a state-of-the-art409

dynamical NWP model. The best DLWP model in WDC19 beat climatology up to a lead410

time of about 5 days (WDC19, Fig. 6). Measured by the lead time up to which a model411

beats climatology, our improved DLWP model (7-day lead time) has approximately halved412

the forecast skill deficit relative to state-of-the-art operational models (9-day lead time).413

The ACC scores for Z500 (Fig 4b) give rankings similar to those from the RMSE414

scores for the DLWP model relative to the benchmarks, with the exception of climatol-415

ogy which, by definition, has a score of zero. The forecast horizon for an ACC score of416

0.5 is more than 2 days longer for the operational S2S model than our DLWP model, with417

the value for DLWP dropping below the 0.5 threshold just shy of 7 days and the S2S reach-418

ing that mark at 9.5 days. DLWP has a smaller advantage over the T42 IFS in the ACC419

score, but still comfortably outperforms persistence forecasts. There is also slightly larger420

separation between the DLWP model and the T63 IFS in the ACC score, with the lat-421

ter having the advantage. Nevertheless, the good ACC score for DLWP indicates that422
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it is producing spatial weather patterns with reasonable disturbance amplitudes rather than423

overly smooth forecasts approximating climatology.424

Shifting our focus to the 2-m temperature metrics shown in Fig. 4c,d, we again see425

a fairly similar performance ranking among the models. First, we note that, in order to426

match the available products from the operational S2S dataset, the errors are calculated427

for daily mean T2. While this means that the results in Fig. 4c,d do not measure the abil-428

ity of DLWP to capture the diurnal temperature cycle, we show in the supplemental ma-429

terial (Fig. S1) that DLWP does indeed predict correct diurnal temperature changes. Er-430

rors at early lead times in the IFS and S2S models are to a some extent due to differ-431

ences in the initialization data (T63 IFS, S2S) or model grids (T42 IFS), which are pro-432

nounced in a highly spatially-variable field such as T2. As measured by the RMSE (Fig 4c),433

DLWP clearly outperforms persistence and the coarse-resolution T42 IFS; the DLWP-434

model errors remain lower than those of climatology until the 7-day mark. As was the435

case for Z500, the T63 IFS performs slightly better than the DLWP model, beating cli-436

matology up to the 8-day mark. The RMSE of the best model, the ECMWF S2S, re-437

mains lower than climatology until 10 days out. In terms of ACC scores (Fig 4d), all of438

the models perform notably better than persistence and retain good forecast skill rel-439

ative to climatology. The relative ranking of model skill again has the DLWP model clearly440

beating the T42 IFS, but performing worse than the T63 IFS and the operational S2S441

model. The DLWP model exceeds the 0.5 skill threshold out to 7 days while the S2S model442

does so out to 10 days.443

The variation in the performance of each of the preceding models over all forecast444

samples in the test set is illustrated in Fig. 5, in which the Z500 RMSE for each individ-445

ual forecast is plotted as a function of lead time, along with reference curves that ap-446

pear in Fig. 4a: the average RMSE for each model and the RMSE for persistence and447

climatology. The overall spread in forecast performance about the average is roughly sim-448

ilar for all models. The RMSE for the worst forecasts from our DLWP model exceeds449

climatology at roughly 5 days. This is better than the 3.5-day loss of skill for the worst450

forecasts from the IFS T42, but worse than the corresponding values of about 6 days for451

both the IFS T63 and the S2S ECMWF control.452
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Figure 5. Forecast root-mean-squared-error in Z500 for a) DLWP, b) the T42 IFS, c) the

T63 IFS, and d) the ECMWF S2S models, as a function of forecast lead time. Light, thin lines

indicate the RMSE of each individual forecast within the test set (2017–2018), with the number

of forecasts indicated in the bottom right of each panel. Thick dashed lines are the mean of all

forecasts. Also plotted are the climatology (gray dashed) and persistence (gray solid) forecast

errors. Means from each model and the climatology and persistence benchmarks are the same as

in Fig. 4a.
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Figure 6. Example observed atmospheric state for an active weather pattern with a strong

cyclone off the eastern US (a,c) and a similar example DLWP forecast state (b,d). The forecast

is 642 h out initialized 00 UTC 10 Dec 2017 and valid 18 UTC 5 Jan 2018, while the observa-

tion is for 00 UTC 5 Jan 2018. a,b) The color shading is Z500, with Z1000 in the black contours

(contoured every 100 m with negative contours dashed). The 540-dam Z500 line is shown in blue.

c,d) T2 is in the shaded color, with the 0◦C isotherm in the blue line. Black contours are as in

a,b). Note that the slightly jagged contour lines near the pole in b,d) are the result of a loss of

information when mapping back from the cubed sphere to the latitude-longitude grid.
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4.2 A typical forecast state at 4-week lead time453

Unlike our earlier DLWP models which represent the northern hemisphere using454

cylindrical geometry (WDC19), the current DLWP model is a true global model. It is455

therefore possible to generate arbitrarily long free-running forecasts from a single initial456

state without suffering from lateral-boundary-condition errors at the equator or the poles.457

Every one of the four-week forecasts initialized twice weekly in the two-year test set (210458

total forecasts) was free from instabilities and the amplification of spurious perturbations.459

This is remarkable considering the difficulties that have been previously encountered in460

creating stable models of atmospheric flows from purely data-driven techniques (Dueben461

& Bauer, 2018) or with data-driven algorithms inserted as parameterizations in GCMs462

(e.g., Brenowitz & Bretherton, 2018).463

A detailed analysis of the performance of the DLWP model forecasts will be the464

focus of a subsequent paper. In this and the following subsection, we provide a brief as-465

sessment of the realism of the forecast fields at multi-week lead times. We selected 00466

UTC 5 Jan 2018 as an interesting wintertime reference state with high-amplitude per-467

turbations over the North American region. As shown by the Z500 and Z1000 fields in468

Fig. 6a, there is a deep trough and a strong surface cyclone off the east coast of the United469

States. A cold-air outbreak is apparent in the 2-m temperature field beneath the trough470

(Fig. 6c). We saw in the previous section that DLWP produced modestly skillful spa-471

tial patterns (good ACC scores) in forecasts up to two weeks. How well can DLWP re-472

produce a strong surface cyclone such as that in Fig. 6a,c in forecasts at lead times of473

two weeks or longer?474

To answer this question, the full two years of forecasts from the test set were ex-475

amined to find the single forecast at lead times greater than 2 weeks having the lowest476

RMS difference with respect to the reference-state Z1000 field over the North American477

sector. The closest match (minimum RMS difference) was the 642-h forecast initialized478

at 00 UTC 10 Dec 2017 and verifying at 18 UTC 5 Jan 2018, 18 hours after the time of479

the observed state. As might be expected from the selection criteria, features common480

to both the forecast and the reference state in the are apparent in the Z1000 field, includ-481

ing the cyclone off the east coast of the US. The forecast cyclone is weaker than observed,482

but is still accompanied by a realistic warm sector in the 2-m temperature field (Fig. 6d).483

Over the eastern US, warmer temperatures would be expected at 18 UTC than at the484
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(a) (b) (c)

Figure 7. As in Fig. 6a,b for (a) a 4692-h forecast from DLWP for 12 UTC on January 15,

2018, (b) the corresponding verification, and (c) the climatology for January 15.

00 UTC time of the reference-state. Allowing for this difference, the T2 fields compare485

reasonably well. Deterministic forecasts have no skill at lead times of 26.75 days, so the486

quality of the match is serendipitous—indeed lead times shorter than this, but still longer487

than two weeks, did not produce better matches.488

The amplitudes of the troughs and ridges in the forecast Z500 field (Fig. 6b) are489

considerably weaker than those in the reference state (Fig. 6a) , and in contrast to the490

verification, the surface low in the forecast is associated with a cutoff low at 500 hPa.491

Because our search for a match to the observed state focused exclusively on the surface492

pressure-distribution in a localized region, rather than minimizing the difference between493

all four variables defining the atmospheric state in the DLWP model, (Fig. 6) does not494

provide a clear characterization of the behavior of troughs and ridges in our forecasts.495

An example of large-amplitude troughs and ridges generated by the DLWP model is given496

in the next section.497

4.3 A free-running one-year forecast498

In this section we consider the behavior of a free-running one-year forecast initial-499

ized from data at the two times 18 UTC July 3, 2017 and 00 UTC July 4, 2017. The evo-500

lution of the Z500 and Z1000 fields during this one-year forecast is shown by the anima-501

tion in the Supplemental Material, Movie S1. A snapshot from that animation is shown502

at a forecast lead time of 195.5 days in Fig. 7. At the beginning of the forecast, in July,503
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Figure 8. Zonal-mean Z500 as a function of forecast lead time for a) a DLWP forecast ini-

tialized in July and b) the verifying observations. A running mean of 3 days has been applied to

smooth the data in the colored contours. The black (white) lines are the 560-dam line from the

verification (forecast) with a 15-day centered running mean smoothing.

northern-hemisphere synoptic-scale disturbances are relatively weak. The model correctly504

develops active wintertime weather systems in response to the seasonal changes in top-505

of-atmosphere insolation, and at the time shown, has produced a pronounced ridge over506

the west coast together with a deep trough to the east (Fig. 7a). As shown in Movie S1,507

the surface low over eastern Canada in Fig. 7a underwent a relatively classical develop-508

ment beginning near the Gulf Coast at forecast hour 4620 in a region of diffluent upper-509

level Z500 contours downstream of the axis of the 500-hPa trough.510

By coincidence, there is also a blocking ridge over the west coast at the January511

15, 2018 verification time (Fig. 7b). Consistent with the tendency of the DLWP model512

to modestly underestimate the strength of mid-latitude synoptic-scale features, the block-513

ing ridge in the verification is somewhat stronger than the west-coast ridges typically gen-514

erated by our model. Finally, it should be emphasized that while the weather patterns515

produced by the DLWP model tend to be somewhat lower amplitude than reality, they516

are nowhere near as smooth as climatology (Fig. 7c).517

Figure 8 shows the zonal-mean 500-hPa geopotential as a function of time and lat-518

itude from this 1-year DLWP simulation along with the corresponding zonal-mean field519

from the ERA5 reanalysis. The DLWP model is clearly able to capture the basic struc-520
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ture of the annual cycle, with lower values of Z500 near the north pole during the win-521

ter months followed by a subsequent increases during spring and the onset of the next522

summer, in approximate agreement with the true annual cycle. The true progression of523

the annual cycle in mid-latitude Z500 is indicated by the 15-day running mean of the 560-524

dam geopotential height contour in the ERA5 dataset (black line) in both panels. The525

15-day running mean of the 560-dam contour in the DLWP forecast is indicated by the526

white lines in Fig. 8a. After the first two weeks, the location of the 560-dam contour is527

biased equatorward, although particularly in the northern hemisphere, the north-south528

seasonal displacement of 560-dam contour in the DWLP forecast does follow that of the529

ERA5 data reasonably well. Also evident in Fig. 8 is the weaker temporal variability in530

the weather in the DLWP model compared to the observations, as indicated by the re-531

duced waviness of contour lines in the latitude band 20–60◦.532

Similar annual cycles in Z500 were generated by additional forecasts initialized in533

different months of the year (not shown). Thus, while the annual cycle in these free-running534

DLWP forecasts is certainly not perfect, it is impressive that the model remains stable535

and produces an approximately correctly response to the seasonal changes in the top-536

of-atmosphere insolation.537

5 Discussion and Conclusions538

In this paper, we have extended our previous CNN-based DLWP model (WDC19),539

which predicted the evolution of northern-hemisphere 500-hPa geopotential height and540

300–700-hPa thickness, to a full global forecast and added a pair of additional forecast541

fields (1000-hPa geopotential height and 2-meter temperature) along with three addi-542

tional prescribed inputs (top of the atmosphere insolation, a land-sea mask and topo-543

graphic height). We also made three important improvements to the model architecture:544

(1) global data are represented on the cubed sphere for which 2-D convolutions can be545

naturally computed on the cube faces, (2) an additional convolutional layer is employed546

before each average-pooling or up-sampling step along with U-net skip connections, and547

(3) a multi-time-step loss function is used to improve the stability and accuracy of long-548

term forecasts. Free-running one-year forecasts are stable and provide realistic charac-549

terizations of atmospheric states, albeit with modest reductions in the amplitude of strong550

features compared to those in observed weather systems.551
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This new DLWP model clearly outperforms a coarse-resolution T42 configuration552

of the ECMWF IFS dynamical model, both with respect to global averaged RMS error553

and the anomaly correlation coefficient. The T42 IFS model forecasts three-dimensional554

fields of horizontal velocity and temperature on 62 vertical levels along with the surface555

pressure. Not counting six other fully 3D prognostic fields related to moisture, clouds556

and precipitation, or other 3D diagnostic fields like the vertical velocity, the T42 IFS fore-557

cast steps forward 187 spherical shells of data. In contrast our DLWP model steps for-558

ward 8 spherical shells of data (four variables at two time levels) in 12-hour steps with559

6-hour temporal resolution. Despite our model having higher horizontal resolution (roughly560

1.9 × 1.9◦ in latitude and longitude) than the T42 IFS (at 2.8 × 2.8◦), it is surprising561

that the full-physics model is inferior to our DLWP model forecasts of a relatively smooth,562

dynamically-driven field such as the 500-hPa height. It is also interesting that the DLWP563

model considerably outperforms the T42 IFS forecasts of 2-m temperature. On one hand564

this might be expected because 2-m temperature should be a difficult field for the T42565

IFS to capture due to its coarse resolution and its use of physical parameterizations op-566

timized for much finer grid cells. But on the other hand, the DLWP model had to over-567

come a substantial challenge to learn a single set of convolutional filters capable of dis-568

tinguishing between land and ocean and effectively parameterizing the near-surface con-569

ditions leading to vastly different diurnal temperature regimes in summer and winter.570

The economy of the DLWP approach, which uses just four input variables and three pre-571

scribed fields, may be contrasted with the formulations in operational NWP and climate572

models where 2-m temperature is diagnosed using complex physical parameterizations573

for radiation, boundary-layer turbulence, and land- and ocean-surface interactions, all574

of which must be highly tuned for the model.575

The T63 implementation of the IFS model, with a horizontal resolution similar to576

that of our cube-sphere grids, does clearly outperform our DLWP model. It should be577

noted that the T63 IFS model improves on the T42 implementation not only through578

the use of higher horizontal resolution, but also by increasing the number of vertical lev-579

els to 137. Unsurprisingly, the very high resolution operational S2S model also outper-580

forms our DLWP model and the T63 IFS.581

Although our DLWP model lags the performance of a high-resolution operational582

NWP model by about 2–3 days of forecast lead time relative to climatology, it does have583

one significant advantage: computational speed. After a one-time computational cost584
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of 2–3 days for training on a single NVidia Tesla V100 GPU, our DLWP model can pro-585

duce a global four-week forecast in less than two tenths of a second. At this speed one586

could generate a 1000-member ensemble of one-month forecasts in about three minutes.587

In contrast, the full dynamical IFS model at approximately equivalent T63 horizontal588

resolution, run albeit somewhat inefficiently on a 36-core computing node, requires nearly589

24 minutes to produce a single four-week forecast, or about 16 days for the same 1000-590

member ensemble forecast. Operationally, ECMWF, despite vast supercomputing resources,591

runs two-month-long S2S model forecasts twice weekly with 51 ensemble members. While592

DLWP models are likely to grow in complexity and require more computation as they593

strive for better accuracy through the addition of more atmospheric variables at higher594

spatial and temporal resolution, they appear to hold great promise as a way of achiev-595

ing the combination of speed and performance needed for very-large-ensemble weather596

forecasting. In fact, recent work by Scher and Messori (2020) has demonstrated that it597

is possible to use even simple techniques to produce ensembles of deep-learning-based598

weather forecasts with good reliability characteristics. We are currently investigating the599

development of ensembles of DLWP for probabilistic weather prediction.600

Acronyms601

ACC anomaly correlation coefficient602

CNN convolutional neural network603

DLWP Deep Learning Weather Prediction604

ECMWF European Centre for Medium-range Weather Forecasting605

ERA5 ECMWF ReAnalysis version 5606

GCM general circulation model607

ML machine learning608

NN neural network609

NWP numerical weather prediction610

ReLU rectified linear unit611

RMSE root-mean-squared error612
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Table 1. CNN architecture for DLWP as a sequence of operations on layers. The parame-

ter v represents the number of input fields, t represents the number of input time steps, and

c represents the number of auxiliary prescribed inputs. The layer names (except for the suffix

“CubeSphere”) correspond to the names in the Keras library. The Concatenate layers append the

states numbered in parentheses to the output of the previous layer.

Layer Filters Filter size Output shapea Trainable paramsb

input (6, 48, 48, vt+ c)

Conv2D–CubeSphere 32 3 × 3 (6, 48, 48, 32) 6,976

Conv2D–CubeSphere (1) 32 3 × 3 (6, 48, 48, 32) 18,496

AveragePooling2D 2 × 2 (6, 24, 24, 32)

Conv2D–CubeSphere 64 3 × 3 (6, 24, 24, 64) 36,992

Conv2D–CubeSphere (2) 64 3 × 3 (6, 24, 24, 64) 73,856

AveragePooling2D 2 × 2 (6, 12, 12, 64)

Conv2D–CubeSphere 128 3 × 3 (6, 12, 12, 128) 147,712

Conv2D–CubeSphere 64 3 × 3 (6, 12, 12, 64) 147,584

UpSampling2D 2 × 2 (6, 24, 24, 64)

Concatenate (2) (6, 24, 24, 128)

Conv2D–CubeSphere 64 3 × 3 (6, 24, 24, 64) 147,584

Conv2D–CubeSphere 32 3 × 3 (6, 24, 24, 32) 36,928

UpSampling2D 2 × 2 (6, 48, 48, 32)

Concatenate (1) (6, 48, 48, 64)

Conv2D–CubeSphere 32 3 × 3 (6, 48, 48, 32) 36,928

Conv2D–CubeSphere 32 3 × 3 (6, 48, 48, 32) 18,496

Conv2D–CubeSphere vt 1 × 1 (6, 48, 48, vt) 528

aOutput shape is (face, y, x, channels).

bNumber of learned parameters for t = 2, v = 4, c = 4. Total is 672,080.
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