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Abstract

In this paper, we model the full range of possible local impacts of future tsunamis in the Makran subduction zone (MSZ) at

Karachi port, Pakistan. For the first time, the 3-D subduction geometry Slab2 is employed in the MSZ, in conjunction with

the most refined rupture segmentation to date for this region, to improve the earthquake source definition. Motivated by the

massive sediment layer over the MSZ, we also introduce to tsunami modeling the application of the sediment amplification

formula, resulting in enhancements of seabed deformation up to 60% locally. Furthermore, we design a new unstructured mesh

algorithm for our GPU-accelerated tsunami code in order to efficiently represent flow velocities, including vortices, down to a

resolution of 10m in the vicinity of the port. To afford to compute very large number of high resolution tsunami scenarios,

for the granularity and extent of the range of magnitudes (occurrence ratios of 1:100,000 implied by the Gutenberg-Richter

relation) and locations of source, we create a statistical surrogate i.e. emulator) of the tsunami model. Our main contribution

is hence the largest set of emulated predictions using any realistic tsunami code to date: 1 million per location. We go on

to obtain probabilistic representations of maximum tsunami velocities and heights at around 200 locations in the port area of

Karachi. Amongst other findings, we discover substantial local variations of currents and heights. Hence we argue that an

end-to-end synthesis of advanced physical, numerical and statistical modeling is instrumental to comprehensively model local

impacts of tsunamis.
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Graphical Abstract1
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Highlights5

ProbabilisticQuantification of TsunamiCurrents inKarachi Port,Makran SubductionZone,6
using Statistical Emulation7
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• First hazard maps of port currents using 1 million scenarios (at 10m resolution)9

• Greater than 50% variation in velocities at harbor’s mouth10

• Maximum exceedance ∼18∕10∕4% for velocities ∼1.5∕3∕4.5ms−1 respectively11

• Maximum velocities ∼3∕7.5∕10ms−1 for exceedance 10∕1∕0.1% respectively12

• Up to 60% seabed deformation amplification due to sediments13
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20 ABSTRACT21
22

In this paper, we model the full range of possible local impacts of future tsunamis in the Makran23
subduction zone (MSZ) at Karachi port, Pakistan. For the first time, the 3-D subduction geom-24
etry Slab2 is employed in the MSZ, in conjunction with the most refined rupture segmentation25
to date for this region, to improve the earthquake source definition. Motivated by the massive26
sediment layer over the MSZ, we also introduce to tsunami modeling the application of the sedi-27
ment amplification formula, resulting in enhancements of seabed deformation up to 60% locally.28
Furthermore, we design a new unstructured mesh algorithm for our GPU-accelerated tsunami29
code in order to efficiently represent flow velocities, including vortices, down to a resolution30
of 10m in the vicinity of the port. To afford to compute very large number of high resolution31
tsunami scenarios, for the granularity and extent of the range of magnitudes (occurrence ratios32
of 1 ∶ 100, 000 implied by the Gutenberg-Richter relation) and locations of source, we create33
a statistical surrogate (i.e. emulator) of the tsunami model. Our main contribution is hence34
the largest set of emulated predictions using any realistic tsunami code to date: 1 million per35
location. We go on to obtain probabilistic representations of maximum tsunami velocities and36
heights at around 200 locations in the port area of Karachi. Amongst other findings, we discover37
substantial local variations of currents and heights. Hence we argue that an end-to-end synthesis38
of advanced physical, numerical and statistical modeling is instrumental in coastal engineering39
to comprehensively model local impacts of tsunamis.40

41

1. Introduction42

Destructive tsunami currents in ports have attracted the attention of coastal engineering community in recent years43

(Park and Cox, 2016). Following the unexpected damage incurred at ports from the tsunamis of 2004 (Indian Ocean),44

2010 (Chile) and 2011 (Japan) (Borrero et al., 2015b; Okal et al., 2006), it is of paramount importance to investigate45

the associated hazard. Ports are vital economic lifelines and thus need to be safeguarded from natural disasters to46

prevent e.g. a sudden interruption of trade and commerce, a halt in the flow of essential commodities, as well as the47

destruction of livelihoods of fishermen communities. Despite recent studies (Borrero et al., 2015a,b; Lynett et al., 2012,48

2014) and advances in high-fidelity modeling (Lynett et al., 2017), probabilistic methods tackling the quantification49

of future tsunami hazard due to strong flows in harbors are sparse (Park and Cox, 2016; Gonzalez et al., 2013). The50

need for such probabilistic quantifications is further accentuated by certain peculiarities that were observed with the51

phenomena of tsunami currents in ports. On 26 December 2004, the Sumatra-Andaman (SA) tsunami waves at the52

Omani port of Salalah wrested the freighterMaersk Mandraki from the main wharf before it was shoved around by the53
∗Corresponding author

d.gopinathan@ucl.ac.uk (D. Gopinathan); mohammad.heidarzadeh@brunel.ac.uk (M. Heidarzadeh); s.guillas@ucl.ac.uk
(S. Guillas)
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Probabilistic Quantification of Tsunami Currents

vortices induced from the tsunami currents (Okal et al., 2006). The 285m long ship drifted uncontrollably for hours,54

despite manual intervention (Figure 1). It looped both inside and outside the harbor prior to winding up on a sand bar.55

Another anomaly was observed on 24 September 2013, when a submarine landslide in the Makran subduction zone56

(MSZ) generated a tsunami in the North-Western (NW) Indian Ocean, affecting the coasts of Oman, Iran, Pakistan57

and India (Heidarzadeh and Satake, 2014). The landslide that caused the tsunami was the secondary effect of a small58

Mw 7.7 inland strike-slip earthquake. Tide-gauge records displayed tsunami waves of small amplitude (20 ± 7 cm) in59

the affected regions, except for three Omani ports (Heidarzadeh and Satake, 2014, Table 1 & Figure 3). Relatively60

larger amplitudes were found in the ports of Muscat (51 cm), Quarayat (109 cm) and Sur (40 cm). Here, the waves also61

prevailed for a relatively longer duration (⪆ 6ℎ) compared to the other ports (Figure 1).62

63
Figure 1: a) The Makran subduction zone area showing Karachi port studied in this work. b) Waveforms of the tsunami
generated by a submarine landslide in the Makran region on 24 September 2013 based on Heidarzadeh and Satake (2014,
Figure 11). c) Drifting of a large ship, the Mearsk Mandraki (shown in panel d) within the port of Salalah (pink squares)
following the December 2004 Indian Ocean tsunami based on the data by Okal et al. (2006). The numbers to the right
of each point indicate the sequence in which the ship drifted. d) The ship Mearsk Mandraki which was drifting in port
Salalah following the 2004 Indian Ocean tsunami.

64
65
66
67
68
69

70
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Probabilistic Quantification of Tsunami Currents

Overall, the above case from the 2004 tsunami provides evidence of the treacherous nature of tsunami currents in71

harbors. Although it may seem rational to associate high wave amplitudes with high velocities, the arresting feature is72

that the strong currents continued for hours after thewaveswithmaximum amplitude had arrived (nearly 9ℎ in Salalah).73

This is all the more consequential since conventional tsunami warnings may be lifted after visibly perceptible signs74

of the tsunami (i.e. vertical displacement) have disappeared, whereas the strong currents may manifest later on. In75

the case of the 2013 Makran tsunami also, it is highly probable that the coastal geometry and local bathymetry were76

responsible for long tsunami oscillations.77

The Makran Subduction Zone (MSZ) has given rise to tsunamis in 1945 (Byrne et al., 1992; Heidarzadeh et al.,94

2008) and 2013 (Heidarzadeh and Satake, 2014). Recent studies estimate the megathrust potential for the eastern95

part of the MSZ (blue rectangle, Figure 1) to beMw 8.8− 9.0 (Smith et al., 2013). Given the peculiarities observed96

in Makran ports during the 2004 and 2013 tsunamis, there is a pressing need for a comprehensive quantification of97

tsunami hazard, and associated uncertainties, especially port velocities. However, the accurate simulation of tsunami98

currents at shallow depths requires accurate coastline definition, high resolution bathymetry, and highly refinedmeshes,99

over enough time to capture the maximum. Thus, in this study we employ spatial resolutions of 10m for coastline,100

30m for bathymetry, and 10m for the computational mesh, locally in the vicinity of Karachi port (Pakistan), for a total101

simulation time of 12 hours. The large number of runs, at such resolutions, needed for probabilistic hazard assessments102

stretches the limit of current High-performance Computing facilities, even with the latest GPU (Graphics Processing103

Unit) acceleration (Reguly et al., 2018). In terms of the seabed deformation given as input to the tsunami model, we104

introduce here an earthquake source designed with segments of size 5 km×5 km with carefully constructed positive105

slip kernels to preserve fidelity to both magnitude scaling (Blaser et al., 2010) and slip scaling relations (Allen and106

Hayes, 2017). Second, the presence of a considerable sediment layer over the Makran Subduction Zone (MSZ) (up to107

2 km) demands incorporation of its influence on the deformation, since a remarkable amplification of up to 60% can108

be generated (Dutykh and Dias, 2010).109

We select a probabilistic route in order to quantify uncertainties in future tsunamis due to the uncertain earthquake110

source variations (see the full workflow in Figure 2). However, since the probability of large events is small, a compre-111

hensive coverage of the Gutenberg-Richter relation requires a large number of runs for the diversity of plausible events112

to be well represented across magnitudes and source location (in the thousands at minimum for a coarse quantification113

and much more for realistic assessments). Due to the considerable computational complexity of each high-resolution114

tsunami simulation of coastal tsunami currents, such a probabilistic endeavor can only be achieved by replacing the115

numerical tsunami model by a statistical surrogate: the emulator. To our knowledge, this is the first time that emula-116

tion has been marshalled to generate future earthquake-generated tsunami currents; it has been employed only once in117

the past for currents, for a single source of landslide-generated tsunamis with huge benefits in terms of computational118

D Gopinathan et al.: Preprint submitted to Elsevier Page 3 of 36
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Figure 2: Global workflow describing the integration of different work components in this study for emulation-based
probabilistic assessment of hazard for tsunami currents and heights in the port.

80
8182

costs and hazard assessment (Salmanidou et al., 2019). With a design of only 300 runs, we fit an emulator to produce119

1 million plausible tsunamis at any location. These emulated runs enable us to fully characterize uncertainty in future120
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Figure 3: Finite fault model. a) Scaling relation of rupture length (L) and width (W ) with respect to the rupture moment
magnitude (Mw) showing the maximum length (Lmax), width (Wmax) and moment magnitude (M sat

w ) accommodable in the
eastern MSZ. The lengths and widths of 300 earthquake scenarios are plotted over the scaling relation for an FF model
made up of ∼5 km×5 km segments. The rupture length saturates after Mw 8.65 (green line) in the region marked by the
ellipse. The inset plot display the rupture dimensions (L,W ) and rupture origin co-ordinates (Xo, Yo) on a sample scenario
(no. 129). Sample nos. 1 and 129 are marked on the scaling curves. b) Same as (a) but also includes FF models made up
of ∼5 km×5 km, ∼10 km×10 km and ∼20 km×20 km segments. The inset plots zoom on to the scaling relation to reveal
discontinuities in the realizable fault dimensions.
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tsunami currents. Section 2 describes the models and methods used in this work, Section 3 discusses the results, and121

conclusions are drawn in Section 4.136

2. Models, Data and Methods137

In this section, we describe the finite fault apparatus (Section 2.1), construction of the slip profile on the finite138

fault (Section 2.2), integration of the sediment amplification over the slips (Section 2.3), tsunami propagation (Section139

2.4), merging of bathymetries at different resolutions (Section 2.4.1), design of algorithm for locally refined unstruc-140

tured mesh (Section 2.4.2), emulator training (Section 2.5), emulator diagnostics (Section 2.6) and finally the hazard141

predictions for 1 million events (Section 2.7). The global workflow is displayed in Figure 2.142

There are formidable computational challenges that must be addressed in order to accurately represent both the143

actual geophysical processes and their uncertainties. Often, in tsunami modeling this trade-off between capability and144

capacity in High Performance Computing (HPC) is left unresolved by either radically simplifying the physics (e.g. a145

linear tsunami propagation till say 100m depth with the use of an empirical relationship thereafter), or running only146

a few high resolution simulations as scenarios. We argue that our tsunami emulation framework, in this context of147

currents that are highly nonlinear and very sensitive to near shore bathymetry, provides a solution to this trade-off148

between precision and coverage of uncertainties. It requires manipulation of very large data sets on HPC, as well as149

complex post-processing on diverse software and data platforms. Thus, our work here is at the forefront of what can150

be achieved using the most refined finite fault segmentation, the latest tsunami model acceleration schemes on GPU151

clusters, hierarchical file formats, smart unstructured meshes and newest multi-threading emulation platforms.152

2.1. Finite Fault Model153

We construct a finite fault (FF) on the eastern section of MSZ (blue rectangle, Figure 1) using a total number154
(

nF
) of 2295 rectangular segments (Figures 4c & 9j). The overall dimension of the FF model is 420 km×129 km155

(Lmax ×W max). The slip on a segment is denoted bySi, where i varies from 1 to 2295. The closed-form equations from156

Okada (1985) transform the slips and other FF parameters into a static vertical displacement denoted by U (calculated157

inside an uplift calculation box, see Figures 9g & h). The final vertical displacement field results from the combined158

superposition of vertical displacements due to all the activated fault segments. Among the FF parameters, the dip159

angle and fault depth (df ) are sourced from the recent plate boundary model, Slab2 (Hayes et al., 2018; Hayes, 2018).160

The strike and rake angles are kept constant at 270◦ and 90◦. Each segment size (dF ) is approximately 5 km×5 km161

(li ×wi). All the segments are arrayed in an 85× 27 grid. This resolution is chosen to preserve fidelity to the scaling162

relation from Blaser et al. (2010) (Figure 3a), arrived through comparing the performance of different segment sizes163

viz. 5 km×5 km, 10 km×10 km and 20 km×20 km (Figure 3b). The discrepancy to the scaling relation appears as164

D Gopinathan et al.: Preprint submitted to Elsevier Page 7 of 36
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discontinuities in the realizable fault lengths (L) and widths (W ) (Figure 3a inset). The size of the discontinuities are165

the same as the resolution chosen (Figure 3b inset). Thus, we observe the least discontinuity while using a 5 km×5 km166

segmentation (Figure 3). We use the definitions of the seismic momentMw and moment magnitudeM0 (Kanamori,167

1977; Hanks and Kanamori, 1979) as,168

Mw = (2∕3)
(

log10M0 − 9.1
)

, M0 =
nF
∑

i=1
�liwiSi (1)169

with � = 3×1010N∕m2 being the modulus of rigidity. Our implementation of the Okada suite is adapted from the170

dMODELS1 code (Battaglia et al., 2012, 2013). The next section details the design of the slip profile over the FF171

model.172

2.2. Slip Profile Generation173

Slips are usually modeled to be uniform on the FF segments, even though inversions of seismic sources evidenced174

localised concentrations of high slips or asperities over a backdrop of lower slips (Grezio et al., 2017). To generate a175

similar behaviour in our slip profiles, we utilize a positive kernel function � having a functional form (Figure 4a inset):176

177

� (x; r, �) =

⎧

⎪

⎨

⎪

⎩

c�

(

1 − |

|

|

x
r
|

|

|

2
)�

|x| ≤ r

0 |x| > r
(2)178

where c� = Γ (2l + 2)
22l+1Γ (l + 1)2

is the normalizing constant made up of the gamma function (Γ), the length scale r defines179

the domain where � is non-zero and the parameter � adjusts the steepness of �. Using � as the core, we construct the180

bi-lobed kernel function Φ:181

Φ
(

x; rl, rr, �
)

=

⎧

⎪

⎨

⎪

⎩

�
(

x; rl, �
)

−rl ≤ x ≤ 0

�
(

x; rr, �
)

0 ≤ x ≤ rr
(3)182

where rl and rr are the length scales of the left and right lobes ofΦ, their values depending on the position of the rupture183

origin (Xo, Yo) with respect to the fault length (L) and width (W ) (Figures 3a inset & 4b-d). The tensor product of the184

two bi-lobed kernel functions, one along the length (Figure 4b) and another along the width (Figure 4d) of the fault185

yields the surface Φ⊗ (Figure 4c):186

Φ⊗
(

x, y; r⊗, �
)

= Φ
(

x; rW , rE , �
)

⊗Φ
(

y; rS , rN , �
)

(x, y) ∈
[

−rW , rE
]

×
[

−rS , rN
] (4)187

1v1.0 available at pubs.usgs.gov/tm/13/b1/
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where [−rW , rE
]

×
[

−rS , rN
] denotes the domain of the rupture and r⊗ = {

rW , rE , rS , rN
}. A normalization of Φ⊗188

with the required moment magnitude on the rupture yields the final slip profile S (Figure 5f and 9e & f). The algorithm189

for the above construction is detailed in Appendix A. Given the algorithm, we arrive at � =1 by varying � to closely190

match the maximum slip Smax and average slip Savg curves generated from the scaling relations in Allen and Hayes191

(2017, Table 2) (Figure 4a). The next section describes the incorporation of the effect of seafloor sediment layer.192

2.3. Sediment Amplification193

Considerable amplification (up to 60% locally) of crustal deformation due to the presence of layers of sediments194

on the seafloor was shown in Dutykh and Dias (2010, Figure 12). We introduce it here in tsunami modeling, by making195

use of the sediment amplification curve (Figure 5d). The curve uses the relative depth (dir) of the ith segment (Figure196

5c) calculated as:197

dir =
dis
dif

(5)198

where dis is the sediment thickness over the segment interpolated from GlobSed2 (Straume et al., 2019), and dif is the199

down-dip fault depth of the segment taken from Slab2 (Hayes et al., 2018) (Figures 5a & b). Given dir, the sediment200

amplification curve supplies the sediment amplification factor (S ia) on the segment (Figure 5e). The amplification201

due to the sediments is incorporated by multiplying the slip S i (Figure 5f) with the sediment amplification factor S ia202

resulting in an effective slip Sei (Figure 5g):203

Sei = Si
(

1 + S ia
) (6)204

The closed-form equations from Okada (1985) transform the effective slips Sei into the effective vertical displacement205

U e (Figures 9k & l). The influence of sediments not only increases the slips but also modifies the profile, as evident206

in the emergence of a double-lobed profile in the effective slip (Figure 5g). The effect is more conspicuous in the207

associated deformations (compare Figures 9g & k). The amplification factor (Sa) peaks at a relative depth of approx-208

imately 0.13 after which it decreases. Given the geometry of the fault and overlying sediment profile, a significant209

number of segments have an amplification factor between 0.4− 0.6 (or, equivalently a 40− 60% amplification) (Fig-210

ures 5d inset & e). Furthermore, the sediment amplification factor for the whole MSZ is shown in Figure 5e; its value211

is strongly dominated by the fault depth (Figure 5b) rather than the sediment thickness (Figure 5a) which is uniform212

around 2 km. The sediment amplification curve is defined only till a relative depth of 0.23 in Dutykh and Dias (2010).213

We linearly extrapolate the curve in order to be as conservative as possible in the region where it is not defined as214
2available from ngdc.noaa.gov/mgg/sedthick/
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well as to smoothly transition from regions of higher to lower fault depths. The counterparts of average slip Savg and215

maximum slip Smax of S (without sediments) are defined as average effective slip Seavg and maximum effective slip216

Semax of Se (with sediments). Similarly, effective moment magnitudeMe
w is defined, by replacing Si with Sei in Eqn.217

1. The effect of sediments on slips is compared in Figure 5h. Here, the increased scatter of Semax compared to Seavg218

is due to the spatial distribution of Sa, which significantly amplifies Semax depending on the rupture origin (Xo, Yo).219

Also, the increase in scatter of Semax as Mw decreases is due to the decrease in rupture dimensions that allow many220

earthquake scenarios to be situated in areas of lower Sa. This aspect is pronounced in a similar comparison ofMe
w to221

Mw in Figure 5i. The next section describes the propagation of the tsunami resulting from the deformations caused222

by the effective slips.223

2.4. Tsunami Propagation233

Unlike simulations for analysing wave heights which require a few hours of simulation time, capturing the veloci-234

ties need a longer simulation time. Thus, each scenario is run for 12ℎ of simulation time (Ts) to obtain the maximum235

tsunami velocity and wave height, and therefore is computationally expensive. It is not only imperative that the numer-236

ical algorithms in the computer code for tsunami simulations run efficiently at fine mesh resolutions needed to capture237

the currents (10m), but also that the code is amenable to adequate parallelisation. Thus, to run 300 such scenarios, we238

employ VOLNA-OP23 that has been shown to run efficiently for unstructured meshes on parallel GPUs (Reguly et al.,239

2018). The number of scenarios (i.e. 300) is considerably higher than in existing studies (Rashidi et al., 2020; Hasan240

et al., 2017; Heidarzadeh and Kijko, 2011). Usual simulations employ the Green’s functions approach to superpose the241

tsunami wave heights due to a multi-segment finite fault source. Here, we use the the Non-linear ShallowWater Equa-242

tions (NSWEs) to model not only the propagation of the tsunami but also the run-up/down processs at the coast (Dias243

et al., 2014). The finite volume (FV) cell-centered method for tessellation of control volume is used in VOLNA. Thus,244

the barycentres of the cells are associated with the degrees of freedom. Dutykh et al. (2011) and Giles et al. (2020)245

may be referred for details of numerical implementation, validation against standard benchmarks and comprehensive246

error analysis. VOLNA models the tsunami life-cycle with:247

�H
�t

+ ∇⋅ (Hv) = 0 (7)248

249

�Hv
�t

+ ∇⋅
(

Hv⊗ v + g
2
H2I2

)

= gH∇b (8)250

3v1.5 available at github.com/reguly/volna, with improvements to second order FV scheme and boundary conditions
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.

.

224
225

Figure 6: Merging of bathymetries. a) Digitized hydrographic chart bathymetry around Karachi port. b) Chart data with
altered coastline after addition of port features from Google Earth. c) Chart data supplemented with SRTM data. d)
GEBCO bathymetry around Karachi port. e) Merged bathymetry with chart data in (c) pasted into GEBCO bathymetry
in (d). f) 2D window (Θ). g) Complement of Θ, i.e. (1−Θ). h) Chart bathymetry in (c) muliplied by window. i) GEBCO
bathymetry in (d) multiplied by complement of window. j) Final merged bathymetry resulting from addition of windowed
bathymetries in (h) and (i).

226
227
228
229
230
231

232

whereH (x, t) = b+ � is the total water depth defined as the sum of free surface elevation � (x, t), and time-dependent251

bathymetry b (x, t). The two horizontal components of the depth-averaged fluid velocity are contained in v (x, t), g is252

the standard gravity and I2 is the 2× 2 identity matrix. The maximum tsunami velocity vmax and wave height �max at253
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a location (x, t) are computed as:254

255

264

vmax (x) = max
0< t≤ Ts

‖v (x, t)‖2 (9)265

266

�max (x) = max
0< t≤ Ts

� (x, t) (10)267

The dynamic bathymetry b (x, t) is composed as:268

b (x, t) = bs (x) + U e (x, t) (11)269

where bs is the static bathymetry andU e is the effective deformation due to the influence of sediments (Section 2.3). In270

this work, an instantaneous rupture is assumed, i.e. U e is supplied once at the beginning of the simulation. Further, to271

reduce the computational burden of calculating deformations from 300 ruptures, U e is computed only within a uplift272

calculation box covering the rupture (see green rectangle in Figures 9g-h & k-l). We now move on the bathymetry273

bs and unstructured mesh, both vital components for an accurate modeling of currents in shallow water and near the274

coast.275

2.4.1. Merging of Bathymetries276

The bathymetry used for the simulations is sourced from the GEBCO 2019 data set (GEBCO Bathymetric Com-277

pilation Group 2019, 2019), having a resolution of 15′′ (Figure 6d). Accurate modeling of port velocities and currents278

near the coast requires high resolution bathymetry and good definition of the coastline. Towards this, we use digitized279

bathymetry data at a resolution of ∼30m from hydrographic charts for Karachi port (Figure 6a). Further, we correct280

the shoreline using satellite imagery from Google Earth at ∼10m resolution wherever port structures and breakwaters281

need to be resolved (Figure 6b). The charts do not contain topographic data, which we supplement with SRTM v34 1′′282

data (Figure 6c). Simply replacing the GEBCO data with the hydrographic chart data gives rise to sharp and unrealistic283

discontinuities in the merged data set (Figure 6e). We ameliorate this by smoothly merging the hydrographic data into284

the GEBCO data by a procedure using cosine-tapered Tukey windows (Figures 6f-g). The detailed algorithm can be285

found in Appendix B.286

2.4.2. Localised Non-Uniform Unstructured Mesh293

We design a customised mesh algorithm for the unstructured mesh sizing function in three stages corresponding to294

offshore, onshore and port regions. A strategy based on bathymetry b (x) is used to generate the mesh in sea (Figure 7a),295
4available from earthexplorer.usgs.gov
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256
Figure 7: Localised non-uniform unstructured mesh. a) Mesh-sizing rule for offshore mesh based on bathymetry b, shown
in the inset. b) Mesh-sizing rule for onshore mesh based on coast proximity �, shown in the inset. c) Mesh sizing function
ℎ supplied to Gmsh for the whole domain resulting from the mesh-sizing rules in (a) and (b). d) Actual mesh sizes ℎ̄ in
mesh generated from Gmsh using the mesh sizing function in (c). e-g) [no local refinement] Mesh at Pasabandar shown
at scales of 64 km×64 km, 32 km×32 km and 8 km×8 km respectively. h-j) [with local refinement] Mesh at Karachi port
shown at scales of 64 km×64 km, 16 km×16 km and 0.5 km×0.5 km respectively.

257
258
259
260
261
262

263
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287
288

Figure 8: Tsunami propagation. a) Maximum velocity vmax around Karachi port over a simulation time of 12ℎ for sample
no. 1. b-c) Snapshots of velocities v for sample no. 1 at various times restricted to the box (dashed line) in (a). d-f)
Same as (a-c) but for sample no. 129. g-l) Same as (a-f) but for tsunami height �max (and �).

289
290
291
292
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Figure 9: Training set of 300 scenarios of

(

Mw, Xo, Yo
)

generated by Latin Hypercube Design. a) Training set projected
on Mw −Xo plane. Sample nos. 1 and 129 are marked with stars. b) Same as (a) but on Mw − Yo plane. c) Same as (a)
but on Xo − Yo plane. d) Comparison of relevant quantities for sample nos. 1 and 129. e) Slip S for sample no. 1 before
incorporation of sediment influence, plotted on log2 scale. f) Same as (e) but for sample no. 129. g) Offshore deformation
U due to slip S for sample no. 1. h) Same as (g) but for sample no. 129. i) Effective slip Se for sample no. 1 after
incorporation of sediment influence. j) Same as (i) but for sample no. 129. k) Effective deformation U e due to slip Se for
sample no. 1. l) Same as (k) but for sample no. 129.
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whilst proximity to the coast � (x) is used to size the mesh on land (Figure 7b). We also locally refine the mesh to 10m296

resolution at Karachi port (Figure 7h-j). This three pronged strategy strikes a balance between the fine mesh resolution297

required near the port for resolution of velocities and associated overall computational cost. The non-uniform meshes298

for the simulation are generated using Gmsh5 (Geuzaine and Remacle, 2009). Considering the dimensions of the finite299

fault earthquake sources (L×W ), we assume an approximate source wavelength (�o <
√

L2 +W 2) of the tsunami,300

and a representative ocean depth of the Makran trench (bo ∼3 km), and calculate the time period (T�) of the wave as,301

302

320

T� = �o∕
√

gbo (12)321

Here, �o =60 km, which is around 60% of the maximum distance contained in the smallest rupture considered in this322

work, i.e. of size ∼94 km×34 km for a Mw 7.5 event (sample no. 300). Next, assuming that the time period of the323

tsunami is the same everywhere in the domain, we get for a depth b (x) (van Scheltinga et al., 2012),324

�n∕
√

b (x) = �o∕
√

bo (13)325

which in turn relates the characteristic triangle (or element) length ℎ� (b) for depth b (x) as,326

ℎ� (b) =
(

�o∕nℎ
)
√

b (x) ∕bo (14)327

where nℎ = �n∕ℎ� (b) = 10 is the number of triangles in one wavelength �n. At the shore (i.e. b=0), a minimum mesh328

size ℎm of 500m is specified. In the vicinity of the port, the mesh size ℎpm is fixed as 10m. We also fix the maximum329

triangle size (ℎM ) as 25 km for regions that are deep inland. Further details and construction process for onshore and330

port mesh sizing functions are elaborated in Appendix C. After feeding the mesh sizing function (Figure 7c) into Gmsh,331

we get the computational mesh with ∼2.64 million cells or triangles (Figure 7d). Figures 7e-g & h-j show enlarged332

pictures of the mesh at increasingly fine scales for regions with (Pasabandar port) and without (Karachi port) local333

refinement respectively.334

The outputs vmax and �max for two training samples, no. 1 and 129 are plotted in Figure 8. The figures also contains335

snapshots taken at various time instants during the simulation.336

2.5. Emulator Construction337

The numerical simulation of the tsunami life cycle, i.e. its generation, propagation and inundation at fine mesh338

resolutions is computationally expensive due to non-linearity, and typically consumes hours on supercomputers. This339

is all the more prohibitive for a probabilistic quantification since thousands of runs of the forward model are required340

to adequately capture the various plausible scenarios. Statistical surrogates (or emulators) provide a computationally341
5v4.4.1 available at gmsh.info
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Figure 10: Emulator diagnostics. a) L-O-O for emulation of maximum velocity vmax at a gauge in Karachi port (gauge no.
91 in Figures 12a-b). The vertical line segments connect the training data to its predicted counterpart. b) Enlargement
of lower moment magnitude region in (a). c) Enlargement of higher moment magnitude region in (a). d) Same data in
(a) plotted to show trend of predicted v̄max with respect to training vmax. e) Same data in (a) but plotted with respect to
x-coordinate of rupture origin Xo. f) Same data in (a) but plotted with respect to y-coordinate of rupture origin Yo. g-l)
Same as (a)-(f) but L-O-O for emulation of maximum height �max at gauge no. 91.
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cheap approximation of the complex tsunami solvers, together with estimates of uncertainties in these predictions. In342

this study, the three input model parameters are moment magnitude (Mw) and rupture origin co-ordinates (Xo, Yo)343

(Figure 3 inset). The inputs are transformed into effective seafloor displacements (Sections 2.1, 2.2 & 2.3). The344

consequent tsunamis are propagated till Karachi port (Section 2.4). The outputs of interest in our case are the maximum345

wave height (�max) and maximum wave velocity (vmax) at nG (193) virtual gauge locations around the port.346

Thus, the computer code (denoted by M) simulates a multi-physics two-stage physical model, i.e. from slips Se347

to deformation U e, then from U e to tsunami outputs v and �. A design of computer experiments is an essential stage348

to create the data set used to construct the emulator. This consists of evaluations of the model (or computer runs349

of M) at a finite number of locations in the space of input model parameters, together called the training set. We350

employ a Latin Hypercube Design (LHD) of size 300 for 3 parameters (Figures 9a-c). This is large enough to capture351

complex nonlinear combined sensitivities to the input parameters (e.g., the influence of size and location in small and352

mid-size events closer to Karachi, or large regional variations in spatial distributions of slips), but still fits within our353

computational budget. TheGaussian Process (GP) emulator (denoted by) interpolates across the input-output points354

in the training set, and generates uncertain predictions elsewhere in the space of input parameters. The uncertainty355

in the predictions is modeled by a normal distribution whose mean and standard deviation are calculated using the356

Kriging formula (mean quantities denoted by v̄max and �̄max). Derivations and exact equations can be found in Section357

2 of Beck and Guillas (2016, Eqn. 2.4). GP emulation has been instrumental in successfully quantifying uncertainties358

in tsunami heights generated by landslides over the North Atlantic and theWestern Indian Ocean as well as earthquakes359

over Cascadia (Salmanidou et al., 2017; Guillas et al., 2018; Salmanidou et al., 2019).360

Maximum velocity magnitudes (and heights) are positive. In order to respect this physical constraint and not predict361

negative velocities (and heights), we feed the logarithm of vmax (and �max) into the construction of the emulator. Since362

the constructed emulator is now in the logarithmic scale, we transform the predicted quantities back to the original363

scale by accounting for the lognormal nature of the predicted distributions. Hence, the confidence intervals for the364

predictions, representing uncertainties, are all rendered positive, and naturally skewed in that direction, see Figure 10.365

Once the emulator is constructed, it needs to be validated before employing it for predictions. We turn to this aspect366

in the next section.367

2.6. Emulator Diagnostics368

In order to validate the quality of the emulation, we provide Leave-one-out (L-O-O) diagnostics here. As described369

in Section 2.5, our training set consists of 300 pairs of input-output quantities. In L-O-O, a reduced training set of 299370

pairs is employed to build an emulator, which is then used to predict the output at inputs in the 1 pair that was left371

out. The predicted output (and its uncertainty) is compared to the actual output in the left out pair. This procedure372
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is repeated 300 times to cover all the pairs in the training set. These tests are passed by the emulator, as seen for373

predicted v̄max in Figures 10a-f and �̄max in Figures 10g-l. The comparison between the mean of predictions from374

the emulator  and the training data from the tsunami simulator M shows that the emulator approximates well the375

simulator. The vertical line segments connects the predicted means with the counterpart in the training data. More376

importantly, the uncertainties in the predicted mean, quantified in the form of 90% prediction intervals (green bars in377

Figure 10), represent well the uncertainties about these predictions (or are even slightly conservative) since around378

90% or more of the outputs from the training set fall within these intervals.379
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Figure 11: Emulator predictions. a) The Gutenberg-Richter (G-R) relation for the MSZ, showing probability and com-
plementary cumulative distribution functions for two maximum moment magnitude assumptions, viz. 8.6 and 8.8. b)
Histograms of 1 million (and 10, 000) samples of Mw used as inputs for predictions.
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383
384
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2.7. Emulator Predictions404

Although the 300 simulations by itself may be considered to generate a good description of the hazard, a large405

number of scenarios are essential for a comprehensive probabilistic hazard assessment. Thus, we evaluate the model at406

nP (1 million) values of (Mw, Xo, Yo
) at 193 virtual offshore gauges (locations shown in Figure 12). The constructed407

emulator is used to evaluate the model at inputs that are different from those in the training set. These evaluations are408

termed predictions. A prediction returns the mean value of the emulated quantity and a measure of inherent statistical409

error/uncertainty in the approximation, e.g. the standard deviation. Cumulatively, these 193 million predictions not410

only comprehensively cover the geography around Karachi port, but also exhaustively sweep through the entire range411

of events in the magnitude-frequency distribution. Additionally, such a high number of samples is also needed to412
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Figure 12: Raw output from 1 million predictions at 193 gauges. a) Histograms of 1 million predicted maximum velocities
v̄max at each of the 193 gauges. Each histogram has the same scale as (c). Histograms from maximum moment magnitude
of 8.8 and 8.6 are superimposed. b) Same as (a) but for predicted maximum heights �̄max. c) Enlarged normalized
histograms of predicted maximum velocities at gauge no. 91 comparing the two cases of different maximum moment
magnitude. Inset shows probability of exceedance curves extracted from the histograms, with 99% confidence interval. d)
Same as (c) but for predicted maximum heights.
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thoroughly explore the interplay among the three parameters in the input space of (Mw, Xo, Yo
).413

The 1millionMw values are sampled from the Gutenberg-Richter (G-R) distribution for theMSZ. Here, the probability414

distribution function (pdf) for the G-R relation is modeled as the doubly truncated exponential distribution (Cosentino415
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Figure 13: Hazard curves. a) Comparison of normalized histograms of 1 million and 10, 000 predicted maximum velocities
v̄max at gauge no. 91. Inset shows probability of exceedance curves extracted from the histograms, with 99% confidence
intervals. b) Same as (a) but for predicted maximum heights �̄max. c) Probability of exceedance curves for predicted max-
imum velocities at 193 gauges. The curves for 10, 000 predictions are superimposed over those from 1 million predictions.
Curves for gauge no. 91 are marked out. Chosen values of probabilities and intensity thresholds used to generate hazard
maps are marked as horizontal and vertical lines respectively. d) Same as (c) but for predicted maximum wave heights.
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et al., 1977):416

G (m) =

⎧

⎪

⎨

⎪

⎩

�e−�(m−Mm
w)

1 − e−�(MM
w −Mm

w)
Mm

w ≤ m ≤MM
w

0 m > MM
w

(15)417
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where � = b loge 10 and the lowerMm
w and upperMM

w limits of truncation are 4 are 8.8 respectively. This rate parameter418

b of 0.92 specific to the MSZ is taken from the most recent Earthquake Model of Middle East (EMME) database419

(Danciu et al., 2018, Table S1). The complementary cumulative distribution function (ccdf), also called probability of420

exceedance or survival function is then:421

g (m) =

⎧

⎪

⎨

⎪

⎩

1 − 1 − e−�(m−Mm
w)

1 − e−�(MM
w −Mm

w)
Mm

w ≤ m ≤MM
w

0 m > MM
w

(16)422

TheMw for the 1million events are then obtained by sampling the truncated distribution within our region of interest,423

i.e. Mw 7.5 to Mw 8.8 (see Figure 11a). The 1 million values of (Xo, Yo
) are sampled from a uniform distribution424

defined over the rectangle [0 Lmax] × [0 W max] of area 420 km×129 km. Assuming a reduction of maximum mag-425

nitudeMM
w from 8.8 to 8.6 gives a perturbed G-R relation (Figure 11a). In this case, the 1million samples come from426

the range Mw 7.5 to Mw 8.6. The histograms of 1 million samples for Mw are shown in Figure 11b. It also shows427

10, 000 samples from the rangeMw 7.5 toMw 8.8 for performing comparisons.428

To be able to generate 1million predictions, we employ the efficiently implemented Multiple-Output Gaussian Process429

emulator (MOGP)6 from the Alan Turing Institute. Once the predictions are finished, we are left with two histograms430

(one each for v̄max and �̄max) at every virtual gauge, each made up of 1 million samples of predicted quantity. The431

histograms are processed to extract Pe
(

I (x) ≥ I0
), the probability of exceedance. Pe is the probability of the tsunami432

having I (x) ≥ I0 at a gauge x. The intensity I is the measure of hazard, i.e. either v̄max or �̄max, and I0 is the intensity433

threshold for the hazard quantity under consideration.434

3. Results and Discussion435

We first plot the raw output from the 1 million predictions, i.e. the histograms at 193 gauges in Figures 12a-b. At436

each gauge, two histograms are superimposed on each other. These correspond to the two G-R relations with varying437

maximum moment magnitude assumptions, i.e. MM
w 8.6 andMM

w 8.8 (Figure 11). The histograms also act as visual438

indicators for the measure of the hazard at the gauge, and will be cast as hazard maps in Figure 14. Near the tip of439

breakwaters and the mouth of the harbor, we observe relatively higher velocities than in other regions. We also observe440

a complementary relation between the histograms of velocities and wave heights: the gauges having thicker histograms441

for velocity have thinner histograms for wave heights and vice versa. These phenomena can also be observed in the442

snapshots in Figure 8 (compare panels (b) & (c) with (h) & (i) respectively).443

As expected, there is a clear reduction of hazard when the maximum moment magnitude is reduced. For closer444

inspection, we enlarge the normalized histograms at gauge no. 91 in Figures 12c-d. Gauge no. 91 is located in the445
6v0.2.0 available at github.com/alan-turing-institute/mogp_emulator
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center of the map near the mouth of the port and is chosen since there is substantial spread of both maximum velocities446

and wave heights in its histograms. In Figure 12c, the normalized histograms for maximum velocity are plotted.447

The range of velocities forMw 8.8 extends till ∼16ms−1, while it extends to only ∼6.2ms−1 forMw 8.6. Thus, we448

observe a ∼61% reduction in maximum velocity hazard for aMw 0.2 reduction in maximum moment magnitude. In449

comparison, for the same reduction in maximum moment magnitude, the reduction in hazard from maximum wave450

height is only ∼38% (from ∼4.5m to ∼2.8m in Figure 12d). The probability of exceedance Pe that is extracted from451

the histograms is plotted in the inset of the respective figure.458

Figures 13a-b compare normalized histograms for 1 million and 10, 000 samples of input parameters (see Figure459

11b). The corresponding probability of exceedance Pe plots with their 99% confidence intervals can be seen in the460

inset. In Figure 13a, we observe that the histogram corresponding to 10, 000 predictions is curtailed around 7.5ms−1461

and becomes very sparse for higher velocities. This is due to a deficit of samples that results in the isolated bars for462

higher velocities. This behaviour also translates into larger uncertainties (or wider confidence intervals) for estimates463

of low probabilities of Pe. In contrast, 1 million predictions adequately sweep through the entire range of velocities464

resulting in lower uncertainties (or narrower confidence intervals) for the tail probabilities. It may be noted that tail465

probabilities in the Pe curve correspond to extreme events with higher velocities. Similar behaviour is seen in Figure466

13b, where the deficit of samples is observed for maximum wave heights higher than 2.7ms−1 for the case of 10, 000467

predictions.468

In Figures 13c-d, we plot the probability of exceedance curves extracted from the histograms of 1 million predictions469

for the 193 gauges. Superimposed on top are the Pe curves for 10, 000 predictions. The horizontal lines in the plots470

are the chosen values of probability of exceedance, 10−1, 10−2 and 10−3, progressively decreasing by an order of471

magnitude. The vertical lines in Figure 13c denote maximum velocities of 1.5, 3.1 and 4.6ms−1 (or 3, 6 and 9 knots472

respectively), values that demarcate categories of damage in Figure 1 of Lynett et al. (2014). The vertical lines in473

Figure 13c denote maximum wave heights of 0.75, 1.5 and 3m. These values are used to construct hazard maps in474

Figure 14. In both Figures 13c-d, the reach of the Pe curve is extended beyond the low probability of 10−4 to include475

even extreme events only in the case of 1 million predictions. Additionally, although the lower probabilities (around476

10−4) have been made accessible by 10 thousand events, they require 1 million events for accurate resolution: with477

only 10,000 samples, both probabilities and quantities are overestimated between 10−3 and 10−4. Hence, being able to478

produce a very large number of predictions is crucial to hazard assessment. Only with the utilization of the emulator479

– needing only 300 simulations – are we able to afford realistic predictions of velocities and wave heights at high480

resolution.481

Port hazard maps were developed for Crescent City, California (Lynett et al., 2014) and four sites in New Zealand482

(Borrero et al., 2015a). The hazard was represented on the maps by velocity zonations, a time-threshold metric and483
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Figure 14: Hazard maps. a-c) Probability of exceedance at the 193 gauges for three chosen values of predicted maximum
velocities v̄max. d-f) Predicted maximum velocities for three given probabilities of exceedance. g-l) Same as (a)-(f) but for
predicted maximum wave heights �̄max.
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safe depths for vessel evacuation. Here, the probability of exceedance curves in Figure 13 are cast as hazard maps484

in Figure 14, more along the lines of Gonzalez et al. (2013) and Park and Cox (2016). We plot the probability of485

exceedance at the 193 gauges on the map for the chosen values of maximum velocities in Figures 14a-c. Similar plots486

for chosen values of maximum wave heights are shown in Figures 14d-f. For both velocities and wave heights, the487

overall probability decreases as the intensity threshold increases. Specifically, the bulk of Pe for maximum velocities488

is concentrated at the tip of breakwaters and along the dredged channel leading into the port (seen in port bathymetry,489

Figure 6j), as also observed in (Lynett et al., 2012). This is also supported by the patterns of localised higher maximum490

velocities in Figures 8a& d. In contrast, the spatial distribution ofPe formaximumwave height shows a complementary491

behaviour and is more spread out.492

Conversely, for chosen probabilities of exceedance, the corresponding hazard threholds at the gauges are plotted493

in Figures 14g-l. As expected, the overall intensity thresholds increase with decrease in probability of exceedance.494

Again, the bulk of the maximum velocity threshold is concentrated at the tip of breakwaters and along the dredged495

channel (Figures 14g-i). Here too, we see a complementary behaviour for maximum wave height in Figures 14j-l.496

Arcos and LeVeque (2015) found that velocities have more spatial variation than heights. Dengler and Uslu (2011)497

showed increased sensitivity of velocities to port configurations, compared to wave heights. The larger spatial variation498

of velocities in Figure 13c compared to wave heights in Figure 13d is evident in the probability of exceedance plotted499

for all the gauges. This can be attested in Figures 12a-b, where the bulkiness of velocity histograms varies spatially500

much more than that of the heights. Additionally, at a given gauge, we observe that the spread of velocities is much501

more than those of the heights for the same set of earthquake scenarios, e.g. compare Figures 12a-b for gauge no. 91.502

These behaviours can also be deduced for individual runs from the spatial variations of maximum velocity and wave503

height is Figure 8 (compare panels (a) & (d) with (g) & (j) respectively).504

The probability of exceedance extracted in this work acts as the basic input for common hazard outputs of probability of505

occurrence (and return periods), especially the ∼2475 year mean return period for the Maximum Considered Tsunami506

(MCT) as laid out in Chapter 6 of ASCE 7-16 (Chock, 2016). It also feeds into loss estimation functions (Muhari507

et al., 2015). But a full probabilistic assessment would ideally need to include further sources of uncertainties. These508

include layers of uncertainties that are either epistemic or aleatoric in nature. Epistemic uncertainties include the scal-509

ing relation, and the Gutenberg-Richter approximation of the occurrence-magnitude relationship (Davies et al., 2018),510

i.e. both the maximum moment magnitude and the b-value. The major influence of the maximum magnitude was511

illustrated in initial work by Hoechner et al. (2016), but for a simplified tsunami modeling strategy. Here, we only512

assess two cases, forMM
w 8.6 andMM

w 8.8. Uncertainties in the bathymetry near shore have also been shown to have513

a large influence on tsunamis at the shore (Liu and Guillas, 2017). Combining the tools of dimension reduction and514

emulation, such a modeling of the epistemic uncertainty would be beneficial to include.515
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Aleatoric uncertainties in the variations of the geometry in the seafloor uplift and subsidence can be readily incor-516

porated. An alternative to our slip profile generation is to directly parameterize the co-seismic deformation profile517

using 3 parameters as in Guillas et al. (2018) (or more) to vary the geometry more freely and be more realistic. The518

Okada model that transforms the slips to the vertical deformation is then bypassed. This route is quite attractive since519

it allows the creation of very realistic deformation patterns with a fixed number of parameters, and does away with the520

dependency of the deformation/slip on the resolution of the segmentation (shown in Figure 3b inset).521

Our work uniformly samples the 1 million samples for rupture origin co-ordinates (another aleatoric uncertainty).522

However, a recent spatial distribution of locking has been made available for the MSZ (Frohling and Szeliga, 2016).523

It would be even more realistic to sample the rupture origin coordinates using the locking distribution, since zones of524

high locking act as a major cause for earthquake reoccurence as recently hypothesised in Moernaut et al. (2018). The525

locations could be further distributed based on the depth dependent rigidity (Scala et al., 2019).526

Randomness in tide levels at the time of impact (consequent changes of up to 25% reported in Ayca and Lynett (2016))527

could be included, as well as the numerical error in the approximation of the currents since our depth-averaged model528

is 2-D but 3-D modeling will increase precision, and account for vertical vorticity (Lynett et al., 2017; Lynett, 2016).529

Better designs of computer experiments than the Latin Hypercube Design used here could be employed to reduce530

uncertainties in the emulator’s approximation, such as sequential design (Beck and Guillas, 2016) already used for531

tsunamis with success and is now implemented in an advanced computational workflow.532

Instead of investigating a range of scenarios, if one only wants to examine the maximum wave height in order to build533

defences for instance, a recent surrogate-based optimization could be pursued whereby the design of experiment is534

combined with a search for the maximum, saving large quantities of computational time and increasing accuracy due535

to the focus on the optimization (Mathikolonis et al., 2019). To be able to emulate a sequence of multiple models of536

seabed deformation and tsunami propagation, and possibly a 3-D model of currents locally, a new approach, called537

integrated emulation (Ming and Guillas, 2019) allows even better designs where the most influential models are run538

more times where it matters, and where the integrated emulator propagates uncertainties with higher fidelity by tak-539

ing into account the intermediate models in the system of simulators. This approach has the potential to enable fully540

realistic end-to-end coupling of 3-D earthquake sources models with tsunami models (Ulrich et al., 2019).541

4. Conclusions542

In this paper, we provide a novel end-to-end quantification of uncertainties of future earthquake-generated tsunamis543

heights and currents in the MSZ:544

1. We replace the complex, expensive high-resolution tsunami simulator by a functionally simple, cheap statistical545

emulator trained using 300 tsunami simulations at 10mmesh resolution in the vicinity of the port. We propagate546
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uncertainties from the Gutenberg-Richter relation to tsunami impacts of maximum velocities and wave heights547

in the port area of Karachi, Pakistan. We observe maximum (extreme event) velocities and wave heights of up548

to 16ms−1 and 8m respectively for the rangeMw 7.5− 8.8 (Figure 12).549

2. We perform the largest emulation using 1million predictions/source scenarios. To our knowledge, this is the first550

large-scale uncertainty quantification of earthquake-generated tsunami current hazard. We are able to display551

the necessity of this very large number of predictions for resolving very low probabilities of exceedance (< 10−3)552

- very high impact extreme events (vmax > 7.5ms−1 and �max > 3m) with tighter uncertainties (Figure 13).553

3. We observe that reduction in hazard due to a reduction in maximum moment magnitude is more for velocities554

than wave heights. Near the mouth of the harbor, the reduction in hazard is ∼61% for maximum velocity, but555

only ∼38% for maximum wave height (corresponding to a reduction in maximum moment magnitude from 8.8556

to 8.6) (Figure 13c).557

4. We generate the first area-wide probabilistic hazard maps of tsunami currents from 1million predicted scenarios558

at the Karachi port (Figures 14a-f). It shows patterns that are geophysicallymeaningful and important for the next559

steps of disaster risk reduction. We identify concentrations of high probability of exceedance around the port for560

given intensity threshold (a maximum of ∼18%, 10% and 4% for 3, 6 and 9 knots respectively) (Figures 14a-c).561

Conversely, the same regions also have high intensity thresholds given probability of exceedance (a maximum of562

∼3.1, 7.5 and 10.3ms−1 for 10%, 1% and 0.1 % respectively) (Figures 14d-f). Overall, without our large-scale563

emulation, such outputs would be impractical to produce due to computational costs.564

5. We display more spatial variations for maximum velocity compared to wave heights around the port and their565

complementary behaviour for the aggregate of 1 million scenarios (Figures 8, 12, 13 and 14).566

A. Slip Profile Generation567

Select the dimension (ℎs) of a FF segment based on: (i) computational effort required – increases as ℎs decreases,568

along O (

n2F
)

∼O
(

ℎ−2s
), (ii) fidelity to the scaling relation (Figure 3b inset) – earthquake dimensions are resolved to569

O
(

ℎs
) (Figure 3b). We select ℎs ∼5 km, which for the overall FF dimensions of Lmax ∼420 km andW max ∼129 km570

results in 2295 segments. With the segment dimension ℎs, use the scaling relation to determine the minimum Mw571

that can be accommodated on the FF. To resolve the slip profile adequately, we require a fault to span a minimum572

of 4 segments in both the length and width directions. This results in a minimum Mw of 6.32. This is sufficient as573

our region of investigation starts at Mmin
w =7.5. For the FF model of area Lmax ×W max, use the scaling relation to574

determine the maximumMw that can be accommodated on the FF. We get the maximumMw asMsat
w =8.65 (Figure575

3a). Since our region of investigation is till Mw 8.8, for ruptures with Mw >Msat
w , we saturate the slip on the fault576

withMsat
w . Algorithm 1 and Figures 4b-d detail the slip profile generation given the input parameter (Mw, Xo, Yo

)

.577

D Gopinathan et al.: Preprint submitted to Elsevier Page 28 of 36



Probabilistic Quantification of Tsunami Currents

Algorithm 1 Slip profile generation578
1: For a given earthquake moment magnitudeMw, and rupture origin co-ordinates (Xo, Yo

) (Figure 3a inset); find
the rupture length L and widthW from the scaling relation. The co-ordinates have their origin as the south-west
corner of the FF (Figure 3a inset).

579
580
581

2: Fit the fault rectangle of size L×W into the FF. There are two possibilities with the rupture origin (Xo, Yo
) being

located at :
(i) the centre of the fault and equidistant from the boundaries of the fault rectangle, i.e. with distances L∕2 and
W ∕2.
(ii) not the centre of the fault. In this case, (Xo, Yo

) is at different distances from the boundaries of the fault
rectangle.

582
583
584
585
586
587

3: Use Eqn. 3 to construct the lobes � (x; rE , �
) and � (x; rW , �

) and form the bi-lobed kernel function for fault
lengthΦ (

x; rW , rE , �
) (Figure 4b). Similarly, form the bi-lobed kernel function for fault widthΦ (

x; rN , rS , �
) by

constructing the lobes � (x; rN , �
) and � (x; rS , �

) (Figure 4d). rE , rW , rN and rS are the distances of earthquake
origin from the eastern, western, northern and southern sides of the fault rectangle.

588
589
590
591

4: Use Eqn. 4 to construct the tensor product Φ⊗ of the two bi-lobed kernel functions in the previous step. Φ⊗ will
entirely reside within the fault rectangle and will become 0 at its boundaries (Figure 4c).

592
593

5: Multiply the values ofΦ⊗ at the centres of each segment (i.e. Φ⊗i ) with a factorMw
(
∑nF
i=1 �liwiΦ

⊗
i
)−1 to get the

slip Si on the segment. This normalization results in the slips in the fault rectangle to have a combined moment
magnitude ofMw.

594
595
596

B. Merging Bathymetry Data from Hydrographic Chart, SRTM, GEBCO and Satellite597

Imagery598

The four data sets that are used to create the merged bathymetry for computational mesh generation (Section 2.4.2)599

and tsunami simulations (Section 2.4) are at different resolutions – ∼1′′ ∼30m (digitized hydrographic charts and600

SRTM v3), ∼15′′ ∼450m (GEBCO 2019), and ∼10m (coastline features in satellite imagery from Google Earth).601

The digitized chart data is available in the domain of interest (DOI) [66.9332, 67.0168]◦E × [24.7666, 24.8334]◦N .602

The cosine-tapered Tukey window used in the merging process is given by:603

�
(

x, rc
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2

{

1 + cos
(

2�
rc

[

x − rc∕2
]

)}

0 ≤ x ≤
rc
2

1
rc
2

≤ x ≤ 1 −
rc
2

1
2

{

1 + cos
(

2�
rc

[

x − 1 + rc∕2
]

)}

1 −
rc
2

≤ x ≤ 1

(B.1)604

where rc is the ratio of length of cosine-taper to the total window length of 1. Shifted and dilated versions of � are605

used to create the tensor product:606

Θ
(

x − xp, y − yp, dx, dy, rxc , r
y
c
)

= �
(x − xp

dx
, rxc

)

⊗�
(y − yp

dy
, ryc

)

(B.2)607
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where (xp, yp
) and dx × dy are co-ordinates of the centre and area of the DOI respectively, whilst

(

rxc , r
y
c
) are the cosine-608

fractions along the length and width of the DOI. Algorithm 2 and Figure 6 detail the procedure used for merging the609

different bathymetries.610

Algorithm 2Merging bathymetry data611
1: Up-sample the hydrographic chart data and GEBCO bathymetry in the DOI on a rectangular grid having a reso-

lution of the computational mesh (∼10m) (Figures 6a & d respectively).
612
613

2: Integrate the polygonal domains of resolved coastline features into up-sampled bathymetry by filling land areas
with a positive constant (2m) (Figure 6b).

614
615

3: Interpolate the SRTM data for land onto the grid. If SRTM data exists on the water area after integration of port
features, discard the SRTM data there (Figure 6c).

616
617

4: Construct tensor product of cosine-tapered Tukey windows (Θ) and its complement (1−Θ) with cosine fractions
rxc = r

y
c =10% (Figures 6f & 6g respectively).

618
619

5: Multiply hydrographic chart data integrated with port coastline features and SRTM data (Figure 6c) withΘ (Figure
6f) to get windowed merged bathymetry (Figure 6h). The data at the start of the taper is used for the tapered region.

620
621
622

6: Multiply GEBCO 2019 data (Figure 6d) with 1−Θ (Figure 6g) to get windowed GEBCO bathymetry (Figure 6i).623
624

7: Add windowed merged bathymetry (Figure 6h) with windowed GEBCO bathymetry (Figure 6i) to get the final
merged bathymetry (Figure 6j).

625
626

C. Localised Non-Uniform Unstructured Mesh627

The mesh sizing function ℎ that is fed into Gmsh is constructed in three stages, viz. offshore, onshore and port628

regions. For offshore mesh, the design criteria is based on the bathymetry b (Figure 7a inset). Some more steps are629

required after the definition of ℎ� in Eqn. 14 of Section 2.4.2. The mesh sizing ℎ� defined in Eqn. 14 may turn out to630

be too steep (green curve in Figure 7a), or having a a high gradient with respect to the bathymetry b. A reduction is631

gradient is achieved by interpolating between the triangle size �o∕nℎ at bo and the minimum mesh size ℎm at the coast,632

i.e. b=0 (red curve in Figure 7a):633

ℎI (b) = b (x) ∗
(

�o∕nℎ − ℎm
)

∕
(

bo − 0
)

+ ℎm (C.1)634

The mesh sizing function ℎ (b) is then given by the minimum:635

ℎ (b) = min
(

ℎ� (b) , ℎI (b)
) (C.2)636

Next, the design criteria for the onshore mesh sizing function ℎ (�) is based on the coast proximity � (x) defined637

as the minimum distance of a point x from the coastline  of the merged bathymetry (Figure 7b inset):638

� (x) = min
xc∈

‖

‖

x − xc‖‖2 (C.3)639
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The mesh sizing function is broken into three regions, viz. inundation, stretch and blow-up regions (Figure 7b). In640

the inundation region which extends inland for a distance �I (2.5 km) from the coast, the mesh size is prescribed as641

the minimum mesh size ℎm (500m). Thus, the inundation region acts as a smooth transitioning region between the642

onshore and offshore mesh. Further inland away from the inundation region, we require the triangle sizes to explode643

quickly to the maximum mesh size ℎM (25 km). This region is called the blow-up region (from �S to �B in Figure644

7b). Since such a transition needs to happen in a smooth manner, we introduce the stretch region between the end of645

the inundation region and the beginning of the blow-up region (from �I to �S in Figure 7b). In the stretch region the646

triangle size transitions from ℎm to ℎS (10 km). To prescribe mesh sizes in the stretch region, we define the size ratio647

� (=1.3) to be the ratio of sizes of adjacent triangle in the mesh (also called grading gauge in Legrand et al. (2006)).648

The stretch distance �S −�I is calculated as:649

�S − �I = ℎm + �ℎm + �2ℎm +…+ �nSℎm (C.4)650

Eqn. C.4 is a geometric series that approximates the distance by summing up the sizes of nS +1 triangles, lined up651

end-to-end in a straight line, progressively increasing in size by a factor of � (Legrand et al., 2006), starting from ℎm652

to �nSℎm. Equating the last term to ℎS , solves for integer nS as:653

nS = ⌈log�

(

ℎS
ℎm

)

⌉ (C.5)654

where ⌈⋅⌉ denotes the ceiling function. Similarly, the blow-up distance �B −�S is calculated as:655

�B − �S = ℎS + �ℎS + �2ℎS +…+ �nBℎS (C.6)656

Similar to Eqn. C.4, Eqn. C.6 is a geometric series summing up the sizes of nB +1 triangles, progressively increasing657

in size from ℎS to �nBℎS , by a factor of �. Equating the last term to ℎM , solves for integer nB as:658

nB = ⌈log�

(

ℎM
ℎS

)

⌉ (C.7)659

The mesh sizing function is specified to Gmsh on a background rectangular mesh. The resolution of the background660

mesh is half the resolution of GEBCO grid, i.e. ∼210m, sufficient for specifying the ℎm of 500m. Each of the above661

mesh sizings for the inundation, stretch and blow-up regions need to be specified on the background mesh. The number662

of levels mentioned in Figure 7b are the number of grids in the background mesh needed to specify mesh sizes in the663

respective region.664
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Finally, the mesh sizing function is constructed in the vicinity of the port (Figure 7h-j). The strategy followed is665

similar to offshore mesh sizing, but instead of the proximity to coast, the radial distance from the centre (xp, yp
) of666

the DOI (or port) is used. A �p of 1.05 is chosen for a very smooth transition of mesh. The mesh sizing is fixed at667

ℎpm (10m) for the DOI where the resolved bathymetry is available. The resolution of background mesh near the port is668

kept at 10m, i.e. at least same as ℎpm. In increasing radii extending outwards from the DOI, the mesh sizing increases669

similar to Eqn. C.4 but iteratively with increasing number of terms. The iterative procedure is employed to ensure670

that there is a smooth merging of the mesh sizing function at the port with existing offshore and onshore mesh sizing671

functions.672
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