
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
25
27
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

A Machine-Learning-Based Global Atmospheric Forecast Model

Istvan Szunyogh1,1, Troy Arcomano1,1, Jaideep Pathak2,2, Alexander Wikner2,2, Brian
Hunt2,2, and Edward Ott2,2

1Texas A&M University
2University of Maryland

November 30, 2022

Abstract

The paper investigates the applicability of machine learning (ML) to weather prediction by building a reservoir-computing-

based, low-resolution, global prediction model. The model is designed to take advantage of the massively parallel architecture

of a modern supercomputer. The forecast performance of the model is assessed by comparing it to that of daily climatology,

persistence, and a numerical (physics-based) model of identical prognostic state variables and resolution. Hourly resolution

20-day forecasts with the model predict realistic values of the atmospheric state variables at all forecast times for the entire

globe. The ML model outperforms both climatology and persistence for the first three forecast days in the midlatitudes, but

not in the tropics. Compared to the numerical model, the ML model performs best for the state variables most affected by

parameterized processes in the numerical model.

1

A Machine-Learning-Based Global Atmospheric
Forecast Model

Troy Arcomano1, Istvan Szunyogh1, Jaideep Pathak2, Alexander Wikner2,
Brian R. Hunt3, and Edward Ott4

1Department of Atmospheric Sciences, Texas A&M University, Texas, USA.
2Department of Physics, University of Maryland, College Park, Maryland, USA.

3Department of Mathematics, University of Maryland, College Park, Maryland, USA.
4Department of Physics and Department of Electrical and Computer Engineering, University of

Maryland, College Park, Maryland, USA.

Key Points:

• A low-resolution, global, reservoir-computing-based machine learning (ML) model
can forecast the atmospheric state.

• The training of the ML model is computationally efficient on a massively parallel
computer.

• Compared to a numerical (physics-based) model, the ML model performs best
for the state variables most affected by parameterized processes.

Corresponding author: Troy Arcomano, troyarcomano@tamu.edu

Abstract

The paper investigates the applicability of machine learning (ML) to weather
prediction by building a reservoir-computing-based, low-resolution, global prediction
model. The model is designed to take advantage of the massively parallel architecture
of a modern supercomputer. The forecast performance of the model is assessed by
comparing it to that of daily climatology, persistence, and a numerical (physics-based)
model of identical prognostic state variables and resolution. Hourly resolution 20-day
forecasts with the model predict realistic values of the atmospheric state variables at
all forecast times for the entire globe. The ML model outperforms both climatology
and persistence for the first three forecast days in the midlatitudes, but not in the
tropics. Compared to the numerical model, the ML model performs best for the state
variables most affected by parameterized processes in the numerical model.

1 Introduction

The ultimate goal of our research is to develop a hybrid (numerical-machine-
learning) weather prediction (HWP) model. We hope to achieve this goal by imple-
menting algorithms developed by Pathak et al. [2018a,b] and Wikner et al. [2020]: the
first paper introduced an efficient ML algorithm for numerical-model-free prediction
of large, spatiotemporal dynamical systems, based solely on the knowledge of past
states of the system; the second paper showed how to combine a machine learning
(ML) algorithm with an imperfect numerical model of a dynamical system to obtain a
hybrid model that predicts the system more accurately than either component alone;
while the third paper combined the techniques of the first two into a computationally
efficient hybrid modeling approach. The present paper implements the parallel ML
technique of Pathak et al. [2018a] to build a model that predicts the weather in the
same format as a global numerical model. We train and verify the model on hourly
ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts
(ECMWF) [Hersbach et al., 2019].

The work presented here can also be considered an attempt to develop a ML
model that can predict the evolution of the three-dimensional, multivariate, global
atmospheric state. To the best of our knowledge, the only similar prior attempts were
those by Scher [2018] and Scher and Messori [2019], but they trained their three-
dimensional multivariate ML model on data that was produced by low-resolution nu-
merical model simulations. In addition, Dueben and Bauer [2018] and Weyn et al.
[2019, 2020] designed ML models to predict two-dimensional, horizontal fields of select
atmospheric state variables. Similar to our verification strategy, they also verified the
ML forecasts against reanalysis data. Compared to all of the aforementioned stud-
ies, an important new aspect of our work is that we employ reservoir computing (RC)
[Jaeger , 2001; Maass et al., 2002; Lukoševičius and Jaeger , 2009; Lukoševičius, 2012]
rather than deep-learning [e.g. Goodfellow et al., 2016], which is primarily motivated by
the significantly lower computer wall-clock time required to train an RC-based model.
This difference in training efficiency would allow for a larger number of experiments
to tune the ML model at higher resolutions.

The structure of the paper is as follows. Section 2 describes the ML model,
while section 3 presents the results of the forecast experiments, using as benchmarks
persistence of the atmospheric state, climatology, as well as numerical forecasts from
a physics-based model of identical prognostic state variables and resolution. Section 4
summarizes our conclusions.

2 The ML model

The N components of the state vector vm(t) of the ML model are the grid-
point values associated with the spatially discretized fields of the Eulerian dependent
variables of the model. Training the model requires the availability of a discrete time
series of past observation-based estimates (analyses) va(k∆t) (k = −K,−K+1, . . . , 0)
of the atmospheric states that use the same N -dimensional representation of the state
as the model. Beyond the training period, the analyses va(k∆t) (k = 1, 2, . . .) are used
only to maintain the synchronization of the model state with the observed atmospheric
state. An ML forecast can potentially be started at any analysis time k∆t (k =
0, 1, . . .): the forecast is a discrete time series of model states vm

k (k′∆t) (k′ = k +
1, k+ 2, . . .), where k∆t is the initial time, va(k∆t) is the initial state, ∆t is the time-
step, and (k′ − k)∆t is the forecast time. The computational algorithm of the model
is designed to take advantage of a massively parallel computer architecture.

2.1 Representation of the Model State

2.1.1 The Global State Vector

We define vm(t) by the grid-based state vector of the physics-based numerical
model SPEEDY [Molteni , 2003; Kucharski et al., 2013]. While SPEEDY is a spectral
transform model, it uses the grid-based state vector to represent the input and out-
put state of the model, and to compute the nonlinear and parameterized terms of the
physics-based prognostic equations. The horizontal grid spacing is 3.75◦×3.75◦1 and
the model has nv = 8 vertical σ-levels (at σ equals 0.025, 0.095, 0.20, 0.34, 0.51, 0.685,
0.835, and 0.95), where σ is the ratio of pressure to the pressure at the surface. The
model has four three-dimensional dependent variables (the two horizontal coordinates
of the wind vector, temperature, and specific humidity) and one two-dimensional de-
pendent variable (the logarithm of surface pressure). Thus the number of variables per
horizontal location is nt = 4× nv + 1. Because there are nh = 96× 48 = 36, 864 hori-
zontal grid points, the total number of model variables is N = nt × nh=1.52064×105.
Before forming the state vector vm(t), we standardize each state variable by subtract-
ing its climatological mean and dividing by its standard deviation at the particular
model level in the local region.

2.1.2 Local State Vectors

The global model domain is partitioned into L = 1, 152 local regions. We use
a Mercator (cylindrical) map projection to define the local regions, partitioning the
three-dimensional model domain only in the two horizontal directions: each local region
has the shape of a rectangular prism with a 7.5◦×7.5◦ base (Fig. 1). The model state
in local region ` (` = 1, 2, . . . , L) is represented by the local state vector vm

` (t), whose
components are defined by the Dv=4×nt = 132 components of the global state vector
in the local region. The model computes the L evolved local state vectors vm

` (t+ ∆t)
from vm(t) in parallel, and the evolved global state vector vm(t+ ∆t) is obtained by
piecing the L evolved local state vectors together.

2.2 The Computational Algorithm

2.2.1 RC

The computation of vm
` (t+∆t) from vm(t) requires the evaluation of a composite

(chain) function for each local state vector. Because we use an RC algorithm, this

1 This corresponds to about 300 km in the midlatitudes, which is an order of magnitude larger than the

10-30 km grid spacing of a state-of-the-art operational forecast model.

Figure 1. Illustration of the local regions. The local regions are defined on a Mercator map

projection, where the black dots indicate the horizontal location of the grid-points of the model.

The blue rectangles mark the boundaries of nine adjacent local regions. The red rectangle indi-

cates the boundaries of the extended local region for the local region in the center.

composite function has only three layers: the input layer, the reservoir, and the output
layer. A key feature of RC is that the trainable parameters of the model appear only
in the output layer, which greatly simplifies the training process.

2.2.2 The Input Layer and Reservoir

The composite of the input layer and the reservoir is

r`(t+ ∆t) = G`{r`(t),Win,`[v̂
m
` (t)]}, (1)

where the function Win,`[·] is the input layer. The dimension Dr of the reservoir state
vector r`(t) = (r`,1, r`,2, . . . , r`,Dr

) is much higher than the dimension Dv̂ of the input
vector v̂m

` (t). (The reservoir is a high-dimensional dynamical system.) The input
vector v̂m

` (t) is an extended local state vector that represents the model state in an
extended local region. In the present paper, we define v̂m

` (t) by the grid points of local
region ` plus the closest grid points from the neighboring local regions (see Fig. 1 for
an illustration). In the terminology of Pathak et al. [2018a], the locality parameter of
our model is 1. Using a nonzero value of the locality parameter is essential, because
otherwise no information can flow between the local regions. The dimension of the
extended local state vectors is Dv̂=16×nt = 528 for most `. The exceptions are the
local regions nearest to the two poles, because for those, we add no extra grid points
in the poleward direction. The dimension of the input vectors in these local regions is
Dv̂ = 12× nt = 396.

The ‘local approach’ of Dueben and Bauer [2018], which was introduced indepen-
dently of the parallel technique of Pathak et al. [2018a], employs a localization strategy
that is formally similar to the one described here. There is, however, an important
difference between the two localization techniques: Dueben and Bauer [2018] trained a
single common neural network for the different local regions, while we train a different
reservoir for each local region.

The input layer is implemented as Win,`[v̂
m
` (t)] = Wv̂,`v̂

m
` (t), where Wv̂,` is a

sparse Dr ×Dv̂ random matrix, whose entries are drawn from a uniform probability

distribution in the interval [−0.5, 0.5]. The reservoir dynamics is defined by

G`{r`(t),Win,`[v̂
m
` (t)]} = tanh [A`r`(t) + Wv̂,`v̂

m
` (t)], (2)

where tanh [·] is the component-wise hyperbolic tangent function and A` is a Dr ×
Dr weighted adjacency matrix that represents a low-degree, directed, random graph
[Gilbert , 1959]. Each entry of A` has a probability κ/Dr of being nonzero, so that
the expected degree of each vertex is a prescribed number κ. Thus, κ is the average
number of incoming connections (edges) per vertex. The nonzero entries of A` are
randomly drawn from a uniform distribution in the interval (0, 1] and scaled so that
the largest eigenvalue of A` is a prescribed number ρ. The parameter ρ, which controls
the length of the memory of the ML model dynamics, is called the spectral radius.

2.2.3 The Output Layer

The evolved local state vector is obtained by

vm
` (t+ ∆t) = Wout,`[r`(t+ ∆t),P`], (3)

where the function Wout,`[·, ·] is the output layer. This function is chosen such that it
is linear in the Dv ×Dr matrix of trainable parameters P`. To be precise,

Wout,`[r`(t+ ∆t),P`] = P`r̃`(t+ ∆t), (4)

where r̃`(t+ ∆t) = (r`,1, r
2
`,2, r`,3, r

2
`,4, . . . , r`,Dr−1, r

2
`,Dr

)(t+ ∆t).

2.2.4 Synchronization and Training

We define the local analysis va
` (k∆t) by the components of the global analysis

va(k∆t) (k = −K,−K + 1, . . .) that describe the state in local region `. In other
words, va

` (k∆t) is the observation-based estimate of the desired value of the model state
vm
` (k∆t). Likewise, we define the extended local analysis v̂a

` (k∆t) as the observation-
based estimate of the extended local state vector v̂m

` (k∆t) (k = −K,−K + 1, . . .).

The synchronization and training of the ML model starts with feeding the past
analyses to the reservoir, or more precisely, by substituting v̂a

` (k∆t) (k = −K,−K +
1, . . . ,−1) for v̂m

` (k∆t) in Eq. (1). Thus the output layer, Eq. (3), is not needed to
compute r`(k∆t) for k = −K + 1,−K + 2, . . . , 0: we generate r`(−K∆t) randomly,
discard the transient sequence r`(k∆t), k = −K,−K+1, . . . ,−Kt, and define vm

` (k∆t)
for k = −Kt + 1,−Kt + 2, . . . , 0 according to Eq. (1), with P` as yet undetermined.

The goal of the training is to find the P` that minimizes the cost function

J`(P`) =

[
0∑

k=−Kt+1

‖va
` (k∆t)− vm

` (k∆t)‖2
]

+ β‖Wout,`‖), ` = 1, 2, . . . , L, (5)

where ‖ · ‖ is the Frobenius norm. The purpose of the Tikhonov regularization term
β‖Wout,`‖) [Tikhonov et al., 1977] of J`(P`) is to improve the numerical stability of
the computations and prevent overfitting to the training data by choosing large values
of the components of Wout,`. Because Wout,` depends linearly on P`, the solutions
of the L minimization problems can be obtained by a linear ridge regression. That is,
P` is computed by solving the linear problem

P`

(
R̃`R̃

T
` + βI

)
= Va

` R̃T
` , ` = 1, 2, . . . , L, (6)

where the columns of R̃` are r̃`(k∆t) (k = −Kt + 1,−Kt + 2, . . . , 0) and the columns
of Va

` are va
` (k∆t) (k = −Kt + 1,−Kt + 2, . . . , 0). Notice that the dimension of the

linear problem of Eq. (6) does not depend on the length Kt of the training period. To

conserve memory, the Dr × Kt matrix R` need not be stored; the Dr × Dr matrix
R̃`R̃

T
` and the Dv×Dr matrix Va

` R̃T
` can be built incrementally, passing the training

data through the reservoir time-step by time-step [e.g., Lukoševičius and Jaeger , 2009;
Lukoševičius, 2012].

2.3 Implementation on ERA5 Reanalysis Data

2.3.1 Training

The global analyses va(k∆t) (k = −K,−K+ 1, . . .) are hourly ERA5 reanalyses
interpolated to the computational grid and adjusted2 to the topography of SPEEDY.
The training starts at 0000 UTC3 1 January, 1981 and ends at 2000 UTC January 24,
2000 (K ≈ 1.66×105). We add a small-magnitude random noise ε(t) to v̂a

` (k∆t) (k =
−K,−K + 1, . . . ,−1) before we substitute it for v̂m

` (t) in Eq. (1) in order to improve
the robustness of the ML model to noise [Jaeger , 2001]. The transient sequence of
K −Kt discarded reservoir states corresponds to the first 43 days of training.

2.3.2 Code Implementation and Performance

The current computer code of the ML model is written in Fortran, using both
MPI and OpenMP for parallelization and the LAPACK routine DGESV to solve the
linear problem of Eq. (6). The computations of both the training and forecast phase
are carried out on 1,152 Intel Xeon E5-2670 v2 processors. Training the model takes 67
minutes wall-clock time and requires 2.2 Gb of distributed memory per processor.4 Our
current code is designed to minimize the wall-clock execution time given the available
memory on a particular supercomputer, but the memory usage could be reduced (e.g.,
by not keeping all training data in memory simultaneously, or using single- rather than
double-precision arithmetic).

2.4 The Forecast Cycle

Beyond the training period, the analyses are used only to maintain the synchro-
nization between the reservoirs and the atmosphere. We use the hourly reanalyses for
synchronization, but start a new 20-day forecast only once every 48 hours. (Preparing
a 20-day forecast takes about 1 minute of wall-clock time.) We prepare a total of 171
forecasts for the period from January 25, 2000 to 28 December, 2000. The forecast
error statistics reported below are calculated based on these forecasts.

2.4.1 Selection of the Hyperparameters

The dimension Dr of the reservoir, rank κ of the random network, spectral radius
ρ, random noise ε, and regularization parameter β are the hyperparameters of the RC
algorithm. We found suitable combinations of these parameters by numerical experi-
mentation, monitoring the accuracy and stability of the forecasts. All results reported
in this paper are for Dr=9,000, κ=6, β = 10−5, while ρ monotonically increases from
0.3 at the equator to 0.7 at 45◦ and beyond. The components of ε are uncorrelated,
normally distributed, random numbers with mean zero and standard deviation 0.28.

2 The adjustment is done to the surface pressure field to insure that it is consistent with the SPEEDY

orography [for the adjustment scheme, see Baek et al., 2009].
3 Universal Time Coordinated, known as Greenwich Mean Time (GMT) prior to 1972.
4 The memory usage per processor is vastly smaller in the forecast phase.

For this combination of the hyperparameters, the ML model predicts realistic values
of all state variables for the entire globe and 20-day forecast period.5

3 Forecast Verification Results

3.1 Benchmark Forecasts

We use daily climatology, persistence, and numerical forecasts for the evaluation
of the ML model forecasts. Persistence is based on the assumption that the initial
atmospheric state will persist for the entire time of the forecast. The numerical fore-
casts are prepared by Version 42 of the SPEEDY model. While SPEEDY has been
developed for research applications rather than weather prediction, it can be consid-
ered a low-resolution version of today’s NWP models. Most importantly, similar to all
operational models, it solves the system of atmospheric primitive equations and has a
realistic climate. It provides a good benchmark in the current stage of our research, in
which the primary goal is to prove a concept rather than improve operational forecasts.

3.2 Results

We verify all forecasts against ERA5 reanalyses interpolated to the computational
grid and adjusted to the SPEEDY orography. The magnitude of the forecast error is
measured by the mean of the area-weighted root-mean-square difference between the
forecasts and the verification data for all forecasts. Results are shown for selected
variables in the Northern Hemisphere (NH) midlatitudes for the first 72 forecast hours
(Fig. 2). In this region, the ML model outperforms both persistence and climatology
by a large margin in the first 48 forecast hours. While the ML model forecasts remain
more accurate than persistence in the next 24 forecast hours, their skill, with the
exception of the temperature forecasts, degrades to that of climatology. In the tropics
(results not shown) the accuracy of the ML model is very similar to that of persistence
and climatology

The performance of the ML model compared to SPEEDY is mixed: the ML
forecasts are more accurate for the specific humidity near the surface, especially at 24 h
and 48 h forecast times, while the SPEEDY forecasts are more accurate for the wind,
particularly at the jet level. The ML temperature forecasts are also more accurate in
the tropics (results not shown), where the SPEEDY forecasts rapidly develop a large
bias in the upper troposphere.

To better understand the behavior of the root-mean-square error, we decomposed
it into a (square of) bias and variance component and also investigated the power
spectrum of the variance in the NH midlatitudes with respect to the zonal wavenumber
(results are not shown). On the positive side, the ML forecasts of the different variables
have little or no bias, and the variance of the longer term forecasts saturates at a
realistic level for zonal wave numbers larger than 6. On the negative side, the variance
saturates at unrealistically high levels at the lower wave numbers, leading to an over-
prediction of the spatial variability of the forecast fields at the longer forecast times.
The fast growth of the variance at the large scales, especially at wave number 4, is the
main deficiency of ML model in the midlatitudes. Fixing this problem could extend
the time range of forecast skill by days.

5 A small improvement of the forecast accuracy for the first three days could be achieved at the expense

of stability beyond 15 days.

3.3 Near-Surface Humidity and Tropical Temperature Profiles

The short-term forecast advantage of the ML model over SPEEDY has two
sources. First, while the SPEEDY forecasts rapidly develop a near-surface humid-
ity bias, the ML model forecasts are free of such bias. Second, the variance of the ML
model forecast errors is also lower initially. As forecast time increases, the advantage
of the ML model remains in terms of the bias, but vanishes in terms of the variance.
Because the variance becomes the dominant component at the later forecast times, cli-
matology breaks even with the ML model forecasts by 72 h forecast time (bottom right
panel of Fig. 2). The spatial distribution of the difference of the errors (Fig. 3) suggests
that the ML model performs better in regions where parameterized atmosphere-surface
interactions play an important role in the moist processes in SPEEDY (e.g., regions
of the ocean boundary currents). Likewise, the advantage of the ML model in pre-
dicting the tropical temperature profiles (not shown) is the result of large biases that
are present only in the SPEEDY forecasts in the main regions of parameterized deep
convection. Finally, it should be noted that while the current version of the ML model
learns about atmosphere-surface interactions strictly from the atmospheric training
data, SPEEDY uses a number of prescribed fields to describe the surface conditions
(e.g., a spatio-temporally evolved sea-surface temperature analysis.)

3.4 Rossby Wave Propagation

The forecast variable for which SPEEDY clearly outperforms the ML model is
the meridional component of the wind: while the accuracy of the wind forecasts by the
two models is similar at 24 h, the error of the ML model forecasts grows more rapidly
beyond that time. The difference between the errors of the two models grows the fastest
in the layer around the jet streams of the Northern Hemisphere (NH) midlatitudes
(between 400 hPa and 200 hPa). Because the variability of the meridional wind in
this layer is dominated by dispersive synoptic-scale Rossby waves, the aforementioned
result suggests that the ML model may be inferior to the numerical model in describing
the Rossby wave dynamics. To investigate this possibility, we plot Hovmöller diagrams
of the meridional wind for both forecasts and the verification data (Figure 4).

A pattern of negative (positive) values followed by a pattern of positive (negative)
values indicate a trough (ridge). Because the eastward group velocity of the dispersive
Rossby waves at the synoptic scales is larger than their eastward phase velocity, new
troughs and ridges can develop downstream of the original wave. Such developments
are marked by oriented dashed black lines in the figure. In the first three days, the ML
model captures the dispersive dynamics of the wave packets accurately, but because
the wave packets are composed of wave number 4-11 waves [e.g. Zimin et al., 2003], the
over-intensification of the wave number 4-6 components at the later forecast times leads
to a gradual shift of the carrier wave number toward lower values and a deceleration
of the group velocity.

4 Conclusions

We demonstrated that a RC-based parallel ML model can predict the global
atmospheric state in the same gridded format as a numerical (physics-based) global
weather prediction model. We found that the 20-day ML model forecasts predicted
realistic values of all state variables at all forecast times for the entire globe. The
ML model predicted the weather in the midlatitudes more accurately than either
persistence or climatology for most of the first three forecast days. This time range
could be significantly extended by eliminating, or at least reducing, the over-prediction
of atmospheric spatial variability at the large scales (wave numbers lower than 7). The
forecast variables for which the ML model performed best compared to a numerical

Figure 2. Forecast verification results for the NH midlatitudes (30◦N and 70◦N). Results

are shown for (blue) the ML model, (green) SPEEDY, and (red) persistence. Shown is the area-

weighted root-mean-square error at the different atmospheric levels for (top row) the tempera-

ture, (middle row) meridional wind, and (bottom row) specific humidity at (left column) 24 h

forecast time, (middle column) 48 hour forecast time, and (right column) 72 h forecast time.

Figure 3. Comparison of the near-surface humidity forecast errors between the SPEEDY and

ML model forecasts. Shown by color shades is the difference of the 925 hPa relative humidity

root-mean-square errors between the SPEEDY and ML model forecasts at forecast times (top)

12 h, (second from top) 24 h, (second from bottom) 36 h, and (bottom) 48 h. Here, the mean is

taken over all 171 forecasts. Positive (negative) values indicate locations where the ML model

forecasts are more (less) accurate than the SPEEDY forecasts.

Figure 4. Rossby wave packets in the model forecasts and verification data. The Hovmöller

diagrams show the propagation of waves packets in (left) a 10-day ML model forecast, (middle)

related verification data, and (right) related 10-day SPEEDY forecast. Shown by color shades is

the latitude-weighted meridional mean of the meridional coordinate of the wind for latitude band

30◦N-60◦N at 200 hPa. The forecasts start at 0000 UTC 2 December, 2000. The propagation of

the wave packets are marked by the directed straight dashed lines.

(physics-based) model of identical prognostic state variables and resolution were the
ones most affected by parameterized processes in the numerical model.

The results suggests that the current version of our ML model have potential
in short-term weather forecasting. Because the parallel computational algorithm is
highly scalable, it could be easily adapted to higher spatial resolutions on a larger
supercomputer. As the algorithm is highly efficient in terms of wall-clock time, it
could be used for rapid forecast applications and could also be implemented in a
limited-area rather than a global setting. The ML modeling technique described here
could also be applied to other geophysical fluid dynamical systems.

Acknowledgments

This work was supported by DARPA contract DARPA-PA-18-01 (HR111890044).
The work of T. A. and I. S. was also supported by ONR award N00014-18-2509. This
research were conducted with the advanced computing resources provided by Texas
A&M High Performance Research Computing. This paper greatly benefitted from
stimulating discussions with Sarthak Chandra, Michelle Girvan, Garrett Katz, and
Andrew Pomerance. Peter Dueben of ECMWF and an anonymous reviewer provided
valuable comments to improve the paper. The new data generated for the paper is
available at http://doi.org/10.5281/zenodo.3712157.

References

Baek, S., Szunyogh, I., Hunt, B. R., and Ott, E. (2009). Correcting for surface pressure
background bias in ensemble-based analyses. Monthly Weather Review, 137, 2349–
2364.

Dueben, P. D., and Bauer, P. (2018). Challenges and design choices for global weather
and climate models based on machine learning. Geoscientific Model Development,
11, 3999–4009.

Gilbert, E. (1959). Random graphs. Annals of Mathematical Sciences 30, 1141–1144.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, MIT Press, Cam-
bridge, MA, USA.

Jaeger, H. (2001). The “echo state” approach to analyzing and training recurrent neu-
ral networks. GMD Report 148, German National Research Center for Information
Technology.

Lukoševičius, M. (2012). A practical guide to applying echo state networks. Neural
Networks: Tricks of the Trade, eds. G. Montavon, G. B. Orr, and K.-R. Müller, 2nd
edition, Springer, 659–686.

Lukoševičius, M., and Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3, 127–149.

Kucharski, F., Molteni, F., King, M. P., Farneti, R., Kang, I., Feudale, L. (2013).
On the need of intermediate complexity general circulation models: A “SPEEDY”
example. Bulletin of the American Meteorological Society, 94, 25–30.

Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J. M., Nicolas, J., Radu,
R., Schepers, D., Simmons, A., Soci, C., Dee, D. (2019). Global reanalysis: goodby
ERA-Interim, hello ERA. ECMWF Newsletter 159, 17–24.

Maass, W., Natschläger, T., Markram, H. (2002). Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation 14, 2531–2560.

Molteni, F. (2003). Atmospheric simulations using a GCM with simplified parameter-
izations I: model climatology and variability in multi-decadal experiments. Climate
Dynamics, 20, 175–191.

Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B. R., Girvan, M., and Ott,
E. (2018). Hybrid forecasting of chaotic processes: Using machine learning in con-
junction with a knowledge-based model. Chaos, 28, 041101.

Pathak, J., Hunt, B. R., Girvan, M., Lu, Z., and Ott, E. (2018). Model-free predic-
tion of large spatiotemporally chaotic systems from data: A reservoir computing
approach Physical Review Letters, 120, 024102.

Scher, S., and Messori, G. (2019). Weather and climate forecasting with neural net-
works: using general circulation models (GCMs) with different complexity as a study
ground. Geoscientific Model Development, 12 2797–2809.

Scher, S. (2018). Toward data-driven weather and climate forecasting: Approximating
a simple general circulation model with deep learning. Geoscientific Model Develop-
ment, 12, 2797–2809.

Tikhonov, A. N., Arsenin, V.I., and John, F. (1997). Solutions of Ill-Posed Problems,
Winston, Washington, DC, USA.

Weyn, J. A., Durran, D. R., and Caruana, R. (2020). Improving data-driven global
weather prediction using deep convolutional neural networks on a cubed sphere.
https://doi.org/10.1002/essoar.10502543.1.

Weyn, J. A., Durran, D. R., and Caruana, R. (2019). Can machines learn to predict
weather? Using deep learning to predict gridded 500-hPa geopotential height from
historical weather data. Journal of Advances in Modeling Earth Systems, 11, 2680–
2693.

Wikner, A., Pathak J., Hunt, B., Girvan M., Arcomano, T., Szunyogh, I., Pomerance,
A., and Ott, E. (2019). Combining machine learning with knowledge-based modeling
for scalable forecasting and subgrid-scale closure of large, complex, spatiotemporal
systems. Chaos (in press).

Zimin, A. V., Szunyogh, I., Patil, D. J., Hunt, B., and Ott, E. (2003). Extracting
envelopes of Rossby wave packets Monthly Weather Review, 131, 1011–1017.

