Surface ozone-meteorology relationships: Spatial variations and the role of the jet stream

Gaige Hunter Kerr^{1,1}, Darryn W. Waugh^{2,2,2}, Stephen D. Steenrod^{3,3,3}, Sarah A. Strode^{4,4,4}, Susan E Strahan^{5,5,5}, and Gaige Hunter Kerr⁶

¹The Johns Hopkins University ²Johns Hopkins University ³Universities Space Research Assocation ⁴Universities Space Research Association ⁵Universities Space Research Association ⁶The George Washington University

December 1, 2022

Abstract

We investigate the relationships among summertime ozone (O3), temperature, and humidity on daily timescales across the Northern Hemisphere using observations and model simulations. Temperature and humidity are significantly positively correlated with O3 across continental regions in the mid-latitudes (~35 - 60@N). Over the oceans, the relationships are consistently negative. For continental regions outside the mid-latitudes, the O3-meteorology correlations are mixed in strength and sign but generally weak. Over some high latitude, low latitude, and marine regions, temperature and humidity are significantly anticorrelated with O3. Daily variations in transport patterns linked to the position and meridional movement of the jet stream drive the relationships among O3, temperature, and humidity. Within the latitudinal range of the jet, there is an increase (decrease) in O3, temperature, and humidity over land with poleward (equatorward) movement of the jet, while over the oceans poleward movement of the jet results in decreases of these fields and vice versa. Beyond the latitudes where the jet traverses, the meridional movement of the jet stream has variable or negligible effects on surface-level O3, temperature, and humidity. The O3-meteorology relationships are largely the product of the jet-induced changes in the surface-level meridional flow acting on the background meridional O3 gradient. Our results underscore the importance of considering the role of the jet stream and surface-level flow for the O3-meteorology relationships, especially in light of expected changes to these features under climate change.

Surface ozone-meteorology relationships: Spatial variations and the role of the jet stream

Gaige Hunter Kerr^{1*}, Darryn W. Waugh^{1,2}, Stephen D. Steenrod^{3,4}, Sarah A. Strode^{3,4}, and Susan E. Strahan^{3,4}

¹Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA ²School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

 ${\rm Australia} \\ ^3 {\rm NASA}~{\rm Goddard}~{\rm Space}~{\rm Flight}~{\rm Center},~{\rm Greenbelt},~{\rm Maryland},~{\rm USA} \\ ^4 {\rm Universities}~{\rm Space}~{\rm Research}~{\rm Association},~{\rm GESTAR},~{\rm Columbia},~{\rm Maryland},~{\rm USA} \\$

¹⁰ Key Points:

1

2

3

5 6

7 8 9

11	•	The relationships among summertime O_3 , temperature, and humidity vary over
12		the Northern Hemisphere
13	•	Daily variations in meteorology drive the O ₃ -meteorology covariance
14	•	The jet impacts meridional flow, which acts on the latitudinal O ₃ gradient and
15		leads to variations in the O ₃ -meteorology relationships

^{*}now at Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA

 $Corresponding \ author: \ G. \ H. \ Kerr, \verb"gaigekerr@gwu.edu"$

16 Abstract

We investigate the relationships among summertime ozone (O_3) , temperature, and hu-17 midity on daily timescales across the Northern Hemisphere using observations and model 18 simulations. Temperature and humidity are significantly positively correlated with O_3 19 across continental regions in the mid-latitudes ($\sim 35-60^{\circ}$ N). Over the oceans, the re-20 lationships are consistently negative. For continental regions outside the mid-latitudes, 21 the O_3 -meteorology correlations are mixed in strength and sign but generally weak. Over 22 some high latitude, low latitude, and marine regions, temperature and humidity are sig-23 nificantly anticorrelated with O_3 . Daily variations in transport patterns linked to the 24 position and meridional movement of the jet stream drive the relationships among O_3 , 25 temperature, and humidity. Within the latitudinal range of the jet, there is an increase 26 (decrease) in O_3 , temperature, and humidity over land with poleward (equatorward) move-27 ment of the jet, while over the oceans poleward movement of the jet results in decreases 28 of these fields. Beyond the latitudes where the jet traverses, the meridional movement 29 of the jet stream has variable or negligible effects on surface-level O_3 , temperature, and 30 humidity. The O_3 -meteorology relationships are largely the product of the jet-induced 31 changes in the surface-level meridional flow acting on the background meridional O_3 gra-32 dient. Our results underscore the importance of considering the role of the jet stream 33 and surface-level flow for the O_3 -meteorology relationships, especially in light of expected 34 changes to these features under climate change. 35

³⁶ Plain Language Summary

The relationship of ozone (O_3) with meteorological variables such as temperature 37 and humidity at the earth's surface varies in strength and sign. Some regions, such as 38 continental parts of the mid-latitudes, experience increases in O_3 as the temperature or 39 humidity rises. However, this is not the case over the entire Northern Hemisphere. We 40 use detailed computer simulations of atmospheric chemistry to show that these relation-41 ships are primarily the result of changes in meteorology, not changes in emissions or chem-42 istry. The relationship between O_3 and meteorological variables is related to the north-43 south movement of the jet stream, powerful eastward-flowing air currents located near 44 the tropopause that can encircle the hemisphere. Specifically, we find that the jet stream 45 influences the O₃-meteorology relationships due to its effect on the north- and southward 46 advection of O_3 , temperature, and humidity and not due to cyclones and the associated 47 frontal activity, as has been previously suggested. Our results are relevant for understand-48 ing the present-day O_3 -meteorology relationships and how climate change may impact 49 O_3 pollution. 50

51 **1** Introduction

Ambient surface-level ozone (O_3) plays a prominent role in atmospheric chemistry 52 (Fiore et al., 2015; Pusede et al., 2015), while posing significant threats to human health 53 (Landrigan et al., 2018) and ecosystem productivity (Tai & Martin, 2017). Long-term 54 trends in observed O_3 in the Northern Hemisphere mid-latitudes reveal sustained, year-55 round increases in baseline O_3 concentrations (Parrish et al., 2012), underpinning the 56 need for a better understanding of the drivers of O_3 variability. Meteorology strongly 57 affects O_3 concentrations and chemistry through both variations in prevailing weather 58 conditions on daily, seasonal, or interannual timescales as well as long-terms trends as-59 sociated with climate change (e.g., Jacob & Winner, 2009; Fiore et al., 2015; Otero et 60 al., 2016; Lefohn et al., 2018). The meteorological, or transport-related, phenomena that 61 affect O_3 are not cause-and-effect relationships in the same sense as emissions or chem-62 ical kinetics and energetics (i.e., temperature-dependent reaction or emissions rates). Rather, 63 the link between O_3 and meteorology reflects a joint association (e.g., high temperatures 64 are often associated with slow-moving anticyclones). 65

Previous studies have focused on characterizing the relationship between O_3 and 66 temperature or humidity in historical data. Generally these studies found a positive O₃-67 temperature relationship (e.g., Rasmussen et al., 2012, 2013; Pusede et al., 2015) and 68 a variable O₃-humidity relationship with substantial latitudinal variability (e.g., Camalier et al., 2007; Tawfik & Steiner, 2013; Kavassalis & Murphy, 2017). However, the major-70 ity of past studies on the O_3 -meteorology relationships focused on populated, industri-71 alized portions of the Northern Hemisphere mid-latitudes, potentially overlooking im-72 portant variations of these relationships elsewhere. These studies have been conducted 73 for different and often non-overlapping time periods during which changes of O_3 precur-74 sors could affect chemical background conditions (Kim et al., 2006; Derwent et al., 2010; 75 Cooper et al., 2012; Simon et al., 2015; Lin et al., 2017). Finally, past studies have used 76 different methodologies (e.g., O₃-relationships derived from hourly, daily, or seasonal data; 77 see Brown-Steiner et al. (2015) for additional information). All these factors complicate 78 direct comparisons from study to study; thus, it is difficult to piece together a compre-79 hensive sense of how the O₃-meteorology relationships vary across the globe and what 80 processes drive these relationships. Recent work by Kerr et al. (2019) and Porter and 81 Heald (2019) suggests that greater than 50% of the covariance of O_3 and temperature 82 in the United States (U.S.) and Europe on daily timescales stems from meteorological 83 phenomena, not chemistry or emissions. It is an open question whether this also holds 84 for the O_3 -humidity relationship. 85

There have been several meteorological mechanisms proposed to link O₃ with tem-86 perature and humidity. However, little consensus exists as to which mechanism is the 87 most important and the regions or timescales over which it operates. Baroclinic cyclones 88 can disperse built-up concentrations of pollution by entraining polluted air from the plan-89 etary boundary layer (PBL) into the free troposphere (e.g., Mickley, 2004; Leibensperger 90 et al., 2008; Knowland et al., 2015, 2017). Quasi-stationary anticyclones such as the Bermuda 91 High can influence regional climate and O_3 (e.g., Zhu & Liang, 2013). Properties of the 92 PBL, such as its height, or temperature inversions and mixing within the PBL, have also 93 been suggested as transport-related mechanisms that affect surface-level O_3 (e.g., Daw-94 son et al., 2007; He et al., 2013; Reddy & Pfister, 2016; Barrett et al., 2019). Winds near 95 the earth's surface or aloft can ventilate pollution away from its source region (e.g., Ca-96 malier et al., 2007; Hegarty et al., 2007; Tai et al., 2010; Sun et al., 2017). Interactions 97 among the atmosphere, land surface, and biosphere have been proposed to explain the 98 O₃-humidity relationship in North America (Tawfik & Steiner, 2013; Kavassalis & Mur-99 phy, 2017). The jet stream is a pronounced feature of the general circulation of atmo-100 sphere in both the Northern and Southern Hemisphere mid-latitudes and is character-101 ized by a region of strong eastward wind aloft. Its existence arises from momentum and 102 heat fluxes forced by transient eddies, and the jet extends throughout the depth of the 103 troposphere (Woollings et al., 2010). The variability of surface-level summertime O_3 as 104 well as its relationship with temperature have been linked to the latitude of the jet stream 105 over eastern North America (Barnes & Fiore, 2013; Shen et al., 2015). Similar connec-106 tions between the jet position, persistence of the jet in a given position, and wintertime 107 particulate matter with a diameter $< 2.5 \ \mu m \ (PM_{2.5})$ have also been demonstrated in 108 Europe (Ordóñez et al., 2019). 109

The aim of this paper is to document the relationships of surface-level tempera-110 ture and specific humidity (henceforth "humidity") with O₃ in the Northern Hemisphere 111 during boreal summer and explore the processes responsible for spatial variations of these 112 relationships. Through our model simulations, we demonstrate that variations in transport-113 related processes drive the covariance of O_3 with temperature and humidity on daily timescales. 114 We build off of the previous regionally-focused work of Barnes and Fiore (2013), Shen 115 et al. (2015), and Ordóñez et al. (2019) to show the connections between the position 116 of the jet stream and surface-level temperature, humidity, and O_3 variability hold across 117 the Northern Hemisphere. Finally, we develop and test hypotheses that the the jet stream 118 to the surface-level relationships among O_3 , temperature, and humidity. 119

¹²⁰ 2 Data and Methodology

121

2.1 Model Simulations

The majority of our analysis of the O₃-meteorology relationships is performed using simulations of NASA's Global Modeling Initiative chemical transport model (GMI CTM; Duncan et al., 2007; Strahan et al., 2007, 2013). The GMI CTM is driven by meteorological fields from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2; Gelaro et al., 2017). GMI CTM simulations used in this study have 1° latitude x 1.25° longitude horizontal resolution (~ 100 km) with 72 vertical levels, extending from the surface to 0.01 hPa.

The chemical mechanism of the CTM includes tropospheric and stratospheric chem-129 istry with approximately 120 species and over 400 reactions. In addition to the spectrum 130 of chemical processes dependent upon the model meteorology, several aspects of O_3 pro-131 duction and destruction also depend on the meteorology: biogenic emissions (temper-132 ature, photosynthetically active radiation), soil emissions of NO_x (temperature, precip-133 itation), lightning emissions of NO_x (convective mass flux), wet deposition (wind, clouds, 134 precipitation), and dry deposition (wind, clouds, temperature, pressure). Additional in-135 formation about the natural and anthropogenic emission inventories and model param-136 eterizations (e.g., biogenic emissions, lightning NO_x , etc.) is provided in Kerr et al. (2019) 137 and Strode et al. (2015). 138

The GMI CTM is a proven model to understand surface-level O_3 variability and its drivers (e.g., Duncan et al., 2008; Strode et al., 2015; Kerr et al., 2019). Kerr et al. (2019) evaluated the CTM with observations from an *in-situ* network in the U.S. and showed that the model skillfully simulated the observed daily variability of O_3 during the summer despite a high model bias in the eastern U.S. and low model bias in the western U.S; these biases are common among CTMs (e.g., Brown-Steiner et al., 2015; Guo et al., 2018; Phalitnonkiat et al., 2018).

In this study we focus on the O_3 -meteorology relationships in the Northern Hemi-146 sphere for a three-year period (2008–2010) during boreal summer (1 June–31 August). 147 We use O_3 from the model's surface level, which has a nominal thickness of ~ 130 m. 148 CTM output from the early afternoon (mean 1300-1400 local time), coinciding with 149 the overpass time of the Afternoon Constellation ("A-Train") of Earth observing satel-150 lites, was archived as gridded fields, whereas hourly output was archived only at select 151 sites. We consequently use modeled O_3 from this early afternoon period, noting that this 152 time of day typically represents a time in which the PBL is well-mixed (e.g., Cooper et 153 al., 2012) and daily O_3 concentrations reach their maximum (e.g., Schnell et al., 2014). 154 Considering O_3 during this early afternoon period versus longer averaging periods leads 155 to similar results (Kerr et al., 2019). 156

Two simulations are analyzed in this study. The first is a control simulation with 157 daily (or sub-daily) variations in meteorology, chemistry, and natural emissions. Anthro-158 pogenic emissions in this simulation vary from month to month. Unless otherwise indi-159 cated, all subsequent figures and analysis use this control simulation. In a second sim-160 ulation referred to as "transport-only," we isolate the role of transport. Meteorological 161 fields related to transport such as pressure, wind, convection, PBL height, and precip-162 itation (as it affects the vertical transport of O_3 via wet deposition) all vary on daily and 163 sub-daily timescales in this transport-only simulation. The daily variations of other me-164 teorological fields that affect chemistry and emissions (e.g., temperature, clouds and albedo-165 related variables, surface roughness, specific humidity, soil moisture, and ground wetness) 166 are removed by using a single, monthly mean diurnal curve for each of these fields at each 167 grid cell. Therefore, any process that relies on these variables (e.g., photolytic and ki-168 netic reaction rates, biogenic emissions, dry deposition) is identical for a given time of 169 the diurnal cycle for all days in a particular month. Other non-biogenic emissions are 170

fixed to a single monthly mean value with no diurnal variations. We note that although
there are no day-to-day variations in emissions- and chemistry-related processes within
a given month in the transport-only simulation, there is still seasonal and interannual
variability. This transport-only simulation is similar to the "Transport" simulation discussed in Kerr et al. (2019) with the exception that specific humidity is also averaged
to a monthly mean diurnal cycle.

2.2 Observations

177

202

We use *in-situ* observations of O_3 across North America, Europe, and China to ex-178 amine the observed variations of the O₃-meteorology relationships and assess the accu-179 racy of the GMI CTM. We choose these regions because their *in-situ* networks, described 180 below, measure and archive O_3 hourly. Since the model outputs O_3 averaged over 1300-181 1400 hours (local time), comparing this output with hourly O_3 observations averaged 182 over the same time of the day represents the most direct comparison. The lack of *in-situ* 183 networks with observations at a high temporal frequency in many other parts of the world 184 hinders our ability to examine model performance over other regions. 185

Observations of O₃ from 233 Canadian sites are part of the National Air Pollution Surveillance Network (NAPS), collected and analyzed by Environment and Climate Change Canada (ECCC, 2017). In the U.S. we use observations from the Air Quality System (AQS), which contains O₃ observations collected by the U.S. Environmental Protection Agency and state, local, and tribal air pollution control agencies at 1483 sites (EPA, 2019). The European Monitoring and Evaluation Programme (EMEP) provides O₃ observations at 142 sites in the European Union (Hjellbrekke & Solberg, 2019).

For China we use observations from the Chinese Ministry of Ecology and Environ-193 ment (MEE) for summers 2016–2017 (Li et al., 2019). Observations are primarily from 194 urban centers, and if a particular Chinese city has > 1 monitor, a city-wide average was 195 computed following Z. Zhao and Wang (2017), resulting in data from 360 Chinese cities. The choice of this 2016 - 2017 time period is because this Chinese observational net-197 work did not come online until the mid-2010s. Accordingly, when we assess the perfor-198 mance of the GMI CTM and discuss the observed O_3 -meteorology relationships in China, 199 we use model simulations (Section 2.1) and reanalysis data (Section 2.3) for 2016-2017200 rather than the 2008 - 2010 period used elsewhere in this study. 201

2.3 Meteorological Reanalysis

In addition to providing meteorological input to drive the GMI CTM, MERRA-2014 2 is also used to determine the relationships between O_3 and meteorology. Several of the 2015 observational networks detailed in Section 2.2 lack co-located meteorological observa-2026 tions, and Varotsos et al. (2013) commented that lack of co-located O_3 and temperature 2027 (or other meteorological) observations necessitates the use of gridded products to exam-2038 ine the relationships between O_3 and meteorology.

MERRA-2 meteorological fields are not available at the satellite overpass times sampled by the GMI CTM simulations (Section 2.1). We calculate daily averages from the following MERRA-2 fields: hourly surface-level (10-m) zonal (U_{10}) and meridional (V_{10}) wind, three-hourly 2-m specific humidity (q), three-hourly 500 hPa zonal wind (U_{500}), and hourly PBL height (*PBLH*). Daily 2-m maximum temperature (T) is computed as the maximum of hourly values. Our use of daily maximum temperature follows Zhang and Wang (2016) and Meehl et al. (2018).

There are uncertainties associated with an assimilated product like MERRA-2, but Bosilovich et al. (2015) presented evidence that MERRA-2 provides a very good quality reanalysis data set. As the MERRA-2 data have higher horizontal resolution than the GMI CTM (0.5° latitude $\times 0.625^{\circ}$ longitude for MERRA-2 versus 1° latitude $\times 1.25^{\circ}$ longitude for the CTM), we degrade the MERRA-2 data to the resolution of the CTM
using xESMF, a universal regridding tool for geospatial data (Zhuang, 2018).

222 2.4 Methodology

2.4.1 Statistical analysis

We use the Pearson product-moment correlation coefficient and the slope of the 224 ordinary least squares (OLS) regression (denoted r(x, y) and dy/dx for variables x and 225 y, respectively) to (1) quantify the O_3 -meteorology relationships on daily timescales and 226 (2) evaluate the ability of the GMI CTM to accurately simulate observed O_3 from the 227 in-situ networks detailed in Section 2.2. The correlation coefficient is a parametric test 228 that measures the degree of linear correlation between x and y, and the OLS regression 229 describes the linear relationship between x (explanatory variable) and y (dependent vari-230 able). 231

The serial dependence (persistence) in our meteorological and chemical data reduces 232 the effective sample size by an amount not known a priori and inhibits the use of tra-233 ditional hypothesis testing methods such as t-tests to evaluate significance (Zwiers & von 234 Storch, 1995; Wilks, 1997; Mudelsee, 2003). Therefore, we use moving block bootstrap-235 ping to quantify the significance of the correlation coefficient. While traditional boot-236 strapping resamples individual, independent values of the time series, moving block boot-237 strapping resamples continuous subsets of the time series with blocklength L and does 238 not destroy the ordering responsible for the persistence (Wilks, 2011). At each grid cell 239 we synthetically construct a null distribution of 10000 bootstrapped realizations of the 240 correlation coefficient (Mudelsee, 2014) and use L = 10 days. As a rule of thumb, block-241 lengths should generally exceed the decorrelation time. More rigorous methods for op-242 timizing L exist, but we find that L = 10 is adequate for our application and our re-243 sults are not sensitive to the exact value of L. To evaluate the significance, we estimate 244 the 95% confidence interval using the percentile method of the bootstrapped values (i.e., 245 the 95% confidence interval of our 10000 realizations is given by the 250th and 9750th 246 sorted values). If this confidence interval does not contain zero, we declare the correla-247 tion coefficient significant. 248

249

223

2.4.2 Jet stream position

We define the latitude of the jet (ϕ_{jet}) as the latitude of maximum zonal winds at 250 500 hPa (U_{500}) on each day. This approach to determine ϕ_{jet} follows Barnes and Fiore 251 (2013) but differs in two ways: (1) Barnes and Fiore (2013) determined ϕ_{jet} using U_{500} 252 averaged over the eastern North America zonal sector. We determine ϕ_{jet} locally (at each 253 longitudinal grid cell) and between $20-70^{\circ}N$; (2) After finding the maximum U_{500} for 254 each longitude, we employ a simple moving average that is essentially a convolution of 255 daily ϕ_{iet} of a general rectangular pulse with width ~ 10°. This approach removes large 256 changes (abrupt latitudinal shifts) in ϕ_{jet} with longitude. Using smoothed versus un-257 smoothed data or different pulse widths yields similar overall findings in this study. 258

259

2.4.3 Cyclone detection and tracking

To assess the impact of extratropical cyclones on surface-level O₃, we use the MAP Climatology of Mid-latitude Storminess (MCMS) database to locate cyclones (Bauer & Genio, 2006; Bauer et al., 2016). Within MCMS, cyclones are detected as minima in the ERA-Interim sea level pressure (SLP) dataset (Dee et al., 2011) and are subject to additional filters to screen for spurious detections. Once detected, MCMS tracks cyclones with criteria that require gradual changes in SLP, no sudden changes in direction, and cyclones travel distances less than 720 km over single six-hourly time steps. Additional details can be found in Bauer and Genio (2006) and Bauer et al. (2016).

$_{268}$ 3 Global O₃ distribution and evaluation

We begin with an analysis of the distribution and variability of modeled surface-269 level O_3 during summer (Figure 1a). Concentrations of O_3 are highest (~ 30-60 ppbv) 270 in a broad mid-latitude band over continental regions extending from $20 - 50^{\circ}$ N. The 271 GMI CTM suggests that O_3 is not zonally-symmetric within this mid-latitude band and 272 that the highest mean concentrations (> 50 ppbv) are in the Middle East and central 273 and eastern Asia. Outside of the mid-latitudes, the CTM simulates lower O_3 concentra-274 tions (< 30 ppbv), and the lowest concentrations in the hemisphere (< 15 ppbv) are 275 276 found in the remote tropical marine atmosphere. We characterize the daily variability of O_3 by the standard deviation, and two levels (8 and 10 ppbv) are highlighted with the 277 thin dashed and thick contours in Figure 1a. The hemispheric distribution of mean sum-278 mertime surface O_3 and its variability in Figure 1a is consistent with simulations from 279 other models in a recent model intercomparison (Turnock et al., 2020). 280

To illustrate the possible influence of anthropogenic emissions on the spatial variability of mean O_3 concentrations, we show mean annual anthropogenic NO_x emission data from the Emissions Database for Global Atmospheric Research (EDGAR; Crippa et al., 2018) at their native resolution (0.1° latitude x 0.1° longitude) in Figure 1b. EDGAR is used in the GMI CTM, but is overwritten by regional inventories, if available. To first order, regions with the highest O_3 concentrations and largest O_3 variability generally coincide with industrialized regions that have high precursor emissions (Figure 1).

We evaluate whether the modeled O_3 distribution shown in Figure 1a is realistic using the correlation coefficient, calculated for CTM grid cells containing *in-situ* monitors (Section 2.2). The temporal correlation between modeled and observed $O_3 > 0.5$ in the vast majority of grid cells (Figure 2). The strength of the correlation is slightly weaker in central China than other parts of China or Europe and North America (compare Figures 2c and 2a-b), but there are no other readily-detectable spatial patterns regarding the strength of the correlation.

The primary goal of our study is to document the O₃-meteorology relationships in 295 terms of the strength of the temporal correlation of O_3 with temperature and humid-296 ity. Thus, the model's ability to accurately reproduce this covariance (Figure 4) is the 297 relevant litmus test for model performance. Recent studies by Strode et al. (2015) and 298 Kerr et al. (2019) have shown that the GMI CTM can reproduce the meteorological- and 299 emissions-driven variability of summertime O₃ as well as the O₃-temperature relation-300 ship over the U.S. On account of these studies and our analysis in Figure 2, the GMI CTM 301 is a suitable tool to address our research questions. The agreement between the observed 302 and modeled O₃-meteorology correlations will be explored in the following section (Sec-303 tion 4), and this analysis will also support our use of the GMI CTM to simulate the covariance of O_3 with temperature or humidity. 305

³⁰⁶ 4 O₃-meteorology relationships

In this section we describe the relationships among O₃, temperature, and humidity on daily timescales in the Northern Hemisphere during summer. We primarily use the GMI CTM but also compare the modeled relationships to observed values. As discussed in the Introduction (Section 1), other studies have focused mainly on subsets of the Northern Hemisphere mid-latitudes, but our examination of the relationships across the entire hemisphere allows us to have a more holistic sense of the synoptic-scale variations of these relationships.

In the mid-latitudes ($\sim 30-60^{\circ}$ N), statistically-significant positive values of $r(T, O_3)$ are simulated by the CTM throughout North America and Eurasia (Figure 3a), but over virtually all the oceans $r(T, O_3)$ is negative. Poleward of the mid-latitudes, the strength of $r(T, O_3)$ decreases nearly monotonically over land, reaching either weak values or sig-

nificantly negative correlations (Figure 3a). The O_3 -temperature relationship is varied 318 equatorward of the mid-latitudes; but, in the zonal mean, $r(T, O_3)$ decreases to nega-319 tive values south of 30°N. Previous work by Rasmussen et al. (2012) and Brown-Steiner 320 et al. (2015) in the U.S. and Han et al. (2020) and Lu, Zhang, Chen, et al. (2019) in China 321 showed a similar latitudinal gradient of $r(T, O_3)$. Despite the general tendency of a positive-322 to-negative relationship between O_3 and temperature with decreasing latitude, there are 323 regions at low latitudes with significant positive correlations between O_3 and temper-324 ature (Central America, Sahel, the south coast of the Arabian Peninsula, Indo-Gangetic 325 Plain; Figure 3a). 326

The sign of $r(q, O_3)$ generally transitions from significantly positive in the conti-327 nental mid-latitudes to significantly negative over continental regions at higher and lower 328 latitudes and over the oceans (Figure 3b). Unlike $r(T, O_3)$, the sign of $r(q, O_3)$ outside 329 of the mid-latitudes is more spatially uniform. The only exceptions to the widespread 330 negative correlations occur over small parts of the Mediterranean Sea and Caribbean and 331 Indian Oceans (Figure 3b). These results are supported by modeling and observational 332 studies in the U.S. and China, which indicate $r(q, O_3) > 0$ in the northern U.S. and China 333 and $r(q, O_3) < 0$ in southern U.S. and China (e.g., Tawfik & Steiner, 2013; Kavassalis 334 & Murphy, 2017; Li et al., 2019). 335

In continental regions of the mid-latitudes, temperature is a better predictor of O_3 than specific humidity, as $r(T, O_3) > r(q, O_3)$. Other studies support temperature as a leading covariate in the mid-latitudes (e.g., Camalier et al., 2007; Porter et al., 2015; Otero et al., 2016; Sun et al., 2017; Kerr & Waugh, 2018).

Many other studies report dO_3/dT (Rasmussen et al., 2012; S. Zhao et al., 2013; 340 Brown-Steiner et al., 2015; Kerr et al., 2019; Porter & Heald, 2019), and we also present 341 dO_3/dT and dO_3/dq in Figure S1a-b for comparisons with these other studies. The spa-342 tial variations of the slopes shown in Figure S1a-b are qualitatively similar to $r(T, O_3)$ 343 and $r(q, O_3)$ shown in Figure 3, as is expected by construction. We also note that the 344 large-scale patterns in Figure 3 are preserved whether $r(T, O_3)$ and $r(q, O_3)$ or dO_3/dT 345 and dO_3/dq are calculated with daily data aggregated over summers 2008-2010 or with 346 daily data from individual summers. 347

To test whether the modeled O_3 -meteorology relationships are realistic, we calcu-348 late $r(T, O_3)$ and $r(q, O_3)$ from the *in-situ* networks described in Section 2.2. The strength 349 of the zonally-averaged values of observed and modeled $r(T, O_3)$ and $r(q, O_3)$ generally 350 reaches a maximum around 50°N across four distinct regions (Figure 4). In Europe and 351 the eastern U.S., the CTM slightly overestimates the strength of $r(T, O_3)$ and $r(q, O_3)$ 352 by $\sim 0.1-0.3$, similar to other studies (e.g., Brown-Steiner et al., 2015; Kerr et al., 2019). 353 Since we used temperature from MERRA-2 to calculate the observed $r(T, O_3)$ and $r(q, O_3)$ (some of the observational networks lack co-located meteorological measurements), dif-355 ferences in the O_3 -meteorology relationships are driven by differences in simulated ver-356 sus observed O_3 rather by temperature. Observations are sparse outside of the mid-latitudes. 357 A small number of AQS monitors in Alaska and NAPS monitors in northern Canada sup-358 ports the transition of $r(T, O_3)$ and $r(q, O_3)$ from positive to negative at high latitudes 359 that is suggested by the model (Figure 4). 360

In summary, the observation- and model-based analysis of the relationships among surface-level O_3 , temperature, and humidity reveals substantial variability across the Northern Hemisphere during summer. The terrestrial mid-latitudes (~ $30-60^{\circ}N$) stand out as the largest, most spatially-coherent region with significant positive relationships of O_3 with temperature and humidity (Figures 3-4). The O_3 -meteorology relationships are negative over nearly all marine regions, while they are mixed in sign and often not significant at high and low latitude continental regions (Figures 3-4).

5 Factors causing the O₃-meteorology relationships

The O₃-meteorology relationships in Figure 3 are far from uniform, and their spa-369 tial structure begs the question: what factors drive these relationships? In Section 1, we 370 discussed several direct and indirect drivers that have been linked to O_3 variability, such 371 as emissions, chemistry, and transport. Recent work has shown that transport-related 372 processes are key contributors to the O₃-temperature relationship in the U.S. and Eu-373 rope (Kerr et al., 2019; Porter & Heald, 2019), and we expand on these previous find-374 ings and examine the covariance of O_3 with temperature and humidity over the North-375 376 ern Hemisphere. We do this using the transport-only GMI CTM simulation in which the daily variability of chemistry and emissions are fixed (Section 2.1). 377

The transport-only simulation achieves similar mean O_3 concentrations as the con-378 trol simulation (compare Figures 1a and S2a). Percentage differences in mean O_3 between 379 simulations are generally less than $\pm 5\%$, suggesting that the non-linearities underpin-380 ning O_3 chemistry do not drastically change mean O_3 concentrations when day-to-day 381 variations in chemistry- and emissions-related processes are removed. Regions in Fig-382 ure 1a with high NO_x (and presumably other precursor) emissions such as the eastern 383 U.S., Europe, and China experience the largest decrease in mean O_3 concentrations as 384 the daily variability of chemistry- and emissions-related processes are removed (Figure 385 S2). 386

The O_3 -meteorology relationships calculated with O_3 from the transport-only sim-387 ulation are remarkably similar to the same quantities from the control simulation (e.g., 388 compare Figures S1a-b and S1c-d), emphasizing the dominance of transport on these re-389 lationships. As the transport-only simulation used monthly mean values or monthly av-390 eraged diurnal cycles for processes related to chemistry and emissions, it is possible that 391 some of the daily correlations over the three summers in our measuring period could be 392 due to month-to-month or interannual variations in temperature or humidity coupled 393 to chemistry or emissions. However, Porter and Heald (2019) found a similar dominance 394 of transport in their simulations where summertime averaged values were used (rather 395 than monthly averages). Furthermore, when we repeat the correlation analysis (i.e., Fig-396 ure 3) using daily data from individual months (rather than the combined nine months) 397 we find good agreement between the correlations from control and transport-only sim-398 ulations with both showing the key features (e.g., positive correlations over mid-latitude 300 continental regions, negative values over the oceans). Taken all together, these results indicate transport is the dominant process driving the O₃-meteorology relationships across 401 Northern Hemisphere mid-latitudes. 402

Over most of the oceans and a majority of the continental regions in the Northern Hemisphere, the strength of the O₃-meteorology relationships slightly increases in
the transport-only simulation (negative values in Figures 5, S1e-f). The hatching in Figures 5 and S1e-f indicates that the significance of the O₃-meteorology relationships is largely
retained when only daily variations in transport-related processes are considered.

There are a few regions such as the eastern U.S. and southeast Asia where the daily 408 variability of chemistry and emissions appears important for the O_3 -meteorology relationships (Figures 5, S1e-f). In these regions the strength of the correlation and the mag-410 nitude of the slopes decreases up to $\sim 50\%$ in the transport-only simulation and the cor-411 relation coefficient switches from significant to not significant. We note that these re-412 gions have high levels of anthropogenic emissions (e.g., NO_x ; Figure 1b) and biogenic 413 emissions (e.g., isoprene; Guenther et al., 2012). Further work is warranted to understand 414 how emissions (and the chemical processes linking emissions to O_3 production) contribute 415 to the O_3 -meteorology relationships in these regions. 416

Although *daily* variations in chemistry- and emissions-related processes do not drive the O₃-meteorology relationships across the Northern Hemisphere, the importance of chem-

istry and emissions in setting the background state should not be ignored. To illustrate 419 this, we return to Figure 3 and draw attention to the stark land-ocean contrasts in the 420 O₃-meteorology relationships with marine regions generally characterized by negative 421 correlations. These marine regions are largely low NO_x environments (Figure 1a). In this 422 type of chemical regime, an increase in humidity or temperature is expected either to 423 not impact or decrease O₃ (e.g., Johnson et al., 1999; Coates et al., 2016). The transport-424 only simulation still includes this low NO_x marine environment relative to other regions, 425 just without day-to-day variations. 426

These results answer our original question whether daily variations in transport, chemistry, or emissions are primarily responsible for the O_3 -meteorology relationships, but they also raise the question of which aspect(s) of transport links temperature and humidity to O_3 . In the next section we investigate the role of the jet stream on surfacelevel temperature, humidity, and O_3 , and we also develop and test hypotheses to link synoptic-scale flow aloft to meteorology and composition at the surface.

433

5.1 The role of the jet stream

Barnes and Fiore (2013) determined that the largest O_3 variability and peak strength of $r(T, O_3)$ are located near ϕ_{jet} in the eastern U.S. These results were further explored by Shen et al. (2015) who found that O_3 responded to seasonal variations in the position of the jet stream and that a poleward shift of the jet increased O_3 concentrations south of the jet. In this section we expand upon this previous work and document the response of surface-level O_3 , temperature, and humidity to daily changes in ϕ_{jet} across the Northern Hemisphere.

The time-averaged latitude of the jet stream (ϕ_{jet}) is shown by the scatter points 441 in Figure 1, and ϕ_{iet} averaged over the entire hemisphere is 50.1°N. The variability of 442 the jet, cast in terms of the standard deviation, averaged over the Northern Hemisphere 443 is 10.5° , but its variability is not constant throughout the hemisphere (vertical bars in 444 Figure 1). Rather, we note the largest variability over continental regions, particularly 445 Eurasia ($\sim 20^{\circ}$), and smaller variability over maritime regions, coinciding with the At-446 lantic and Pacific storm tracks. The position of the jet is only one metric to describe the 447 jet stream, and other jet-related measures exist (e.g., strength of the jet, waviness). Our 448 focus on ϕ_{jet} rather than other metrics is based on Ordóñez et al. (2019) who found that 449 ϕ_{jet} exerts a stronger influence than the strength of the jet on surface-level pollution ex-450 tremes. 451

The maximum variability of O_3 (Figure 1a) and the strength of the O_3 -meteorology 452 correlations (Figures 3-5) peak at or slightly south of ϕ_{jet} , and ϕ_{jet} also separates re-453 gions with elevated O_3 concentrations to its south from regions with low (< 30 ppbv) 454 concentrations to its north (Figure 1a). These results are consistent with Barnes and Fiore 455 (2013); however, it is worth pointing out a couple of exceptions: (1) In Asia, O₃ vari-456 ability peaks over a broader latitudinal range, extending from ϕ_{jet} to ~ 20°N (Figure 457 1). (2) There are regions with significant positive values of $r(T, O_3)$ such as the Sahel 458 and India that do not coincide with ϕ_{jet} (Figure 3a). Our current work also reveals the 459 weak-to-negative correlation between O₃ and humidity or temperature for marine en-460 vironments and some high and low latitudes. 461

To further examine the role of the jet stream on the O₃-meteorology relationships, we segregate summer days into two subsets: days when the jet stream is in poleward (PW) and equatorward (EW) position. Days classified as PW (EW) are days in which ϕ_{jet} exceeds (is less than) the 70th (30th) percentile of all daily ϕ_{jet} at each longitudinal grid cell. We construct composites of O₃, temperature, and humidity by identifying the average value of these fields on days with a PW or EW jet stream and thereafter calculate the difference of these PW and EW composites. The difference in the PW and EW composites (PW - EW) of O₃, temperature, and humidity are positive in the mid-latitudes over land (Figure 6), which indicates that these fields increase when the jet is in a more northerly position. The positive values are generally significant (hatching in Figure 6), coincide with the latitudinal band over which the jet stream migrates, and persist $10 - 15^{\circ}$ north and south of ϕ_{jet} over land. Outside the continental mid-latitudes, the association between the position of the jet and O₃, temperature, or humidity is weak and not statistically significant (Figure 6).

In contrast, there is a difference in the response of O_3 to the jet stream versus tem-476 477 perature and humidity over the mid-latitude ocean basins. In the case of O_3 , a poleward movement of the jet decreases O_3 over the oceans but increases it over land, while tem-478 perature increases over both land and oceans (Figure 6a). This sharp land-ocean con-479 trast, akin to the land-ocean contrasts in the O_3 -meteorology correlations (Figure 3), could 480 reflect land-ocean asymmetries in O_3 and its precursors and will be further explored in 481 Section 5.3. On the other hand, temperature and humidity increase over the oceans as 482 the jet shifts poleward, akin to the behavior of these variables over land (Figure 6b-c). 483 The impact of the jet stream on O_3 , temperature, and humidity outside of the mid-latitudes is largely not significant (Figure 6). 485

For completeness, maps of the correlation of jet distance with the variables in Figure 6 are shown in Figure S3. We note that the strength of the correlation between ϕ_{jet} and O₃ and meteorology is weaker than $r(T, O_3)$ and $r(q, O_3)$, and the spatial extent of areas with significant correlations is smaller (compare Figures 3 and S3).

While the response of O_3 and meteorological fields to the meridional movement of 490 the jet stream is consistent in its sign in the mid-latitudes over land, there are some re-491 gions outside of the continental mid-latitudes where jet movement leads to increases of 492 one variable and decreases of another. China is an example of this. As the jet migrates poleward, O_3 significantly increases, as it does throughout the mid-latitudes; however, 494 temperature remains more or less constant, and humidity slightly decreases (Figures 6, 495 S3). This discrepancy and others evident in Figures 6 and S3, particularly those at lower 496 latitudes and over the oceans, are beyond the scope of this study, but future studies should 497 further examine and address regions where O_3 , temperature, and humidity are decou-498 pled from the jet in this manner. 499

Having uncovered the dominant role of transport and the connections with the jet, we next explore transport-related processes that might be responsible for the relationships among surface-level O_3 , the jet stream, and meteorology. As cyclones are commonlyinvoked to explain O_3 variability, we begin by showing the impact of the jet stream on cyclone frequency and, in turn, the effect of cyclones on O_3 . We then explore and discuss how the jet stream affects the surface-level meridional flow and commensurate changes in O_3 , temperature, and humidity.

5.2 Cyclones

507

Mid-latitude baroclinic cyclones follow a storm track dictated by the jet stream, 508 and changes in ϕ_{jet} affect the location of this storm track (e.g., Shen et al., 2015). To 509 assess the dependence of cyclone frequency on ϕ_{jet} , we show the spatial distribution of 510 the climatological frequency of cyclones detected by MCMS (Section 2.4.3) in Figure 7a. 511 The highest frequency of mid-latitude cyclone detections largely follows ϕ_{iet} and is off-512 set north of the jet by $\sim 10^{\circ}$ over North America. In other regions such as eastern Asia 513 the peak cyclone frequency occurs in a broader latitudinal band, extending north and 514 515 south of ϕ_{jet} by ~ 15° (Figure 7a).

⁵¹⁶ We identify the subset of days with a poleward-shifted or equatorward-shifted jet ⁵¹⁷ using the 70th and 30th percentiles of the daily latitudes of the jet stream, as previously ⁵¹⁸ described, to determine the dependence of cyclones on ϕ_{jet} . We thereafter determine the frequency of cyclones on these subsets of days and show the difference (Figure 7b). The meridional movement of the jet affects cyclones in two different ways. First, the total number of cyclones on days when the jet is in a poleward position is 15% less than on days when the jet is equatorward. Second, the storm track shifts alongside the jet, and cyclones are more highly concentrated about ϕ_{jet} when the jet is equatorward compared with when it is poleward (Figure 7b).

The decrease and latitudinal shift in cyclone frequency with meridional movements 525 of the jet stream could be the transport-related mechanism responsible for the above O₃-526 527 meteorology relationships. The cold fronts associated with mid-latitude cyclones have been suggested as a mechanism for the ventilation of the eastern U.S. (Mickley, 2004). 528 and Knowland et al. (2015) and Jaeglé et al. (2017) demonstrated how cyclones redis-529 tribute O_3 , its precursors, and other pollutants vertically and horizontally in the atmo-530 sphere. We assess the impact of cyclones on surface-level O_3 by further filtering the cy-531 clones from the MCMS dataset (Section 2.4.3), requiring that a particular cyclone (1) 532 occurs over land and (2) is detected for > 2 six-hourly time steps to allow us to calcu-533 late the direction of propagation. We then rotate cyclones following Knowland et al. (2015) 534 and Knowland et al. (2017) such that they propagate to the right of Figure 8 to account 535 for the impact of different ascending and descending airstreams within the cyclones. Ap-536 plying these filters to cyclones in summers 2008 - 2010 yields ~ 730 cyclones with an 537 average lifetime of ~ 54 hours. The mean direction of cyclone propagation is east-southeast 538 $(\sim 120^{\circ}, \text{ where } 0^{\circ} \text{ is north})$. Though we have only considered cyclones occurring over 539 land in this analysis, compositing all land- and ocean-based cyclones produces O_3 anoma-540 lies of similar magnitude. 541

The largest negative O_3 anomaly occurs in the "cold sector" of the cyclone, and 542 the largest positive anomaly occurs in the "warm sector," However, these positive and 543 negative anomalies cancel each other when averaged over the footprint of the cyclones, 544 leading to a net ~ 0 ppbv change in O₃ (Figure 8). Comparing our results with con-545 ceptual models and case studies of baroclinic cyclones (e.g., Cooper et al., 2004; Polvani 546 & Esler, 2007) hints that the positive anomalies in Figure 8 occur near the warm con-547 veyor belt (WCB), where there is likely polluted air entrained from the PBL and lower 548 troposphere. On the other hand, the largest negative anomalies are found in the vicin-549 ity of the dry intrusion (DI) and could be influenced by cleaner air entrained from the 550 upper troposphere or lower stratosphere. The roles of the WCB in ventilating pollution 551 from the PBL and the cleaner air brought to the PBL by the DI could cancel each other 552 out and be one reason for the small increases and decreases in surface-level O₃. 553

If cyclones were the mechanism that linked ϕ_{jet} to surface-level O₃, we might ex-554 pect that the cyclones-driven impact on O_3 would be > 6 ppbv in the mid-latitudes, sim-555 ilar to the impact that ϕ_{jet} has on O₃ (Figure 6a). However, our analysis in Figure 8 in-556 dicates that, on average, cyclones have a much weaker effect on surface-level O₃, despite 557 the connections between cyclones and the jet stream (Figure 7b). There is, though, sub-558 stantial variability among individual cyclones (the standard deviation of the O_3 anomaly 559 is a factor of ~ 6 greater than the largest anomaly; Figure 8). As such, some cyclones 560 might be effective at reducing surface-level O_3 , but this is far from the case for all cy-561 clones. 562

Other studies support the small role of cyclones on surface-level O₃. Knowland et 563 al. (2015) showed that the surface-level O₃ anomaly associated with springtime cyclones 564 in the North Atlantic and Pacific is small (i.e., $-5 < \delta O_3 < 5$ ppbv); however, they 565 found a larger impact when examining the mid- to upper-level O_3 anomalies. Moreover, 566 567 Leibensperger et al. (2008) found a negative correlation between the number of O_3 pollution events and the number of mid-latitude cyclones passing through the southern cli-568 matological storm track ($\sim 40-50^{\circ}$ N) over eastern North America on interannual timescales, 569 but Turner et al. (2012) demonstrated that the cyclone-O₃ correlation is weak, and cy-570

clone frequency explains less than 10% of the variability of O_3 pollution events in the region.

In summary, while the storm track dictating the preferred location of baroclinic cyclones shifts with the jet (Figure 7b), cyclones are likely not the key mechanism controlling O_3 variability in the Northern Hemisphere mid-latitudes as they only explain a small fraction of the changes of O_3 associated with daily migrations of the jet (Figure 8).

5.3 Meridional transport

577

The ventilation and dilution of the PBL, the surface-level zonal flow (U_{10}) , or the 578 total wind (\overline{U}_{10}) could link the position of the jet stream to surface-level O₃. However, 579 an analysis of PBLH, U_{10} , and $\overline{U_{10}}$ rules out these variables as drivers of the O₃-jet re-580 lationship (Text S1-S2, Figures S4-5). To summarize: ϕ_{iet} is not significantly correlated 581 with variations in PBLH and $\overline{U_{10}}$ throughout the majority of the Northern Hemisphere. 582 Similar to our analysis of cyclones in Figures 7-8, U_{10} is significantly correlated with ϕ_{jet} 583 throughout parts of the mid-latitudes but not correlated with O_3 independently of the 584 jet. 585

However, the surface-level meridional flow (V_{10}) is significantly correlated with the position of the jet in the mid-latitudes (Figure 9a). When the jet is in a poleward position, V_{10} increases by more than 2 m/s throughout the mid-latitudes with the largest increases centered over the oceans (Figure 9a). In the mid-latitudes, time-averaged V_{10} is varied in sign but generally weak ($-0.5 < V_{10} < 0.5$), so the large values of V_{10} accompanying a poleward jet represent a large increase in the southerly flow.

In addition to its connections with ϕ_{jet} , V_{10} is significantly positively correlated 592 with O_3 in the continental mid-latitudes (Figure 9b). Here, the strength of $r(V_{10}, O_3)$ 593 rivals that of $r(T, O_3)$ and $r(q, O_3)$ (compare Figures 9b and 3), suggesting that the surface-594 level meridional flow is also a key covariate of O_3 variability on daily timescales. In parts 595 of the mid-latitudes such as eastern North America or Asia, a unit increase in V_{10} is as-596 sociated with an increase of O_3 that is roughly one-third of its total daily variability (Fig-597 ure S6). Equatorward of the mid-latitudes (particularly for $\sim 10 - 30^{\circ}$ N), V_{10} is sig-598 nificantly negatively correlated with O_3 , while $r(V_{10}, O_3)$ is not significant poleward of 599 the mid-latitudes. Thus far we have shown significant positive relationships among ϕ_{jet} , 600 V_{10} , O₃, and the meteorological variables in the mid-latitudes (Figures 6a, 9). When the 601 jet is poleward, surface-level meridional flow becomes strongly southerly, and there is sig-602 nificant poleward advection of O_3 , temperature, and humidity. 603

We posit that the relationships of O_3 with ϕ_{jet} and the meteorological variables 604 are largely the product of surface-level meridional flow acting on the latitudinal background gradients. Ozone generally peaks south of ϕ_{jet} (Figure 1a), so there are nega-606 tive gradients in the vicinity of the jet (Figure 9b). These negative gradients are well-607 aligned with the regions where there is increased southerly flow at the surface when the 608 jet is poleward (Figure 9a). This configuration serves to advect higher concentrations 609 of O_3 into the mid-latitudes when the jet is poleward (Figures 9b, S6). Although not shown 610 here, the latitudinal gradients of temperature and humidity are broadly similar to $dO_3/d\phi$ 611 inasmuch as they are positive south of the mid-latitudes. When surface-level southerly 612 flow increases, these gradients favor increases of temperature and humidity in the mid-613 latitudes, as is evident in Figure 6b-c. 614

The importance of the background gradient can also partially explain the negative O₃-jet relationships over the oceans. Latitudes where $dO_3/d\phi > 0$ often extend farther poleward over the oceans than over land. For example, over the Pacific storm track $dO_3/d\phi >$ 0, while $dO_3/d\phi < 0$ between ~ 20 and 40°N in the Pacific (Figure 9b). Under these conditions, increased southerly flow associated with the poleward movement of the jet would decrease O₃ (i.e., a negative O₃-jet relationship). Other factors also may be important in marine environments. For example, strong surface-level zonal winds in the
 vicinity of the Atlantic and Pacific storm tracks may lead to zonal gradients that are as
 important as the meridional background gradients investigated in this section.

The importance of both meridional flow and the latitudinal background gradient 624 has been the subject of recent studies for O_3 and other trace gases. Keppel-Aleks et al. 625 (2012) showed that the daily variability of total column carbon dioxide was dominated 626 by non-local effects and primarily reflects the synoptic scale latitudinal carbon dioxide 627 gradient. Changes in the mean meridional circulation (specifically the extratropical stratospheric-628 to-tropospheric transport associated with the Southern Hemisphere Hadley Cell) have 629 been suggested to explain recent trends in Southern Hemisphere tropospheric O_3 (Lu, 630 Zhang, Zhao, et al., 2019). On smaller spatial scales, transport-related features favor-631 ing southerly flow (e.g., the nocturnal low-level jet in the U.S.) are important for explain-632 ing O_3 in the PBL (Taubman et al., 2004). Our future work will further elucidate the 633 main physical features that link the jet stream, surface-level meridional flow, and back-634 ground tracer gradients. 635

In the mid-latitudes, the meridional vacillation of the jet stream impacts the surfacelevel meridional flow (Figure 9a). The meridional flow, in turn, plays a profound role in surface-level O₃ variability (Figure 9b). Temperature, humidity, and O₃ are generally higher south of ϕ_{jet} , and the meridional flow acts on their background gradients and leads to the coupling between the jet stream and O₃ and the meteorological variables shown in Figure 6.

642 6 Conclusions

The primary intent of this study was to document the relationships among surface-643 level O₃, temperature, and humidity and explore the cause(s) of these relationships. Both 644 observations and the GMI CTM support substantial spatial variations in $r(T, O_3)$ and 645 $r(q, O_3)$. In continental regions of the mid-latitudes (~ 30-60°N), the O₃-meteorology 646 relationships are significantly positive (Figures 3-4). The O₃-meteorology relationships 647 are significantly negative over the oceans (Figure 3). For other continental regions out-648 side the mid-latitudes, $r(T, O_3)$ and $r(q, O_3)$ are generally weak and often not statisti-649 cally significant, but we have shown regions at low latitudes (e.g., Central America, Sa-650 hel) that are exceptions to this rule-of-thumb (Figure 3). 651

Our transport-only GMI CTM simulation indicates that the O₃-temperature and 652 O₃-humidity relationships are largely driven by transport-related phenomena on daily 653 timescales (Figure 5). We stress that these findings do not trivialize the importance of 654 chemistry and emissions. Chemistry- and emissions-related processes are essential for 655 setting the background state for the production of a secondary pollutant such as O_3 ; how-656 ever, daily variations in these processes are not the dominant drivers of O_3 variability 657 or its covariance with temperature and humidity. Our results showcasing the dominant 658 role of transport are in line with previous work by Kerr et al. (2019) and Porter and Heald 659 (2019), which showed that a majority of the O₃-temperature relationship in the U.S. and 660 Europe derive from meteorological phenomena. 661

The variability of surface-level O_3 , temperature, and humidity are linked to the merid-662 ional movement of the jet stream in the Northern Hemisphere mid-latitudes. This re-663 sult extends previous work focusing on the eastern U.S. (e.g., Barnes & Fiore, 2013; Shen 664 et al., 2015) to the entire Northern Hemisphere. Over land in the mid-latitudes, a pole-665 ward (equatorward) shift of the jet is associated with increased (decreased) surface-level 666 O_3 , temperature, and humidity (Figures 6, S3). Over the oceans, temperature and hu-667 midity respond to this meridional vacillation of the jet in the same fashion as over land, 668 but the poleward (equatorward) movement of the jet decreases (increases) O_3 . 669

We ultimately found that the jet influences these surface-level fields by means of 670 changes in the surface-level meridional flow. On days when the jet is in a poleward po-671 sition, the pronounced southerly flow in the mid-latitudes together with the latitudinal 672 gradients of O₃, temperature, and humidity generally lead to increases of O₃, temper-673 ature, and humidity in the mid-latitudes (Figures 6, 9). We have shown clear land-ocean 674 differences in the relationships among O_3 , temperature or specific humidity, and the jet 675 stream (Figures 3, 6, S3). We partially attribute these the land-ocean contrasts to dif-676 ferences in the latitudinal gradient of O_3 over land versus over the ocean (Figure 9b). 677

678 Establishing the spatial variations of the O_3 -meteorology relationships is a prerequisite to understand which regions could experience an " O_3 -climate penalty" (Wu et al., 679 2008) under future climatic changes. As the O₃-meteorology relationships in the present-680 day climate are far from uniform in both magnitude and sign, it is unlikely that future 681 changes in the climate will affect O_3 uniformly. Furthermore, as the relationships among 682 O_3 , temperature, and humidity are driven by an indirect association with transport, cau-683 tion should be used when applying any measures of the current sensitivity of O_3 to me-684 teorological variables (e.g., dO_3/dT or dO_3/dq from Figure S1) to future climatic changes. 685

Overall, our results demonstrate the importance of the position of the jet stream and surface-level meridional flow on O_3 variability in the Northern Hemisphere, both of which will be affected by the future climate (e.g., Barnes & Polvani, 2013; Shaw & Voigt, 2015; Grise et al., 2019). A robust poleward displacement of the jet stream is expected in the twenty-first century, while changes to other properties of the jet (i.e., variations in speed; north-south movement) will exhibit spatial heterogeneity (Barnes & Polvani, 2013). The effect of these changes on surface-level O_3 needs to be explored.

693 Acknowledgments

G. H. Kerr is supported by the NSF IGERT Program (Grant No. 1069213). The 694 authors would like to thank Dr. Emma Knowland for her thoughtful comments to im-695 prove the manuscript. The MERRA-2 data used in this study have been provided by the 696 Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Cen-697 ter. The data may be obtained at gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. NASA 698 GMI CTM output is publicly available on the data portal for the NASA Center for Cli-699 mate Simulation (portal.nccs.nasa.gov/datashare/dirac). The control simulation 700 can be found at the following path: /gmidata2/users/mrdamon/Hindcast-Family/HindcastMR2/. 701 Hourly observations of O_3 are available for (1) China at beijingair.sinaapp.com, (2) 702 the European Union at projects.nilu.no//ccc/emepdata.html, (3) Canada at maps 703 -cartes.ec.gc.ca/rnspa-naps/data.aspx, and (4) the U.S. at aqs.epa.gov/aqsweb/ 704 airdata/download_files.html. MCMS development is supported by NASA's Earth 705 Science Program for Modeling, Analysis, and Prediction (MAP), and data can be found 706 at gcss-dime.giss.nasa.gov/mcms/. 707

708 References

- Barnes, E. A., & Fiore, A. M. (2013). Surface ozone variability and the jet position: Implications for projecting future air quality. *Geophys. Res. Lett.*, 40(11), 2839–2844. doi: 10.1002/grl.50411
- 712Barnes, E. A., & Polvani, L. (2013). Response of the midlatitude jets, and of their713variability, to increased greenhouse gases in the CMIP5 models. J. Clim.,71426(18), 7117-7135. doi: 10.1175/JCLI-D-12-00536.1
- Barrett, B. S., Raga, G. B., Retama, A., & Leonard, C. (2019). A multiscale analysis of the tropospheric and stratospheric mechanisms leading to the March
 2016 extreme surface ozone event in Mexico City. J. Geophys. Res., 124 (8), 4782–4799. doi: 10.1029/2018JD029918

719	Bauer, M., & Genio, A. D. D. (2006). Composite analysis of winter cyclones in a
720	GCM: Influence on climatological humidity. J. Clim., 19(9), 1652–1672. doi:
721	10.1175/JCH3090.1
722	Bauer, M., Tselloudis, G., & Rossow, W. B. (2016). A new climatology for inves-
723	tigating storm influences in and on the extratropics. J. Appl. Meteorol. Clima-
724	tol., bb(5), 1287-1303. doi: 10.1175/jamc-d-15-0245.1
725	Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., et al.
726	(2015). MERRA-2: Initial evaluation of the climate, NASA/IM-2015-104606 $(M-1/42)$
727	(V01. 45). Drawn Steiner D. Head D. & Lin M. (2015). On the conchilities and limitations of
728	CCCM simulations of summartime regional air quality. A diagnostic analysis
729	of ozono and temperature simulations in the US using CESM CAM Chem
730	Atmos Environ 101 134–148 doi: 10.1016/j.atmosony.2014.11.001
731	Camaliar I Cox W & Dolwick P (2007) The effects of materralogy on ozono in
732	$\frac{1}{2007}$ urban areas and their use in assessing ozone trends $\frac{4tmos}{1000}$ $\frac{Emirron}{1000}$
733	7127-7137 doi: 10.1016/j.atmoseny.2007.04.061
734	Coates I Mar K A Oiba N & Butler T M (2016) The influence of temper-
736	ature on ozone production under varying NO ₂ conditions – a modelling study
737	Atmos. Chem. Phys., $16(18)$, $11601-11615$, doi: $10.5194/acp-16-11601-2016$
738	Cooper, O. R., Forster, C., Parrish, D., Trainer, M., Dunlea, E., Ryerson, T., et al.
739	(2004). A case study of transpacific warm conveyor belt transport: Influence
740	of merging airstreams on trace gas import to North America. J. Geophys. Res.
741	Atmos., 109(D23). doi: 10.1029/2003jd003624
742	Cooper, O. R., Gao, RS., Tarasick, D., Leblanc, T., & Sweeney, C. (2012). Long-
743	term ozone trends at rural ozone monitoring sites across the United States,
744	1990–2010. J. Geophys. Res., 117, D22307. doi: 10.1029/2012JD018261
745	Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne,
746	J. A., et al. (2018). Gridded emissions of air pollutants for the period
747	1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data, 10(4), 1987–2013.
748	doi: 10.5194/essd-10-1987-2018
749	Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of ozone to sum-
750	mertime climate in the eastern USA: A modeling case study. Atmos. Environ.,
751	41(7), 1494–1511. doi: 10.1016/j.atmosenv.2006.10.033
752	Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et
753	al. (2011). The ERA-Interim reanalysis: Configuration and performance of
754	the data assimilation system. Q. J. R. Meteorol. Soc., $137(650)$, $553-597$. doi: 10.1002/c; 828
755	10.1002/4 J.020 Derivent P. C. Witham C. S. Utember S. P. Jonkin M. F. & Descent N. P.
756	(2010) (2
757	emission controls in Europe Environ Sci Policy $13(3)$ 195–204 doi:
750	10 1016/i envsci 2010 02 001
760	Duncan, B. N., Strahan, S. E., Yoshida, Y., Steenrod, S. D., & Livesev, N. (2007).
761	Model study of the cross-tropopause transport of biomass burning pollution.
762	Atmos. Chem. Phys., 7(14), 3713–3736.
763	Duncan, B. N., West, J. J., Yoshida, Y., Fiore, A. M., & Ziemke, J. R. (2008).
764	The influence of European pollution on ozone in the Near East and northern
765	Africa. Atmos. Chem. Phys., 8(8), 2267–2283. doi: 10.5194/acp-8-2267-2008
766	ECCC. (2017). National air pollution surveillance program. https://open.canada
767	.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b. (Retrieved
768	on 22 July 2019)
769	EPA. (2019). Air quality system data mart. http://www.epa.gov/ttn/airs/
770	aqsdatamart. (Retrieved on 23 July 2019)
771	Fiore, A. M., Naik, V., & Leibensperger, E. M. (2015). Air quality and climate con-
772	nections. J. Air Waste Manage., 65(6), 645–685. doi: 10.1080/10962247.2015
773	.1040526

774	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et
775	al. (2017). The Modern-Era Retrospective Analysis for Research and
776	Applications, Version 2 (MERRA-2). J. Clim., $30(14)$, $5419-5454$. doi:
777	10.1175/JCLI-D-16-0758.1
778	Grise, K. M., Davis, S. M., Simpson, I. R., Waugh, D. W., Fu, Q., Allen, R. J., et al.
779	(2019). Recent tropical expansion: Natural variability or forced response? J.
780	<i>Clim.</i> , 32(5), 1551–1571. doi: 10.1175/jcli-d-18-0444.1
781	Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittava, T., Duhl, T., Em-
782	mons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and
783	Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated
784	framework for modeling biogenic emissions Geosci Mod Dev 5(6) 1471–
785	1492. doi: 10.5194/gmd-5-1471-2012
786	Guo, J. J., Fiore, A. M., Murray, L. T., Jaffe, D. A., Schnell, J. L., Moore, C. T.,
787	& Milly, G. P. (2018). Average versus high surface ozone levels over the con-
788	tinental USA: Model bias, background influences, and interannual variability.
789	Atmos. Chem. Phys., 18(16), 12123–12140. doi: 10.5194/acp-18-12123-2018
790	Han, H., Liu, J., Shu, L., Wang, T., & Yuan, H. (2020). Local and synoptic meteo-
791	rological influences on daily variability of summertime surface ozone in eastern
792	China. Atmos. Chem. Phys., 203–222. doi: 10.5194/acp-20-203-2020
793	He, H., Stehr, J. W., Hains, J. C., Krask, D. J., Doddridge, B. G., Vinnikov, K. Y.,
794	et al. (2013). Trends in emissions and concentrations of air pollutants in the
795	lower troposphere in the Baltimore/Washington airshed from 1997 to 2011.
796	Atmos. Chem. Phys., 13(15), 7859–7874. doi: 10.5194/acp-13-7859-2013
797	Hegarty, J., Mao, H., & Talbot, R. (2007). Synoptic controls on summertime surface
798	ozone in the northeastern United States. J. Geophys. Res., 112(D14). doi: 10
799	.1029/2006JD008170
800	Hiellbrekke A - G & Solberg S (2019) Ozone measurements 2017 (EMEP/CCC-
201	Report No. 2/2019) Kieller Norway: EMEP Co-operative Programme for
803	Monitoring and Evaluation of the Long-range Transmission of Air Pollutants
002	in Europe Betrieved from https://projects.njlu.no//ccc/reports/
803	cccr2-2010 Dzono pdf
804	Leash D I & Winner D A (2000) Effect of alignets change on air quality At
805	Jacob, D. J., & Winner, D. A. (2009). Effect of chinate change on an quanty. At- more Environ $\sqrt{2(1)}$ 51 63 doi: 10.1016/j.atmosony.2008.00.051
806	Mos. Environ., 45(1), 51-05. doi: $10.1010/J.aumosenv.2008.09.051$
807	Jaegie, L., wood, R., & Wargan, K. (2017). Multiyear composite view of ozone
808	ennancements and stratosphere-to-troposphere transport in dry intrusions
809	of Northern Hemisphere extratropical cyclones. J. Geophys. Res., 122(24),
810	13,436-13,457. doi: $10.1002/2017$ jd027656
811	Johnson, C. E., Collins, W. J., Stevenson, D. S., & Derwent, R. G. (1999). Rel-
812	ative roles of climate and emissions changes on future tropospheric oxidant
813	concentrations. J. Geophys. Res. Atmos., 104 (D15), 18631–18645. doi:
814	10.1029/1999jd 900204
815	Kavassalis, S. C., & Murphy, J. G. (2017). Understanding ozone-meteorology corre-
816	lations: A role for dry deposition. Geophys. Res. Lett., 44(6), 2922–2931. doi:
817	10.1002/2016 GL071791
818	Keppel-Aleks, G., Wennberg, P. O., Washenfelder, R. A., Wunch, D., Schneider, T.,
819	Toon, G. C., et al. (2012). The imprint of surface fluxes and transport on
820	variations in total column carbon dioxide. Biogeosciences, $9(3)$, 875–891. doi:
821	10.5194/bg-9-875-2012
822	Kerr, G. H., & Waugh, D. W. (2018). Connections between summer air pollution
823	and stagnation. Environ. Res. Lett., 13(8), 084001. doi: 10.1088/1748-9326/
824	aad2e2
825	Kerr, G. H., Waugh, D. W., Strode, S. A., Steenrod, S. D., Oman, L. D., & Strahan,
826	S. E. (2019). Disentangling the drivers of the summertime ozone-temperature
827	relationship over the United States, J. Geonhus. Res., 124(19), 10503–10524.
828	doi: 10.1029/2019id030572
	/

829	Kim, SW., Heckel, A., McKeen, S. A., Frost, G. J., Hsie, EY., Trainer, M. K.,
830	et al. (2006) . Satellite-observed U.S. power plant NO _x emission reduc-
831	tions and their impact on air quality. Geophys. Res. Lett., 33(22). doi:
832	10.1029/2006GL027749
833	Knowland, K. E., Doherty, R. M., & Hodges, K. I. (2015). The effects of
834	springtime mid-latitude storms on trace gas composition determined from
835	the MACC reanalysis. Atmos. Chem. Phys., 15(6), 3605–3628. doi:
836	10.5194/acp-15-3605-2015
837	Knowland, K. E., Doherty, R. M., Hodges, K. I., & Ott, L. E. (2017). The influence
838	of mid-latitude cyclones on European background surface ozone. Atmos. Chem.
839	<i>Phys.</i> , $17(20)$, 12421–12447. doi: 10.5194/acp-17-12421-2017
840	Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N., et al.
841	(2018). The lancet commission on pollution and health. Lancet, 391(10119),
842	462–512. doi: $10.1016/s0140-6736(17)32345-0$
843	Lefohn, A. S., Malley, C. S., Smith, L., Wells, B., Hazucha, M., Simon, H., et al.
844	(2018). Tropospheric ozone assessment report: Global ozone metrics for cli-
845	mate change, human health, and crop/ecosystem research. Elem. Sci. Anth.,
846	6(1), 28. doi: 10.1525/elementa.279
847	Leibensperger, E. M., Mickley, L. J., & Jacob, D. J. (2008). Sensitivity of US
848	air quality to mid-latitude cyclone frequency and implications of $1980-2006$
849	climate change. Atmos. Chem. Phys., $8(23)$, 7075–7086.
850	Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., & Bates, K. H. (2019). Anthro-
851	pogenic drivers of 2013–2017 trends in summer surface ozone in China. <i>Proc.</i>
852	Natl. Acad. Sci. U.S.A., 116(2), 422–427. doi: 10.1073/pnas.1812168116
853	Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., & Tonnesen, G. (2017). US
854	surface ozone trends and extremes from 1980 to 2014: Quantifying the roles of
855	rising Asian emissions, domestic controls, wildfires, and climate. Atmos. Chem.
856	<i>Phys.</i> , $17(4)$, $2943-2970$. doi: 10.5194/acp-17-2943-2017
857	Lu, X., Zhang, L., Chen, Y., Zhou, M., Zheng, B., Li, K., Zhang, Q. (2019).
858	Exploring 2010–2017 surface ozone pollution over China: Source contributions $\frac{1}{2}$
859 860	and meteorological influences. Atmos. Chem. Phys., $19(12)$, 8339–8301. doi: $10.5194/acp-19-8339-2019$
861	Lu, X., Zhang, L., Zhao, Y., Jacob, D. J., Hu, Y., Hu, L., et al. (2019). Surface
862	and tropospheric ozone trends in the Southern Hemisphere since 1990: Possible
863	linkages to poleward expansion of the Hadley circulation. Sci. Bull., $64(6)$,
864	400–409. doi: 10.1016/j.scib.2018.12.021
865	Meehl, G. A., Tebaldi, C., Tilmes, S., Lamarque, JF., Bates, S., Pendergrass, A., &
866	Lombardozzi, D. (2018). Future heat waves and surface ozone. Environ. Res.
867	Lett., $13(6)$, 064004. doi: 10.1088/1748-9326/aabcdc
868	Mickley, L. J. (2004). Effects of future climate change on regional air pollution
869	episodes in the United States. Geophys. Res. Lett., 31(24). doi: 10.1029/
870	2004GL021216
871	Mudelsee, M. (2003). Estimating Pearson's correlation coefficient with bootstrap
872	confidence interval from serially dependent time series. $Math. Geol., 35(6),$
873	651-665. doi: 10.1023 /b:matg.0000002982.52104.02
874	Mudelsee, M. (2014). Climate time series analysis: Classical statistical and bootstrap
875	methods (2nd ed.). Cham, Heidelberg, New York, Dordrecht, London: Springer
876	International Publishing. doi: 10.1007/978-3-319-04450-7
877	Ordóñez, C., Barriopedro, D., & García-Herrera, R. (2019). Role of the position of
878	the North Atlantic jet in the variability and odds of extreme PM_{10} in Europe.
879	Atmos. Environ., 210, 35–46. doi: 10.1016/j.atmosenv.2019.04.045
880	Otero, N., Sillmann, J., Schnell, J. L., Rust, H. W., & Butler, T. (2016). Synoptic
881	and meteorological drivers of extreme ozone concentrations over Europe. Envi-
882	ron. Res. Lett., 11(2), 024005. doi: 10.1088/1748-9326/11/2/024005
883	Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H.,

884	et al. (2012). Long-term changes in lower tropospheric baseline ozone concen-
885	trations at northern mid-latitudes. Atmos. Chem. Phys., 12(23), 11485–11504.
886	doi: 10.5194/acp-12-11485-2012
887	Phalitnonkiat, P., Hess, P. G. M., Grigoriu, M. D., Samorodnitsky, G., Sun, W.,
888	Beaudry, E., et al. (2018). Extremal dependence between temperature and
889	ozone over the continental US. Atmos. Chem. Phys., $18(16)$, $11927-11948$. doi:
890	10.5194/acp-18-11927-2018
891	Polvani, L. M., & Esler, J. G. (2007). Transport and mixing of chemical air masses
892	in idealized baroclinic life cycles. J. Geophys. Res., 112(D23), D23102. doi: 10
893	.1029/2007JD008555
894	Porter, W. C., & Heald, C. L. (2019). The mechanisms and meteorological drivers of
895	the ozone-temperature relationship. Atmos. Chem. Phys., 13367–13381. doi: 10
896	.5194/acp-2019-140
897	Porter, W. C., Heald, C. L., Cooley, D., & Russell, B. (2015). Investigating the
898	observed sensitivities of air-quality extremes to meteorological drivers via substill represented at $A_{\rm transport}$ (here $D_{\rm transport}$ (18) 10240 10266
899	quantile regression. Atmos. Chem. Phys., 15(18), 10549–10500.
900	in the chemistry of continental surface arong Chem Pear 115(10) 2808 2018
901 902	doi: 10.1021/cr5006815
903	Rasmussen, D. J., Fiore, A., Naik, V., Horowitz, L., McGinnis, S., & Schultz, M.
904	(2012). Surface ozone-temperature relationships in the eastern US: A monthly
905	climatology for evaluating chemistry-climate models. Atmos. Environ., 47,
906	142–153. doi: 10.1016/j.atmosenv.2011.11.021
907	Rasmussen, D. J., Hu, J., Mahmud, A., & Kleeman, M. J. (2013). The
908	ozone-climate penalty: Past, present, and future. Environ. Sci. Technol.,
909	47(24), 14258-14266. doi: 10.1021/es403446m
910	Reddy, P. J., & Pfister, G. G. (2016). Meteorological factors contributing to
911	the interannual variability of midsummer surface ozone in Colorado, Utah,
912 913	and other western U.S. states. J. Geophys. Res., 121(5), 2434–2456. doi: 10.1002/2015JD023840
914	Schnell, J. L., Holmes, C. D., Jangam, A., & Prather, M. J. (2014). Skill in
915	forecasting extreme ozone pollution episodes with a global atmospheric
916	chemistry model. Atmos. Chem. Phys., 14 (15), 7721-7739. doi: 10.5194/
917	acp-14-7721-2014
918	Shaw, T. A., & Voigt, A. (2015). Tug of war on summertime circulation between ra-
919	diative forcing and sea surface warming. Nature Geosci., 8(7), 560–566. doi: 10
920	$.1038/\mathrm{ngeo}2449$
921	Shen, L., Mickley, L. J., & Tai, A. P. K. (2015). Influence of synoptic patterns on
922	surface ozone variability over the eastern United States from 1980 to 2012. At-
923	mos. Chem. Phys., 15(19), 10925–10938. doi: 10.5194/acp-15-10925-2015
924	Simon, H., Reff, A., Wells, B., Xing, J., & Frank, N. (2015). Ozone trends across
925	the United States over a period of decreasing NOx and VOC emissions. Envi-
926	ron. Sci. Technol., $49(1)$, 186–195. doi: 10.1021/es504514z
927	Strahan, S. E., Douglass, A. R., & Newman, P. A. (2013). The contribu-
928	tions of chemistry and transport to low arctic ozone in March 2011 derived
929	from aura MLS observations. J. Geophys. Res., $118(3)$, $1503-1570$. doi: 10.1002/jand 50181
930	Strahan S F Dungan B N & Hoor D (2007) Observationally derived transport
931	diagnostics for the lowermost stratosphere and their application to the CMI
932	chemistry and transport model $Atmos$ Chem. Phys. 7(0) 2435–2445
322	Strode S A Bodriguez I M Logan I A Cooper O R Witte I C Lameal
934	L. N., et al. (2015). Trends and variability in surface ozone over the United
936	
	States. J. Geophys. Res., 120(17), 9020–9042. doi: 10.1002/2014JD022784
937	States. J. Geophys. Res., 120(17), 9020–9042. doi: 10.1002/2014JD022784 Sun, W., Hess, P., & Liu, C. (2017). The impact of meteorological persistence on the

939	10.1002/2016 GL071731
940	Tai, A. P., & Martin, M. V. (2017). Impacts of ozone air pollution and tem-
941	perature extremes on crop yields: Spatial variability, adaptation and im-
942	plications for future food security. <i>Atmos. Environ.</i> , 169, 11–21. doi:
943	10.1016/j.atmosenv.2017.09.002
944	Tai, A. P., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine par-
945	ticulate matter $(PM_{2.5})$ and meteorological variables in the United States:
946	Implications for the sensitivity of PM _{2.5} to climate change. Atmos. Environ.,
947	44(32), 3976–3984. doi: 10.1016/j.atmosenv.2010.06.060
948	Taubman, B. F., Marufu, L. T., Piety, C. A., Doddridge, B. G., Stehr, J. W., &
949	Dickerson, R. R. (2004). Airborne characterization of the chemical, optical,
950	and meteorological properties, and origins of a combined ozone-haze episode
951	over the Eastern United States. J. Atmos. Sci., $61(14)$, 1781–1793. doi:
952	$10.1175/1520\text{-}0469(2004)061\langle 1781: \texttt{acotco}\rangle 2.0.\texttt{co}; 2$
953	Tawfik, A. B., & Steiner, A. L. (2013). A proposed physical mechanism for ozone-
954	meteorology correlations using land–atmosphere coupling regimes. Atmos. Env-
955	iron., 72, 50–59. doi: 10.1016/j.atmosenv.2013.03.002
956	Turner, A. J., Fiore, A. M., Horowitz, L. W., Naik, V., & Bauer, M. (2012). Sum-
957	mertime cyclones over the Great Lakes storm track from 1860–2100: Variabil-
958	ity, trends, and association with ozone pollution. Atmos. Chem. Phys., $12(8)$,
959	21679–21712. doi: 10.5194/acpd-12-21679-2012
960	Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Emmons, L., Good, P., et
961	al. (2020). Historical and future changes in air pollutants from CMIP6 models.
962	Atmos. Chem. Phys doi: 10.5194/acp-2019-1211
963	Varotsos, K. V., Tombrou, M., & Giannakopoulos, C. (2013). Statistical estimations
964	of the number of future ozone exceedances due to climate change in Europe. J .
965	Geophys. Res., 118(12), 6080-6099. doi: 10.1002/jgrd.50451
966	Wilks, D. S. (1997). Resampling hypothesis tests for autocorrelated fields. J. Clim.,
967	10(1), 65-82. doi: $10.11(5/1520-0442(1997)010(0065):nt1a1/2.0.co;2$
968	Wilks, D. S. (2011). Statistical methods in the atmospheric sciences. Amsterdam;
969	Doston: Elsevier Academic Press. Weellings T. Hennechi A. & Healring P. (2010). Veriability of the North Atlantic
970	addy driven jet stream O L R Meteoral Soc 126(640) 856-868 doi: 10
971	1002/ai 625
972	Wu S. Mickley I. I. Leibensperger F. M. Jacob D. I. Rind D. & Streets
975	D_{c} (2008) Effects of 2000–2050 global change on ozone air quality in the
075	United States J Geophys Res 113(D6) doi: 10.1029/2007JD008917
976	Zhang, Y., & Wang, Y. (2016). Climate-driven ground-level ozone extreme in the
977	fall over the southeast United States. <i>Proc. Natl. Acad. Sci. U.S.A.</i> , 113(36).
978	10025–10030. doi: 10.1073/pnas.1602563113
979	Zhao, S., Pappin, A. J., Morteza Mesbah, S., Jovce Zhang, J. Y., MacDonald, N. L.,
980	& Hakami, A. (2013). Adjoint estimation of ozone climate penalties. <i>Geophys.</i>
981	Res. Lett., 40(20), 5559–5563. doi: 10.1002/2013GL057623
982	Zhao, Z., & Wang, Y. (2017). Influence of the West Pacific subtropical high on sur-
983	face ozone daily variability in summertime over eastern China. Atmos. Envi-
984	ron., 170, 197–204. doi: 10.1016/j.atmosenv.2017.09.024
985	Zhu, J., & Liang, XZ. (2013). Impacts of the Bermuda High on regional climate
986	and ozone over the United States. J. Clim., $26(3)$, 1018–1032. doi: 10.1175/jcli
987	-d-12-00168.1
988	Zhuang, J. (2018). Jiaweizhuang/xesmf: v0.1.1. Zenodo. doi: https://doi.org/10
989	.5281/ZENODO.1134366
990	Zwiers, F. W., & von Storch, H. (1995). Taking serial correlation into account in
991	tests of the mean. J. Clim., $8(2)$, $336-351$. doi: $10.1175/1520-0442(1995)$
992	$008\langle 0336:tsciai \rangle 2.0.co; 2$

-20-

Figure 1. (a) Time-averaged O_3 from the surface-level of the GMI CTM (colored shading). Black contours indicate O_3 variability (standard deviation): thin dashed contour, 8 ppbv; thick contour, 10 ppbv. (b) Time-averaged anthropogenic NO_x emissions from EDGAR. Scatter points and vertical bars in (a-b) specify the mean position and variability of the jet stream, respectively.

Figure 2. The correlation coefficient calculated between daily modeled O_3 from the GMI CTM and observed O_3 for model grid cells containing *in-situ* monitor(s). If there is > 1 monitor in a grid cell, all O_3 observations are averaged to produce a grid cell average prior to computing the correlation coefficient. The networks in (a) North America, (b) Europe, and (c) China from which monitor-based observations have been derived are indicted in the subplots' titles. Note that the time period for the model-observation comparison in (a-b) is 2008 - 2010 but is 2016 - 2017 in (c), due to limited observations in China during earlier years.

Figure 3. (a) The correlation coefficient calculated between O_3 from the GMI CTM and MERRA-2 temperature, $r(T, O_3)$. Hatching denotes regions where the correlation is not statistically significant, determined using moving block bootstrap resampling to estimate the 95% confidence interval. (b) Same as (a) but for the correlation coefficient calculated between between O_3 and MERRA-2 specific humidity, $r(q, O_3)$. Scatter points and vertical bars in (a-b) specify the mean position and variability of the jet stream, respectively. Black boxes in (a) outline the regions over which zonal averages were performed in Figure 4.

Figure 4. Zonally-averaged observed and modeled (left) $r(T, O_3)$ and (right) $r(q, O_3)$ in four regions: western North America ($125^{\circ} - 100^{\circ}$ W), eastern North America ($100^{\circ} - 65^{\circ}$ W), Europe (10° W -30° E), and East Asia ($90 - 125^{\circ}$ E). These regions are also outlined in Figure 3a. Zonallyaveraged modeled relationships consider only grid cells over land, and the observed relationships are binned by latitude to compute the zonal average. The dashed grey lines delineate positive from negative values of the O₃-meteorology relationships, and the scatter points and vertical bars corresponding to the jet and its variability are the same as in Figure 1 but averaged over each region.

Figure 5. Differences in (a) $r(T, O_3)$ and (b) $r(q, O_3)$ calculated between the control and transport-only CTM simulations (i.e., control – transport-only). To assess their relative importance, differences should be compared with values from the control simulation (Figure 3). Hatching indicates regions with significant $r(T, O_3)$ or $r(q, O_3)$ in the control simulation that are not statistically significant in the transport-only simulation. Scatter points and vertical bars in (a-b) specify the mean position and variability of the jet stream, respectively.

Figure 6. The difference in composites of (a) O_3 , (b) temperature, and (c) specific humidity on days when the jet is in a poleward (PW) and equatorward (EW) position. Composites are formed for the PW (EW) case by determining the value of each field in (a-c) averaged over all days when the position of the jet stream (ϕ_{jet}) exceeds the 70th (is less than the 30th) percentile for each longitude. Hatching indicates regions where the correlation between each field and the distance from the jet is not statistically significant. The distance from the jet, $\phi_{jet} - \phi$, is defined as the difference, in degrees, between the latitude of the jet and the local latitude. Scatter points and vertical bars in (a-c) specify the mean position and variability of the jet stream, respectively.

Figure 7. (a) Total number of cyclones detected by MCMS on sub-daily (six-hourly) time scales binned to a $\sim 4^{\circ} \times 4^{\circ}$ grid. (b) The difference in the total number of cyclones calculated between days when the jet is in a poleward (PW) and equatorward (EW) position. Scatter points and vertical bars in (a-b) specify the mean position and variability of the jet stream, respectively.

Figure 8. The average O_3 anomaly (colored shading) and standard deviation of the anomalies (solid black contours) within five grid cells ($\sim 5^{\circ}$) of the position of the cyclones. From the cyclones shown in Figure 7, we only consider cyclones occurring over land and detected for ≥ 2 time steps and subsequently rotate the cyclones following the direction of their propogation such that they move to the right of the figure. Dashed black lines divide the cyclone composites into quadrants.

Figure 9. (a) The difference in composites of V_{10} on days when the jet is in a PW and EW position. (b) The correlation coefficient calculated between O_3 and V_{10} (colored shading) and regions where latitudinal gradient of O_3 (d $O_3/d\phi$) is positive (stippling). Scatter points and vertical bars in (a-b) specify the mean position and variability of the jet stream, respectively. Hatching denotes regions where the correlation between V_{10} and (a) the distance from jet and (b) O_3 are not statistically significant.

Supporting Information for "Surface ozone-meteorology relationships: Spatial variations and the role of the jet stream"

Gaige Hunter Kerr¹*, Darryn W. Waugh^{2,3}, Stephen D. Steenrod^{3,4}, Sarah

A. Strode^{3,4}, and Susan E. Strahan^{3,4}

¹Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA

²School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

 $^3\mathrm{NASA}$ Goddard Space Flight Center, Greenbelt, Maryland, USA

 $^4\mathrm{Universities}$ Space Research Association, GESTAR, Columbia, Maryland, USA

Contents of this file

- 1. Text S1 to S2 $\,$
- 2. Figures S1 to S6

*now at Department of Environmental

and Occupational Health, George

Washington University, Washington, DC,

USA

Text S1: Planetary boundary layer (PBL) dynamics

Variations in the height of the PBL (*PBLH*) could connect the jet to surface-level O_3 , temperature, and humidity. *PBLH* determines vertical mixing and the dilution of surface-level pollutants (Dawson et al., 2007) and responds directly to the flux of heat into the PBL. Previous studies have used both *PBLH* and mixing height to assess the impact of PBL dynamics on surface-level pollutants (e.g., Jacob & Winner, 2009; Reddy & Pfister, 2016), and here we use daily mean MERRA-2 *PBLH*, detailed in Section 2.3 of the main text.

An analysis of the (PW - EW) PBLH composites shows that the daily north-south movement of the jet stream is not significantly associated with PBLH variability over a majority of the continental regions of the Northern Hemisphere (Figures S4a, S5a). Over the oceans, northward movement of the jet stream tends to be associated with a more shallow boundary layer; but, in general, there is a no consistent sign associated with the variability of the jet with PBLH (Figures S4a, S5a). This result is robust whether daily mean PBLH is used as we have here, or if the jet-PBLH relationship is derived using PBLH averaged over subsets of the day (e.g., daytime, afternoon).

Although there is no jet-PBLH relationship, it is possible that PBLH may influence O_3 independently of the jet stream. To examine this we evaluate the correlation between PBLH and O_3 . The sign of this correlation is varied, and its strength is largely not statistically significant across the mid-latitudes (not shown). There are some regions where $r(PBLH, O_3)$ is positive and significant, but this implies that a deeper PBL results in higher O_3 , which goes against simple dilution arguments. These findings agree with

Text S2: Near-surface zonal and total wind

Another possible mechanism for the jet-O₃ relationship is changes in surface-level flow. We form additional (PW - EW) composites and correlations for surface-level eastward (U_{10}) and total $(\overline{U_{10}})$ winds (Figures S4b-c, S5b-c).

The composites in Figure S4b-c are less meaningful unless placed in the context of the time-averaged direction and magnitude of U_{10} and $\overline{U_{10}}$. Time-averaged U_{10} is generally positive (eastward) over both land and ocean in the mid-latitudes (40 - 60°N) with a magnitude of ~ 1 m/s. On the other hand, $\overline{U_{10}}$ has a magnitude of < 4 m/s over land and ~ 6 m/s over the oceans.

In a $\sim 20^{\circ}$ latitudinal band north of the mean position of the jet, the poleward movement of the jet significantly increases U_{10} by up to 4 m/s (Figures S4b, S5b). It is worth noting the largest areal extent of changes (both increases and decreases) in U_{10} is centered over the oceans (Figure S4b). However, U_{10} and O_3 are not correlated with each other (not shown), which rules out the surface-level zonal wind as the mechanism connecting the position of the jet stream with O_3 .

We investigated the relationship between ϕ_{jet} and $\overline{U_{10}}$, a proxy for stagnation (Figures S4c and S5c). Differences in $\overline{U_{10}}$ between days with a poleward- versus equatorward-shifted jet were weak and variable in sign, and the correlation was not statistically significant across virtually the entire hemisphere. As we did with *PBLH* and U_{10} , we considered the impact that $\overline{U_{10}}$ has on O₃ independently of the jet, as weak flow can inhibit the ventilation of the PBL (Mickley, 2004). We found that O₃ and $\overline{U_{10}}$ were generally anticorrelated in

the mid-latitudes (not shown); however, these correlations were weak and not significant. There were also parts of the mid-latitudes with positive correlations between O_3 and $\overline{U_{10}}$, implying that higher wind speeds and therefore increased ventilation are associated with higher concentrations of O_3 .

References

- Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ., 41(7), 1494– 1511. doi: 10.1016/j.atmosenv.2006.10.033
- Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmos. Environ., 43(1), 51–63. doi: 10.1016/j.atmosenv.2008.09.051
- Mickley, L. J. (2004). Effects of future climate change on regional air pollution episodes in the United States. *Geophys. Res. Lett.*, 31(24). doi: 10.1029/2004GL021216
- Reddy, P. J., & Pfister, G. G. (2016). Meteorological factors contributing to the interannual variability of midsummer surface ozone in Colorado, Utah, and other western U.S. states. J. Geophys. Res., 121(5), 2434–2456. doi: 10.1002/2015JD023840

Figure S1. (a) The slope of the ordinary least squares (OLS) regression of O_3 from the control simulation versus temperature, dO_3/dT . Hatching denotes regions where the correlation between O_3 and temperature is not statistically significant. (b) Same as (a) but for O_3 from the control simulation versus humidity, dO_3/dq , with hatching showing correlations between O_3 and humidity that are not statistically significant. (c-d) Same as (a-b) but with O_3 from the transport-only simulation. (e-f) The difference in dO_3/dT and dO_3/dq between the two simulations. Scatter points and vertical bars in (a-f) specify the mean position and variability of the jet stream, respectively.

Figure S2. (a) Same as Figure 1a in the main text but for O_3 from the transport-only simulation. (b) The difference (i.e., control – transport-only) in mean O_3 concentrations. Scatter points and vertical bars in (a-b) specify the mean position and variability of the jet stream, respectively.

Figure S3. Colored shading shows the correlation coefficient calculated between distance from the jet stream and (a) O_3 , (b) temperature, and (c) humidity. Hatching is the same as in Figure 6, and scatterpoints, and vertical bars are the same as in Figure 3.

Figure S5. Same as Figure S3 but for (a) *PBLH*, (b) U_{10} , and (c) $\overline{U_{10}}$.

Figure S6. Regionally-averaged O_3 from the control simulation versus regionally-averaged V_{10} . Regional averaging is conducted over the longitudinal extent of the regions listed in each subplots' title but only within $\pm 5^{\circ}$ of the mean position of the jet: western North America ($125^{\circ} - 100^{\circ}$ W), eastern North America ($100^{\circ} - 65^{\circ}$ W), Europe (10° W -30° E), and China ($90^{\circ} - 125^{\circ}$ E). Red dashed lines represent the OLS regression, and inset text indicates its slope.