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Abstract

A quick and effective technique is developed to diagnose the geomagnetic dipole field based on an unstrained single circular

current loop model. In comparsion with previous studies, this technique is able to separate and solve the loop parameters

successively. With this technique, one can search the optimum full loop parameters quickly, including the location of loop center,

the loop orientation, the loop radius, and the electric current carried by the loop, which can roughly indicate the locations, sizes,

orientations of the interior current sources. The technique tests and applications demonstrate that this technique is effective and

applicable. This technique could be applied widely in the fields of geomagnetism, planetary magnetism and palaeomagnetism.

The further applications and constrains are discussed and cautioned.
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Abstract  22 

A quick and effective technique is developed to diagnose the geomagnetic dipole 23 

field based on an unstrained single circular current loop model. In comparsion with 24 

previous studies, this technique is able to separate and solve the loop parameters 25 

successively. With this technique, one can search the optimum full loop parameters 26 

quickly, including the location of loop center, the loop orientation, the loop radius, 27 

and the electric current carried by the loop, which can roughly indicate the locations, 28 

sizes, orientations of the interior current sources. The technique tests and applications 29 

demonstrate that this technique is effective and applicable. This technique could be 30 

applied widely in the fields of geomagnetism, planetary magnetism and 31 

palaeomagnetism. The further applications and constrains are discussed and 32 

cautioned. 33 

 34 

1. Introduction 35 

The most frequently used method to analyze geomagnetic field is the spherical 36 

harmonic analysis (SHA), which is based on the solution of the Laplace equation with 37 

assumption of no electric current in the concerned domain, that is 2 0U   and38 

,where U is the magnetic poential and B is the magnetic vector. With SHA, 39 

the solution of U can be expanded as the sum of Associated Legendre polynomials, 40 

   
1

0 0
0

1 0

= (cos ) cos sin cos sin
n nn

m m m m m
n n n n n

n m

r r
U r P g m h m A m B m

r r
    

 

 

    
      

     
41 

, where r0, r, θ, λ are the Earth’s radius, radial distance, geocentric colatitude, and the 42 

longitude of a given location, respectively, m
nP  are the associated Legendre 43 

- U B
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polynomials, m
ng  and m

nh are the Gauss coefficients are related with the internal 44 

magnetic sources, while m
nA  and m

nB  are the coefficients related with the external 45 

sources [Chapman & Bartels, 1940; Merrill, McElhinny, & McFadden, 1996]. The 46 

internal dipole moment M is defined using the first three internal coefficients 0
1g , 1

1g  47 

and 1
1h , that is,      

2 2 20 1 10
1 1 13

04
M g g h

r




   , where 0  is the permeability in 48 

vacuum [e.g. Amit and Olson, 2008]. The other Gauss coefficients of the internal 49 

sources represent the multipole (quadrupole, octupole, etc.) components. Since the 50 

dipole component dominates the field, the geomagnetic field at Earth's surface can be 51 

well approximated as a geocentered dipole field model. To make the dipole model 52 

more accurate, the eccentric dipole approximation was also made in some 53 

studies[James & Winch, 1967; Cain, Schmitz, & Kluth, 1985; Fraser-Smith, 1987]. 54 

It has to be reminded that SHA has some assumptions and constraints though it is 55 

widely used: 1. The magnetic field in concerned spatial region should satisfy potential 56 

field, but the assumption would propablly fail when electric currents present in 57 

concerned region. 2. The Gauss coefficients cannot indicate the “real” magnetic 58 

sources directly. For example, an offset of a dipole center is mathematically 59 

indistinguishable from a dipole plus a series of higher multipole field at Earth’s center 60 

[see page 42 of Merrill, McElhinny, & McFadden, 1996].     61 

Alternatively, some physical models with idealized assumptions were developed to 62 

fit the geomagnetic field. In almost all these attempts, multiple magnetic dipoles were 63 

used to represent the sources of magnetic field (e.g. one centered axial dipole with 64 

several eccentric radial dipoles [McNish, 1940;Alldredge and Hurwitz,1964; 65 



 4 / 35 
 

Alldredge and Stearns,1969]; two horizontal dipoles [Lyakhov, 1960]; one to six 66 

unconstrained dipoles [Bochev,1975]; 93 dipoles constrained at the core-mantle 67 

boundaries [Mayhew and Estes, 1983]).  68 

The magnetic dipole is only a special case of a circular current loop whose radius is 69 

zero, and models of single loop and also multiple loops have privously been proposed  70 

as more physical representations of geomagnetic field [e.g. Zidarov and Petrova, 1974; 71 

Peddie, 1979; Zidarov, 1985; Demina and Farafonova, 2016]. It is well-known that 72 

seven free parameters are required to characterize a circular current loop, that is, the 73 

location of loop center (three parameters), the orientation of loop axis (two 74 

parameters), the loop radius (one parameters), and the electric current (one parameters) 75 

carried by the loop. Those parameters are meaningful to indicate the equvalient 76 

geometric characteristics of interior currents, though the actual currents pattern could 77 

be far more complicated than a circular current loop. 78 

Problem is that the simutaneous least-square fitting of these loop parameters would 79 

result in multiple solutions of parameter sets. To search the best set of parameters 80 

from the multiple solutions is not an easy task, even for a single current loop model. 81 

Because the optimum fitting is strongly dependent on the initial input parameters, no 82 

general technique exists for determining whether a particular minimum error 83 

corresponds to  the best solution. The more loops involved, more parameters are 84 

required, and the worse the calculation becomes unless additional constrains and 85 

assumptions are made [Peddie, 1979; Zidarov, 1985; Alldredge, 1987; Demina and 86 

Farafonova, 2016]. Peddie [1979] tried to avoid this problem by making 20 87 
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preliminary computer runs using random initial parameters for his loop models. 88 

Zidarov [1985] chose a suitable initial “point” of loop parameters to iterate the 89 

calculation in his multiple loops model. In the study of Alldredge [1987], the initial 90 

values were chosen by referring to results obtained by Benton and Alldredge [1987]. 91 

Demina and Farafonova [2016] selected 23 starting points to invert the seven 92 

parameters of single current loop. 93 

Besides Earth, many planets in the solar system are found to possess an intrinsic 94 

global dipole-dominated field, e.g. Mercury, Jupiter, Saturn, Uranus, and Neptune. In 95 

the past decades, the measurements of spacecaft orbiting these planets accumlated 96 

amounts of planetary magnetic field data. Since no magnetic observatories avaliable 97 

on the planetary surface, the sampled field data by spacecraft usually couldn’t be the 98 

ideal potential field due to the presence of space currents; this makes it difficult to 99 

apply SHA to the non-potential field sampled by spacecraft, although planetary 100 

magnetic field models based on SHA are already existent [e.g. Connerney, 1993; 101 

Anderson et al., 2011; Schubert and Soderlund, 2011, and references therein]. Taking 102 

the magnetic field measurement of MErcury Surface, Space ENvironment, 103 

GEochemistry, and Ranging (MESSENGER) on Mercury as example, Johnson et al. 104 

[2012] argued that the fundamental assumption of a current-free region of SHA is 105 

violated, and the orbit geometry of spacecraft can result in covariance among the 106 

lowest degree and order internal and external fields. 107 

Therefore, to diagnose the planetary dipole-dominated field generally with the 108 

magnetometer data of spacercraft, and to avoid the dilema of fitting the full 109 
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parameters simultaneously, we are motivated to develop a new technique to invert the 110 

parameters of an unstrained single circular loop based on spacecraft’s measurements 111 

along arbitrary trajectory. This technique could be applied widely not only to the 112 

measurements of geomagnetic observatories, but also the spacecraft’s magnetometer 113 

data of planetary dipole-dominated field, to probe the complicated interior current 114 

sources [Constable and Constable, 2004]. In contrast to the fitting method, this 115 

inversion technique should be able to separate and solve the loop parameters 116 

successively without requirement of inputting the initial values.  117 

To guarantee the inversion validity, the used field data is required to be unaffected 118 

significantly by the external sources, or the external field can be well evaluated and 119 

substracted during the data-preprocesses. 120 

In this paper, we first present the technique algorithm in Section 2. To show the 121 

technique validity, the applications to the sampled data from International 122 

Geomagnetic Reference Field (IGRF) model and from geomagnetic observatories are 123 

conducted in Section 3 and Section 4 respectively. We make  comparsions with 124 

previous studies of the loop models in Section 5. We discuss the prospect of further 125 

applications in Section 6. Finally, we discuss the physical interpretations of inverted 126 

loop parameters in Section 7, and summarize this study in Section 8.  127 

 128 

2. Methodology 129 

Assuming a single circular current loop, we here describe the new technique to 130 

separate the full loop parameters from the sampled magnetic field dataset by 131 
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spacecraft or geomagnetic observatories. The sampled field data is assumed to be an 132 

ideal field dataset from purely internal sources; otherwise the inferred parameters 133 

would contain the contamination of external field.  134 

2.1 The setup of coordinates 135 

Since the geomagnetic field is corotated with Earth’s rotation, this technique is 136 

convenient to be studied in the geocentric coordinates where the origin point is at 137 

Earth’s center, the x-axis points towards the intersection of the equator and the 138 

Greenwich meridian, z-axis parallel to the Earth's rotation axis (positive to the north) , 139 

and y-axis completes a right-handed orthongonal set.  140 

As shown in Figure 1, the source of the magnetic field is assumed to be a circular 141 

current loop with radius a carrying electric current I. In the orthogonal geocentric 142 

coordinates {x,y,z}, the loop center is located at  0 0 0 0
ˆ ˆ ˆ, ,x y zr x y z , where x̂ , ŷ , and ẑ143 

are the unit vectors along the positive direction of x-axis, y-axis, and z-axis, 144 

respectively. The loop axis-orientation is  0 0 0 0 0
ˆ ˆ ˆ ˆsin cos sin sin cos    M x, y, z , 145 

which is the unit direction of the dipole moment ( ˆ =M M M ), where 146 

0 0(0 180 )      and 0 0(0 360 )      are the polar angle (colatitude) and 147 

azimuthal angle of M̂ , respectively. M̂  is assumed to be fixed within the period of 148 

sampling data. At the time of ti, a spacecraft is located at  ˆ, ˆ,ˆi i i ix y zr x y z  along the 149 

trajectory, and the recorded magnetic field vector is iB . The position vector of the 150 

spacecraft relative to the loop center is 0 i iR r r . 151 

Our task is to use the sampled magnetic field iB , along the trajectory ir , by 152 

spacecraft, to estimate the unknown parameters a, I, r0, and M̂  of the current loop.  153 

M
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 154 

 155 

Figure 1. The location of current loop in the geocentric coordinates{x,y,z}. The 156 

circular loop with radius a and the carried electric current I is marked as a red circle 157 

whose axis orientation is along M̂ . The loop center is at r0. The loop plane and its 158 

axis orientation constitute a geocentered loop coordinates {xloop, yloop, zloop}: the loop 159 

plane is in the plane constituted by xloop and yloop, the axis orientation is along the 160 

direction of zloop. The origin is at geocenter O instead of loop center. The trajectory of 161 

spacecraft is labelled as a magenta line. 162 

 163 

In the frame of geocentric coordinates, it is convenient to construct a geocentric 164 

loop coordinates for the field. The loop coordinates are defined as:  165 

ˆˆ

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ ˆ

loop

loop

loop

loop

loop loop loop

 






  

z M

z x
y

z x

x y z

 ,                                                 (1) 166 

the origin point is at Earth’s center O. The loop plane is in the plane constituted by 167 

ˆ
loopx  and ˆ

loopy , and the loop center r0 is at  ' ' '
0 0 0
ˆ ˆ ˆ, ,loop loop loopx y zx y z  in this 168 

coordinates. Note that, the superscript “′” , unless otherwise stated, is the vector 169 

component that is expressed in the geocentric loop coordinates. 170 

2.2. The loop axis and the loop center 171 

Since the ideal loop field has no azimuthal component, the field lines that are 172 

diverged from or converged into the loop center, should be radially orientated in the 173 
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equatorial plane of the loop coordinates. Therefore, the loop axis orientation should be 174 

the direction along which the projected field lines are mostly radially orientated. 175 

Therefore, we now consider 2D projection on the equatrial plane as shown in Figure 2. 176 

At the time ti , the projected spacecraft location is  ' ' ˆ,ˆ
loopip i l oi o px yx yr , and the 177 

projected field orientation is  ' ' ˆ,ˆ
loopip xi yi loopb bx yb , where, 

' ˆ
looi i px  xr , 

' ˆ
looi i py  yr , 178 

'
ˆ

i

x

o

i

lo p

ib



xB

B
, and '

ˆ
i

y

o

i

lo p

ib



yB

B
. 179 

 180 

Figure 2. The projection of sampled magnetic field vectors on the equtorial plane of 181 

loop coordinates. At time ti the spacecraft is located at the point  ' ' ˆ,ˆ
loopip i l oi o px yx yr182 

with the sampled magnetic vector ipb . The magneta line with arrow represents the 183 

projected trajectory of the spacecraft. The blue lines with arrow represent the 184 

projected directions of field lines. The red circle represents the current loop. The loop 185 

center is located at  ' '
0 0
ˆ ˆ,0p loop loopx yr x y .  186 

 187 

Given an arbitrary axis orientation M̂ , one can setup a corresponding loop 188 

coordinates according to Eq.(1). The loop center is at  ' '
0 0,ˆ ˆ

loop0 loop px yx yr . As a result, 189 

the angle αi between ipb and the radial orientation ip 0pr r  can be derived as 190 
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     

   

' ' ' ' ' '
0 0

2 2' 2 ' 2 ' ' ' '
0 0

sin =
   


    

i yi i xiip 0p ip

i

ip 0p ip
xi yi i i

x x b y y b

b b x x y y

r r b

r r b
                     (2) 191 

If the projected field lines are perfectly radially orientated, ipb  should be parallel or 192 

anti-parallel to ip 0pr r , and sin i  should be equal to zero. 193 

Thus one can construct a residue equation as 194 

 
1

= sin | sin |i
i

a
N

                                                        (3) 195 

Where, N is total number of the sampled data points, and i=1, 2, …N. Because '
ix , 196 

'
iy , '

xib , and '
yib  are denpendent on M̂(θ0, φ0), α is actualy the function of four 197 

parameters which depends on the axis orientation M̂(θ0, φ0) and the loop center 0pr198 

( '
0x , '

0y ). In other words, the optimum of M̂  and 0pr  should make α reach the global 199 

minimum in the parameter space. 200 

To search the global minimum of α quickly, we further separate M̂  and 0pr to 201 

simplify the calculation of Eq.(3).  202 

In the equatorial plane of loop coordinates, at time ti, the linear equation for the 203 

field line crossing the point  ' ' ˆ,ˆ
loopip i l oi o px yx yr  could be written as 204 

   ' ' ' ' 0yi i xi ib x x b y y    ,                                            (4) 205 

when the recorded field vector is  ' ' ˆ,ˆ
loopip xi yi loopb bx yb .  206 

For the ideal loop field, all the lines shoud ideally intersect at the loop center 207 

 ' '
0 0
ˆ ˆ,dipole0 dipolep x yx yr  in the equtorial plane. Thus, for any field line, we have208 

   ' ' ' ' ' '
0 0 0yi i xi ib x x b y y    .                                          (5) 209 

Considering the similar formula of Eq. (5) for the other satellite positions, we could 210 

generally write Eq. (5) as the form AX Y , where, 211 
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' '
1 1

' '
2 2

' '

... ...

y x

y x

yN xN

b b

b b
A

b b
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 
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 
 
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,
'
0

'
0

x
X

y

 
  
 

,

' ' ' '
1 1 1 1

' ' ' '
2 2 2 2

' ' ' '

...

y x

y x

N yN N xN

x b y b

x b y b
Y

x b y b

 
 

 
 
 
  

                          (6) 212 

The optimum solution of X is  213 

 
1T TX A A A Y


                                                     (7) 214 

, where ATA is a 2×2 matrix.  215 

Obviously, the optimum X is a function of the axis orientation M̂ (θ0, φ0). 216 

Substituting X  into Eq. (3), one can obtain the minimum of α, αmin, for a given axis 217 

orientation. In other words, αmin is a function of axis orientation M̂(θ0, φ0). Thus, 218 

one can search the global minimum of αmin quickly in the 2-D map constituted by θ0 219 

and φ0 to find the optimum axis orientation M̂(θ0, φ0) as well as the correspnding 220 

loop center  ' '
0 0,ˆ ˆ

loop0 loop px yx yr . 221 

Since both the parallel and anti-parallel directions of M̂  are valid axis orientations, 222 

we choose the one as the final M̂  along which the loop field satisfies the 223 

right-handed system. Taking the geomagnetic field as example, the polar angle of M̂  224 

should be θ0 ≥90°, because the field diverges in southern hemisphere. 225 

2.3.The loop radius 226 

Once the axis orientation is determined, we can also solve the loop radius.  227 

The ideal magnetic field of a circular current loop is analytically calculated in 228 

textbooks [e.g. Knoepfel, 2000]. At time ti along the trajectory, the analytic radial and 229 

axial field components are written respectively as follows: 230 

2 2
0

2 22 2

2cos

4 2 sinsin 2 sin

i i
ir

i i ii i i i

I a R
B E K

a R aRa R aR

 

  

 
  

    

 ,            (8) 231 



 12 / 35 
 

2 2
0

2 22 2

2
=

4 2 sin2 sin

i
iz

i i ii i i

I a R
B E K

a R aRa R aR



 

 
 

    

                   (9) 232 

where, I is the electric current, a is the loop radius, iR  is the radial distance of 233 

spacecraft to the loop center, (0 180 )i i      is the polar angle of iR  deviated 234 

from the loop axis orientation M̂ , and the overhead “~”means that the field 235 

components are expressed in the loop-centered cylindrical coordinates (it is the same 236 

with the loop coordinates as defined in Eq.(1) but the origin becomes the loop center). 237 

E and K are the elliptical functions, that is, 238 

2 2 2
/2

2 4 6

2 20

2 2 24 6
/2

2 2 2

0

2

2 2

1 1 3 1 3 5
= 1 ...

2 2 2 4 2 4 61 sin

1 1 3 1 3 5
= 1 sin 1 ...

2 2 2 4 3 2 4 6 5

4 sin
=

2 sin
i i

i i i

dx
K k k k

k x

k k
E k xdx k

aR
k

a R aR













         
           

           


         
            

         

 










     (10) 239 

In Eqs.(8-10), the radial distance iR  and the polar angle i  are computed 240 

respectively as  241 

     
2 2 2' ' ' ' ' '

0 0 0 0i i i i iR x x y y z z       r r ,                          (11) 242 

and 0
ˆ)

cos i
i

i

a
R


  

  
 

(r r M
                                          (12) 243 

Since M̂ , '
0x , and '

0y  have been derived in subsection 2.2, unknown parameters in 244 

irB  and izB  are a, '
0z , and I, while I does not appear in the unit field vector ib :  245 

ˆˆ= ir iz
i

i i

B B

B B
b r + M
 

  , 2 2
i ir izB B B                                     (13) 246 

, where the unit radial vector is ˆ ˆ ˆcos sinloop i loop i r = x y , and the azimuthal angle is 247 
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 

   

' '
0

2 2' ' ' '
0 0

cos
i x

i

i x i y

x r
a

x r y r



 
 

  
   
 

 when ' '
0 0i yy r  , and 248 

 

   

' '
0

2 2' ' ' '
0 0

2 cos
i x

i

i x i y

x r
a

x r y r

 

 
 

   
   
 

 when ' '
0i yy r < 0. 249 

On the other hands, the actually recorded unit field vector is = i
i

i

B
b

B
, thus the 250 

optimum loop radius, a, and the shift of loop center along axis, '
0z , should make ib  251 

parallel to ib  for the best fit solution. 252 

As a result, the angel between ib  and ib , defined as γi , is a function of a and '
0z , 253 

that is, 254 

 cosi i ia  b b                                                    (14) 255 

Thus, one can construct a residue function as 256 

 '
0

1
, i

i

a z
N

                                                            (15) 257 

Obviously, ε is a function of a and '
0z . The optimum a and '

0z  should make ε 258 

reach the global minimum in the parameter space. Thus, one can search the global 259 

minimum of ε quickly in the 2-D map constituted by a and '
0z  to find the 260 

correspondingly optimum values of a and '
0z . 261 

Note that, with the knowledge of derived M̂ , the inferred location of loop center 262 

 ' ' '
0 0 0 0

ˆ ˆ ˆ, ,loop loop loopx y zr x y z  in the geocentered dipole coordinates can be transformed 263 

into the geographic coordinates  0 0 0 0
ˆ ˆ ˆ, ,x y zr x y z  via Eq. (1).  264 

2.4. The electric current of the loop  265 

 Considering the measured field vector Bi, and the field vector induced by the 266 

current loop  267 

0
ˆˆ ˆ

i ix loop iy loop izB B B  B x y M   ，                                    (16) 268 
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where cosix ir iB B   , siniy ir iB B   , we can construct a dimensionless parameter  269 

0-1 i i

i iN
  

B B

B
,                                                  (17) 270 

to evaluate the deviation of loop field Bi0, from the actual recorded magnetic field Bi. 271 

Since the optimum axis-orientation, the loop center, and the loop radius have been 272 

inferred separately in the above subsections, δ becomes the function of only current, I, 273 

and the optimum current can be searched when δ reaches the minimum. 274 

The derived loop parameters { '
0mx , '

0my , '
0mz , θ0m, φ0m, am, Im} indeed make δ reach 275 

its extremum (see Text S1 in Supplement).  276 

2.5. The summary of technique 277 

Based on the above analysis, the technique steps can be simply summarized as the 278 

following: 279 

1. The orientation of the field structure is determined by the loop axis orientation and 280 

the loop center. Thus, axis orientation and loop center ( '
0mx , '

0my , θ0m, φ0m) can be 281 

searched out firstly by the projection of the measured field vectors. 282 

2. Once the loop axis is determined, the geometry configuration of loop field is only 283 

determined by the loop radius and the axis-shift of loop center. Thus, the loop 284 

radius ( '
0mz

, am) can be resolved by the analysis of field’s geometry. 285 

3. Once loop axis, loop center, and the loop radius are solved, the optimum electric 286 

current (Im) can be inverted finally by minimizing the deviation of loop field from 287 

the sampled field vectors. 288 

Certainly, to make the inversion more reasonable, one may have to preprocess the 289 

data to guarantee that the sampled field data is least contaminated by the external 290 
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sources, e.g. ionospheric current, before applying the technique.  291 

Test of this technique for, an ideal circular loop field is conducted in Supplement, 292 

where the technique successively reproduced the full loop parameters from data along 293 

arbitrary trajectory (see Text S2 and Figure S1 to S5 in Supplement). With the same 294 

field dataset, the comparison between our technique results and the traditional 295 

least-square fitting method demonstrates that our method indeed works better than the 296 

least-square fitting (see Text S3 in Supplement).  297 

 298 

3. Application to IGRF model 299 

The International Geomagnetic Reference Field (IGRF) is a series of mathematical 300 

models describing the large-scale internal part of the Earth’s magnetic field between 301 

epochs 1900 A.D. and the present (Zmuda 1971). Here, to show the technique 302 

applicability and the specific inversion procedures, as an example, we apply the 303 

technique to the IGRF model of 12th generation [Thébault et al., 2015]. We could 304 

make the comparison of the yielded loop parameters with the well-known eccentric 305 

dipole parameters as inferred from the internal Gauss coefficients of IGRF model. 306 

To make the sampled data evenly from IGRF, we construct four synthetic polar 307 

circular orbits with same controllable altitude. As shown in Figure 3a, the four polar 308 

orbits cross the same pole and cover the longitude 0°-180°, 45°-225°, 90°-270°, and 309 

135°-315°, respectively in the geocentric coordinates. Along each orbit, the spacecraft 310 

samples 20 data points evenly of geomagnetic field from IGRF model. In total, 80 311 

data points are obtained from the four orbits. Note that, we use all the Gauss 312 
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coefficients of IGRF model to compute the sampled field vectors. The IGRF model at 313 

the time 2015-01-01 00:00:00 is arbitrarily adopted.   314 

 315 

Figure 3. The panel in left column shows the four circular polar orbits with 316 

controallable altitude in geocentric coordinates(panel a). In the right column(panel 317 

b-d), panels from top to bottom show the series of sampled Bx, By and Bz component, 318 

respectively from IGRF model at the time 2015-01-01 00:00:00 when altitudes of the 319 

four orbits are zero. The different colored data points correspond to the different 320 

colored orbits shown in panel a. 321 

 322 

3.1. The case when orbit altitude is zero 323 

We may first consider the case when altitude is zero. In this case, the obtained 324 

geomagnetic field data from IGRF could be seen as being sampled on the Earth’s 325 

surface. Figure 3b shows the series of the sampled 80 magnetic vectors of the four 326 

circular orbits in the geocentric coordinates.  327 

With the sampled magnetic field, we calculate αmin for all possible orientations of 328 

M̂ (θ0, φ0) using Eqs. (2-7). In Figure 4a, the 2-D distribution of αmin is shown in the 329 

map constituted by θ0 and φ0.  330 

Obviously, as expected, there are two local minima of αmin present in Figure 4a, 331 

because the two minima should correspond to the parallel and anti-parallel direction 332 

of M̂ . After reading the initial values of θ0 and φ0 around the two minima, the two 333 



 17 / 35 
 

candidate directions of M̂ , 1M̂  and 2M̂ , as well as the corresponding loop centers 334 

( '
0x , '

0y ) are derived. The yielded 1M̂  is (θ0=12.2°, φ0=297.5°), and 2M̂  is 335 

(θ0=167.7°, φ0=113.1°), and both of them are nearly anti-parallel to each other.   336 

 337 

Figure 4. Panel a: The distribution of �min (unit is degree). The logarithm of �min is 338 

plot in this panel. Panel b: The projection of magnetic field direction on the 339 

equatorial plane of loop coordinates. The red dots represent the location of the 340 

spacecraft with 
'
iz > 0, the blue star represents the loop center. Panel c: The 2-D 341 

distribution of ε. Panel d: The variation of δ against I. 342 

 343 

  To determine which one is the final direction of M̂ , in Figure 4b, we show the 344 

projection of magnetic field vectors on the equatorial plane, i.e. ipb , according to the 345 

two candidate axis directions. The projections are only shown when the spacecraft is 346 

at the hemisphere in which M̂  is pointing away (
'
iz > 0, or ˆ

i r M >0). It is clear that, 347 

in this hemisphere, the magnetic field vectors basically point radially outward along 348 

2M̂ , but inward along 1M̂ (not shown here).  Thus, we choose 2M̂  as the final M̂ , 349 



 18 / 35 
 

that is M̂ (θ0=167.7°, φ0=113.1°). Accordingly, the components of loop center via Eq. 350 

(7) are calculated as '
0x = -288.6 km and 

'
0y =-325.2 km. 351 

  With the derived M̂ , '
0x  and '

0y , Figure 7 shows the distribution of   via 352 

Eq.(15) as a function of a and '
0z . With the initial value of '

0z  and a  read from 353 

Figure 4c ( '
0z =0km, a=800km) , the optimum value of '

0z  and a, corresponding to 354 

the global minimum of ε, is found to be '
0z = -24.5 km, and a= 856 km, respectively. 355 

  Finally, with the derived M̂ , '
0x , '

0y , '
0z  and a, we calculate δ via Eq. (17) with 356 

varied current I, and plot the variation of δ against I in Figure 4d. The numerical 357 

calculation demonstrates that δ reaches its minimum when I=3.32×1010A. 358 

As a result, the estimated strength of magnetic moment is M=Iπa2=7.65×1022Am2, 359 

which is comparable to the dipole moment of IGRF (7.72×1022Am2). The minor 360 

discrepancy could owe to the impact of geomagnetic field anomaly on the sampled 361 

IGRF field at Earth’s surface. 362 

  Using Eq. (1), the transformation of the loop center r0 (
'
0x = -288.6, '

0y = -325.2, 363 

'
0z = -24.5) km in the loop coordinates into the Cartesian geographic coordinates 364 

yields r0 ( 0x = -285.5, 0y =309.3, 0z =111.5) km.  365 

Using the derived loop parameters, the loop field is calculated and shown in Figure 366 

5. Clearly, the inverted loop field shows well-consistence with the sampled IGRF field, 367 

which implies that the inverted parameters are reasonable.    368 

 369 
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 370 

Figure 5. The comparision showing the sampled geomagnetic field from IGRF(black 371 

lines) and the magnetic field inverted from the circular loop (red lines). 372 

 373 

  The derived full loop parameters, the strength of magnetic moment, and the 374 

inversion errors are tabulated in Table 1 respectively. 375 

3.2. The cases when orbit altitude is variable 376 

Considering the variable altitude, we repeat the same procedures to check how the 377 

inversion results varied with orbit altitude. The calculated results for the other 378 

altitudes are also tabulated in Table 1. 379 

We find that, as the orbit altitude increases, the derived parameters are approaching 380 

the values of eccentric dipole model with decreasing inversion errors. The results are 381 

reasonable, because the field strength of the geomagnetic anomalies or non-dipole 382 

components attenuates with altitude more quickly than that of dipole field, and the 383 

field at the higher altitude is closer to the dipole field.  384 

  Nonetheless, at the very high altitude, as the case of the altitude of 50000km, the 385 

sampled field is nearly identical to the dipole field with negligible loop radius. In this 386 
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case, the numerical inversion would probably fail. The solution of the negligible 387 

radius cannot be achieved in the 2-D distribution of ε, unless the tolerance error of 388 

numerical calculation is improved. 389 

 390 

Table 1. The inverted loop parameters for the IGRF model of the year 2015 391 

Altitude 

(km) 

x0 

(km) 

y0 

(km) 

z0 

(km) 

a  

(km) 

I  

(*1010A) 

M a 

(*1022Am2) 

θ0 

(°) 

φ0 

(°) 

αmin 

(°) 

� 

(°) 

δ 

0 -286 309 111 856 3.32 7.65 167.7 113.1 7.465 8.069 0.185 

100 -274  320   95 817 3.66 7.67 167.8  118.0 7.261 7.917 0.179 

500 -293  334   71 745 4.41 7.69 168.6  117.4 6.558 6.901 0.156 

1000 -310 339   83 701 4.98 7.69 169.1 115.6 5.856 5.997 0.135 

2000 -334  348  105 754 4.31 7.71 169.7 113.3 4.843 4.740 0.106 

5000 -364  356   170 720 4.73 7.71 171.1  111.8 3.334 2.993 0.064 

10000 -381   356  206 631 6.16 7.71 170.9  109.4 2.145 1.848 0.038 

20000 -390  357   212 353 19.72 7.71 170.5  108.0 1.276 1.035 0.020 

50000 b ~ ~ ~ ~ ~ ~ 170.4 107.5 0.581 ~ ~ 

EDc -400 352 221 ~ ~ 7.72 170.4 107.4 ~ ~ ~ 
a The magnetic moment M is calculated as M=πIa2. 392 
b The inversion is failed, because the global minimum of ε cannot be found. Only the 393 

derived axis-orientation is tabulated here. 394 
c The eccentric dipole (ED) model is adopted, whose displacement of dipole center is 395 

calculated only considering the first eight internal Gauss coefficients (See Eqs.(16-18) 396 

in Fraser-Smith (1987)). Note, the direction of M̂  is the same in both centered and 397 

eccentric dipole models.  398 

 399 

4. The application to geomagnetic field data of observatories 400 

Our method does not include the external field sources, such as the ionospheric and 401 

magnetospheric currents (tens of nT), and the field induced by the internal induction 402 

current due to transient temporal variation of external currents (amplitude is about 403 

half of external field) [e.g. Chapman, 1919; Benkova, 1940]. These sources could be 404 

seen as the data “noise” as recorded by geomagnetic observatories. Thus, we can 405 

apply the technique to the original field data of geomagnetic observatories to check 406 
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the technique validity in the presence of “noise”. 407 

 408 

Figure 6. The distribution map of the used geomagnetic observatories. 409 

   410 

The used geomagnetic field dataset is from International Real-time Magnetic 411 

Observatory Network (INTERMAGNET) which can provide the geomagnetic field 412 

data of the global observatories. To facilitate the comparison with the inversion of 413 

IGRF field in Section 3, we set the time to sample the geomagnetic field data is at 414 

2015-01-01 00:00:00. The sampled dataset contains 123 data points from 123 415 

observatories (we sample one field vector at each observatory; see Table S2 in 416 

Supplement). The distribution map of these observatories is shown in Figure 6. 417 

We tabulate the inverted parameters in Table 2 after performing the technique. The 418 

comparison with the test of IGRF’s field on Earth’s surface (see the fourth row of 419 

Table 2) shows that the inverted parameters from geomagnetic field data are basically 420 

the same with that from the test of IGRF model, which demonstrates that our 421 

technique is insensitive to the “noise” component of external currents. The results are 422 

reasonable, because the nominal “noise” amplitude due to the space current 423 
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disturbance is very minor, only about 10-3 of the background geomagnetic field 424 

strength. 425 

Meanwhile, to check how much the inverted parameters being affected by the 426 

regional distribution of observatories, as an example, we perform the technique only 427 

considering the observatories in northern hemisphere. The inversion results 428 

demonstrate that the loop parameters, especially the radius and current, are 429 

significantly different from the parameters calculated from the global observatories 430 

though the fitting errors are minor (see Table 2). The inversion results are 431 

understandable, because the regional magnetic anomalies could become comparable 432 

to the main dipole field, and the sampled data could be biased by these anomalies.  433 

Therefore, to better apply the technique to geomagnetic field data, the sampled 434 

geomagnetic observatories should distribute more evenly. 435 

 436 

Table 2. The inverted single loop parameters based on the sampled dataset by 437 

geomagnetic observatories at the moment of 2015-01-01 00:00:00. The format is the 438 

same as Table 1. 439 

Model case x0 

(km) 

y0 

(km) 

z0 

(km) 

a  

(km) 

I  

(*1010A) 

M  

(*1022Am2) 

θ0 

(°) 

φ0 

(°) 

�min 

(°) 

� 

(°) 

δ 

Global a -213  403   128 892 3.08 7.71 172.3  109.2 5.313 8.414 0.175 

Northern 

Hemisphere b 

-105   127  348 1632 0.87 7.25 176.5 123.8 4.323 8.089 0.149 

IGRF datac -286 309 111 856 3.32 7.65 167.7 113.1 7.465 8.069 0.185 
a The inversion from the dataset of global 123 magnetic observatories 440 
b The inversion from the dataset of 95 magnetic observatories in Northern Hemisphere 441 
c Same with the first row of Table 1. 442 

 443 

5.  Comparison with previous’ studies 444 

Zidarov and Petrova [1974] fitted the geomagnetic data of 61 magnetic 445 
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observatories during the period 1932-1960 with one loop model (see Table IV of 446 

Zidarov [1985]). Peddie [1979] used 1236 magnetic field component values, or 412 447 

magnetic field vectors near the surface of Earth at the year of 1975 to fit the current 448 

loop models. Each field vector was computed from each local spherical harmonic 449 

model. Because no specific information of the used dataset was provided by Zidarov 450 

and Petrova [1974], and by Peddie [1979], it is difficult to get the same dataset and 451 

make direct comparison with their results. 452 

 453 

Table 3. The inverted loop parameters for the IGRF model of the year 1960  454 

Method x0 

(km) 

y0 

(km) 

z0 

(km) 

a  

(km) 

I  

(*1010A) 

M 

(*1022Am2) 

θ0 

(°) 

φ0 

(°) 

� 

(°) 

� 

(°) 

δ 

Our 

technique 

-309  192   86 824 3.69 7.88 167.6  109.4 7.928 7.179 0.170 

ZP a -263 263 108 1391 1.33 8.51 169.2 106.8 8.248 7.054 0.169 

ED b -366 213 122 ~ ~ 8.03 168.6 110.5 ~  ~ 
a The loop parameters are adopted from Zidarov and Petrova (ZP) [1974]. Using these 455 

loop parameters, the errors �, �, and δ indicating the deviation of the loop field 456 

from the sampled IGRF field are calculated by Eq. (3), Eq.(15), and Eq. (17), 457 

respectively.  458 
b The eccentric dipole (ED) center is adopted from Fraser-Smith using Gauss 459 

coefficients[1987]. 460 

 461 

Table 4. The inverted loop parameters for the IGRF model of the year 1975. The 462 

format is the same with Table 3.  463 

Method x0 

(km) 

y0 

(km) 

z0 

(km) 

a  

(km) 

I  

(*1010A) 

M 

(*1022Am2) 

θ0 

(°) 

φ0 

(°) 

� 

(°) 

� 

(°) 

δ 

Our 

technique 

-300  210  108 643 6.01 7.81 167.7  110.8 8.020 7.321 0.174 

Peddie a -318 259 124 1021 2.43 7.95 169.2 108.7 8.25 7.229 0.171 

EDb -379 237 160 ~ ~ 7.94 168.8 109.5 ~  ~ 
a The parameters are adopted from the unstrained single loop model of Peddie [1979].  464 
b It is adopted from Fraser‐Smith[1987] using Gauss coefficients. 465 

 466 

Here, to show a simple comparison with Zidarov and Petrova [1974], and with 467 
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Peddie [1979], we just invert the loop parameters based on the IGRF field at the 468 

moment of 1960-01-01 00:00:00 and 1975-01-01 00:00:00. Our inversion results are 469 

tabulated in Table 3 and Table 4, respectively. In our inversion, the altitudes of the 470 

four circular orbits in Figure 3 are assumed to be zero, so that the sampled data could 471 

be seen as the measured field on Earth’s surface.  472 

From Table 3 and Table 4, we can see that our inverted parameters show some 473 

differences, especially the loop radius and current, with that derived by Zidarov and 474 

Petrova [1974], and by Peddie [1979]. The reasons for the difference, in addition to 475 

the inversion methods, we believe it could be induced also by the different field 476 

datasets since the bias of magnetic observatories distribution could significantly affect 477 

the inversion (see Section 4). 478 

It is worthy to note that, by applying to the same sampled IGRF field dataset, 479 

although the parameters by Zidarov and Petrova [1974], and by Peddie [1979] yield 480 

comparable error δ with ours, their derived M̂  shows larger error σ. In other words, 481 

the different sets of loop parameters may yield comparable δ for a same field dataset. 482 

Thus, it is insufficient to evaluate the fitting by minimizing error for only one 483 

criterion [e.g. Zidarov and Petrova, 1974; Zidarov, 1985; Peddie, 1979], but need 484 

comprehensively several criteria such as for axis orientation, field geometry, and the 485 

relative deviation of field strength. 486 

 487 

6. Prospect of further applications 488 

In the further technique applications, several tips below are worthy to be noticed: 489 
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1) The technique we presented based on Eqs. (2-7) to find the axis orientation could 490 

be also applied to the other internal magnetic sources whose current systems are 491 

azimuthally symmetric, e.g. the disk-like currents, the spherical shell-like, and the 492 

ball-like currents etc., because the field generated by such current systems has no 493 

azimuthal component in principle. 494 

2) Our loop model can be reduced easily to the dipole model by reducing the loop 495 

radius a to zero. In this case, only six parameters are needed to be inverted (two 496 

parameters for the axis orientation, three parameters for the dipole center, and one 497 

parameter for the amplitude of dipole moment). Eqs. (2-7) to find the axis 498 

orientation still holds on for the dipole model, while the angle γ defined in Eq. (14) 499 

becomes function of only '
0z . After solving axis orientation and dipole center, the 500 

dipole moment strength can be determined similarly by Eq. (17). The dipole 501 

model could be considered when the optimum loop radius cannot be searched. 502 

3) The algorithm can be extrapolated to the model of currents on a spherical surface, 503 

which could be closer to the real dynamo current systems than the loop model. It 504 

also needs seven parameters to characterize the spherical surface model (two 505 

parameters for the axis orientation, three parameters for the spherical center, one 506 

parameter for the spherical radius, and one parameter for the surface current 507 

density if it is only vaired with latitude). The technique application to the spherical 508 

surface model will be studied in next step. 509 

4) The single loop could be extrapolated to the multiple loops to include the 510 

contributions of crustal fields or local anomaly fields. If we label the measured 511 
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magnetic field vector as B, the magnetic field vector expected from the single loop 512 

is BL1, then we would have the deviation ∆1=B-BL1. We can repeat the procedures 513 

to fit ∆1 using the second current loop. If the field from the second loop is labeled 514 

as BL2, the resulted field deviation becomes ∆2=∆1-BL2. We can iterate the 515 

algorithm until the deviation becomes acceptable. The technique of multiple loops 516 

could be applied also to model the planetary crustal fields or the regional anomaly 517 

fields, like the Lunar crustal fields and Martian crustal fields. We will try the 518 

model of multiple loops in next studies. 519 

5) Our loop model also benefits the study of secular variation of geomagnetic field. 520 

By application to the field dataset of long period, the evolved loop parameters 521 

over the long period could probe the secular variation of geomagnetic or planetary 522 

field. We could survey the 100 years variation of geomagnetic field by continue 523 

the IGRF test in future study. 524 

6) Geomagnetic palaeosecular variation based on current loop model were conducted 525 

in previous studies [e.g. Roy and Wagner, 1982], but the initial estimates of 526 

parameters are required in the fitting. Thus, it is expected that, with our new 527 

technique, the application into the paleomagnetic data is worth re-examining.  528 

 529 

7. Discussions 530 

We have to remind that the inverted parameters depend strongly on the sampled 531 

field dataset. Therefore, when deep dynamo (the poloroidal field component) is 532 

modeled, field components of crustal field in the dataset should be negligible. In this 533 
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case, our technique could be better applied to the dataset with higher altitude, e.g. the 534 

magnetometer data of spacecraft (such as Swarm mission) after subtracting the 535 

external field, because the crustal fields would attenuate quickly with altitude.   536 

It is noteworthy that, since the observed field is the integral product of all the 537 

current sources, the magnetic inversion usually has multi-solutions. One would 538 

probably never be able to seperate the real interior current sources exactly, no matter 539 

how perfect and complete the magnetic field models above planetary surface are built 540 

[see page 42 of Merrill, McElhinny, & McFadden, 1996]. Therefore, although our 541 

technique works well to invert the loop model, it should be emphasized and cautioned 542 

that the current loop model we addressed here cannot be the absolute pattern of 543 

interior currents, and the obtained loop parameters could be only seen as the 544 

equivalent parameters of the whole internal current patterns.  545 

Considering the nonuniqueness of inversion solution, we have to interpret the 546 

physical meanings of the yielded loop parameters carefully. Our inversion results 547 

show that the loop center is eccentric, and displaced towards Eastern Hemipshere. The 548 

yielded displacement of loop center could not be a trivial output. The dynamo 549 

simulations showed that the displacement could be caused by the lopsided inner core 550 

growth [Olson and Deguen, 2012], and the displacement of loop center may indicate 551 

that Earth’s inner core is solidifying in the western hemisphere and melting in the east 552 

[Bergman, 2010].  553 

Both tests of IGRF field and geomagnetic field of observatories show that the 554 

inferred equivalent loop radius is about 700-900 km (see Tables 1-3). This result 555 
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appears unreasonable, because it may indicate that the geodynamo currents can extend 556 

deeper into the inner solid core (the radius of solid core is about 1265km). Our test 557 

shows that the inversion with source of current flowing on a spherical surface would 558 

result in loop radius smaller than the spherical radius, and the successful run of 559 

inversion implies that the surface current should concentrate more in magnetic 560 

equator than that regulated by sinθ (θ is magnetic colatitude) (see Text S4, Figure S6 561 

and Table S1 in Supplement). Thus, if the real dynamo currents can be well-seen 562 

flowing on spherical surface (e.g. the surface of inner core), the loop with radius 563 

smaller than the inner core radius could make sense. Meanwhile, the successful 564 

inversion of loop radius may indicate that the surface current would concentrate more 565 

near the spherical equator than that regulated by sinθ.  566 

To develop the inversion technique of more plausible spherical surface model 567 

should be considered in next study. 568 

 569 

8. Conclusions 570 

 In this paper, we developed a new technique to invert the geomagnetic field based 571 

on a single circular current loop model. The inverted loop parameters are meaningful 572 

to interpret the geometric characteristics of deep dynamo currents. This technique is 573 

able to effectively separate and solve the loop parameters successively, that is, the full 574 

optimum parameters can be quickly searched, showing advantage over the previous 575 

least-square fitting method. Model is examined against geomagnetic field (both IGRF 576 

models and the measured geomagnetic field of observatories) to demonstrate the 577 
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reasonability and feasibility of this technique. To reduce the influence of the local 578 

magnetic anomaly, the technique is suggested to be applied at higher altitude. Not 579 

only is the loop algorithm flexible to be reduced to a dipole model, but also it is able 580 

to be extrapolated to a spherical surface model.  581 
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Introduction  

This supplementary information contains additional details of the technique tests and the 

geomagnetic field dataset that we present in the paper. We provide the theoretic proof 

that the inverted parameters from our technique can make δ reach its extremum (Text 

S1).  We apply the technique to the ideal circular loop field, and show that this technique 

is able to invert the full loop parameters exactly (Text S2, Figure S1 to S5). We compare 

the inversion results with the traditional least-square fitting method (Text S3). We test the 



 

 

2 
 

technique when the magnetic source is current flowing on a spherical surface (Text S4, 

Table S1). Table S2 lists the geomagnetic field dataset used in Section 4. 

 

Text S1. 

The  mathematical proof of the extremum of δ 

The dimensionless error δ defined in Eq. (17) of body text is, in principle, the function 

of the full loop parameters { '
0x , '

0y , '
0z , θ0, φ0, a, I}. Here, we show that, the derived loop 

parameters { '
0mx , '

0my , '
0mz , θ0m, φ0m, am, Im} from our technique indeed make δ reach its 

extremum. 

Because � in Eq.(3) is the function of { '
0x , '

0y , θ0, φ0}, �min is the function of {θ0, φ0}, 

and ε in Eq.(15) is the function of { '
0z , a}, δ is actually the function of {σ, ε, I}. The 

extremum of δ  is reached when all the partial differential solutions of  δ  equal zero. 

Obviously, when ' '
0 0mx x , ' '

0 0my y , we have 
' '
0 0

0
x x

  



  
 

  
and 

' '
0 0

0
y y

  



  
 

  
. 

Similarly, when ' '
0 0mx x , ' '

0 0my y , 0 0m  , 0 0m  ,  we have 

min

0 min 0

0
  

   

  
 

   
 , and min

0 min 0

0
  

   

  
 

   
.In the same way, when 

' '
0 0mx x , ' '

0 0my y , 0 0m  , 0 0m  , ' '
0 0mz z , a= am,  we have

' '
0 0

0
z z

  



  
 

  
 and 

0
a a

  



  
 

  
. Finally, when ' '

0 0mx x , ' '
0 0my y , 0 0m  , 0 0m  , ' '

0 0mz z , a= am,  

I= Im, we have 0
I





. 

In other words, the loop parameters { '
0mx , '

0my , '
0mz , θ0m, φ0m, am, Im} from our technique 

can make all the partial differential solutions of  δ  equal zero, and δ must reach its 

extremum with the derived loop parameters. 

Text S2. 

Inversion with magnetic source of single loop  

To test the validity of this technique, we construct a circular current loop model with 

given parameters to generate the loop field which is sampled by a virtual spacecraft along 
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an arbitrary trajectory. If the algorithm of technique is valid, the application to the 

sampled dataset should be able to invert the loop parameters exactly.  

The input loop parameters are like this: the location of loop center is at r0 (x0=0.1, 

y0=0.2, z0=0.5) m, the loop radius is a=0.5m, the carried electric current is I=0.35A, and 

the loop axis orientation is M̂ (θ0=60°, φ0=40°). 

Using these loop parameters, the sampled magnetic field data can be analytically 

computed via Eqs. (8-12). The test here is to apply our technique with the sampled 

magnetic field to invert the input parameters r0, a, I, and M̂  . 

The spacecraft’s trajectory is arbitrarily assumed to be linearly varied from (x= -2, y= -

2, z= -2) m to (x=2, y=2, z=2) m, and spacecraft evenly records the magnetic field with, 

arbitrarily, 20 data points. The time series of the sampled magnetic field are shown in 

Figure S1. 

Using Eqs. (2)-(7), we calculate �min for all possible orientations of M̂ (θ0, φ0). In 

Figure S2, we show the 2-D distribution of �min in the map constituted by θ0 and φ0. 

Obviously, as expected, there are two global minima of �min present in Figure S2. One is 

about at (θ0=60°, φ0=45°), the other one is about at (θ0=120°, φ0=225°). The two minima 

should correspond to the parallel and anti-parallel direction of M̂ . With the reading of 

the initial values of θ0 and φ0 around the two minima, the two optimum candidate 

directions of M̂ , 1M̂ and 2M̂ , as well as the corresponding loop centers ( '
0x , '

0y ) are 

derived. The yielded 1M̂  is (θ0=60°, φ0=40°), and 2M̂  is (θ0=120°, φ0=220°), and both 

of them are nearly anti-parallel to each other.   

To determine which one is the final direction of M̂ , in Figure S3, we show the 

projection of magnetic field vectors on the equatorial plane, i.e. ipb , according to the two 

candidate axis directions. In Figure S3, the projections are only shown when spacecraft is 

at the hemisphere M̂  pointing away (
'
iz > 0, or ˆ

i r M >0). It is clear that, in this 

hemisphere, the magnetic field vectors basically point radially outward along 1M̂ (see 

Figure S3a, one inward magnetic vector is actually induced by the axis shift of the loop 

center), but inward along 2M̂ (see Figure S3b). Thus, we choose 1M̂  as the final 
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optimum direction of M̂ , that is M̂ (θ0=60°, φ0=40°). Accordingly, the components of 

loop center via Eq. (7) are calculated as '
0x = -0.2455 m and 

'
0y = -0.2383 m. 

Further, as shown in Figure S4, with the derived M̂ , '
0x  and '

0y , the distribution of   

can be plotted as a function of '
0z  and a via Eq.(15). Consequently, with the initial 

optimum value of '
0z  and a from Figure S4 ( '

0z = a =0.5 m) , the optimum value of '
0z  and 

a, corresponding to the global minimum of ε, is found to be '
0z =0.4277 m, and a=0.5 m, 

respectively. 

Finally, with the derived M̂ , '
0x , '

0y , '
0z  and a, we calculate δ via Eq. (17) with varied 

current I, and plot the variation of δ against I in Figure S5. The numerical calculation 

demonstrates that δ reaches its minimum when I=0.35 A via Eq. (17).  

Using Eq. (1), the transformation of the loop center r0 (
'
0x =-0.2455, '

0y =-0.2383, '
0z

=0.4277) m in the loop coordinates into the Cartesian coordinates yields r0 = (x0=0.1, 

y0=0.2, z0=0.5) m. Considering the inverted M̂ (θ0=60°, φ0=40°), a=0.5 m, and I=0.35 A,  

obviously, our technique can exactly invert the full parameters of a circular current loop 

model if the sampled magnetic field is the ideal loop field. 

 

Text S3. 

Comparison with the non-linear fitting method 

In the “Introduction” of text body, we state that all the past methods employed the 

least-square fitting methods to fit the loop parameters simultaneously. Here, with the 

same sampled field dataset in Text S2, we show the comparison of our technique with the 

fitting method. 

The three Cartesian components of the sampled magnetic field vectors are denoted as 

Bix, Biy, and Biz. While, the field components predicted by the loop model are BiX, BiY, and 

BiZ, which are the functions of the loop parameters r0, a, I, and M̂ . BiX, BiY, and BiZ can 

be calculated via Eqs.(8-12). We can construct a least-square residual error as  

 
     

0
, , ,

 
 
 
  



1/ 2
22 2

ix iX iy iY iz iZ

2 2 2
i ix iy iz

B - B + B - B + B - B
Res a I =

B + B + B
r M          
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The optimum parameters should make the residual error, Res, reach the minimum, which 

could be solved by the function demand “fminsearch” of Matlab. 

As expected, the yielded fitting parameters is indeed strongly dependent on the initial 

input parameters we chosen. If the initial parameter set is not far from the real parameters, 

for example, chosen as {r0 (x0=0.08, y0=0.1, z0=0.4) m; a=0.4m; I=0.3A; M= (θ0=65°, 

φ0=45°)}, then the real parameters can be well fitted by the optimization, that is{r0 = 

(x0=0.1, y0=0.2, z0=0.5) m; a=0.5m; I=0.35A; M (θ0=60°, φ0=40°)}.  

In contrast, if the initial parameters are set as {r0 (x0=0, y0=0, z0=0) m; a=0.5m; 

I=0.35A; M (θ0=60°, φ0=40°)}, then the output shows that optimization calculation quits 

due to exceeding the iteration times, and the returned parameters yields {r0 (x0=0.14, 

y0=0.40, z0=0.08) m; a=0.61m; I=0.21A; M (θ0=61.99°, φ0=46.33°)}. 

Obviously, in comparison with the least-square fitting, our technique can effectively 

avoid the dilemma of setting initial values. 

 

Text S4. 

Inversion with magnetic source of current on a spherical surface 

Although our technique works well for the ideal loop currents, it is still unknown 

whether it works well for the other more complicated current patterns. To test the 

technique ability for the complicated currents pattern, the pattern of dynamo current 

could be more plausible seen as the current flowing on a spherical surface instead of the 

loop current. 

According to the Biot-Savart law, the magnetic field generated by the current flowing 

on a spherical surface can be calculated as 

0
3

( , , )
4






 

jd
x y z

R

s R
B                                                      

Where, j is the surface current density, and R is the displacement vector to the 

spherical center.  

Here, to simplify the calculation, we assume that j is only dependent on the polar angle 

(colatitude), and considered the cases when j= j0*cos2θ, j0*(cos2θ)1/2, j0, j0*sinθ, j0*sin2θ, 

j0*sin5θ, j0*sin10θ, j0*sin20θ, and j0*sin50θ, respectively. 
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As shown in Figure S6, in a given Cartesian coordinate, the input parameters are 

arbitrarily specified, that is, r0 =(x0=0, y0=0.2, z0=0.3) m, a=0.5 m, j0=0.2 Am-2, and M̂ = 

(θ0=45°, φ0=150°).To make the sampled data evenly, four polar circular orbits with 

radius being 1 m are constructed. The longitude coverage of the four orbits are the same 

as that studied in Section 3.1. Along each orbit, 20 data points are sampled. In total, 80 

field vectors are obtained from the four orbits. 

After performing our technique for the different cases of surface current density 

distributions,   the yielded loop parameters are tabulated correspondingly in Table S1.  

It is clear from Table S1 that the loop model can well recover the displacement of 

sphere center and the magnetic axis orientation if the surface currents are flowing purely 

azimuthally. Interestingly to note that, for the cases of j= j0*cos2θ, j0*(cos2θ)1/2, j0 and 

j0*sinθ, the optimum loop radius cannot be find, and the inversion calculation is aborted. 

The failure of inversion in these cases is understandable, because the external field of j= 

j0*sinθ is the ideal dipole field whose loop radius is zero (see 

http://photonics101.com/magnetostatic-fields-in-matter/surface-current-on-sphere). As j 

increases with the latitude, e.g. j= j0, j0*(cos2θ)1/2,  j0*cos2θ, the induced external fields 

are more elongated than the dipole field along magnetic axis orientation, thus the 

optimum loop radius cannot be inverted also. 

In contrast, as j becomes concentrated more than j0*sinθ towards magnetic equatorial 

plane, e.g. j= j0*sin2θ, j0*sin5θ, j0*sin10θ, j0*sin20θ, and j0*sin50θ, our inversion 

calculation can be performed successfully. The inversion results demonstrate that: 1. the 

equivalent loop radius is smaller than the real spherical radius; 2. the loop radius is 

approaching the real spherical radius as j concentrates more in magnetic equatorial plane.  
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Figure S1. The time series of magnetic field along spacecraft’s trajectory. 

 
 
 
 

 

 
Figure S2. The distribution of �min. To identify the global minimum easily, we show the 

distribution of lg(�min) in this plot. 
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Figure S3. The projection of magnetic field direction on the equatorial plane of loop 

coordinates. The red dots represent the location of spacecraft with 
'
iz > 0, the blue arrows 

are the projected directions of sampled field vectors, and the red square represents the 
loop center. 
 
 
 

 
Figure S4. The 2-D distribution of ε 
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Figure S5. The variation of δ against I. 

 
 

 
Figure S6. Test with four orbits on the magnetic field whose source is the current on a 
spherical surface.  The distribution of surface current density j=0.2*sinθ is colored.   
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Table S1. The inversed single loop parameters when magnetic source is the current 
flowing on a spherical surface.  

Models x0 

(m) 
y0 

 (m) 
z0 

 (m) 
a  
(m) 

I  
(A) 

M 
(Am2) 

θ0 

(°) 
φ0 

(°) 
�min 
(°) 

�  
(°) 

δ 

j0*cos2θ ~ ~ ~ ~ ~ ~ 45 150 0 ~ ~ 

j0*(cos2θ)1/2 ~ ~ ~ ~ ~ ~ 45 150 0 ~ ~ 

j0 ~ ~ ~ ~ ~ ~ 45 150 0 ~ ~ 

j0*sinθ ~ ~ ~ ~ ~ ~ 45 150 0 ~ ~ 

j0*sin2θ -0.0002     0.2001    0.3002 0.1980 0.7522 0.0926 45 150 0 0.1310 0.0040 

j0*sin5θ -0.0004     0.2003    0.3005 0.3245 0.2177 0.0720 45 150 0 0.3438 0.0101 

j0*sin10θ -0.0006     0.2003    0.3006 0.3919 0.1157 0.0558 45 150 0 0.4229 0.0123 

j0*sin20θ -0.0004     0.2002    0.3005 0.4389 0.0687 0.0416 45 150 0 0.3741 0.0111 

j0*sin50θ -0.0002     0.2001    0.3002 0.4743 0.0385 0.0272 45 150 0 0.2290 0.0069 

 
 

Table S2. The geomagnetic field data of global geomagnetic observatories recorded on 
2015-01-01 00:00:00. The columns from left to the right show the IAGA name of 
observatories, the latitude and longitude of observatories, the northward (X), the eastward 
(Y), the downward (Z) component, and the field strength (F) of geomagnetic field in the 
local geographic coordinates, respectively. The unavailable data is assigned as 99999. 
The field data can be also accessible at the website http://www.intermagnet.org/index-
eng.php 

IAGA code Latitude(Deg.) Longitude(Deg.) X(nT) Y(nT) Z(nT) F(nT) 

AAA 43.2 73.9 24668.5 2177.4 49102.2 54993.05 

AAE 9.03 38.7 36252.54 1240.1 1954.29 36326.32 

ABG 18.62 72.87 38119.1 140.1 19810.8 42960 

ABK 68.358 18.823 11335.7 1617.8 51892.1 53140.63 

AIA -65.25 295.75 19954.7 5694.2 -32135.8 99999 

AMS -37.8 77.57 13805.42 -11710 -49494.34 52697.46 

API -13.8 188.22 32655 6915.6 -20051 38938.23 

ARS 56.433 58.567 15650.6 3709.3 53880.1 56229.18 

ASC -7.95 345.62 19931.6 -5472 -19684.1 28542.21 

ASP -23.77 133.88 30086 2477.8 -43767.5 53168.61 

BDV 49.08 14.02 20382.5 1201.2 44139.2 48632.69 

BEL 51.84 20.79 18922.5 1902.3 46474.3 50214.84 

BFO 48.331 8.325 20943.6 677.3 43306.1 48109.37 

BLC 64.318 263.988 6707 -369.4 58424.6 58809.48 

BMT 40.3 116.2 28024.1 -3868.1 47270.5 55088.83 

BOU 40.14 254.76 20550.2 3183.4 48047.5 52354.62 

BOX 58.07 38.23 15257.3 3235.8 50272 52635.92 

BRD 49.87 260.0261 15038.3 1420.3 55142 57173.39 
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BRW 71.34 203.38 8704 2444.3 56745.3 57460.77 

BSL 30.35 270.36 23936.6 -325 41303.7 47739.52 

CKI 12.1875 96.8336 34568.1 -1405.4 -32752 47640.55 

CLF 48.02 2.27 21182.9 61.6 42863.4 47812.03 

CMO 64.87 212.14 11883.6 4023.5 55425.9 56827.95 

CNB 35.32 149.36 23179.3 5135 -52954.3 58032.5 

CSY 66.283 110.533 -979.1 -9134.7 -63394.6 64056.32 

CTA -20.1 146.3 31501.2 4092.2 -37470.4 49123.04 

CYG 36.37 126.854 30083.6 -4088.4 40104.3 50299.93 

CZT -46.43 51.87 10455.1 -12388.9 -34451.3 38074.95 

DED 70.36 211.21 8438.4 2931.1 56861.7 57558.41 

DLT 11.94 108.48 40778.7 -458 8164.1 41590.64 

DMC -75.25 124.167 -8247.96 -6407.33 -61822.25 62702.75 

DOU 50.1 4.6 20103.6 261.4 44184.9 99999 

DRV -66.67 140.01 -1868.96 169.21 -69110.94 69140.11 

EBR 40.957 0.333 25189.8 18.7 37497.7 45173.14 

ESK 55.32 356.8 17512.3 -834.1 46449.5 49648.29 

EYR -43.474 172.393 99999 99999 99999 99999 

FCC 58.759 265.912 9400.2 -286.9 57838.6 58598.11 

FRD 38.2 282.63 21012 -3920.5 46700.2 51359.35 

FRN 37.09 240.28 22772.5 5304.4 42388.9 48410.14 

FUR 48.17 11.28 20951.4 982.2 43458.2 48254.66 

GAN 0.6946 73.1537 37647.7 -2856.2 -13130.3 39974.49 

GCK 44.6 20.8 22677.8 1713.6 42039.3 47796.87 

GDH 69.252 306.467 7400.4 -4996.1 55745.6 99999 

GNG -31.356 115.715 23945.2 -712.1 -52701.6 57891.34 

GUA 13.59 144.87 35784.3 687.9 7943.1 36661.62 

GUI 28.32 343.57 27540.5 -3705 22732 35901.85 

HAD 51 355.52 19709.7 -817 44330.4 48521.48 

HBK -25.88 27.71 12360.2 -3997.4 -25171.8 28325.29 

HER -34.43 19.23 9569.2 -4581.8 -23325.3 25624.83 

HLP 54.61 18.82 17505.7 1436.1 47141.7 50306.77 

HON 21.32 202 26997.3 4645.8 21217 34649.66 

HRB 47.86 18.19 20986.3 1554.2 43795.2 99999 

HRN 77 15.37 7821.1 1002.5 53989.7 99999 

HUA -12.05 284.67 24974.2 -1143.6 -106 99999 

HYB 17.4 78.6 39421.5 -516.9 17637.6 43190.25 

IPM -27.2 250.58 25046.2 7052.7 -19454.9 32489.57 

IQA 63.753 291.482 8260.1 -4241.1 56300 57060.45 

IRT 52.27 104.45 18554.6 -1127.4 57411.9 99999 

IZN 40.5 29.72 25063.1 2232.3 40205.6 47430.39 

JAI 26.92 75.8 35233.2 35.6 31190.1 99999 

JCO 70.356 211.201 8451.4 2954.2 56862 57561.79 

KAK 36.23 140.18 29709.5 -3827.8 35694.1 46598.02 

KDU -12.69 132.47 35421.7 1972.5 -29611.6 46210.76 

KEP -54.282 323.5071 15630.5 -1968.4 -23076.7 27941.29 
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KHB 47.61 134.69 23334 -5251.5 49170.3 99999 

KIV 50.72 30.3 19170.7 2545.9 46676.3 99999 

KMH -26.54 18.11 99999 99999 99999 99999 

KNY 31.42 130.88 32475.8 -3662 33146.3 46548.52 

KOU 5.21 307.27 26564.8 -8593.8 7606.4 28937.75 

LER 60.13 358.82 15018.5 -505.9 48610.8 50880.46 

LON 45.4081 16.6592 22343.9 1460.8 42199.7 99999 

LRM -22.22 114.1 30128 156.4 -43457.9 52879.75 

LVV 49.9 23.75 19907.8 2113.1 45628 99999 

LYC 64.6 18.8 13016.5 1539.8 50573.1 52243.93 

LZH 36.1 103.84 30550.9 -1228.2 43962.5 53549.87 

MAB 50.298 5.682 19972.2 377 44444.2 99999 

MAW -67.6 62.88 6918.8 -17189.4 -45572.9 49196.27 

MBO 14.38 343.03 32193.1 -4218.1 4072.6 32722.88 

MCQ -54.5 158.95 10756 6701.9 -62844.8 64109.48 

MEA 54.616 246.653 13509.2 3607.2 55739.9 57466.92 

MGD 60.051 150.728 16797.6 -3995.4 53468 56186.54 

MMB 43.91 144.19 25801.7 -4016.1 42401.5 49797.03 

NAQ 61.16 314.558 11844.1 -5087.9 52878.4 99999 

NCK 47.63 16.72 21120 1448.5 43529.3 99999 

NEW 48.27 242.88 17465.2 4788 51731.1 54809.35 

NGK 52.07 12.68 18853 1054 45560.5 49318.41 

NUR 60.51 24.66 14815.3 2054.7 50050.1 99999 

NVS 54.85 83.23 16208 2358.1 57418.5 59709.03 

ORC -60.737 315.26 17817.8 -304.27 -26857.2 32484.9 

OTT 45.4003 284.448 17703.2 -4353.3 51384.4 54522.88 

PAF -49.35 70.26 10094.95 -14707.92 -45849.94 49198.65 

PAG 42.5 24.2 23692.8 1804.8 40799 47213.83 

PEG 38.1 23.9 26416 1987.4 37500.8 45916.1 

PET 52.971 158.248 21491.9 -2282.2 47153.5 51870.84 

PHU 21.03 105.95 38825 -960.7 23103.6 45189.48 

PPT -17.57 210.42 29268.5 5877.5 -19094.9 35436.95 

PST -51.7 302.11 18341.3 964.2 -21702 28430.79 

RES 74.69 265.105 2409.2 -1079.3 57614.3 57674.65 

SBA -77.85 166.78 99999 99999 99999 99999 

SBL 43.9321 299.9905 19745.5 -6350.9 46362 50789.99 

SFS 36.667 354.055 27509.3 -801.5 33020.9 42985.86 

SHU 55.35 199.54 19407.8 3928.3 48428 52320.24 

SIT 57.06 224.67 14876.5 5275 53497 55776.82 

SJG 18.11 293.85 26302.6 -5978.9 25642.4 37217.12 

SOD 67.37 26.63 11302.4 2255.5 51560.7 52833.21 

SON 25.1168 66.4487 34794.98 419.15 27940.2 44626.3 

SPG 60.542 29.716 14542.3 2548.3 50257 52381.11 

SPT 39.55 355.65 25994.4 -560.7 35894.6 44322.17 

STJ 47.595 307.323 18799.1 -6286.3 47138.2 51136.42 

SUA 44.68 26.25 22590.4 2086.4 42662.6 48319.23 
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TAM 22.79 5.53 33686.3 6.7 17095.3 37775.97 

TDC -37.067 347.685 9461.3 -3793.6 -22426.8 24635.01 

THL 77.47 290.773 2734.2 -3087.2 56189.7 99999 

THY 46.9 17.89 21495.1 1533.4 43213.1 48288.33 

TRW -43.3 294.7 19655.84 1734.3 -17790.3 26567.7 

TSU -19.202 17.584 14052.7 -2288.8 -25835.5 99999 

TUC 32.18 249.27 24052.2 3988.2 40782.5 47514.29 

UPS 59.903 17.353 15130.4 1430 49050.8 51351.29 

VAL 51.933 349.75 19379.5 -1664.3 44733.1 99999 

VIC 48.52 236.58 18081.6 5374.9 50457.8 53867.68 

VNA -70.683 351.718 99999 99999 99999 99999 

VOS -78.464 106.835 -7519.2 -11337.8 -57798 99999 

VSS -22.4 316.35 16896.58 -6989.06 -14428.1 23290.67 

WIC 47.9305 15.8657 20989.4 1377 43659.1 48461.93 

WNG 53.74 9.07 18158 713.1 46133.6 49583.27 

YAK 61.96 129.66 13457 -4944.6 58145.1 59882.7 

YKC 62.48 245.518 8800.7 2715.9 57798.2 58527.63 

 


