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Abstract

Quantifying the multiscale feedback between hydrodynamics and biogeochemistry is key to reliable modeling of river corridor

systems. However, accurate and efficient hydrodynamics models over large spatiotemporal scales have not yet been established

due to limited surveys of riverbed roughness and high computational costs. This work presents a semi-automated workflow that

combines topographic and water stage surveys, computational fluid dynamics modeling, distributed wall resistance modeling,

and high-performance computing to simulate flow in a 30-kilometer-long reach at the Columbia River during 2011-2019. The

results show that this workflow enables a high accuracy in modeling water stage at all seven survey locations during calibration

(1 month) and validation (65 months) periods. It also enables a high computational efficiency to model the streamflow during

a 58-month solution-time within less than a 6-day wall-clock-time with mesh number, time step, and CPU hours of about 1.2

million, 3 seconds, and 1.1 million hours, respectively. Using the well-validated results, we show that riverbed dynamic pressure is

randomly distributed over all spatiotemporal scales with its cross-sectional average values approximately quantified by a normal

distribution with a mean and standard deviation of -0.353 m and 0.0352 m; bed shear stress is affected by flowrate and large-

and small-scale topographic features with cross-sectional maximum values following a smooth but asymmetric distribution with

90% of its value falling between 5 Pa and 35 Pa; and hydrostatic pressure is influenced by flowrate and large-scale topographic

features with cross-sectional maximum values quantified by a discontinuous and skewed distribution determined by streamwise

topographic variations.
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Abstract

Quantifying the multiscale feedback between hydrodynamics and biogeochemistry is key

to reliable predictive models of river corridor systems. However, accurate and efficient

hydrodynamics models over large spatiotemporal scales have not yet been established

due to limited surveys of riverbed roughness and high computational costs. This work

presents a semi-automated workflow that combines topographic and water stage surveys,

three-dimensional computational fluid dynamics modeling, distributed wall resistance

modeling, and high-performance computing to simulate the flow in a 30-kilometer river

reach at the Columbia River spanning the years 2011-2019. The results show that such

a workflow enables a high accuracy in modeling water surface elevation at all seven sur-

vey locations during both calibration (1 month) and validation (65 months) periods. It

also enables a high computational efficiency to model the streamflow during a 58-month

solution time within less than a 6-day wall clock time with the mesh number, time step,

and total central processing unit hours of about 1.2 million, 3 seconds, and 1.1 million

hours, respectively. Using the well-validated results, the dependencies of riverbed hydro-

dynamics (e.g., dynamic pressure, shear stress, and hydrostatic pressure) on flow rate

non-stationarity and bathymetry spatial heterogeneity are further analyzed. These anal-

yses show that riverbed dynamic pressure is randomly distributed over all spatiotempo-

ral scales with its cross-sectional average values approximately quantified by a normal

distribution with a mean and standard deviation of -0.353 m and 0.0352 m; bed shear

stress is affected by flow rate and large- and small-scale topographic features with cross-

sectional maximum values following a smooth but asymmetric distribution with 90% of

its value falling in the range of 5 Pa to 35 Pa; and hydrostatic pressure is influenced by

flow rate and large-scale topographic features with cross-sectional maximum values quan-

tified by a discontinuous and skewed distribution determined by streamwise geometric

variations.

Plain Language Summary

Maintaining the riverine ecosystem health depends on accurate prediction of the

fluid motions and interconnected biogeochemical processes within river corridor systems.

However, accurate predictive models have not yet been established due to the knowledge

gaps of the multiscale feedback between flow and biogeochemistry and the high compu-

tational costs to model the diverse spatiotemporal scales. As the flowing water is the pri-
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mary feature of riverine ecosystems, establishing a model that can accurately and effi-

ciently predict the fluid dynamics within large-scale rivers over long time periods is a first

step towards accurate predictive models for river corridor systems. By combining field

surveys, computational fluid dynamics (CFD) modeling, and efficient numerical techniques,

this work presents a semi-automated workflow that enables accurate and efficient three-

dimensional CFD modeling of the streamflow in a 30-kilometer-long river reach in the

Columbia River spanning a 9-year period. The modeling results show that the spatial

distributions of riverbed hydrodynamics are mainly controlled by large and small topo-

graphic features, approximately independent of time; however, their values are modu-

lated by the temporal variations in discharge. With such a model and new insights, this

work provides a general framework to study the interactions between streamwater and

groundwater and the multiscale feedback between fluid motions and biogeochemical pro-

cesses.
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1 Introduction

River corridor systems are dynamic combinations of water; sediments; chemicals;

and aquatic microbes, plants, and animals (Wampler, 2012). The distinct physical, chem-

ical, and biological behaviors of these components create diverse hydro-biogeochemical

(HBGC) functions for river ecosystems over abroad temporal and spatial scales (Boano

et al., 2014; Harvey, 2016; Ward & Packman, 2019). Depending on the different phys-

ical properties, a river cross section is usually divided into three zones (i.e., streamwa-

ter, hyporheic zone, and groundwater) from the water surface down to porous riverbeds

to subsurface clay and rock (Boano et al., 2014; Harvey, 2016). Due to active exchanges

of water, sediments, nutrients, carbon, and oxygen at the riverbed, accurate prediction

of the hydrodynamics, sediment transport, chemical reactions, and microbial commu-

nity dynamics at the riverbed over multiple temporal (seconds to years (Boano et al.,

2014)) and spatial (microns to tens of kilometers (Ongley, 1996; Goyal, 2014; Ward &

Packman, 2019)) scales are key to accurate predictive models for river corridor systems.

Among these processes, riverbed hydrodynamics and turbulence, which are deter-

mined by river slope, cross-sectional shape, riverbed microtopography, and flow rate, are

key controls of the geomorphological and biochemical processes. In geomorphology, sus-

pended load, bedload, and sediment mobilization are directly controlled by turbulence

(Ongley, 1996; Venditti et al., 2010; Salim et al., 2017; Lamb et al., 2017; Yang & Nepf,

2018). In biology, population and distribution of microbes are affected by nutrient and

energy absorption that depend on the availability of oxygen strongly affected by the fluc-

tuation of water stage (Battin & Sengschmitt, 1999; Stegen et al., 2016; Trinci et al., 2017;

Wilkes et al., 2019). Finally, in chemistry, stream turbulence and shear stress control the

upper limit of the mass transfer rate during denitrification (Grant, Azizian, et al., 2018).

These mechanisms highlight the primary importance to establish numerical models for

riverbed turbulence and hydrodynamics over large spatiotemporal scales, which lays a

foundation for comprehensive HBGC models for river systems.

Despite the importance of direct modeling of riverbed turbulence and hydrodynam-

ics, implementing numerical models capable of resolving turbulence and bed hydrody-

namics over natural riverbeds are still challenging, especially for large-scale rivers over

long time periods. Firstly, these models are usually required to resolve both the three-

dimensional (3D) coherent structures generated by streambed roughness (Hardy et al.,

–4–
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2010; Grant, Gomez-Velez, & Ghisalberti, 2018; Groom & Friedrich, 2019) and the dy-

namically changing water surface controlled by large discharge fluctuations during a long

time period (Niehus et al., 2014). Secondly, the tremendous scale separations in both spa-

tial and temporal domains impose numerical obstacles for these models to capture the

effects of spatial heterogeneity and discharge unsteadiness on riverbed hydrodynamics

and its interactions with biogeochemistry (Ward & Packman, 2019). For example, to model

the effects of both small-scale coarse-grain-sediments (2 mm ∼ 0.256 m (Ongley, 1996;

Berenbrock & Tranmer, 2008)) and large-scale river valleys (0 ∼ 20 m) and widths (hun-

dreds of meters), computational meshes need to vary from millimeters to meters to cap-

ture necessary scales, which poses challenges for mesh generation, numerical stability,

and computational efficiency. In addition, due to the limited resolution of riverbed to-

pography, the effect on riverbed flow dynamics has to be calibrated using observations,

which may be subject to uncertainties from the calibration approach and field surveys,

especially over a long time period (Schilling et al., 2019). Finally, resolving the diverse

spatiotemporal scales of turbulent flows requires high computational costs. Due to these

challenges, only a few 3D computational fluid dynamics (CFD) models have been reported

to simulate the turbulent flow in large-scale (up to 7 km) natural rivers, though limited

to steady or short-term (a few hours) time periods (Khosronejad et al., 2016; Munoz &

Constantinescu, 2018). Applying these models to simulate streamwater, therefore, re-

quires new strategies for model calibration and a significant boost of computational ef-

ficiency.

To address the above scientific and modeling challenges, this work proposes a semi-

automated workflow that enables accurate and efficient 3D CFD modeling of streamflow

over a 30-kilometer-long reach in the Columbia River spanning 9 years. The model re-

sults are then used to identify the dependencies of riverbed hydrodynamics (e.g., hydro-

static pressure, hydrodynamic pressure, and bed shear stress) on riverbed geometry and

flow rate. The potential of extending this model to study interactions between hydro-

dynamics and biogeochemistry and to reduce boundary condition uncertainty in subsur-

face models are then discussed for future applications.

–5–
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2 Methods

2.1 River bathymetry and water stage survey

The 30-kilometer-long reach is near the Hanford Site (black box) (www.hanford.gov)

as shown in Figure 1a. The riverbed bathymetry was measured using a Light Detection

and Ranging (LiDAR) technique with less than 1 m resolution in vertical and 20 m res-

olution in horizontal directions, which is used as a geometric boundary in the CFD model.

Water stage was measured in three periods at seven locations (red and yellow dots in

Figure 1b) every 10 minutes: at 100B, 100N, 100D, Locke Island (LI), 100H, and 100F

during 2011 (observation 1); at 100B during 2013 and 2014 (observation 2); and at 100HD

during 2018 and 2019 (observation 3). Water stages measured from 20 January to 16 Febru-

ary 2011 are used for model calibration. Measurements during the other dates in 2011

are used for short-term validation, while measurements during 2013 and 2014 are used

for medium-term validation, and those during 2018 and 2019 are used for long-term val-

idation. Here short, medium, and long term are used to represent less than 1 year, 3 to

5 years, and 8 to 9 years away from the calibration time period. The survey location 100HD

is used to test the long-term model performance in predicting water surface elevation (WSE)

outside the calibration locations. Horizontal coordinates and bed elevation of these lo-

cations are listed in Table S1. For convenience, the horizontal coordinates at the lower

left corner of the computational domain (blue box) is converted from (564,303.5598 m,

143,735.6771 m) in the geographic information system map to (0,0) in the model domain.

All vertical coordinates are referenced to North American Vertical Datum of 1988.

2.2 Free surface tracking and turbulence model

Quantifying water surface elevation, bed pressure, and shear stress requires accu-

rate solution to the water-air interface and turbulent flow. In this work, we track the water-

air interface using the volume of fluid method (Hirt & Nichols, 1981; Deshpande et al.,

2012) and simulate the turbulent flow using a time-averaged Navier-Stokes equation to-

gether with k − ω shear stress transport (SST) model for turbulence closure (Menter

et al., 2003; Wilcox, 2006).

The volume of fluid method marks a cell filled with liquid as α = 1, filled with air

with α = 0, and partially filled liquid as 0 < α < 1. Denoting densities and viscosities

of the liquid and gas by ρl, ρg, µl, and µg, then the density and viscosity of each cell is

–6–
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Figure 1. The location of study site within Washington State and the Columbia River (a)

and the computational domain with the river bathymetry and observed water stage at seven loca-

tions (b). Yellow lines represent the inlet and outlet locations of the computational domain. Red

and yellow dots denote water stage survey locations.

ρ = αρl+(1−α)ρg and µ = αµl+(1−α)µg. Following these definitions, the time aver-

aged Navier-Stokes equation can be written as Equation 1 and Equation 2. The govern-

ing equation for volume fraction α can be written as Equation 3 with the assumption

ρg
ρl−ρg∇·~u ≈ 0 when u0 � c with u0 and c denoting a characteristic flow velocity and

the speed of sound (Kundu et al., 2012).

∇ · ~u = 0 (1)

∂ρ~u

∂t
+∇·(ρ~u~u) = σκα∇α−~g·~x∇ρ−∇pd+∇·

[
(µ+µt)∇~u

]
−∇·

[
(µ+µt)(∇~uT−

2

3
∇·~uI)

]
(2)

∂α

∂t
+∇ · (~uα) +∇ ·

[
α(1− α)~ur

]
= 0 (3)

where t is time, ∇ = ∂
∂x~ex+ ∂

∂y~ey+ ∂
∂z~ez represents a spatial operator with ~ex, ~ey, and

~ez denoting unit vectors along x, y, and z directions. Also denoted are time average flow

velocity (~u), surface tension coefficient (σ), interface curvature (κα), gravity accelera-

tion (~g), spatial coordinate (~x), dynamic pressure (pd), and dynamic turbulent viscos-

ity (µt). Specifically, the interface curvature is calculated by κα = −∇·( ∇α|∇α| ), the dy-

namic pressure pd is defined as pd = p−ρ~g·~x with p denoting the total pressure, ~ur is

–7–
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an artificial velocity used to reduce numerical diffusion and computational costs whose

definition can be found in Deshpande et al. (2012).

The dynamic turbulent viscosity is determined through the k−ω shear stress trans-

port model where turbulence kinetic energy (k), specific dissipation rate (ω), and dy-

namic turbulent viscosity (µt), are quantified by Equation 4 to Equation 6 (Menter et

al., 2003; Wilcox, 2006; CFDDirect, 2017).

∂αρk

∂t
+∇ · (αρ~uk)−∇ ·

[
α(µ+ σkµt)∇k

]
= αρPk −

2

3
αρk∇ · ~u− αρβ∗ωk (4)

∂αρω

∂t
+∇·(αρ~uω)−∇·

[
α(µ+σωµt)∇ω

]
= αργPω−

2

3
αργω∇·~u−αρβω2−αρ(F1−1)

CDkω

ω

(5)

µt =
a1ρk

max(a1ω, b1F2

√
2S2)

(6)

where σk = αk1F1 + αk2(1 − F1), Pk = min(G, c1β
∗kω), σω = αω1F1 + αω2(1 −

F1), γ = γ1F1 + γ2(1 − F1), Pω = min
[
S2, c1β

∗

a1
ωmax(a1ω, b1F2

√
2S2)

]
, CDkω =

max(10−10, 2αω2∇k·∇ω
ω ). F1 and F2 are blending functions and defined as F1 = tanh(arg4

1)

and F2 = tanh(arg2
2) with arg1 = min{min[max( 1

√
k

β∗ωyw
, 500µ
ρy2wω

), 4αω2k
y2wCD

2
kω

], 10} and arg2 =

min[max( 2
√
k

β∗ωyw
, 500µ
ρy2wω

), 100]. Symbols β∗, αω1, αω2, αk1, αk2, β1, β2, γ1, γ2, and a1, b1,

and c1 denote constants and their values are listed in Table S2.

2.3 Mesh generation and quality control

Good mesh quality is a crucial factor controlling computational stability and ef-

ficiency, especially for free surface tracking in large-scale river modeling over the long time

(Deshpande et al., 2012). In this work, the mesh is generated using a two-step genera-

tion strategy, which first generates a structured background mesh and then removes all

cells totally outside a given geometry (a river bathymetry in our case). Different from

the traditional body-fitted mesh, the mesh generated using such a strategy does not ex-

actly conform to the input geometry but approximates the bathymetry using a zig-zag

grid.

This treatment is both physically reasonable and technically necessary. Physically,

the LiDAR-measured bathymetry cannot capture most geometric features that are smaller

than 1 m, which means computational cells with size less than 1 m are not necessary.

In addition, the effect of geometric features on flow dynamics, either from missing fea-

tures less than 1 m or the differences attributed to mesh generation, has to be calibrated

–8–
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using observed water stage through a distributed rough wall model (see details in Sec-

tion 2.4). A well-calibrated model automatically accounts for the effect of bathymetry

differences between the CFD mesh and actual riverbed. Technically, a good mesh qual-

ity using body-fitted meshes requires low aspect ratio in cells. However, low aspect ra-

tio requires a similar order of mesh resolution in both the horizontal and vertical direc-

tions, which is computationally expensive for large rivers whose water depth is much smaller

than its horizontal scales, about 1/20000 ∼ 1/1000 for the river section in this work.

The primary goal of this work is to model the riverbed dynamic pressure, bed shear

stress, and hydrostatic pressure; therefore, we design the horizontal mesh resolution as

20 m along x and y, which is identical to the horizontal resolution in the LiDAR-measured

digital elevation model (DEM). The vertical mesh resolution is set as 1 m by balancing

modeling accuracy and computational costs. One extra mesh resolution, 20 m× 20 m×

0.5 m, is also created to investigate the sensitivity of modeled riverbed pressure to mesh

resolution (see uncertainty analyses in Text S1). Following the two-step mesh genera-

tion strategy, Figure 2 shows the horizontal and vertical mesh in the computational do-

main. It is observed that the aspect ratio for horizontal (x and y) grid sizes is 1 but in

the vertical direction it is 1/20. Despite such a large aspect ratio, the rectangular hex-

ahedron cells still have a good mesh quality in terms of non-orthogonality and concav-

ity which are important for code numerical stability. Figure 2c also shows that the zig-

zag grid does not overlap with the riverbed, whose effect on flow is discussed for the rough-

ness calibration.

Figure 2. Horizontal and vertical computational meshes. (a) Top view showing the horizontal

mesh over the whole domain. (b) Top view showing the details of horizontal mesh near LI. (c) 3D

view showing details of the vertical mesh structure.

–9–
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2.4 Turbulent eddy viscosity and roughness parameterization

Rough elements are ubiquitous in natural rivers and have long been recognized as

the major source of uncertainty in predicting river discharge, flow speed, water surface

profile, and sediment transport (USACE, 1994; Smith, 2014; Powell, 2014). In the k−

ω SST turbulence model, the effect of rough elements on turbulent flow is quantified by

linking riverbed turbulence eddy viscosity to bed roughness and flow conditions through

Equation 7 (Versteeg & Malalasekera, 2007).

νt = ν[
κy+

w

ln(Ey+
w )
− 1] (7)

Symbols in Equation 7 denote turbulent kinematic viscosity νt = µt/ρ, kinematic vis-

cosity ν = µ/ρ, von Karman’s constant κ = 0.41, a non-dimensional wall distance y+
w =

ywuτ
ν , and an integration constant E. The specific value of E depends on the flow regime

and roughness parameter at the wall. Specifically, E = E0 = 9.8 in a hydraulic smooth

regime (k+
s < 2.25), E = (

k+s −2.25
87.75 + Csk

+
s )sin[0.4258(ln k+s −0.811)] in a transition regime

(2.25 ≤ k+
s < 90), and E = E0/(1+Csk

+
s ) in a fully rough regime (k+

s > 90) (Schlichting,

1979; Versteeg & Malalasekera, 2007; Blocken et al., 2007; CFDDirect, 2017). Here k+
s =

ksuτ
ν is a non-dimensional parameter used to quantify the relative importance of a Niku-

radse equivalent roughness height ks to viscous boundary layer thickness νu−1
τ .

For natural rivers, the flow is usually in the fully rough regime, which means es-

timation of turbulence eddy viscosity is equivalent to estimating the roughness param-

eters Cs and ks and bed shear velocity uτ . As classic theories on roughness are usually

based on experiments of grain size roughness (Nikuradse, 1933), we choose Cs = 0.5

with the assumption that natural roughness distribution is similar to uniformly roughed

channels as in Nikuradse’s experiments (Blocken et al., 2007). We estimate the bed shear

velocity using the turbulence boundary layer theory that links a non-dimensional veloc-

ity (u+ = u/uτ ) to the non-dimensional wall distance (y+
w ) through a wall function G,

thus u+ = G(y+
w ). In the fully rough regime, the wall function follows a log-law which

has the form as u+ = 1
κ ln y+

w + B − ∆B with B = 5.2 and ∆B = B − 8.5 + 1
κ ln k+

s

(Schlichting, 1979). Substituting the velocity (u0) and wall distance (y0
w) at the cell cen-

ter closest to the wall, the wall function is converted to a non-linear function depend-

ing on shear velocity, roughness parameter, and near-bed velocity and wall distance, thus

G(u0, y0
w, uτ , ks) = 0. By solving such an equation under a given roughness ks, we can

obtain the value for bed shear velocity uτ and wall turbulent eddy viscosity νt.

–10–
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The above procedure means solving for shear velocity requires an estimation of bed

roughness height ks. This work proposed a generic approach to estimate a distributed

roughness field using an error diagram and local roughness adjustment approach. The

error diagram provides a rough estimation of the roughness parameters and the local ad-

justment further improves calibration accuracy per the error diagram. The error diagram

is based on the fact that water surface elevation increases with increasing roughness height

and thus an optimal roughness height should fall in a range 0 < ks < kmaxs in order

for the model to match the observed water stage (Figure 3a and Figure S1).

In this work, the effect of rough elements larger than 1 m is directly resolved by

mesh and thus an upper limit of roughness can be set as kmaxs = 1 m. With such an up-

per limit, we run our models at nine roughness values (0 m, 0.025 m, 0.05 m, 0.1 m, 0.2

m, 0.3 m, 0.4 m, 0.5 m, 1 m) and then calculate the mean error (ME) and mean abso-

lute error (MAE) between modeled water stage and observed ones at six locations (Fig-

ure 1b red dots) from 20 January to 16 February 2011. With the error diagram as shown

in Figure 3b and Figure S2, we calculate an optimal roughness height ks for each obser-

vation location by making ME = 0 and MAE to be the minimum.

The optimal ks obtained in this way is then uniformly distributed in eight regions

shown in Figure 3c (see region decomposition in Section 2.6). Here ks in R1 and R8 are

identical to those in R2 and R7, respectively (Figure 3d). Due to the interactions of flow

under different roughness parameters, the locally optimized roughness field does not guar-

antee low modeling errors at all locations (see case OF0 in Table 1). As higher devia-

tions occur at 100B, 100N, and 100D, their roughness parameters are systematically ad-

justed to achieve better accuracy for all six locations (cases OF1-OF5 in Table 1). The

final calibrated roughness values at the six calibration locations are listed in case OF in

Table 1. These calibrated roughness parameters are then used to simulate the flow from

May to December 2011, 2013-2015, and 2018-2019 to evaluate the modeling capability

for short-term, medium-term, and long-term streamflow. A more comprehensive discus-

sion of roughness estimation is included in Section 4.1.

2.5 Boundary conditions

Temporal variations in discharge at the inlet control the dynamic changes in stream-

flow and riverbed conditions. Figure 4 shows the temporal variations of discharge at the

–11–
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Figure 3. The effect of roughness height on WSE at a single location (a), ME between mod-

eled and observed WSE at six locations (b), the procedure of generating eight roughness regions

(c), and the 3D view of each region represented in mesh (d).

inlet during years 2011 to 2019. A two-step approach is adopted to consider the discharge

effects. We first run a one-dimensional (1D) modular aquatic simulation system (MASS1)

model (Richmond & Perkins, 2009) in a much larger domain using observed discharge

data and then output the cross-sectional averaged velocity (u1) and water stage (z1) to

generate a distributed velocity and volume-fraction field for the inlet in our model. Specif-

ically, the inflow velocity and volume-fraction are calculated by ~u = (ux, 0, 0) with ux =

u1
in

erf[(z1in−z)/0.5]+1
2 and α =

erf[(z1in−z)/0.5]+1
2 . Here u1

in and z1
in denote the velocity and

water surface elevation from MASS1 at the inlet and erf is an error function. The tur-

bulence kinetic energy and specific dissipation rate at the inlet are set as a fixed value

of 0.1 m2/s2 and 0.003 s−1, respectively. A zero-gradient boundary condition is set for

dynamic pressure and turbulence eddy viscosity at the inlet. It is worth mentioning that

the given values of turbulent kinetic energy and specific dissipation rate have little ef-

fect on the results. At the outlet, we apply a uniform velocity with its value output from

MASS1, i.e., ~u = (0, uy, 0) with uy = u1
out. Other boundary conditions at the outlet

are zero-gradient. At the top boundary, pressure is set as 0 and the other variables are

set as zero-gradient. At the riverbed, the turbulence eddy viscosity is determined through

–12–
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a rough wall model as discussed in Section 2.4. A no-slip boundary condition is set for

velocity and zero-gradient boundary conditions are set for dynamic pressure, volume-

fraction, and turbulence kinetic energy. The specific dissipation rate is calculated through

ωw = (ω2
V is + ω2

Log)
1/2 with ωV is = 6.0ν

β1y2w
and ωLog = k1/2

C
1/4
µ κyw

(see values of β1 and

Cµ in Table S2).

Figure 4. The time series of inlet flow rate during the years 2011-2019. S, M, and L denote

short, medium, and long term. SM, SH, and SL denote the medium, high, and low flow in the

short-term period; MM and LM denote mixed flow in the medium-term and long-term periods.

2.6 Spatiotemporal decomposition

Spatial and temporal decomposition techniques are used in this work to improve

both modeling accuracy and computational efficiency. Firstly, surface decomposition is

used to decompose the riverbed bathymetry into N pieces in order to generate a distributed

roughness field (see details of surface decomposition in Text S2). We evaluated the ef-

fects of N on modeling accuracy and found that the best calibration accuracy can be achieved

when the number of pieces equals the number of observation locations. For example, de-

composing the riverbed into 1, 2, and 50 pieces (see roughness values and surface decom-

position in Figure S3) and interpolating calibrated roughness to each piece cannot yield

a modeling accuracy as that of using 6 pieces (see cases OF0, OFK1, OFK2, and OFK50

in Table 1). Further discussion of the number of pieces in surface decomposition is in-

cluded in Section 4.1. Second, the computational domain is decomposed into 512 sub-

domains and runs on 512 processors, which increases the computational efficiency by mul-

tiple times (see discussion in Section 4.3). Thirdly, the overall computational efficiency

is further improved by decomposing the total simulation time into multiple months and

running each month simultaneously. In this work, we divide the medium-term (2013-2015)
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and long-term (2018-2019) simulations into 36 and 22 months and add 4 extra days for

each month to spin up the flow and reduce the potential time-history effect. It is impor-

tant to note that the modeled water stage reaches a fully developed stage after two to

three flow-through times (about T = L/U0 = 30000 /0.8 s = 0.43 days), which is the

basis for temporal decomposition. Further discussion of the effect of temporal decom-

position on computational efficiency is included in Section 4.3.

2.7 Numerical schemes and solutions

The governing equations for flow (~u, pd), volume fraction (α), and turbulence (k,

ω) were solved with an open-source CFD platform, OpenFOAM (Version 5.x), using a

finite volume method (CFDDirect, 2017). The unsteady terms are discretized with a first-

order Euler scheme, the advection term of flow is discretized with a second-order Gauss

linear upwind scheme, and the advection terms of turbulent kinetic energy and specific

dissipation rate are discretized with a second-order Gauss linear scheme. The advection

term and the compression term of volume fraction are discretized with Gauss vanLeer

and Gauss linear schemes, respectively. All diffusion terms are discretized with a cor-

rected central differencing scheme and all gradient terms are discretized with a second-

order central differencing method. With these discretization schemes and initial condi-

tions, OpenFOAM first updates the volume fraction at the interface using a Multidimen-

sional Universal Limiter with Explicit Solution (MULES) algorithm (Zalesak, 1979; Kuzmin

et al., 2003; Liu et al., 2016), and then solves the velocity-pressure coupling using a Pres-

sure Implicit with Splitting of Operators (PISO) algorithm (Issa, 1985), followed by solv-

ing ω and k equations. At each iteration, the discretized linear equation group for pres-

sure is solved using a Diagonal-based Incomplete Cholesky Preconditioned conjugate gra-

dient (DIC-PCG) method with a relative convergence tolerance of 10−10, and the dis-

cretized linear equation groups for velocity, volume fraction, turbulent kinetic energy,

and specific dissipation rate are solved with a symmetric Gauss-Seidel smooth solver at

a relative tolerance 10−10. The initial time step is set as 10−10 s but allowed to adjust

during runtime to not exceed 3 s. The maximum and average Courant number for all

cases are less than 1.1 and 0.019, respectively. With the solution of volume fraction, the

water surface elevation is calculated by setting α = 0.5 (Hirt & Nichols, 1981). It is nec-

essary to note that the modeled water surface elevation changes little at time steps 0.1
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s, 0.5 s, 0.95 s, 2 s, and 3 s (see Figure S4); therefore, the maximum time step is cho-

sen as 3 s to reduce computational costs.

3 Results

3.1 Short-term roughness calibration

The error diagram approach gives a rough estimation of the hydraulic roughness

at each location. The modeling accuracy using these roughness parameters are -16.5 cm

∼ 6.4 cm and 7.6 cm ∼ 19.6 cm at six locations (Case OF0 in Table 1) in terms of ME

and MAE, respectively. By systematically adjusting the roughness parameters at 100B,

100N, and 100D, the overall modeling accuracy is improved. Figure 5 compares the wa-

ter surface elevation using the locally adjusted roughness field (Case OF in Table 1) and

those from observation 1. The comparison of the hourly recorded water stage data shows

the modeled WSE accurately predicts the magnitude and frequency in the WSE. The

1:1 plot shows there is no systematic bias in the model, which can be further demonstrated

by an R-squared (R2) and linear-regression slope very close to 1 (Table 2 SM cases). Here

R2 = 1−
∑

(WSEm−WSEo)2∑
(WSEm−WSEo)2

, WSEo =
∑
WSEo
Nt

with WSEm, WSEo, and Nt denoting

modeled WSE, observed WSE, and the number of time series, respectively. Quantita-

tively, the ME at the six locations falls in the range -7.5 cm ∼ 6.4 cm, which is equiv-

alent to -2.7% ∼ 2.1% relative to the average water depth at each location. The MAE

at all locations is 7.5 cm ∼ 12.7 cm, which is equivalent to 2.1% ∼ 5.3% relative to wa-

ter depth. The root mean square, defined as RMS =
√∑

(WSEm−WSEo)2

Nt
, for all loca-

tions is 9.2 cm ∼ 16.4 cm, which is equivalent to 2.8% ∼ 6.3% relative to the average

water depth at each location.

Figure 5. The comparison of water surface elevation between the model and observations

using the calibrated roughness field (case OF in Table 1) during a medium flow in 2011. (a) An

hourly recorded WSE and (b) a 1:1 plot.
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Table 1. Roughness adjustment approach and associated ME and (MAE).

Case Calibrated ks (cm) ME during 1/20-2/16, 2011 (cm) MAE during 1/20-2/16, 2011 (cm)

name 100B 100N 100D LI 100H 100F 100B 100N 100D LI 100H 100F Range 100B 100N 100D LI 100H 100F Range

OF0 25.56 10.3 5.98 2.83 3.74 7.42 -16.5 -19.5 -6.8 6.4 4.8 0.3 -16.5∼6.4 16.5 19.6 12.7 7.6 8.9 9.3 7.6∼19.6

OF1 30 10.3 5.98 2.83 3.74 7.42 -11.1 -19.5 -7.4 6.4 3.3 0.3 -19.5∼6.4 11.2 19.6 13.4 7.6 10.1 9.3 7.6∼19.6

OF2 40 10.3 5.98 2.83 3.74 7.42 -0.6 -19.5 -7.4 6.4 3.3 0.3 -19.5∼6.4 5.8 19.6 13.4 7.6 10.1 9.3 7.6∼19.6

OF3 40 18.6 5.98 2.83 3.74 7.42 1.6 -16.8 -7.2 6.4 3.4 0.4 -16.8∼6.4 6.5 17.0 13.3 7.6 10.1 9.3 7.6∼17.0

OF4 30 18.6 5.98 2.83 3.74 7.42 -8.7 -16.9 -7.4 6.4 3.3 0.3 -16.9∼6.4 9.1 17.0 13.3 7.5 10.1 9.2 7.5∼17.0

OF5 30 18.6 9.0 2.83 3.74 7.42 -7.5 -11.7 -3.6 6.4 3.3 0.3 -11.7∼6.4 8.2 12.2 12.6 7.5 10.0 9.2 7.5∼12.6

OF 30 18.6 12.0 2.83 3.74 7.42 -6.6 -7.5 -0.6 6.4 3.3 0.3 -7.5∼6.4 7.7 8.9 12.7 7.5 10.0 9.2 7.5∼12.7

OFK1 12.2 12.2 12.2 12.2 12.2 12.2 -29.1 6.6 17.7 32.1 31 13.1 -29.1∼32.1 29.1 7.5 19.5 32.6 31.5 14.6 7.5∼29.1

OFK2 25.56 6.25 6.25 6.25 6.25 6.25 -16.7 -15.0 1.3 14.8 12.2 13.1 -16.7∼14.8 16.7 15.2 12.2 15.1 13.4 9.2 9.2∼15.2

OFK2R 25.56 6.25 6.25 6.25 6.25 6.25 -14.1 -14.9 1 14.8 12.3 -3.7 -14.9∼14.8 14.1 15.1 12.3 15.1 13.4 9.1 9.1∼15.1

OFK50 see Figure S3 -19.4 -18.8 -6.1 8.5 8 1.4 -19.4∼8.5 19.4 18.8 12.5 9.3 10.5 9.7 9.3∼19.4

MS 30.5 18.6 15.6 3.9 3.9 7.42 -4.7 -1.2 4.9 7.7 3.9 0.3 -4.7∼7.7 6.7 6.4 13.9 8.6 10.3 9.2 6.4∼13.9

MS2 30.5 18.6 12.0 3.9 3.9 7.42 -5.6 -5.6 1.9 7.7 3.8 0.2 -5.6∼7.7 7.1 7.8 12.9 8.5 10.2 9.2 7.1∼12.9

MS3 30.5 18.6 9.0 3.9 3.9 7.42 -6.6 -9.8 -1.0 7.7 3.8 0.2 -9.8∼7.7 7.6 10.6 12.5 8.6 10.2 9.2 7.6∼12.5

3.2 Short-term model validation

Though this work calibrates the distributed roughness field using the observed WSE

at a medium flow (discharge 4227 m3/s) scenario, we show that calibrated roughness works

well for predicting the WSE at high flow (6335 m3/s) and low flow (2613 m3/s) scenar-

ios. Figure 6 compares the hourly recorded WSE with observations during high flow (Fig-

ure 6a) and low flow (Figure 6c). Figure 6b,d shows the 1:1 comparison between these

data. The results show a good match in terms of the magnitude and frequency of the

WSE at the six locations. The 1:1 plot shows there is no obvious bias in modeled WSE.

In statistics, the ME during high flow is -2.5 cm ∼ 9.1 cm, which is equivalent to -0.6%

∼ 1.9% relative to mean water depth at each location. Similarly, these values at low flow

is -15.6 cm ∼ 5.5 cm and -7.1% ∼ 6.6%, respectively. In terms of the MAE, it is 7.2 cm

∼ 13.5 cm (1.5% ∼ 3.1% relative to average water depth) at high flow and 13.1 cm ∼

26.6 cm (5.1% ∼ 15.8% relative to water depth) at low flow. The RMS is 9.7 cm ∼ 15.9

cm (2.0% ∼ 3.8% relative to water depth) at high flow and 17.7 cm ∼ 40.3 cm (6.9% ∼

22.2% relative to water depth) at low flow. The calculated R2 for the difference between

modeled and observed WSE is larger than 0.98 for six locations at high flow and is in

the range 0.88 - 0.93 at low flow, except for at 100D where the value is 0.603. The slope

of the linear regression has a similar trend as R2 that it falls in the range 1.05 - 1.1 dur-

ing high and low flow at most locations, however has a value of 0.859 at 100D during low

flow. These results suggest that the modeled WSE agrees with observation very well at

all locations during the high flow event. The model WSE is less accurate at low flow and
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has obvious deviation at locations where the water depth is less than 1 m (case SL at

100H) or not available due to being too close to the wet/dry boundary (100D).

Table 2. A summary of flow scenario, discharge, water depth, roughness height, and modeling accu-

racy for calibration, validation, and prediction.

Survey Time Month Flow Mean Mean WSE: OF-Observed

Station Period Year Day Scenario Discharge depth ks ME RME MAE RMAE RMS RRMS R2 β

(m3/s) (m) cm cm % cm % cm %

100B

SM 2011 1/20-2/16 Medium 4227 3.57

30

-6.6 -1.8 7.7 2.1 10.1 2.8 0.963 1.072

SH 2011 5/11-9/6 High 6335 4.88 -2.1 -0.4 7.2 1.5 9.7 2.0 0.994 1.062

SL 2011 9/20-12/31 Low 2613 2.19 -15.6 -7.1 19.7 9.0 25.4 11.6 0.914 1.102

MH2 2013 3/11-6/19 High 4449 3.65 -10.1 -2.8 11.9 3.3 15.1 4.1 0.982 1.083

ML2 2013-14 9/27-1/5 Low 2517 2.10 -20.7 -9.9 22.4 10.7 26.4 12.6 0.879 1.108

MH2 2014 4/15-7/24 High 5217 4.27 -9.2 -2.2 10.5 2.5 13.3 3.1 0.945 1.053

MM2 2013-14 1/1-8/1 Mixed 3755 3.12 -14.4 -4.6 16.1 5.2 22.1 7.1 0.965 1.065

100N

SM 2011 1/20-2/16 Medium 4227 2.78

18.6

-7.5 -2.7 8.9 3.2 10.9 3.9 0.943 1.031

SH 2011 5/11-/9/6 High 6335 3.96 -2.5 -0.6 8.9 2.2 11.0 2.8 0.991 1.058

SL 2011 9/20-12/31 Low 2613 1.58 -10.3 -6.5 19.9 12.6 26.1 16.4 0.881 1.061

MM 2013-15 1/1-12/31 Mixed 3424 2.17 NA NA NA NA NA NA NA NA

100D

SM 2011 1/20-2/16 Medium 4227 NA

12

-0.6 NA 12.7 NA 16.4 NA 0.874 1.149

SH 2011 5/11-/9/6 High 6335 NA 3.1 NA 10.6 NA 13.7 NA 0.983 1.071

SL 2011 9/20-12/31 Low 2613 NA -1.8 NA 26.6 NA 40.3 NA 0.603 0.859

MM 2013-15 1/1-12/31 Mixed 3424 NA NA NA NA NA NA NA NA NA

LI

SM 2011 1/20-2/16 Medium 4227 2.99

2.83

6.4 2.1 7.5 2.5 9.2 3.1 0.948 1.023

SH 2011 5/11-/9/6 High 6335 4.02 NA NA NA NA NA NA NA NA

SL 2011 9/20-12/31 Low 2613 1.91 NA NA NA NA NA NA NA NA

MM 2013-15 1/1-12/31 Mixed 3424 2.44 NA NA NA NA NA NA NA NA

100H

SM 2011 1/20-2/16 Medium 4227 1.90

3.74

3.3 1.7 10.0 5.3 12.0 6.3 0.923 1.073

SH 2011 5/11-/9/6 High 6335 3.00 5.7 1.9 9.2 3.1 11.3 3.8 0.989 1.053

SL 2011 9/20-12/31 Low 2613 0.83 5.5 6.6 13.1 15.8 18.4 22.2 0.922 1.062

MM 2013-15 1/1-12/31 Mixed 3424 1.36 NA NA NA NA NA NA NA NA

100F

SM 2011 1/20-2/16 Medium 4227 3.66

7.42

0.3 0.08 9.2 2.5 11.5 3.1 0.928 1.106

SH 2011 5/11-/9/6 High 6335 4.77 9.1 1.9 13.5 2.8 15.9 3.3 0.978 1.103

SL 2011 9/20-12/31 Low 2613 2.59 2.6 1.0 13.3 5.1 17.7 6.9 0.926 1.071

MM 2013-15 1/1-12/31 Mixed 3424 3.12 NA NA NA NA NA NA NA NA

100HD
LL3 2018-19 8/16-10/31 Low 2580 1.33

NA
7.2 5.4 14.9 11.3 22.5 17.0 0.89 0.980

LM3 2018-19 1/1-10/31 Mixed 3310 1.78 7.2 4.0 14.9 8.4 22.5 12.6 NA NA

Observation stations are illustrated in Figure 1b, the first character in ”Time Period” represents short-term (S),
medium-term (M), and long-term (L), and the second character in ”Time period” represents medium (M), high (H),
low (L), or mixed (M) type flow scenarios. Superscripts 2 and 3 denote observation data used for comparison are from
observation 2 and observation 3. R2 and β is a coefficient quantifying the degree of correlation between modeled and
observed WSE and the slope of the linear regression of 1:1 plots. NA is used when observed data is not available.

3.3 Medium-term model validation

The short-term validation shows the roughness calibrated using the WSE observed

at a medium flow can well predict WSE at medium, high, and low flow scenarios. To fur-

ther test if the calibrated roughness can be applied for medium-term surface flow sim-

ulations, Figure 7 compares the modeled WSE with the observed WSE at 100B during

2013-2014. Figure 7a shows a comparison of the hourly recorded WSE from the model

with those from two different observations. Such a comparison shows that modeled WSE

agrees well with the observations from 1 January 2013 to 1 August 2014. In addition,

it shows that observed WSE has uncertainties. A further comparison between the two
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Figure 6. The comparison of water surface elevation from model and observations during high

flow and low flow in 2011. (a-b) Hourly recorded time series of WSE and 1:1 plot during high

flow. (c-d) Hourly recorded time series of WSE and 1:1 plot during low flow.

observations shows that WSE from observation 2 is about 3.2 cm higher than that from

observation 1 and that a small shift in time results in a large error in standard devia-

tion between the two observations (see uncertainty analyses in Text S1 and Figure S5).

However, as observation 1 lacks the record during 2013-2014, observation 2 is used for

validation during this time period.

As WSE observation is missing at some dates, three time periods with continual

observations (see MH2 and ML2 in Table 2) were chosen to illustrate the modeling per-

formance of predicting WSE as shown in Figure 7b,c,d. The comparison shows that the

modeled WSE agrees very well with observations at the high flow scenarios during March-

June 2013 (Figure 7b) and April-July 2014 (Figure 7d). The ME, MAE, and RMS dur-

ing these periods are -10.1 cm ∼ -9.2 cm, 10.5 cm ∼ 11.9 cm, and 13.3 cm ∼ 15.1 cm,

respectively. The corresponding relative error to average water depth is -2.8% ∼ -2.2%,

2.5% ∼ 3.3%, 3.1% ∼ 4.1%, respectively. At the low flow during September 2013-January

2014 (Figure 7d), the model shows a larger error especially when the WSE is low (close

to 119 m). However, the relative errors to water depth are still small, -9.9%, 10.7%, and

12.6% for relative ME, MAE, and RMS (see ML2 in Table 2), respectively. Figure 7e,f,g

further shows a 1:1 comparison between modeled and observed WSE. The R2 and the

linear regression slope are 0.88 ∼ 0.98 and 1.06 ∼ 1.1, respectively. These results sug-

gest the predicted WSE has no obvious bias and the prediction has good accuracy for

a medium-term prediction.
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Figure 7. Medium-term model validation for water surface elevation. A comparison of hourly

recorded WSE from model and observations during 2011-2014 (a), medium flow (b), low flow (c),

and high flow (d). (e-g) denote the 1:1 plot during medium, low, and high flow scenarios.

3.4 Long-term model validation

The long-term prediction of WSE is important for predicting river corridor func-

tion under a long-term climate change scenario. To test the modeling performance for

long-term WSE prediction, Figure 8 compares the WSE from the model and the obser-

vation at one location (yellow dot in Figure 1b), different from the locations used for cal-

ibration. Figure 8a shows that the model well captures the trend of the fluctuation in

WSE at 100HD during August 2018-November 2019. The ME and MAE are 7.2 cm and

14.9 cm, respectively. This is equivalent to 5.4% and 11.3% relative to the mean water

depth. The RMS is 22.5 cm and about 17.0% relative the average water depth at 100HD

during August 2018-November 2019. Figure 8b further shows the 1:1 plot between the
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modeled and observed WSE at 100HD. The R2 and linear regression slope are 0.89 and

0.980, respectively. These statistics show there is no obvious bias in our model as the

slope is very close to 1. As the flow during August 2018-November 2019 is always low

(2580 m3/s), the R2 during this time period is similar to those calculated at low flow sce-

nario (see SL at 100B-100F in Table 2) in 2011-2015. Similarly, a lower R2 is also related

to a small time shift in the observation as shown in Figure S5. Considering that a small

time shift in the observation results in a significant error in MAE and RMS, the ME is

a more reliable index for evaluating the modeling accuracy. Therefore, it is reasonable

to claim that our model is able to predict WSE in 2018 and 2019 with an accuracy of

5.4% relative to mean water depth using the roughness calibrated in 2011. This suggests

that in the next 9 years the WSE may be reliably predicted using the calibrated rough-

ness at the present time.

Figure 8. Long-term model validation for water surface elevation. A comparison of the hourly

recorded WSE from model and observations at 100HD during 2018-2019 (a), and their 1:1 plot

(b).

3.5 Controls of bed hydrodynamics

As bed hydrodynamics control the mass exchange and concentration fluxes at the

riverbed, identifying their control mechanisms is helpful for quantifying hydrologic ex-

change flows (HEFs) and residence time distributions (RTDs), which is important for

parameterizing hydrodynamics in a 30 km scale to larger regional and national scale mod-

els. Currently, riverbed hydrostatic pressure, dynamic pressure, and shear stress are three

commonly recognized bed conditions that affect HEFs, RTDs, and the multiscale feed-

back among HBGC. This section focuses on the control mechanisms of these conditions

under diverse spatial and temporal scales. For convenience, we represent hydrostatic pres-

sure and dynamic pressure as water depth and dynamic pressure head. In addition, we

further divide the diverse topographic features as spanwise and streamwise geometric fea-
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tures, which are quantified by a spanwise coordinate st and a streamwise coordinate sL,

respectively. Here sL is defined as the distance from the first point on the river center-

line to any downstream point along the centerline (red solid line in Figure 9a), and st

is defined as the distance away from the centerline along a line perpendicular to the cen-

terline (see perpendicular lines in Figure S6). For convenience, a negative sign is used

if a location is to the left bank of the river centerline as shown in Figure 9a.

3.5.1 Spanwise geometric structure

Figure 9b shows that variations of bed elevation, water depth, bed shear stress, and

bed dynamic pressure head along the spanwise coordinate st. It is observed that the wa-

ter depth shows a reversed shape compared to that of the bed elevation. This can be ex-

plained by the difference between WSE and bed elevation and WSE is approximately

constant at a cross section. This also means the water depth is largely determined by

the cross-sectional shape of riverbed geometry. For the bed shear stress, we observe the

distribution is similar to the water depth distribution, though that shows more locally

maximum/minimum variations. This suggests that bed shear stress is not only controlled

by cross-sectional shape but also local features. For the dynamic pressure head, there

is no obvious relationship to the riverbed cross-sectional shape but it randomly varies

along the spanwise coordinate. This suggests the dynamic pressure head is likely deter-

mined by geometric features uniformly distributed on the cross section. Though not com-

pared to the dynamic pressure measured in field surveys, such an implication can be proved

by the work of Chen et al. (2019) in which the dynamic pressure on a streambed with

mm scale resolution is directly resolved. As shown, the water-worked streambed has a

close-Gaussian distribution (see Figure S7a) and Kirchner et al. (1990); Nikora et al. (1998))

and generates a dynamic pressure approximately randomly distributed on the riverbed

(Figure S7b,c), and along spanwise (Figure S7e) and streamwise (Figure S7f) directions.

For the geometry considered here, only the size of rough elements shows an approximately

uniform feature and therefore it is reasonable to attribute the random dynamic pressure

head to size and distribution of rough elements. Similarly, the local variations in bed shear

stress are also likely attributed to the local rough elements because a close-Gaussian dis-

tribution of roughness elements contributes to a near-Gaussian shear stress, although river

slope tends to change the normal distribution (Monsalve et al., 2017).
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Based on the analyses of the geometric feature and the distribution of dynamic con-

ditions, two sets of parameters are defined to quantitatively study the connection of ge-

ometric feature and characteristic behaviors of bed conditions on each cross section. The

first set of parameters includes the locations of bathymetry minimum (~xbm), water depth

maximum (~xdm), and bed shear stress maximum (~xsm). The second set of parameters

includes the maximum water depth (hm), maximum bed shear stress (τm), and cross-

sectional average dynamic pressure head (hda). Here the bed shear stress is defined as

τxy =
√
τ2
x + τ2

y and τm is the maximum τxy at each cross section.

Figure 9a,b shows these newly defined locations on the riverbed and cross section

A. The result shows that the location of water depth maximum almost overlaps with the

location of bathymetry minimum for most cross sections (see black and green dots in Fig-

ure S8), which suggests that locations of maximum water depth on each cross section

are controlled by riverbed geometric structure. By contrast, most of the locations of max-

imum bed shear stress overlap with locations of bathymetry minimum in the half up-

stream region (x < 10 km), but show obvious deviations in the half downstream region

(x > 10 km). This suggests that bed shear stress in the upstream is more likely con-

trolled by riverbed geometry, but in the downstream likely controlled by both riverbed

geometry and local geometric features. Such a difference may be attributed to the re-

distribution of flow velocity (and water depth) in the downstream where large bars and

islands are more frequently observed than in the upstream. Despite the complex local

distribution, the value of water depth and bed shear stress fall in the range of [0, hm]

and [0, τm] with hm = 13.02 m and τm = 30.34 N/m2, respectively. For the dynamic pres-

sure head, we observe that it varies between 0 to 2hda, with an average value of hda =

-0.33 m. Similar behaviors in water depth, bed shear stress, and dynamic pressure head

can also be observed on other cross sections (Figure 9c,d). The characteristic values for

water depth (hm), bed shear stress (τm), and dynamic pressure head (hda) are 11.45 m,

17.92 N/m2, and -0.34 m on cross-section B; and 10.24 m, 22.38 N/m2, and -0.29 m on

cross-section C. These results show that characteristic water depth and bed shear stress

all vary along the river centerline, though water depth and bed shear stress fall in the

range of [0, hm] and [0, τm] on the three cross sections. The dynamic pressure, however,

shows little variations along the river centerline, which is similar to the dynamic pres-

sure from fully resolved CFD models over realistic streambeds (see Figure S7 and Chen

et al. (2019)). This further suggests that riverbed dynamic pressure is likely controlled
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by a geometric feature uniform everywhere, i.e., close Gaussian distribution, such as rough-

ness.

Figure 9. A typical distribution of water depth, a centerline defined from the spatial range

of the water depth, and three example cross sections perpendicular to the centerline (a). Vari-

ations of bed elevation, normalized water depth (h/hm), normalized bed shear stress (τxy/τm),

and normalized bed dynamic pressure head (hd/hda) along the spanwise coordinate at three cross

sections (b-d).

3.5.2 Streamwise geometric structure

Section 3.5.1 shows that characteristic water depth and bed shear stress vary along

river centerline but dynamic pressure head does not; however, these results are based on

three cross sections at one flow rate. To further study these observations at more cross

sections and their dependence on flow rate, Figure 10 shows the variations of character-

istic water depth (cross-sectional maximum water depth hm), bed shear stress (cross-

sectional maximum stress τm), and dynamic pressure head (cross-sectional average dy-

namic pressure head hda) along the streamwise coordinate at low flow (T2) and high flow

(T1 and T3) scenarios. It is observed that characteristic water depth and bed shear stress

vary with both flow rate and the streamwise coordinate. Compared to bed shear stress,

the variation of water depth shows more obvious dependence on the falling and rising

feature in the riverbed elevation as the zig-zag (discontinuity) feature is generated from
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riverbed geometry. The bed shear stress, also showing its dependence on the falling and

rising feature in the bed elevation, is smoother along the river centerline. Such a differ-

ence suggests that water depth is mainly controlled by riverbed geometric feature, but

shear stress is controlled by both geometric features and dynamic local flow conditions.

Further, Figure 10c shows that dynamic pressure head varies between -0.4 m ∼ -0.3 m

with an average value -0.35 m for all flow rate and most locations, which means that the

dynamic pressure head is not strongly affected by flow rate and its value is approximately

uniform along the river centerline. This further implies that the dynamic pressure head

is more likely induced by locally uniform flow conditions such as small-scale turbulence

generated from flow separation induced by small scale roughness (Hardy et al., 2010; Chen

et al., 2019; Kim et al., 2020). For the river section considered here, Figure S9a,b shows

the size of the vortex structure quantified by λ2 (Jeong & Hussain, 1995) is approximately

uniform despite very different topographic features along the river. This phenomenon

can also be observed in a previous CFD modeling (Chen et al., 2019) where the vortex

structure near the streambed has similar size as shown in Figure S9c. Such a work also

shows that the vortex structure far away from the streambed is obviously different from

that near the bed (Figure S9d).

Figure 10. The variations of characteristic water depth (a), bed shear stress (b), and dynamic

pressure head (c) along the streamwise coordinate (sL) at low flow (T2) and high flow (T1 and

T3) scenarios.

3.5.3 Discharge variations

To further study the effects of discharge on characteristic water depth, bed shear

stress, and dynamic pressure head, Figure 11a,b,c shows variations of these values with

respect to time during 2013-2015 at three locations (sL = 3 km, 12.3 km, and 24 km,

see X1 - X3 in Figure 12). The result indicates that water depth and bed shear stress

vary with time at the three locations. The dynamic pressure head, although also vary-
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ing with time, shows a variation range -0.45 m ∼ -0.35 m at the three locations over the

3 years. This suggests the dynamic pressure head is likely little affected by flow rate.

To further investigate the role of flow rate in affecting characteristic water depth

and bed shear stress, Figure 11d,e shows the relationship between their values with re-

spect to discharge in a log-log scale. It is observed that water depth is determined by

flow rate through hm = aQb. Though this relationship is obtained from data fitting,

the high R2 (0.85 ∼ 0.99 at X1 - X3) implies that such a relationship is reliable. Fig-

ure 11f (red circle) also shows the R2 at all cross sections using the same formula for data

fitting. Though the R2 reduces from 0.99 at the inlet to 0.75 to the outlet, this value still

suggests that water depth is directly affected by flow rate through hm = aQb. Here the

fitting parameter a reflects the effect of streamwise slope and b reflects the effects of cross-

sectional shape (see variations of a and b along centerline in Figure S10). The similar

data-fitting method is also applied for the bed shear stress as shown in Figure 11e. The

result indicates that bed shear stress can be well represented using τm = aQb at some

locations, but has larger uncertainty in other locations (Figure 11f blue cross). More specif-

ically, the fitted R2 is larger than 0.9 for most locations in the half upstream (sL < 15

km), but could be reduced to 0 in the half downstream (sL > 15 km). This suggests that

bed shear stress in the half upstream is likely mainly controlled by flow rate, streamwise

slope, and cross-sectional shape, but may be further affected by other local features in

the downstream. For example, the islands in the regions near cross-sections B and C (the

white regions between 10 km and 13 km in Figure 9a or 15 km and 20 km in Figure 11f)

divert the flow into two channels and create two locally maximum bed shear stress, which

invalidates the relationship between shear stress and flow rate applicable for upstream

regions with only one channel. These combined effects from flow rate and large and lo-

cal scale geometric features result in the complex distribution of bed shear stress in the

downstream region.

4 Discussion

4.1 Roughness quantification

It is long recognized that hydraulic roughness estimation is the primary uncertainty

of numerical modeling of natural rivers (USACE, 1994). The hydraulic roughness is a

parameter used to estimate the resistance applied to flow from complex sediment struc-
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Figure 11. Variations of characteristic water depth (a), bed shear stress (b), and dynamic

pressure (c) with respect to time at three locations. (d-e) Variations of characteristic water depth

and bed shear stress with respect to discharge. (f) Variation of R2 of data fitting along the river

centerline.

tures, e.g., sand, gravels, pebbles, and boulders, and other in-stream structures such as

vegetation and large-woody debris. Accurate estimation of hydraulic roughness in nat-

ural environments requires high-resolution measurements of the in-stream sediment struc-

ture; however, most airborne methods such as LiDAR cannot efficiently measure the de-

tailed structure of individual sediment ranging from mm to dm. Grain size distribution

surveys based on manual sediment counts provide a reliable way to estimate grain size

but not applicable for tens of kilometers scale rivers with deep water. Therefore, though

important for numerical modeling, roughness estimation for large-scale rivers with deep

water is still a challenging problem. For the purposes of providing roughness estimation

for large-scale river modeling, we give a brief discussion of three roughness estimation

methods and associated modeling uncertainty.

4.1.1 Calibration with observations

Roughness calibration with observed water stage is an efficient approach for rough-

ness estimation in 3D free-surface models. The physical basis for this approach is that

the bulk flow velocity in streams is monotonically related to bed roughness and there-

fore an optimal roughness can be obtained by monotonically adjusting a roughness pa-

rameter to match modeled WSE with observed ones. Usually, a very small roughness height,

e.g., 0, results in an underestimation of WSE; while a high roughness height, e.g., the

size of the biggest sediment, results in an overestimation of WSE. With this in mind, a
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series of numerical experiments can be designed by systemically adjusting the roughness

parameter from 0 to the biggest value and the relative error between modeled WSE and

observed ones can be directly calculated as shown in Figure 3b. An optimal roughness

parameter for each observation location can be obtained, which is here referred to as a

locally optimal roughness height.

However, as the roughness parameter calibrated in this way usually works well for

a single location, this means that applying such a parameter to all locations cannot guar-

antee overall modeling accuracy for all locations. Different strategies can be applied to

solve this problem. The simplest strategy is to choose one roughness parameter and ap-

ply it uniformly to the whole domain. Such a parameter can be directly identified from

error diagrams (Figure 3b or Figure S2), which has a value of k1
s = 12.2 cm. Using this

strategy, the overall modeling accuracy is about -30 cm ∼ 30 cm and 7.5 cm ∼ 30 cm

in terms of ME and MAE (see OFK1 in Table 1). The second strategy is to decompose

the riverbed into two regions with different roughness parameters assigned to each re-

gion. This strategy is based on the fact that the error diagrams (Figure 3b or Figure S2)

show two different behaviors at the region 100B and other five locations. Following this

concept, k2b
s = 25.56 cm is assigned for the region at 100B and k2a

s = 6.25 cm is assigned

for all other regions. The overall modeling accuracy for WSE using such a strategy is

about -17 cm ∼ 15 cm and 9 cm ∼ 15 cm in terms of ME and MAE (see OFK2 in Ta-

ble 1). Adjusting the spatial range of region at 100B improves a little of the accuracy

(see OFK2R in Table 1). Overall, we see that the modeling accuracy of using one-ks and

two-ks strategies is ± 0.3 m and ± 0.15 m in terms of ME, and 0.3 m and 0.15 m in terms

of MAE. It is important to mention that such modeling accuracy can be roughly pre-

dicted using error diagrams without running actual simulations (cases OFK1 and OFK2

in Table 1). This means that the error diagram is a good tool for designing calibration

strategy. We also tested the strategy of interpolating the locally optimal roughness height

to 50 uniformly distributed regions (see ks and regions in Figure S3). The overall accu-

racy for WSE is -19.4 cm ∼ 8.5 cm and 9.3 cm ∼ 19.4 cm in terms of ME and MAE (case

OFK50 in Table 1), respectively. This result suggests that interpolating the locally op-

timal roughness height to more regions does not improve modeling accuracy because in-

terpolating itself may introduce extra error to the roughness field. From the above dis-

cussion, we identify that the best strategy is to decompose the riverbed into N regions

with N equal to the number of survey locations. Without further adjustment of rough-
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ness parameter, such a strategy gives an overall modeling accuracy of WSE as -16.5 cm

∼ 6.4 cm and 7.6 cm ∼ 19.6 cm in terms ME and MAE, respectively.

To further improve the modeling accuracy, local adjustment of the roughness pa-

rameters is necessary. This is because the locally optimal roughness parameters neglect

the flow interactions due to locally variable flow resistance, backwater effects from down-

stream to upstream, and the effects of sinuosity. The local adjustment is used to incor-

porate these effects into the calibration and achieve a globally optimal roughness cali-

bration. As higher uncertainty (case OF0 in Table 1) occurs at the upstream locations

(100B, 100N, and 100D) using the locally optimal roughness height, we systematically

adjust the roughness parameters at these locations. The final modeling accuracy for WSE

is -7.5 cm ∼ 6.4 cm and 7.5 cm ∼ 12.7 cm in terms of ME and MAE, respectively. Fur-

ther improvement of the accuracy is possible but not necessary as the relative errors to

water depth have been reduced to -2.7% ∼ 2.1% and 2.1% ∼ 5.3% in terms of ME and

MAE. Nevertheless, it is worth summarizing how local adjustment improves modeling

accuracy. Firstly, increasing roughness height at the most upstream location (100B) im-

proves the accuracy of WSE only at that location (see OF0, OF1, and OF2 in Table 1);

secondly, changing roughness height at 100N has little effects on WSE at 100N and neigh-

bouring upstream locations (see OF2 and OF3 in Table 1); and thirdly, increasing rough-

ness height at 100D significantly affects WSE at all upstream locations and has a larger

influence on the locations closer to that location. These results suggest that roughness

heights at some critical locations (most upstream and close to pool) have a larger im-

pact on the overall modeling accuracy.

4.1.2 Converted from Manning’s coefficient

The roughness calibration method discussed in Section 4.1.1 can be applied for any

rivers where WSE observation is available but is usually time-consuming. 1D and 2D mod-

els have been widely used to predict WSE and Manning’s coefficient has been available

in these models. For example, for the river section studied in this work, the calibrated

Manning’s coefficients from a 2D CFD model are 0.038, 0.035, 0.034, 0.027, 0.027, and

0.03 at 100B, 100N, 100D, LI, 100H, and 100F (Niehus et al., 2014). In these situations,

the roughness parameter required in 3D CFD models can be directly converted from well-

calibrated Manning’s coefficient based on a force balance at the riverbed. Specifically,

the force balance can be described as τb = ρgSR = 1/8fρU2 with τb, S, R, f , and U
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denoting average bed shear stress, channel slope, hydraulic radius, Darcy-Weisbach fric-

tion factor, and average streamwise velocity. For gravel bed rivers, it was shown that
√

8
f =

a( Rks )b with b = 1/6 and a has a value of 6.7, 7.3, 8.2, 8.4, 9.39, etc. when R/ks > 10

(Chaudhry, 2008; Rickenmann & Recking, 2011; Ferguson, 2013). Meanwhile, the Man-

ning’s equation shows U = 1
nR

2/3S1/2 with n denoting the Manning’s coefficient. Us-

ing these formulas, the relationship between n and ks can be quantified as n = 1
a
√
gk

1/6
s

if ks has a unit of foot or n = 1.219
a
√
g k

1/6
s if ks is in SI unit. The coefficient a character-

izes the type of sediment that requires further calibration, however could use an aver-

age value of 8.0 for a rough estimation of ks. In this work, as the locally optimal rough-

ness height can be deterministically calculated and the modeled WSE at 100F gives a

very good accuracy (see 100F in OF0 Table 1), we back-calculated the value of a = 8.4

using ks = 7.42 cm = 0.2434 ft and n = 0.03. With the calibrated value for a, hydraulic

roughness ks can be converted as shown in case MS in Table 1. The modeling accuracy

of WSE using these roughness parameters is -4.7 cm ∼ 7.7 cm and 6.4 cm ∼ 13.9 cm in

terms of ME and MAE, respectively. This result suggests that the roughness height con-

verted from the well-calibrated Manning’s coefficients of 2D models can give similar mod-

eling accuracy compared to using the globally optimal roughness height. Further local

adjustment of these roughness parameters does not significantly improve modeling ac-

curacy (see MS2 and MS3 in Table 1).

4.1.3 Estimated from microtopography

Both roughness calibration and conversion from the Manning’s coefficients require

observation of water stage and these calibrations may not guarantee the accuracy of other

flow quantities such as pressure, flow velocity, and bed shear stress. A more accurate and

physics-based method for evaluating the effects of bed roughness is to directly resolve

the influence of microtopography on flow dynamics. However, the success of such a method

depends on high-resolution measurements of riverbed microtopography, computational

techniques to deal with complex geometry in CFD codes, and available high-performance

computing resources. Owing to the rapid development of structure-from-motion (SfM)

photogrammetry and unnamed aerial vehicles, remote sensing of riverbed sediment struc-

ture with 1 cm ∼ 5 cm resolution over a 40-kilometer river reach has been possible (Carr

et al., 2019). This data can be used either for quantifying locally distributed grain size

distribution or used as a geometric boundary for 3D CFD models where the effects of
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sediment structure on flow dynamics can be directly resolved. At the patch scale (a few

meters to tens meters), SfM photogrammetry-scanned high-resolution (mm - cm scale)

riverbeds have been used to directly resolve the effects of sediment structure on the flow

resistance (Chen et al., 2018, 2019). A quantitative relationship has been identified be-

tween hydraulic roughness, turbulent vortex structure, and characteristic sediment size.

Therefore, with available high-resolution riverbed structure from SfM and previous the-

ory on hydraulic roughness, the distributed hydraulic roughness height in large rivers can

be directly estimated and the surface decomposition approach developed in this work

can be used to generate distributed roughness for the CFD code.

4.2 Effects of discharge and spatial variations on bed conditions

Section 3.5 discusses the effects of spatial heterogeneity and discharge variations

on bed conditions but is limited to a few selective times and locations. Figure 12 shows

the spatial (horizontal axes) and temporal (vertical axes) maps of cross-sectional min-

imum bed elevation, maximum water depth, maximum bed shear stress, and average bed

dynamic pressure head. The spatial and temporal range is 30 km and 2013-2015 with

a spatial resolution of 30 m (1001 points) and temporal resolution of 1 day (1094 dates).

As the riverbed bathymetry does not evolve with time, we observe that minimum bed

elevation does not change along the vertical coordinate (time), but only varies along the

streamwise coordinate (sL). Here X1, X2, and X3 denote locations with the highest, sec-

ond lowest, and lowest bed elevation, respectively. T1, T2, and T3 denote 0AM on 01

June 2013, 01 January 2014, and 01 January 2015, respectively.

Moving to the map of water depth (Figure 12b), it is observed that regions with

yellow color in Figure 12a are filled with blue color and vice versa for the regions with

blue color in Figure 12b. For example, water depth at X1 shows yellow color on Figure

12a but appears as deep blue color in Figure 12b; at X2 and X3 is a deep blue color on

Figure 12a but shows yellow color on Figure 12b. In addition, Figure 12b shows that re-

gions with yellow color always show yellow color and regions with deep blue always show

deep blue color along the vertical direction. These results agree with previous understand-

ing that water depth is inversely related to the bed elevation and suggest the spatial struc-

ture of water depth varies little with time (or flow rate). Figure 12b also shows that wa-

ter depth varies with time (see color changes along vertical direction in the regions be-

tween 3 km and 9 km) though such a variation is not considerable compared to the changes
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along centerline (more obvious color change). The probability density function (pdf) anal-

ysis over all spatial coordinates and all dates shows that water depth is strongly affected

by the discontinuous changes (periodicity) of bed elevation along the streamwise direc-

tion (Figure 13a). Such a pdf also shows that 50% of water depth is less than 7.85 m and

75% of water depth is less than 10 m during the 3-year period.

Moving to the map of bed shear stress (Figure 12c), it is observed that larger vari-

ations appear along the vertical direction compared to those in water depth and the re-

gions with yellow color approximately correspond to the regions with yellow color on Fig-

ure 12a. This suggests that bed shear stress varies with both time (flow rate) and the

bed elevation changes along river centerline. In addition, the obvious color changes along

horizontal and vertical direction mean that both variations in flow rate and streamwise

geometric feature dominate the distribution of bed shear stress. To further understand

the control mechanisms of bed shear stress, Figure 13b show the probability density func-

tion of bed shear stress. The result shows that such a pdf has a similar shape to water

depth, but removes the discontinuous (periodic) behavior as in the water depth. This

can be explained by the fact that bed shear stress is affected by both streamwise topo-

graphic features and more uniformly distributed small-scale turbulence from flow sep-

aration (Hardy et al., 2010). Though the streamwise topographic feature is discontin-

uous, the turbulent flows contributing to bed shear stress have a much smaller scale than

the topographic scales and thus contribute to a much smoother pdf distribution. For ex-

ample, though with large bed forms and protruding grains, the pdfs of the bed shear stress

on these streambeds still behave like smooth Gaussian distribution at small river slope

(Monsalve et al., 2017). This work also shows that a large river slope results in a skewed

pdf in bed shear stress, which explains the positive skewness in the bed shear stress as

the river section studied has large variations in river slope, i.e., the bed elevation change

along the centerline. In addition, the pdf shows that average bed shear stress is 20 N/m2

and 90% of bed shear stress falls in the range between 5 N/m2 and 35 N/m2. This means

that bed shear stress may initiate the motions of riverbed sediments with a particle size

less than fine gravel (4 mm ∼ 8 mm) because 90% of the predicted shear stress is higher

than the critical shear stress of fine gravel (Berenbrock & Tranmer, 2008). This may sig-

nificantly affect the chemical and biological processes associated with sediments less than

1 cm.
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For the cross-sectional average dynamic pressure head, Figure 12d shows it varies

a little along the streamwise locations and time. Using the values of dynamic pressure

head, Figure 13c shows the probability density function of the cross-sectional average

dynamic pressure head. The result shows that the distribution is similar to a normal dis-

tribution (red curve in Figure 12c) with a mean and standard deviation as -0.353 m and

0.0352 m, respectively. Such a similarity to a normal distribution suggests the cross-sectional

average dynamic pressure head is likely a randomly distributed field. Such an implica-

tion may be further demonstrated by a randomly distributed dynamic pressure and its

close-Gaussian distribution from a roughness fully resolved CFD modeling (Figure S7

and Chen et al. (2019)). Figure 13c also shows that the pdf of dynamic pressure head

does not display any feature similar to that of water depth and bed shear stress, which

suggests that dynamic pressure is not affected by the streamwise geometric feature. Fig-

ure 13c also shows that 95% of the dynamic pressure falls in the range -0.42 m ∼ -0.28

m, which is equivalent to the range µ± 2σ.

Figure 12. The spatial (sL) and temporal (date) maps of river cross-sectional minimum ele-

vation (a), maximum water depth (b), maximum bed shear stress (c), and bed dynamic pressure

(d). X1 - X3 and T1 - T3 are three selective locations and dates used to illustrate the variation

details of bed conditions. White spots on each figure denote values outside the range as shown on

the color bars.
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Figure 13. The pdf of cross-sectional maximum water depth (a), maximum bed shear stress

(b), and average dynamic pressure head (c) over all streamwise coordinates and dates.

4.3 Computational efficiency

Despite the rapid growth in computational capacity in the past two decades, it is

still a bottleneck for CFD modeling of natural rivers with tens of kilometer scale over

a couple of years. However, we show that such a limitation may be relieved using highly

efficient CFD code, spatiotemporal decomposition approach, and a few hundred CPUs

commonly available in university-scale or national-scale cyberinfrastructure. The discus-

sion here is based on modeling results during short-term 2011 (1 month), 2013-2015 (36

months), and 2018-2019 (22 months) by using Cascade, a high-performance computer

managed by the Environmental Molecular Sciences Laboratory (EMSL) at PNNL (www.emsl.pnnl.gov).

For convenience, we define CPU time and solution time as the time consumed by com-

puters and the time of water flow in the CFD model, respectively. The computational

efficiency can be further quantified by the ratio of solution time and CPU time.

Figure 14 shows the advancement of solution time with respect to CPU time for

the short-term medium flow case. It is observed that the computational efficiency increases

linearly with increasing time step ∆T (solid lines with Np = 256). In addition, increas-

ing the number of processors from 256 to 512 only increases the computational efficiency

by 1.5 times. Further increasing the number of processors decreases the computational

efficiency, which means that an optimal number of processors exists for our model. The

computational efficiency is also affected by the selection of linear solve; in our case, PCG

solver with DIC conditioner increases the computational efficiency by 3.6 times compared

to using a generalised geometric-algebraic multigrid (GAMG) solver. Despite the changes

of time step and number of processors, modeled WSE does not change (see Figure S4).

Following such an analysis, we show that the computational efficiency is around 36 by

using 512 processors, 3 s as the time step, and DIC-PCG as the linear solver. This means
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we can simulate 1 month solution time in less than one day of wall-clock time or 1 day

solution time in 40 minutes (1/36 days) of wall-clock time. With the same parallel com-

putation setups, we divide simulations during medium-term and long-term into 36 and

22 cases and run all cases simultaneously (see details in Section 2.6). The CFD code log

files show that all simulations were completed in less than 6 days of wall-clock time. Con-

sidering the number of processors, the total CPU hours spent is about 1.1 million, which

is equivalent to 19,000 CPU hours for each month. Note that the time considered here

does not include the computational time used for calibration; however, our work shows

that calibration is only required once. Therefore, for rapid predictions of the streamflow

with well-calibrated roughness parameters, the computational efficiency may be feasi-

ble in terms of how much time and how many CPU hours are required.

Figure 14. The advancement of solution time with respect to CPU time. Np and ∆T denote

the number of processors and time step. Linear solver used for solid lines is DIC-PCG and the

dashed line is GAMG.

4.4 Implications for biogeochemistry, subsurface models, and field in-

vestigations

The long-term goal of river corridor research is to develop accurate and efficient

predictive models for water quality, nutrient dynamics, and ecosystem health. The suc-

cess depends on four aspects: multiprocess coupling between hydrodynamics and bio-

geochemistry; multidomain coupling among streamwater, hyporheic zone, and ground-

water; reducing model uncertainty based on improved field measurements; and develop-
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ing efficient computational framework. As we discussed the computational efficiency in

Section 4.3, we now focus on the other three aspects.

First, the multiprocess coupling is important because flow dynamics and turbulence

directly control fine-scale sediment and chemicals transport (Ongley, 1996; Venditti et

al., 2010; Yang & Nepf, 2018) and dissolved oxygen concentration and mass transfer rate

of respiration (Grant, Azizian, et al., 2018); and indirectly affect the population and dis-

tribution of small microbes and large aquatic fish and vegetation by controlling oxygen

concentration and aerobic/anaerobic respiration. Within the framework presented in this

work, transport of fine sediments, chemicals, and oxygen; chemical reactions of aerobic

and anaerobic respiration (Li et al., 2020); and microbial community growth using con-

tinual or discrete population balance model (Song et al., 2014) can all be fitted into a

comprehensive multiprocess model. Such a comprehensive model can then be applied

to study individual HBGC processes and their interactions in a more realistic river cor-

ridor environment.

Second, the multidomain coupling among streamwater, hyporheic zone, and ground-

water is important. This is because the characteristic spatial and temporal scales in each

zone are very different and thus resolving all scales in a single model is not practical due

to limited data and high computational costs. Instead, each domain is usually separately

modeled and then coupled together using either one-way coupling or fully coupling tech-

niques (Cardenas & Wilson, 2007; Maxwell et al., 2014; Bao et al., 2018; Li et al., 2020).

For example, the streamwater is usually modeled with the 1D Saint-Venant equations

or the 2D shallow water equations and the groundwater is modeled with Richards equa-

tions together with other solute transport models. The coupling between the streamwa-

ter and groundwater is through imposing continuous fluxes of water or solutes at the in-

terface between the two domains. In one-way coupling models, the riverbed total pres-

sure from the streamwater, a summation of hydrostatic pressure and dynamics pressure,

from the streamwater is usually required as a pressure boundary condition for the sub-

surface model. However, the dynamic pressure cannot be well predicted without using

3D CFD models with a good estimation of bed roughness. The present work thus pro-

vides a solution for efficient prediction of dynamic pressure for large-scale natural rivers,

which further reduces the boundary condition uncertainty for subsurface models.
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Despite reducing uncertainties for subsurface models and improving understand-

ing of riverbed biogeochemistry, our model may also help in designing field investigations.

For example, the spatiotemporal maps of water depth, bed shear stress, and dynamic

pressure provide direct information of where and when these quantities are important.

As dynamic pressure and bed shear stress are further tied to mass fluxes of water, oxy-

gen, and carbon, these maps can further provide information for where HEFs, chemi-

cal reactions, or microbial activities may be important. As our model enables predictions

of flow dynamics at all spatial locations and all dates, it also enables direct comparisons

between model results with field measurements at all individual locations and time pe-

riods. This provides a direct approach for data-model integration that can improve both

modeling accuracy and field survey quality (Scheibe et al., 2018; Schilling et al., 2019).

5 Conclusions

This work proposed a semi-automated workflow that combines topographic and wa-

ter stage surveys, 3D computational fluid dynamics modeling, distributed rough wall re-

sistance modeling, and spatiotemporal decomposition to simulate the streamflow in a 30-

kilometer-long river reach in the Columbia River spanning 9 years. Specifically, a LiDAR

measured river topography is represented by a zig-zag grid in the 3D model. The effect

of geometric differences between an actual riverbed and the computational mesh on stream-

flow is modeled with a distributed rough wall resistance model with the roughness pa-

rameters calibrated with measured WSE at six locations during 2011. The insignificant

time-history effect on WSE enables decomposing the simulation period 2013-2015 into

36 months and 2018-2019 into 22 months with each month simulated simultaneously us-

ing parallel computation.

Systematical roughness calibration shows that the distributed roughness field en-

ables an average WSE difference between modeled and observed ones as -7.5 cm ∼ 6.4

cm, which is equivalent to -2.7% ∼ 2.1% relative to average water depth. With this cal-

ibrated roughness field, the modeling accuracy for WSE is reported as -15.6 cm ∼ 9.1

cm, -14.4 cm, and 7.2 cm for short-term, medium-term, and long-term predictions; while

is equivalent to -7.1% ∼ 6.6%, -4.6%, and 5.4% relative to the average water depth.

Using the validated modeling results, the dependencies of riverbed hydrodynamic

conditions on flow rate temporal non-stationarity and bathymetry spatial heterogene-
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ity are further investigated. It is found that hydrodynamic pressure is randomly distributed

across the riverbed over all times, which is further linked to a normal distribution; the

riverbed hydrostatic pressure is controlled by flow rate and large geomorphic features

such as streamwise slope and cross-sectional shape, whose probability density function

reflects the discontinuous feature of the bed elevation along the river centerline; and the

bed shear stress is controlled by flow rate and large and small topographic features with

its probability function showing a similarity to that of both water depth and dynamic

pressure. Further computational efficiency analyses show that the time step, number of

processors, selection of linear solver, and IO affect the final computational efficiency. Us-

ing the spatiotemporal decomposition, 3D CFD modeling the streamflow in 58 months

can be achieved in less than six days and using 1.1 million CPU hours.

Given the high modeling accuracy and computational efficiency of our model, this

work provides a generic framework with the potential to enable process coupling between

hydrodynamics and biogeochemistry, domain coupling between streamwater and ground-

water, and direct data-model integration, all of which contribute to more accurate and

efficient predictive models for river corridor systems.
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Introduction

This file contains two supplementary texts, ten supplementary figures, and two tables.

Text S1 analyzes 11 potential uncertainty in our model and shows that these errors can

be well managed using the approaches proposed in our paper. Text S2 describes how

to decompose a streambed into multiple patches and how these patches are converted

to the recognizable boundary patches in OpenFOAM. Figure S1 to Figure S12 show the

supplementary figures for the main text and for supporting the uncertainty analyses.
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Table 1 and Table 2 show the coordinates of the survey locations and model constants of

the k − ω SST model.

Text S1: uncertainty analyses

Computation fluid dynamics (CFD) modeling of streamflow in large-scale rivers over

long time periods involves uncertainties from observations, fluid dynamics theories, and

numerical techniques. We quantify and analyze 11 sources of uncertainties from (1) water

surface elevation (WSE) observation, (2) riverbed bathymetry measurement, (3) rough

wall resistance model, (4) roughness calibration using WSE, (5) free surface definition from

the volume of fluid, (6) representing streambed using zig-zag grid, (7) mesh resolution,

(8) time step, (9) linearization of velocity-velocity and velocity-pressure coupling, (10)

discretization schemes, and (11) interpolation between the CFD mesh and a uniform

mesh in postprocessing.

As the calibrated roughness parameter is a crucial parameter in our model, the un-

certainty in WSE observation may affect the accuracy of calibration and CFD modeling.

In particular, this work identifies the locally optimal roughness parameter as the value

makes the mean error (ME) between the modeled WSE and the observed ones to be zero

(see Section 2.4). This means that the time-averaged value of WSE from observation

determines the calibration accuracy. To illustrate the uncertainty in WSE observations,

Figure S5 shows a comparison of the WSE at 100B observed at two nearby locations. The

results show that the ME between observation 2 and observation 1 is 3.219 cm, however,

the standard deviation between the two observations is 11.555 cm (Figure S5b). We ar-

gue that the large standard deviation is attributed to a small time uncertainty during the

observation. This can be proved by Figure S5c which shows that the standard deviation
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reduces to 4.763 cm if the time history in observation 2 is shifted by 39.3 minutes. How-

ever, Figure S5c also means the time shift does not contribute to a large uncertainty in its

mean value as the ME is always in the range 3.08 cm ∼ 3.22 cm for any time shift between

-120 minutes and 120 minutes. As the mean value of WSE is used to calibrate roughness,

the above results thus demonstrate that the current WSE survey technique does not bring

significant uncertainty for roughness quantification but could result in a large difference

in standard deviation, mean absolute error, and root mean square when comparing the

modeled WSE to observed ones. Actually, if we do an alignment of observation 2, i.e.,

shifting observation 2 by 39.3 minutes in time and adding 3.2 cm to its value, we see that

the difference between observation 1 and such an aligned WSE is clearly reduced ( Figure

S5b).

Natural streambeds usually have diverse scales that affect the fluid dynamics and bio-

geochemistry. It is difficult to measure all of these scales; however, it is necessary to

have a brief discussion of these scales and the effect of river topography measurements on

CFD modeling. In this work, the LiDAR measured riverbed has a vertical resolution of

1 m, which means all topographic features that are less 1 m are not represented in the

streambed bathymetry. These scales can be further divided into fine scale (7.8 µm ∼ 2

mm) and coarse-grain scale (2 mm ∼ 0.256 m) (Berenbrock & Tranmer, 2008). The fine

scale sediments, e.g., slit, clay, and sand, are usually suspended in water due to small-scale

turbulence (Ongley, 1996) and the coarse-grain scale sediments, e.g., gravels, cobbles, and

boulders (Ongley, 1996), control the flow separation, sweep and ejection events, and for-

mation of large coherent structures (Hardy et al., 2010). In this work, the effect of these

scales on the streamflow is considered by adjusting the streambed roughness to enable
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a match between the modeled WSE and the observed ones (see calibration accuracy in

Section 3.1 and more discussion in Section 4.1).

It is important to note that the roughness calibration using the observed WSE depends

on two fluid dynamics assumptions. Firstly, it assumes that the WSE monotonically

increases with increasing streambed flow resistance; and secondly, it assumes that the

roughness wall resistance model used in this work is valid for quantifying streambed

resistance for natural rivers. The former has been demonstrated as in Figure 3a and

Figure S1. The latter can be indirectly proved by another study that predicts 96% of the

theoretical flow resistance using the same rough wall resistance approach (see case S3b in

(Chen et al., 2018)). Despite these justifications, the high calibration accuracy (Section

3.1) and the prediction accuracy over short, medium, and long time periods (Section 3.2

∼ Section 3.4) further demonstrate the effectiveness of the two assumptions adopted here.

As the volume of fluid is used to calculate the free surface, a volume fraction of 0.5 may

bring uncertainty to the definition of the modeled WSE. Though choosing 0.5 to define

a free surface is a common practice (Hirt & Nichols, 1981), we argue that the potential

uncertainty due to such a definition can be well managed during the roughness calibration

procedure because any changes in WSE due to free surface definition are incorporated into

the calibrated roughness parameter when modeled WSE agrees with the observed ones.

Regarding the uncertainty of representing the streambed using a zig-zag grid, it has been

discussed in Section 2.3 and it is shown that such uncertainty is automatically considered

during the roughness calibration.

The mesh resolution and time step are common sources of uncertainty of CFD models.

As one goal of this paper is to predict the total pressure at the streambed, a summation
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of the hydrodynamic pressure and the hydrostatic pressure, for subsurface models, Figure

S11 shows the difference and the 1:1 plot of the total pressure head between a fine mesh

(20 m × 20 m × 0.5 m) and a coarse mesh (20 m × 20 m × 1 m) at the time 16PM

Jan-16-2013. The result shows that the difference is in the range -0.1 m ∼ 0.1 m at most

of the locations and the spatial average difference is -0.03 m (Figure S11a). The 1:1 plot

also shows that the total pressure head from the two meshes almost overlaps with a mean

difference, a root mean square, and a R2 value as -0.03 m, 0.1 m, and 0.9987, respectively.

Recalling that the WSE (related to the hydrostatic pressure head) observation itself could

have an uncertainty of 0.032 m (Figure S5c) and the average value of dynamic pressure

head is -0.353 m (Figure 13c), the uncertainty attributed to mesh resolution is either of

the similar order water stage observation or 8.5% of the average dynamic pressure. This

suggests that the mesh resolution does not contribute significant error to the total pressure

head. To further evaluate the effect of time step, Figure S4 shows a comparison of the

modeled WSE using five different time steps at the six observation locations. The results

reveal that the time step tested here does not affect the accuracy of WSE. Therefore, we

choose the time step 3 s for the prediction simulations in order to reduce computational

costs (see Section 2.7).

Regarding the uncertainty from the linearization of velocity-velocity and velocity-

pressure coupling (Equation 2), it has been proved that using the Pressure Implicit with

Splitting of Operators (PISO) algorithm (Issa, 1985) does not bring big errors to CFD

modeling results (see details of PISO implementation in OpenFOAM and uncertainty

analyses in Chen et al. (2018)). For the discretization schemes, Figure S4 shows that the

time step does not affect WSE, which suggests the temporal discretization scheme has
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little influence on the modeling accuracy. For the spatial derivatives, use of the second-

order schemes for advection and diffusion terms means they do not contribute significant

errors (see uncertainty analyses in Chen et al. (2018)).

The final uncertainty is related to interpolating the CFD results, e.g., WSE, total pres-

sure, dynamic pressure, bed shear stress, from the OpenFOAM mesh to a uniform mesh

for postprocessing. Figure S12 compares the bed shear stress interpolated based on a

self-developed Matlab code and that interpolated from ParaView (www.paraview.org), an

open-source, multiplatform data analysis and visualization software. The result shows

that the Matlab code has similar accuracy as ParaView. For easier comparison, the Mat-

lab code is available at Velo (sbrsfa.velo.pnnl.gov).

Overall, the above analyses identify potential sources in our modeling approach and

highlight the importance of accurate measurements of water stage while other uncertain-

ties are either not important or can be reduced through the calibration procedure.

Text S2: surface decomposition

The surface decomposition is used to generate a distributed roughness for OpenFOAM,

which is implemented as follows: (a) calculating a centerline of the river bed (blue line in

Figure 3c); (b) drawing a straight line passing through each observation location (red dots)

and perpendicular to the centerline; (c) calculating the intersected point (blue squares)

between each straight line and the centerline; (d) generating a dividing point (stars) be-

tween two neighbouring intersected points along the centerline; (e) adding two boundary

points (stars at inlet and outlet) as dividing points and generating straight lines perpen-

dicular to the centerline and decomposing the river bed into 8 pieces; (f) extending each

piece in river depth direction (z) to form 8 close STL surfaces; (g) reading OpenFOAM
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mesh and grouping faces on river bed into 8 groups by checking if a face belongs to an

STL surface; (h) assigning calibrated ks at 100B for region 0 and 1, assigning calibrated ks

at 100N, 100D, LI, and 100H for region 2-5, and assigning calibrated ks at 100F for region

6 and 7; and (i) writing the new boundary and ks value into OpenFOAM mesh. Here the

domain number 8 is used as an example and it could also be 1, 2, and 50 as shown in

Table 1 and Figure S3b. To facilitate future applications, the Matlab code relevant to the

above procedures is shared in Velo (sbrsfa.velo.pnnl.gov).

References

Berenbrock, C., & Tranmer, A. W. (2008). Simulation of flow, sediment transport,

and sediment mobility of the Lower Coeur d’Alene River, Idaho. USGS Scientific

Investigations Report(2008-5093), 164.

Chen, Y., DiBiase, R. A., McCarroll, N., & Liu, X. (2019). Quantifying flow resistance

in mountain streams using computational fluid dynamics modeling over structure-

from-motion photogrammetry-derived microtopography. Earth Surface Processes and

Landforms , 44 (10), 1973–1987. doi: 10.1002/esp.4624

Chen, Y., Liu, X., Gulley, J. D., & Mankoff, K. D. (2018). Subglacial conduit roughness:

insights from computational fluid dynamics models. Geophysical Research Letters ,

45 (20), 11206–11218. doi: 10.1029/2018GL079590

Hardy, R. J., Best, J. L., Lane, S. N., & Carbonneau, P. E. (2010). Coherent flow struc-

tures in a depth-limited flow over a gravel surface: The influence of surface roughness.

Journal of Geophysical Research, 115 (F3), F03006. doi: 10.1029/2009JF001416

Hirt, C., & Nichols, B. (1981). Volume of fluid (VOF) method for the dynamics of

free boundaries. Journal of Computational Physics , 39 (1), 201–225. doi: 10.1016/

March 8, 2020, 12:07am



X - 8 :

0021-9991(81)90145-5

Issa, R. I. (1985). Solution of the implicitly discretised fluid flow equations by operator-

splitting. Journal of Computational Physics , 62 , 40–65. doi: 10.1016/0021-9991(86)

90099-9

Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid

Mechanics , 285 , 69–94. doi: 10.1017/S0022112095000462

Ongley, E. (1996). Ch13: Sediment measurements. In B. Jamie & B. Richard (Eds.),

Water quality monitoring : a practical guide to the design and implementation of

freshwater quality studies and monitoring programs (1st ed., p. 400). London, U.K.:

E & FN SPON.

March 8, 2020, 12:07am



: X - 9

Figure S1. A comparison between observed WSE at 100B and modeled ones using

different roughness height.

Figure S2. The variation of mean absolute error (MAE) between modeled and observed

WSE at six locations using different roughness parameters. Black and red vertical lines

represent the optimal roughness height using one-ks and two-ks strategy.

March 8, 2020, 12:07am



X - 10 :

Figure S3. The roughness height on 50 pieces of stream interpolated from the 6 globally

optimal roughness parameter (blue circle) (a) and the decomposition of the streambed into

50 pieces (b).
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Figure S4. A comparison of WSE at different time step at 100B, 100N, 100D, LI,

100H, and 100F.
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Figure S5. A comparison of WSE at 100B from observation 1, observation 2, and

observation 2 after alignment (a), the differences in WSE between observation 1 and

observation 2 and that between observation 1 and observation 2 after alignment (b), and

the mean and standard deviation between observation 1 and observation 2 with a time

shift ts (c).

Figure S6. A sketch showing how to generate cross-sections perpendicular to the river

centerline.
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Figure S7. The distribution of dynamic pressure on a mm scale resolution riverbed in

Pennsylvania. (a) Dynamic pressure plotted on the streambed; (b) 3D view of the dynamic

pressure distribution; (c) top view of the dynamic pressure distribution; (d) probability

density function of the dynamic pressure on the bed; (e-f), variations of normalized dy-

namic pressure head along the spanwise (y) and streamwise (x) direction. Horizontal

and vertical lines on (c) denote locations y1-y6 (bottom to top) and x1-x6 (left to right)

respectively. The water depth, flow velocity, standard deviation of the streambed and the

median particle size is 0.168 m, 0.5 m/s, 0.028 m, and 0.06 m, respectively. More details

of the data can be found as the case BC1 in Chen et al. (2019).
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Figure S8. The locations of bathymetry minimum, water depth maximum, and shear

stress maximum along the river centerline at 23PM Jul-2-2013.

Figure S9. The vortex structure in the Columbia River (a,b) and near a streambed in

Pennsylvania (c,d). (b) is the zoom in of the red box in (a). The lowest and highest points

on the streambed are 0.01 and 0.19 m. (c,d) show vortex structure below and above 0.1

m. The vortex structure is quantified by λ2 (Jeong & Hussain, 1995). More details of the

data can be found as the case BC1 in Chen et al. (2019).
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Figure S10. Variations of the fitting parameters for water depth along the streamwise

coordinate.

Figure S11. Distribution of the difference between total pressure modeled with a fine

mesh and a coarse mesh (a), and the 1:1 plot of the total pressure from the fine mesh and

the coarse mesh (b).
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Figure S12. A comparison of the bed shear stress interpolated by Matlab code (a) and

ParaView (b).

Table S1. Horizontal coordinates and bed elevation of survey locations.

Station x (m) y (m) zb (m)

100B 555.63 1619.60 117.69

100N 6759.03 5882.76 116.26

100D 8516.19 8082.07 119.05

LI 12580.24 10298.23 113.74

100H 13260.85 9756.13 114.45

100F 16676.44 4429.60 110.77

100HD 15451.55 7581.22 112.61

Table S2. Coefficients of k − ω turbulence model

β∗ αω1 αω2 αk1 αk2 β1 β2 γ1 γ1 a1 b1 c1 Cµ

0.09 0.5 0.856 0.85 1 0.075 0.0828 0.555556 0.44 0.31 1 10 0.09
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