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Abstract

Across temperate North America, interannual variability (IAV) in gross primary production (GPP) and net ecosystem exchange

(NEE), and their relationship with environmental drivers, are poorly understood. Here, we examine IAV in GPP and NEE

and their relationship to environmental drivers using two state-of-the-science flux products: NEE constrained by surface and

space-based atmospheric CO2 measurements over 2010–2015 and satellite up-scaled GPP from FluxSat over 2001-2017. We

show that the arid western half of temperate North America provides a larger contribution to IAV in GPP (104% of east) and

NEE (127% of east) than the eastern half, in spite of smaller magnitude of annual mean GPP and NEE. This occurs because

anomalies in western ecosystems are temporally coherent across the growing season leading to an amplification of GPP and

NEE. In contrast, IAV in GPP and NEE in eastern ecosystems are dominated by seasonal compensation effects, associated with

opposite responses to temperature anomalies in spring and summer. Terrestrial biosphere models in the MsTMIP ensemble

generally capture these differences between eastern and western temperate North America, although there is considerable spread

between models.

1



manuscript submitted to Global Biogeochemical Cycles

Contrasting regional carbon cycle responses to seasonal1

climate anomalies across the east-west divide of2

temperate North America3

B. Byrne1, J. Liu1,2, A. A. Bloom1, K. W. Bowman1, Z. Butterfield3,4

J. Joiner4, T. F. Keenan5,6, G. Keppel-Aleks3, N. C. Parazoo1, and Y. Yin2
5

1Jet Propulsion Laboratory, California Institute of Technology, CA, USA6
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA7
3Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI,8

USA9
4Goddard Space Flight Center, Greenbelt, MD 20771, USA10

5Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California,11

USA12
6Department of Environmental Science, Policy and Management, University of California, Berkeley,13

Berkeley, California, USA14

Key Points:15

• GPP and NEE IAV in western temperate North America is characterized by am-16

plification, with enhance uptake in cooler-wetter conditions.17

• GPP and NEE IAV in eastern temperate North America is characterized by com-18

pensating anomalies between spring and summer.19

• The MsTMIP models generally capture these east-west differences in NEE and20

GPP IAV.21
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Abstract22

Across temperate North America, interannual variability (IAV) in gross primary produc-23

tion (GPP) and net ecosystem exchange (NEE), and their relationship with environmen-24

tal drivers, are poorly understood. Here, we examine IAV in GPP and NEE and their25

relationship to environmental drivers using two state-of-the-science flux products: NEE26

constrained by surface and space-based atmospheric CO2 measurements over 2010–201527

and satellite up-scaled GPP from FluxSat over 2001–2017. We show that the arid west-28

ern half of temperate North America provides a larger contribution to IAV in GPP (104%29

of east) and NEE (127% of east) than the eastern half, in spite of smaller magnitude of30

annual mean GPP and NEE. This occurs because anomalies in western ecosystems are31

temporally coherent across the growing season leading to an amplification of GPP and32

NEE. In contrast, IAV in GPP and NEE in eastern ecosystems are dominated by sea-33

sonal compensation effects, associated with opposite responses to temperature anoma-34

lies in spring and summer. Terrestrial biosphere models in the MsTMIP ensemble gen-35

erally capture these differences between eastern and western temperate North America,36

although there is considerable spread between models.37

1 Introduction38

Interannual variations (IAV) in climate are a major driver of IAV in gross primary39

productivity (GPP) and net ecosystem exchange (NEE). Understanding the relationship40

between ecosystems and climate variability is important for predicting the response of41

ecosystems to climate variability, such as droughts and heatwaves, as well as the response42

of ecosystems to climate change (Cox et al., 2013; Baldocchi, Ryu, & Keenan, 2016; Niu43

et al., 2017). However, the mechanisms underlying the responses of ecosystems to cli-44

mate variability are still not well understood, and vary between ecosystems (Niu et al.,45

2017; Baldocchi et al., 2018).46

A long standing challenge in carbon cycle science has been to study IAV in GPP47

and NEE on large sub-continental spatial scales (∼1,000s km). Estimating fluxes on these48

scales from “bottom-up” estimates of ecosystem function based of site level experiments49

is challenging due to spatial heterogeneity. Conversely, top-down estimates of NEE ob-50

tained through observations of atmospheric CO2 have generally only provided constraints51

on CO2 fluxes on the largest (continental-to-global) scales, due to sparsity of observa-52

tions.53

Recently, space-based measurements of column-averaged dry-air mole fractions of54

CO2 (XCO2) have allowed for much expanded observational of coverage, leading to top-55

down NEE constraints on smaller spatial scales (Guerlet et al., 2013; Ishizawa et al., 2016;56

J. Liu et al., 2017, 2018; Bowman et al., 2017; Byrne et al., 2017, 2019, 2020). Further-57

more, advances in remote sensing techniques have allowed for more reliable GPP esti-58

mates from space from solar induced fluorescence (SIF) measurements (Frankenberg et59

al., 2011; Joiner et al., 2011; Parazoo et al., 2014; Yang et al., 2015; Sun et al., 2017; Byrne60

et al., 2018) and up-scaled flux tower GPP estimates using MODIS observations (Jung61

et al., 2020; Joiner et al., 2018).62

In this study, we examine the ability of two novel CO2 flux constraints to recover63

IAV in GPP and NEE on sub-continental scales within temperate North America. We64

employ state-of-the-science observationally-constrained GPP and NEE products for ex-65

amining IAV. The FluxSat GPP product (Joiner et al., 2018) is based on an MODIS re-66

mote sensing calibrated against global eddy covariance flux measurements, and has been67

found to produce more realistic IAV in GPP when compared to FLUXNET sites rela-68

tive to other upscaled GPP products (Joiner et al., 2018). The flux inversion NEE prod-69

uct used here is reported in Byrne et al. (2020). This product is derived from a global70

CO2 flux inversions, and is unique in that it assimilates both surface- and space-based71
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CO2 measurements, providing increased observational constraints relative to single dataset72

NEE flux inversion products.73

For this analysis we focus on temperate North America, which we have chosen for74

two reasons. First, temperate North America is comparatively well sampled by both eddy75

covariance sites (which are used to calibrate FluxSat GPP estimates) and surface-based76

CO2 measurements (which are assimilated in the NEE flux inversions). Second, temper-77

ate North America has a substantial east–west gradient in moisture. Much of western78

temperate North America (particularly the southwest) is characterized by moisture lim-79

ited ecosystems, while the east is less moisture limited and has many forest and crop-80

land ecosystems. These different ecosystems types likely have differences in their responses81

to climate variability.82

Globally, moisture limited ecosystems have been shown to play an out-sized role83

in internnual variability (IAV) of the atmospheric CO2 growth rate (Poulter et al., 2014;84

Ahlström et al., 2015; Huang et al., 2016; Z. Fu et al., 2017), relative to what would be85

expected given their productivity. The reason that these ecosystem experience such large86

IAV in CO2 net uptake is thought to be linked to moisture availability (Huang et al.,87

2016). In these ecosystems, negative GPP anomalies are driven by warm-dry conditions88

and positive GPP anomalies are driven by cool-wet conditions (Ahlström et al., 2015).89

In turn, NEE anomalies in these ecosystems are strongly associated with variations in90

GPP (Ahlström et al., 2015). Consistent with these large scale analyses, site level ob-91

servations of moisture limited ecosystems in southwestern North America have shown92

strong sensitivity to water availability for GPP and NEE (Biederman et al., 2016, 2018).93

Still, the relative impact of these ecosystems on temperate North American carbon fluxes94

is not well characterized.95

IAV in eastern temperate North American ecosystems has been shown to have sea-96

sonally compensating effects, defined as temporally anti-correlated anomalies during a97

growing season. For example, a number of studies have found that enhanced GPP early98

in the growing season is associated with reduced GPP later in the growing season over99

mid-latitude cropland and forest ecosystems (Buermann et al., 2013; Wolf et al., 2016;100

Buermann et al., 2018; Butterfield et al., 2020). There are several possible mechanisms101

for explaining seasonal compensation effects. Enhanced spring GPP is associated with102

warmer spring temperatures (Angert et al., 2005; Wolf et al., 2016). Warmer temper-103

atures early in the growing season result in increased evapotranspiration leading to re-104

duced soil moisture later in the growing season, which adversely impacts productivity105

(Parida & Buermann, 2014; Wolf et al., 2016; Z. Liu et al., 2020). Direct phenological106

mechanisms may also contribute to seasonal compensation effects, as the timing of spring107

budburst and autumn senescence has been found to be correlated on the scale of indi-108

vidual organisms and the landscape (Y. S. Fu et al., 2014; Keenan & Richardson, 2015).109

The impact of seasonal compensation effects on annual GPP anomalies has been stud-110

ied across northern forests and croplands using upscaled FLUXNET GPP (Buermann111

et al., 2013), Normalized difference vegetation index (NDVI) (Buermann et al., 2018) and112

SIF (Butterfield et al., 2020), while seasonal compensation in NEE has been examined113

for the 2011 Texas-Mexico drought (J. Liu et al., 2018), 2012 temperate North Amer-114

ica drought (Wolf et al., 2016; J. Liu et al., 2018), and 2018 MidWest floods (Yin et al.,115

2020). However, the implications of seasonal compensation effects on variability in the116

carbon balance across multiple years over temperate North America have not yet been117

examined.118

Using the 6 years of NEE estimates from Byrne et al. (2020) in combination with119

17 years (2001–2017) GPP from FluxSat, we examine the importance of seasonal com-120

pensation effects in GPP and NEE across North America. First, we characterize the ex-121

tent to which seasonal compensation effects impact growing season GPP and NEE anoma-122

lies across North America, and their dependence on temperature and moisture anoma-123

lies. Then, we examine the relative contribution of eastern and western North America124

–3–
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to the mean seasonal cycle and IAV of GPP and NEE for temperate North America as125

a whole, and compare our data-driven estimates to modelled fluxes from the Multi-scale126

Synthesis and Terrestrial Model Intercomparison Project (MsTMIP).127

This paper is organized as follows. Section 2 describes the data sets used in this128

study and Sec. 3 describes the methods. Section 4 describes the results: We first describe129

the dominant modes of IAV recovered the FluxSat GPP and flux inversion NEE (Sec 4.1),130

then examine the consistency of these results with independent CO2 flux estimates (Sec. 4.2).131

Sec. 4.3 examines the relationship between IAV in ecosystem CO2 fluxes with IAV in en-132

vironmental variables, and Sec. 4.4 examines the implication of east-west differences in133

IAV for the North American carbon cycle and the ability of the MsTMIP ensemble to134

reproduce these differences. Section 5 provides a discussion of the results found in this135

study, with Sec. 5.1 discussing possible mechanisms explaining east–west differences in136

IAV and Sec. 5.2 presenting the implications for the temperate North American carbon137

sink. Finally, Sec. 6 presents the conclusions.138

2 Data139

We utilize a number of CO2 flux datasets to examine IAV in GPP and NEE over140

temperate North America, as-well as environmental data to examine the relationship be-141

tween CO2 fluxes and climate variability. Table 2 give a list of datasets used in this study,142

with some additional details provided in this section and in the supplementary materi-143

als.144

2.1 GPP and related products145

To examine IAV in GPP we employ the FluxSat GPP product. We also examine146

the robustness of these results through comparison with Global Ozone Monitoring Experiment-147

2 (GOME-2) SIF, Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and148

FLUXCOM upscaled GPP estimates.149

FluxSat version 1 (Joiner et al., 2018) estimates GPP based primarily on Nadir BRDF-150

Adjusted Reflectances (NBAR) from the MODerate-resolution Imaging Spectroradiome-151

ter (MODIS) MYD43D product (Schaaf et al., 2002) that uses data from MODIS instru-152

ments on National Aeronautics and Space Administration (NASA) Aqua and Terra satel-153

lites. The GPP estimates are calibrated with the FLUXNET 2015 GPP derived from154

eddy covariance flux measurements at Tier 1 sites (Baldocchi et al., 2001). The data set155

also employs SIF from the Global Ozone Monitoring Experiment 2 (GOME-2) on the156

EUMETSAT MetOp-A satellite to identify regions of high productivity crops. FluxSat157

was evaluated by comparison with independent flux measurements (i.e., not used in the158

training) and compared very well both in terms of IAV and site-to-site variability.159

For comparison with SIF, we use the GOME–2 version 28 (V28) 740 nm terrestrial160

SIF data (Joiner et al., 2013, 2016). SIF is the emission of radiation by chlorophyll dur-161

ing photosynthesis and thus provides a proxy for GPP (Papageorgiou & Govindjee, 2007).162

A “daily correction” is performed to estimate daily average SIF from the instantaneous163

measurements.164

We examine MODIS NDVI over the peirod 2001–2015. We downloaded MODIS/Terra165

Monthly Vegetation Indices Global 1x1 degree V005 (MODVI) dataset from Earthdata166

(https://earthdata.nasa.gov). The global monthly gridded MODIS vegetation indices prod-167

uct is derived from the standard 0.05 CMG MODIS Terra Vegetation Indices Monthly168

product MOD13C2 (Huete et al., 2002) collection-5.169

FLUXCOM RS+METEO products are generated using upscaling approaches based170

on machine learning methods that integrate FLUXNET site level observations, satellite171

remote sensing, and meteorological data (Jung et al., 2017, 2020; Tramontana et al., 2016)172
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Table 1. Table of datasets used in this study. Time period indicates time range examined in

this study. The spatial resolution of the datasets are given for gridded data and the vegetation

type if given for FLUXNET sites. All gridded data sets are regridded from the listed spatial

resolution to 4◦ × 5◦ by area-weighting.

Dataset Time period
Spatial resolution
/ Vegetation type

Reference

GPP and related products (Sec. 2.1)

FluxSat 2001–2017 0.5◦ × 0.5◦ Joiner et al. (2018)
GOME-2 SIF 2007–2015 0.5◦ × 0.5◦ Joiner et al. (2016)

NDVI 2001–2015 1.0◦ × 1.0◦ Huete et al. (2002)
FLUXCOM 2000–2013 0.5◦ × 0.5◦ Tramontana et al. (2016)

Flux inversion NEE (Sec. 2.2)

Byrne et al. 2010–2015 4.0◦ × 5.0◦ Byrne et al. (2020)
CT2017 2000–2016 1.0◦ × 1.0◦ Peters et al. (2007)
CT-L 2007–2015 1.0◦ × 1.0◦ Hu et al. (2019)
CAMS 2000–2018 1.875◦ × 3.75◦ Chevallier et al. (2010)

Model CO2 fluxes (Sec. 2.3)

MsTMIP 1980-2010 0.5◦ × 0.5◦ Huntzinger et al. (2016)

Environmental Data (Sec. 2.4)

Soil Temperature 2001–2017 50 km× 50 km Reichle et al. (2017)
ESA CCI 2001–2017 0.25◦ × 0.25◦ Y. Y. Liu et al. (2011, 2012)

GPCP 2001–2017 2.5◦ × 2.5◦ Adler et al. (2003)
GRACE TWS 2010–2014 1.0◦ × 1.0◦ Tapley et al. (2004)

FLUXNET sites

US-ARM 2003–2012 Croplands Biraud et al. (2016)
US-Blo 1997–2007 Evergreen Needleleaf Forests Goldstein (2016)

US-GLE 2005–2014 Evergreen Needleleaf Forests Massman (2016)
US-Los 2000–2010, 2014 Permanent Wetlands Desai (2016c)

US-MMS 1999–2014 Deciduous Broadleaf Forests Novick and Phillips (2016)
US-Ne1 2002–2013 Croplands Suyker (2016a)
US-Ne2 2002–2013 Croplands Suyker (2016b)
US-Ne3 2002–2013 Croplands Suyker (2016c)
US-NR1 1999–2014 Evergreen Needleleaf Forests Blanken et al. (2016)
US-PFa 1996–2014 Mixed Forests Desai (2016a)
US-SRG 2008–2014 Grasslands Scott (2016d)
US-SRM 2004–2014 Woody Savannas Scott (2016a)
US-Ton 2001-2014 Woody Savannas Baldocchi and Ma (2016)

US-UMB 2000–2014 Deciduous Broadleaf Forests Gough et al. (2016a)
US-UMd 2007–2014 Deciduous Broadleaf Forests Gough et al. (2016b)
US-Var 2000–2014 Grasslands Baldocchi, Ma, and Xu (2016)
US-WCr 1999–2006, 2010–2014 Deciduous Broadleaf Forests Desai (2016b)
US-Whs 2007–2014 Open Shrublands Scott (2016c)
US-Wkg 2004–2014 Grasslands Scott (2016b)

–5–
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to generate gridded 0.5◦×0.5◦ daily CO2 flux estimates. Up-scaled GPP is calculated173

using three different machine learning algorithms: random forests (RF), multivariate re-174

gression splines (MARS), and an artificial neural network (ANN). In this study we ex-175

amine RF GPP, MARS GPP and ANN GPP regridded to 4◦×5◦ and monthly values.176

2.2 Flux inversion NEE177

To examine IAV in NEE we employ the combined “GOSAT+surface+TCCON”178

of Byrne et al. (2020). This product is unique in that it assimilates both surface- and179

space-based CO2 measurements, providing increased observational constraints relative180

to other top-down NEE flux inversion products. We examine the robustness of these re-181

sults through comparison with three independent CO2 flux inversion products assimi-182

lating only flask and in situ CO2 observations: CarbonTracker 2017 (CT2017) (Peters183

et al. (2007), with updates documented at184

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/), CarbonTracker Lagrange (CT-185

L) (Hu et al., 2019), and Copernicus Atmosphere Monitoring Service (CAMS) greenhouse186

gases inversion v18r3 (Chevallier et al., 2005, 2010; Chevallier, 2013; Remaud et al., 2018),187

downloaded from https://atmosphere.copernicus.eu/. Detailed descriptions of these flux188

inversions are provided in the supplementary materials (Text S1.)189

The NEE fluxes of Byrne et al. (2020) are produced from a flux inversion analy-190

ses spanning 2010–2015. The flux inversions assimilate CO2 measurements from the Green-191

house Gases Observing Satellite (GOSAT), Total Carbon Column Observing Network192

(TCCON), and the surface in situ and flask measurements network concurrently. Four193

dimensional variational (4-DVar) assimilation was implemented to estimate 14-day scal-194

ing factors for prior NEE and ocean fluxes at 4◦×5◦ spatial resolution using the Green-195

house gas framework - Flux model (GHGF-Flux). The optimized fluxes are taken to be196

the average of three flux inversions that employ different prior NEE fluxes and errors.197

These three flux inversions employ prior fluxes from the simple biosphere model (SiB3),198

the Carnegie-Ames-Stanford Approach (CASA) model, or FLUXCOM. Posterior NEE199

fluxes are aggregated to monthly mean values for this analysis. A detailed description200

of the experimental set up and evaluation of the fluxes can be found in Byrne et al. (2020).201

We also contrast the posterior IAV of the “GOSAT+surface+TCCON” ensemble of in-202

versions with the flux inversions assimilating only surface-based flask and in situ meansure-203

ments, refered to as “surface-only”. These data were downloaded from https://cmsflux.jpl.nasa.gov/.204

2.3 MsTMIP models205

MsTMIP is a model inter-comparison experiment conducted by the temperate North206

American Carbon Program (Huntzinger et al., 2013; Wei et al., 2014). The project is de-207

signed to provide a consistent and unified modeling framework in order to isolate, inter-208

pret, and address differences in process parameterizations among TBMs. In this anal-209

ysis, we examine the modelled NEE (defined here as MsTMIP NEP×−1) and GPP from210

the MsTMIP Version 1 SG3 simulation, in which the models are driven by CRU+NCEP211

reanalysis on a global 0.5◦ × 0.5◦ spatial grid with time-varying land-use history and212

atmospheric CO2, but with nitrogen deposition kept constant. We examine modeled fluxes213

over the period 1980–2010. These data were downloaded from the ORNL DAAC (Huntzinger214

et al., 2016).215

2.4 Environmental data216

Anomalies in CO2 fluxes are compared with anomalies in environmental variables217

that are expected to drive carbon cycle anomalies. In particular, we focus our analysis218

on the relationship between anomalies in CO2 fluxes with anomalies in soil temperature219

and soil moisture.220

–6–
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Soil temperatures are from the MERRA-2 (Reichle et al., 2011, 2017; Gelaro et al.,221

2017) reanalysis. We average the soil temperature over levels 1–3 (TSOIL1,TSOIL2,and222

TSOIL3), which reaches a depth of 0.73 m. These data were downloaded from the God-223

dard Earth Sciences Data and Information Services Center at monthly temporal reso-224

lution and 4◦×5◦ spatial resolution (regridded from model horizontal resolution of ∼50 km).225

The ESA CCI combined surface soil moisture product (Y. Y. Liu et al., 2011, 2012)226

was downloaded from https://www.esa-soilmoisture-cci.org/. We use the combined ac-227

tive and passive soil moisture product. Additional datasets are used for supplemental228

analysis of the relationship between carbon fluxes and moisture stress. We obtained pre-229

cipitation estimates from the Global Precipitation Climatology Project (GPCP) Monthly230

Analysis Product. We use GPCP Version 2.3 Combined Precipitation Dataset (Adler231

et al., 2003). We also use RL06 monthly mass grids of terrestrial water storage (TWS)232

anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) mis-233

sion (Tapley et al., 2004; Flechtner et al., 2014; Landerer & Swenson, 2012).234

2.5 FLUXNET235

The FLUXNET network consists of a number of towers across the globe measur-236

ing trace gas concentrations and micro-meteorological variables. From these data, the237

eddy covariance method is applied to estimate fluxes of energy and trace gases between238

the surface and atmosphere. In this study, we utilize monthly GPP and NEE estimates239

from a number of FLUXNET2015 sites (Pastorello et al., 2020). For GPP estimates we240

average together the nightime and daytime partitioning estimates. In this study, we ex-241

amine FLUXNET sites over temperate North America with six or more full years of ob-242

servations. This includes the following sites: ARM Southern Great Plains site- Lamont243

(US-ARM), Blodgett Forest (US-Blo), Glacier Lakes Ecosystem Experiments Site (US-244

GLE), Lost Creek (US-Los), Morgan Monrow State Forest (US-MMS), Mead - irrigated245

continuous maize site (US-Ne1), Mead - irrigated maize-soybean rotation site (US-Ne2),246

Mead - rainfed maize-soybean rotation site (US-Ne3), Niwot Ridge Forest (US-NR1), Park247

Falls (US-PFa), Santa Rita Grassland (US-SRG), Sanata Rita Mesquite (US-SRM), Tonzi248

Ranch (US-Ton), University of Michigan Biological Station (US-UMB), University of Michi-249

gan Biological Disturbance (US-UMd), Vaira Ranch- Ione (US-Var), Willow Creek (US-250

WCr), Walnut Gulch Lucky Hills Shrub (US-Whs) and Walnut Gulch Kendall Grass-251

lands (US-Wkg). These data were obtained from https://fluxnet.org.252

3 Methods253

We focus our analysis on quantifying the relative contribution of amplification and254

compensation to IAV in NEE and GPP over temperate North America. First, we de-255

fine how anomalies are calculated (Sec. 3.1), then we introduce two metrics for quanti-256

fying amplification and compensation in IAV (Sec. 3.2). We also show that taking the257

ratio of the magnitude of compensation to the magnitude of amplification provides a met-258

ric of the relative contribution of each quantity to IAV. Finally, we introduce how sin-259

gular value decomposition (SVD) can be employed to extract the dominant modes of IAV260

between years (Sec. 3.3), which can then be compared with the metrics of amplification261

and compensation.262

3.1 Definition of anomalies263

Anomalies are denoted with a “∆” for all quantities (e.g., ∆NEE). To calculate264

anomalies, the mean seasonal cycle over a baseline period is removed. The baseline pe-265

riod employed is 2010–2015 for flux inversion NEE, 2003–2014 for GRACE TWS, and266

2001–2017 for GPP, soil temperature, soil moisture, and precipitation. In addition, a lin-267

ear trend is removed for all datasets except the NEE flux inversion (because the flux in-268

–7–
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version timeseries is only six-years). Sensitivity tests found that results were not sensi-269

tive to the time period chosen for the baseline.270

3.2 Quantifying IAV features271

We focus our analysis on the seasonal compensation component and amplification272

component of IAV over the growing season. For NEE, we define the seasonal compen-273

sation component (NEEcomp) and seasonal amplification component (NEEamp) as,274

∆NEEcomp = ∆NEEJul−Aug−Sep −∆NEEApr−May−Jun, (1)

∆NEEamp = ∆NEEJul−Aug−Sep + ∆NEEApr−May−Jun, (2)

where ∆NEEApr−May−Jun and ∆NEEJul−Aug−Sep are the mean anomalies across April–275

June and July–September, respectively. A schematic of NEE anomalies leading to pos-276

itive and negative amplification and compensation components are shown in Figure S1.277

The amplification component indicates a net increase or decrease in carbon uptake over278

the growing season. For example, if NEE anomalies are positive across the growing sea-279

son (Fig. S1a), this will imply positive amplification and enhanced CO2 emitted to the280

atmosphere (∆NEEamp > 0). The compensation component indicates anti-correlated281

anomalies between the spring and summer. For example, if NEE anomalies are positive282

in the spring but negative in the summer (Fig. S1b), this will imply a negative compen-283

sation over the growing season (∆NEEcomp < 0). We define compensation and ampli-284

fication for GPP in the same way.285

We examine the relative magnitudes of these two components by taking the ratio286

of the mean absolute seasonal compensation component to the mean absolute amplifi-287

cation component. For NEE, this ratio is defined as:288

NEERATIO =

∑2015
y=2010 |∆NEEcomp|∑2015
y=2010 |∆NEEamp|

. (3)

The quantity NEERATIO provides a measure of the relative magnitudes of the compen-289

sation and amplification components. An NEERATIO of one indicates that the amplifi-290

cation and compensation components are of equal magnitude. If the magnitude of com-291

pensation is generally larger than amplification then the ratio will be larger than one.292

If amplification dominates then the ratio will be less than one. The motivation for ex-293

amining these components as a ratio is that it removes the dependence of the absolute294

magnitudes of IAV. In this analysis, we are most interested in examining relative differ-295

ences in this NEERATIO across temperate North America. That is, we aim to determine296

which regions have a larger component of seasonal compensation relative to the ampli-297

fication component, and what ecological and environmental variables drive spatial struc-298

tures. It should be noted that this metric could result in very large values when the mag-299

nitude of amplification is very small. A similar metric developed by Butterfield et al. (2020)300

addresses this issue by examining the ratio of the mean anomaly across a number months301

relative to the mean of the absolute anomaly for each month. However, we feel that NEERATIO302

more directly compares the compensation and amplification components as defined in303

this study.304

Note that we split the growing season into the spring (April-May-June) and sum-305

mer (July-August-September). The spring roughly covers the period from the spring equinox306

(March 20) to the summer solstice (June 20), while the summer roughly covers the pe-307

riod from the summer solstice to the fall equinox (Sep 22). We note that these defini-308

tions are lagged by one month from the meteorological seasons.309

3.3 Singular value decomposition310

We employ SVD to examine the modes of variability in monthly ∆NEE and ∆GPP311

between years. SVD is a method to decompose a matrix into a set of singular vectors312
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and singular values (Golub & Reinsch, 1971), where the singular vectors are a set of or-313

thogonal basis vectors. In plain english, this is a method that performs a linear trans-314

formation to a coordinate system that most simply explains the data within a matrix,315

with the first singular vector explaining the largest fraction of variability within the ma-316

trix. In this analysis, we perform SVD on ∆GPP and ∆NEE arranged into month–by–317

year matrices. Thus, the singular vectors give the modes of monthly variability between318

years in ∆GPP and ∆NEE. The fraction of overall variance explained by the leading319

singular vector “i” is then calculated using the expression R2 = s2
i /

∑
j s

2
j , where sj320

are the singular values.321

4 Results322

4.1 Amplification dominates in the west and compensation dominates323

in the east324

We examine seasonal compensation and amplification in ∆GPP and ∆NEE over325

temperate North America in two steps. First, we look at the relative magnitudes of com-326

pensation and amplifications at high spatial resolution (4◦×5◦ grid cells). It is impor-327

tant to emphasize that we do not expect that the CO2 flux inversions fully recovers NEE328

IAV at this spatial scale. Instead, we employ this analysis to examine the large-scale spa-329

tial structures of amplification and compensation over temperate North America. Sec-330

ond, we aggregate the NEE and GPP anomalies into large spatial regions and perform331

SVD analysis to determine the dominant modes of IAV. We then compare the dominant332

modes of IAV in the data to the amplification and compensation metrics of IAV.333

Figure 1 shows NEERATIO for 2010–2015 and GPPRATIO for 2001–2017 over sub-334

tropical and temperate North America at 4◦×5◦ spatial resolution (GPPRATIO for 2010–335

2015 is shown in Fig. S2). A ratio of one indicates that the magnitude of the compen-336

sation and amplification components are equal. Larger ratios indicate that the magni-337

tude of the compensation component is larger, while ratios less than one imply the op-338

posite. Spatially, seasonal compensation is most dominant in eastern temperate North339

America (largest ratios), particularly around the Midwest. In contrast, the amplifica-340

tion component of IAV is most dominant in western temperate North America, partic-341

ularly in the southwest. Figure 1c and 1d show NEERATIO and GPPRATIO as a func-342

tion of the mean Apr-Sep soil moisture and soil temperature for each 4◦×5◦ grid cell.343

Larger ratios are found to cluster in the wetter areas while smaller ratios are generally344

found in the drier areas, consistent with the climatological difference between the west345

and east of temperate North America.346

To further examine differences in IAV between eastern and western temperate North347

America, we aggregate gridcells into western and eastern regions (Fig. 2a). We then per-348

form SVD on matrices of monthly ∆NEE and ∆GPP (with months as the rows and years349

as columns) over these two regions. This analysis allows us to compute basis vectors that350

explain modes of variability in monthly ∆NEE and ∆GPP between years. The first and351

second basis vectors, which explain the majority of variability in ∆NEE and ∆GPP are352

shown in Fig. 2. In the west, the first basis vector shows amplification structure (with353

correlated anomalies between spring and summer) for both GPP and NEE. Furthermore,354

this first basis explains the majority of variability in NEE and GPP between years, as355

the first singular value explains 66% and 76% of the variance for GPP and NEE, respec-356

tively (Fig. 2). Conversely, the eastern region is dominated by seasonal compensation357

in GPP and NEE. The first singular vector has a compensation shape, where positive358

anomalies in the spring are associated with negative anomalies in the summer. This mode359

of variability explains the majority of year-to-year variability for GPP (59%) and about360

half of the variability for NEE (47%) (Fig. 2). Thus, these aggregated regions are gen-361

erally reflective of the IAV seen at the grid cell level, showing amplification is dominant362

in the west and compensation is dominant in the east. We further examine the robust-363
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Figure 1. Relative magnitudes of seasonal compensation and amplification. (a) NEERATIO

over 2010–2015 and (b) GPPRATIO over 2001–2017 at 4◦ × 5 ◦. (c) NEERATIO and (d) GPPRATIO

plotted as a function of Apr-Sep mean soil temperature (K) and soil moisture (m3 m−3).

ness of the NEE SVD analysis by performing the SVD analysis on each of the three in-364

dividual inversions from Byrne et al. (2020) (Figure S3). We find consistent results, where365

the first singular vector is amplification-like in the west (explaining 59-83% of the vari-366

ance) and compensation-like in the east (explaining 37-47% of the variance).367

4.2 East-west NEE differences seen in multiple data sets368

The NEE fluxes employed in this study only cover a six-year period, thus is it pos-369

sible that the results found here are specific to this period and are not generalizable across370

time. In this section, we compare the relative magnitudes of amplifications and compen-371

sation in NEE for several flux inversions and for FLUXNET eddy covariance sites, which372

cover a variety of time periods.373

The NEE fluxes used in this analysis are unique, in that they incorporate CO2 ob-374

servational constraints of space-based XCO2
from the Greenhouse Gases Observing Satel-375

lite (GOSAT), surface-based XCO2 measurements from the total column carbon observ-376

ing network (TCCON), and CO2 measurements from the network of flask and in situ sites.377

This type of inversion is temporally limited due the fact that GOSAT was launched in378

2019. Byrne et al. (2020) argue that this combined flux inversion (referred to as “GOSAT+surface+TCCON”)379

provides improved CO2 flux estimates relative to flux inversions that only assimilate flask380

and in situ measurements (referred to as “surface-only”). Therefore, we may expect that381

flask and in situ CO2 flux inversions may not separate IAV between eastern and west-382

ern temperate North America as distinctly. Nevertheless, we examine whether similar383

east-west differences are seen for a series of in situ and flask flux inversions.384

Figure 3 shows the mean magnitude of the amplification components, compensa-385

tion components, and NEERATIO for a set of flux inversions and FLUXNET sites. The386

set of GOSAT+surface+TCCON fluxes inversions from Byrne et al. (2020) (three inver-387

sion set-ups and ensemble mean) show distinct differences between eastern and western388

temperate North America. The surface-only flux inversions also show differences between389

eastern and western temperate North America, but differences are reduced and scatter390
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Figure 2. (a) The spatial extent of western (orange) and eastern (yellow) regions of temper-

ate North America. (b) First and second singular vectors resulting from the decomposition of

the IAV in GPP over 2001–2017 for the (i) western and (ii) eastern regions of temperate North

America, and of the IAV in NEE over 2010–2015 for the (iii) western and (iv) eastern regions of

temperate North America.
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Figure 3. (a) Mean magnitude of NEE compensation versus mean magnitude of NEE ampli-

fication across multiple years. (b) NEERATIO over eastern and western temperate North America

for (left-to-right) the combined GOSAT+surface+TCCON flux inversions of Byrne et al. (2020),

the surface-only flux inversions of Byrne et al. (2020), three independent flux inversions (CT2017,

CT-L, and CAMS) that assimilate flask and in situ CO2 measurements, and FLUXNET sites

with 6+ years of data within the eastern and western domains. Partially transparent symbols

show values over 2010–2015 and solid colors are for the entire time period examined in this study

for a given dataset.

between inversions is increased, suggesting that the lower data density of assimilated ob-391

servation reduces the ability of the inversion to isolate east–west differences.392

Next, we examine a set of independent flask and in situ flux inversions that extend393

over larger time spans: CarbonTracker version CT2017 covering 2000–2016, CT-L cov-394

ering 2007–2015 (Hu et al., 2019), and CAMS covering 2000–2018. For each flux inver-395

sion, we examine the posterior fluxes over 2010-2015 and over the entire period. We find396

that all inversions show greater NEERATIO in the east than the west. However, we also397

find that the 2010–2015 period generally shows larger east–west differences. In partic-398

ular, the NEERATIO is increased in the east during 2010–2015, likely due to the temper-399

ate North American drought of 2012 (J. Liu et al., 2018; Wolf et al., 2016).400

Finally, we examine east-west differences for FLUXNET sites within the two re-401

gions, including sites with six or more full years of data. In the western domain, we in-402

clude US-Blo, US-GLE, US-NR1, US-SRG, US-SRM, US-Ton, US-Var, US-Whs and US-403

Wkg. In the eastern domain, we include US-ARM, US-Los, US-MMS, US-Ne1, US-Ne2,404

US-Ne3, US-UMd, US-UMB and US-WCr. There is considerable scatter between FLUXNET405

sites for each of the metrics examined. However, taking the mean and standard devia-406

tion of NEERATIO for sites in east and west, we find larger values in the east relative to407

the west, consistent with the flux inversion.408

Across the set of NEE estimates examined here, we consistently find that the com-409

pensation component of IAV is greater relative to the amplification component in east-410

ern temperate North America. Therefore, we find the results found for the GOSAT+surface+TCCON411

NEE fluxes examined in this study are generally supported by independent flux estimates412

across different time periods.413

Similar analysis is performed for FluxSat GPP, GOME-2 SIF, MODIS NDVI, FLUX-414

COM GPP, and FLUXNET GPP in the supplementary materials (Fig. S4). We find the415

remote sensing products show similar east-west differences, with larger GPPRATIO in the416

east. However, both FLUXCOM and FLUXNET GPP do not show substantial east-west417

differences. In general, FLUXNET sites do not show a coherent response within each re-418

gion, which is probably at-least partially due to the fact that they are site level obser-419
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Figure 4. Relationship between ∆GPP and variations in climate. Coefficient of correlation

(R) over 2001-2017 for 4◦ × 5 ◦ grid cells between (a) Apr–Jun ∆T and Apr–Jun ∆GPP, (b)

Apr-Sep ∆T and Jul–Sep ∆GPP, (c) Apr–Jun ∆M and Apr–Jun ∆GPP and (d) Apr-Sep ∆M

and Jul–Sep ∆GPP. Hatching shows grid cells for which P < 0.05.

vations rather than a large scale average. In a comparison of IAV in ecosystem produc-420

tivity by remote sensing and eddy covariance, Butterfield et al. (2020) found that FLUXNET421

sites generally showed less coherent patterns in IAV than the large-scale averaged pat-422

terns obtained from remote sensing products. FLUXCOM GPP exhibits very weak IAV423

across the regions examined here, which may partially explain why it doesn’t not show424

clear east–west differences.425

4.3 Relationship between flux anomalies and environmental drivers426

To a large extent, IAV in the carbon balance of ecosystems is expected to be driven427

by IAV in temperature and moisture (Berry & Bjorkman, 1980; Smith et al., 2011; Byrne428

et al., 2019), thus we examine the relationship between CO2 flux anomalies and anoma-429

lies in soil temperature (∆T) and soil moisture (∆M). Figure 4 shows the correlation be-430

tween ∆GPP and anomalies in climate variables over 2001–2017. Note that we corre-431

lated Jul–Sep flux anomalies with Apr–Sep climate anomalies to incorporate lagged ef-432

fects of spring climate anomalies on summer carbon cycle anomalies. We find spatial dif-433

ferences in the correlation coefficient between western and eastern temperate North Amer-434

ica. In the west, increased GPP (positive ∆GPP) is found to be correlated with cooler435

(negative ∆T) and wetter (positive ∆M) conditions during both Apr–Jun and Jul–Sep.436

The temporally coherent relationship between flux anomalies and environmental anoma-437

lies in western temperate North America suggests that cooler-wetter years will lead to438

an amplification of carbon uptake. In the east, increased GPP is correlated with warmer439

conditions during Apr–Jun, but cooler and wetter conditions during Jul–Sep. These sea-440

sonal variations in the relationship between flux anomalies and environmental variables441

suggest that seasonal compensation will occur when climate anomalies persist through-442

out the year. For example, warm years would result in increased uptake during the spring443

but decreased uptake during the summer. Similar results are found for NEE (Fig. S5)444

over 2010-2015, although correlations are generally less statistically significant. This is445

likely partially explained by the shorter time period examined and the inability of the446

flux inversion to isolate NEE anomalies to 4◦ × 5◦ spatial grid cells.447
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We now examine the seasonal cycles of GPP and NEE over the western and east-448

ern regions of temperate North America. Figure 5 shows the seasonal cycles of GPP (2001–449

2017) and NEE (2010–2015) over the western and eastern regions of temperate North450

America with different years colored by the corresponding Apr-Sep ∆T or ∆M. An ad-451

ditional plot showing the seasonal compensation and amplification components as a func-452

tion of ∆T or ∆M is shown in the supplementary materials (Fig. S6). For western tem-453

perate North America, variations in the seasonal cycle of GPP and NEE are dominated454

by an amplification component over Apr-Sep. Increased GPP and net uptake are asso-455

ciated with cooler and wetter conditions. ∆T and ∆M are strongly correlated with each456

other (R = −0.77 for 2001–2017), obscuring which variable has the largest impact on457

IAV. However, the magnitude of the correlation is slightly larger for ∆M as compared458

with ∆T for ∆NEEamp (0.91 vs 0.71) and ∆GPPamp (0.66 vs 0.63) (Table S1). IAV is459

generally weaker in eastern temperate North America (relative to the mean seasonal cy-460

cle). Temporal shifts in the seasonal cycle of GPP (∆GPPcomp) and NEE (∆NEEcomp)461

provide the largest component of IAV. Shifts of GPP and NEE to earlier in the year are462

associated with positive Apr-Sep ∆T (Fig. 5b (i) and (iii)), suggesting that a warm spring463

drives the shift and persistent warming during summer reduces the productivity and net464

uptake. Variations in Apr-Sep ∆M are more closely tied to an amplification component465

of ∆GPP (R=0.72) and ∆NEE (R=0.78) (Table S1). This implies that increased soil466

moisture is associated with increased GPP but reduced net uptake, suggesting that res-467

piration fluxes increase more than GPP with increased soil moisture. This result is con-468

sistent with Z. Liu et al. (2018), but contradicted (for droughts) by Schwalm et al. (2010).469

Thus, more research is needed on this topic.470

4.4 Impact of amplification and compensation for net CO2 fluxes471

The presence of temporally coherent spring–summer flux anomalies in western tem-472

perate North America acts to increase the annual net flux anomalies. In contrast, anti-473

correlated spring–summer flux anomalies in eastern temperate North America acts to474

reduce the net annual flux anomalies. Here we examine the relative contribution of east-475

ern and western temperate North America to the mean seasonal cycle and anomalies of476

GPP and NEE (Figure 6). We find that monthly NEE and GPP fluxes are larger in east-477

ern temperate North America than in western temperate North America (7.6× larger478

in east than west for GPP, 3.5× for NEE), reflecting a more productive carbon cycle.479

However, due to seasonal compensating anomalies, annual anomalies in GPP and NEE480

are larger in the west than the east (1.04× larger in west than east for GPP, and 1.27×481

for NEE). Thus, growing season IAV in NEE and GPP is larger in the western temper-482

ate North America, despite a more productive carbon cycle in eastern temperate North483

America. The impacts of these differences in IAV between these two regions are evident484

in the timeseries of ∆GPP and ∆NEE anomalies for the two regions (Fig. S7). Monthly485

anomalies in western temperate North America are coherent for individual years lead-486

ing to increased annual anomalies, while anomalies in the east show seasonal compen-487

sation, reducing annual net anomalies.488

We now investigate the ability of the MsTMIP models to recover observationally-489

constrained east-west differences in GPP and NEE over 1980–2010. Modeled fluxes are490

plotted with the observationally-constrained estimates in Fig 6. The MsTMIP models491

systematically underestimate the magnitude of Apr-Sep GPP and NEE in eastern tem-492

perate North America relative to FluxSat GPP and inversion NEE, but closely agree with493

the observationally-constrained fluxes in western temperate North America. The mean494

magnitudes of Apr-Sep ∆GPP and ∆NEE are variable between MsTMIP models, but495

are generally smaller than the observationally-based estimates. The model mean gives496

similar magnitudes of ∆GPP and ∆NEE in eastern and western temperate North Amer-497

ica, suggesting that the models at-least partially capture increased IAV in western tem-498

perate North America. The ratio of the magnitudes of Apr-Sep IAV to the Apr-Sep mean499

are shown in Fig. 6iii. The models systematically underestimate this ratio for GPP and500

–14–



manuscript submitted to Global Biogeochemical Cycles

(a) Western North America

(b) Eastern North America

(i) (ii)

(iii) (iv)

(i) (ii)

(iii) (iv)

∆T (K)

∆T (K)

GP
P 

(P
gC

yr
-1

)
N

EE
 (P

gC
yr

-1
)

∆T (K)

GP
P 

(P
gC

yr
-1

)
N

EE
 (P

gC
yr

-1
)

month of year month of year

month of year month of year

∆T (K)

∆M (m3m-3)

∆M (m3m-3)

∆M (m3m-3)

∆M (m3m-3)

Figure 5. Seasonal cycles of GPP (2001–2017) and NEE (2010-2015) over eastern and western

temperate North America. (a) Seasonal cycles of (i-ii) GPP and (iii-iv) NEE over western tem-

perate North America. (b) Seasonal cycles of (i-ii) GPP and (iii-iv) NEE over eastern temperate

North America. Colors indicate the Apr-Sep ∆T ((i) and (iii)) or Apr-Sep ∆M ((ii) and (iv)).
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Figure 6. Scatter plots of (a) GPP and (b) NEE fluxes in eastern and western temperate

North America. The panels show (i) the magnitude of Apr-Sep mean fluxes, (ii) the magnitude of

Apr-Sep mean anomalies, and (iii) the ratio of the anomalies to mean fluxes. The blue star shows

the observationally-based estimates from FluxSat GPP and the flux inversion NEE. The error

bars on the observationally-constrained NEE estimate show the range in these values between

the three flux inversions from (Byrne et al., 2020), note error bars are very small for the east.

The large green circle shows the GPP and NEE estimate from the MsTMIP model mean. Small

symbols show the GPP and NEE estimates from individual MsTMIP models.
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Table 2. Observationally-based and model based sensitivities. Slope and R2 values for linear

regressions of Apr-Sep ∆GPP and ∆NEE against Apr-Sep ∆T and ∆M for FluxSat GPP (2001–

2017), inversion NEE (2010–2016), and MsTMIP model mean GPP and NEE (2001–2010). A

range is provided for the inversion ∆NEE indicating the range for each individual inversion with

different prior fluxes. MsTMIP fluxes are examined over 2001–2010 to isolate comparisons to

the period when observational datasets are best constrained by observations. Blue bold numbers

indicate P<0.05.

West East

Temperature Soil Moisture Temperature Soil Moisture

slope

(PgC K−1)
R2 slope

(PgC (m3m−3)−1)
R2 slope

PgC K−1 R2 slope

(PgC (m3m−3)−1)
R2

FluxSat ∆GPP -0.29 0.44 32.6 0.89 -0.04 0.03 52.2 0.09

Model ∆GPP -0.20 0.55 23.4 0.91 -0.02 0.02 110.6 0.45

Inversion ∆NEE 0.13 0.47 -10.3 0.49 -0.04 0.19 28.6 0.21
(range) (0.06–0.19) (0.36–0.53) (-14.6– -4.6) (0.37–0.71) (-0.03–0.06) (0.15–0.60) (-53.47–28.0) (0.10–0.42)

Model ∆NEE 0.11 0.53 -10.3 0.71 0.06 0.60 -53.5 0.42

NEE in western temperate North America. The MsTMIP models predict that mean mag-501

nitude of Apr-Sep ∆GPP is 4% (range of 3–9%) of the Apr-Sep GPP, while FluxSat GPP502

suggests 11%. Similarly, MsTMIP models predict that mean magnitude of Apr-Sep ∆NEE503

is 25% (range of 11–56%) of the Apr-Sep NEE, while inversion NEE suggests 70%. The504

MsTMIP model mean GPP gives weaker sensitivity to soil moisture and temperature505

anomalies than FluxSat GPP, which is found to be about 30% more sensitive (Table 2).506

Inversion NEE sensitivities are consistent with the MsTMIP model mean NEE, but are507

also quite uncertain (indicated by the range in sensitivities between individual flux in-508

versions using SiB3, CASA, or FLUXCOM as priors). In eastern temperate North Amer-509

ica, the MsTMIP models suggest greater sensitivity to environmental variables than the510

observationally-constrained fluxes (Table 2), as previously suggested by Shiga et al. (2018).511

512

It should be noted that IAV for the MsTMIP ensemble, FluxSat GPP and flux in-513

version NEE are calculated over different baselines. As shown in Sec. 4.2, the magnitude514

of amplification and compensation does show some sensitivity to the baseline years from515

which the anomalies are calculated. Therefore, it is possible that some of the difference516

seen between observationally constrained estimates and the MsTMIP ensemble are due517

to differences in the baseline. Unfortunately, the time periods of these data sets do not518

overlap, and we are limited to a six-year period for the NEE estimates from Byrne et519

al. (2020). Ongoing research is working towards building decadal-scale records of NEE520

from space-based CO2 observations (J. Liu et al., 2020). Thus, we expect that future stud-521

ies that will be able to more precisely identify differences in IAV between TBMs and ob-522

servationally constrainted estimates over the same time period.523

5 Discussion524

5.1 Mechanisms driving IAV525

5.1.1 Western temperate North America526

We find that IAV in western temperate North America is dominated by an ampli-527

fication component, wherein increased GPP and net uptake are associated with cooler-528

wetter conditions through the entire growing season. This result is consistent with a num-529

ber of previous studies investigating southwest temperate North America (Zhang et al.,530
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2013; Parazoo et al., 2015; Papagiannopoulou et al., 2017; Shiga et al., 2018; Hu et al.,531

2019). Variations in GPP and NEE over this region are likely primarily due to variations532

in water availability, rather than temperature variability (Papagiannopoulou et al., 2017).533

Parazoo et al. (2015) have shown that variability in productivity over the Southern US534

– Northern Mexico region is linked to El Nino Southern Oscillation (ENSO) and the North535

Atlantic Oscillation (NAO), and suggest that year-to-year variability of carbon net up-536

take is associated with precipitation anomalies in this region. We find ∆P is strongly cor-537

related with ∆GPPamp (R=0.78) and moderately correlated with ∆NEEamp (R=-0.47)538

in western temperate North America (Table S1). This suggests that IAV in western tem-539

perate North America is primarily driven by large scale climate variability. Supporting540

this result, Hu et al. (2019) found that temperate North American net uptake is corre-541

lated with ENSO phase, which they primarily attributed to variations in water availabil-542

ity.543

5.1.2 Eastern temperate North America544

We find that GPP and NEE IAV in eastern temperate North America are dom-545

inated by a seasonal compensation component, where an increase in Apr–Jun is followed546

by a compensating decrease in Jul–Sep. This is most closely linked to a shift of the sea-547

sonal cycle to earlier in the year with increased temperature. This phenomenon has pre-548

viously been reported for studies of phenology (Y. S. Fu et al., 2014; Keenan & Richard-549

son, 2015), GPP (Buermann et al., 2013, 2018; Parida & Buermann, 2014; Papagiannopoulou550

et al., 2017; Butterfield et al., 2020) and NEE (Wolf et al., 2016; J. Liu et al., 2018; Shiga551

et al., 2018; Rödenbeck et al., 2018; Hu et al., 2019). Most studies attribute this phe-552

nomena to land-atmosphere interactions, wherein a warm spring results in drying and553

drought during the summer (Parida & Buermann, 2014; Wolf et al., 2016). This expla-554

nation is generally consistent with our results for GPP but not for NEE. We find that555

Apr–Jun ∆GPP and ∆NEE are correlated with Apr–Jun ∆T (R=0.86 for GPP, R=-556

0.95 for NEE) but only Jul–Sep ∆GPP is correlated with Jul–Sep ∆M (R=0.72 for GPP,557

R=0.16 for NEE). Furthermore, this mechanism would imply a negative correlation be-558

tween spring ∆T and summer ∆M, however, Apr–Jun ∆T and Jul–Sep ∆M are only weakly559

correlated over eastern temperate North America (R=-0.28). This is true for grid cells560

with cropland fractions greater than 65% (R=-0.19) and less than 35% (R=-0.28) (see561

Fig. S8). To some extent, the lack of correlation could be due to errors in the ESA CCI562

soil moisture product, as somewhat stronger correlations are found between Apr–Jun ∆T563

and Jul–Sep GRACE ∆TWS (R=-0.44 for 2003–2014, Table S1). Still, these results sug-564

gests that other factors play a role in seasonal compensation effects. Direct physiolog-565

ical mechanisms linking budburst and senescence, such as leaf structure constraints on566

longevity (Reich et al., 1992) or programmed cell death (Lam, 2004), may have a sig-567

nificant impact on the length of the growing season (Keenan & Richardson, 2015). How-568

ever, more research is needed to understand the drivers of seasonal compensation effects.569

5.2 Implications for temperate North American carbon sink570

The sensitivity of carbon cycle IAV to environmental drivers may provide infor-571

mation on the sensitivity of the carbon cycle to climate change (Cox et al., 2013). Here,572

we discuss the implications of the relationships between carbon cycle IAV and environ-573

mental drivers for the future carbon balance of temperate North America under anthro-574

pogenic climate change.575

Changes in temperature and the water cycle of temperate North America have been576

observed and are projected into the future. The annual average temperature of the con-577

tiguous US has risen by 0.7–1.0 ◦C since the start of the 20th century, and is projected578

to increase by 1.4 ◦C (RCP4.5) to 1.6 ◦C (RCP8.5) for 2021–2050 relative to 1976–2005,579

based on Coupled Model Intercomparison Project 5 (CMIP5) simulations (Vose et al.,580

2017). Warming is driving a more rapid water cycle (Huntington et al., 2018). This is581
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projected to cause decreases in soil moisture because increases in evapotranspiration (due582

to temperature increases) are expected to be larger than precipitation increases (Cook583

et al., 2015). Predicted warming and drying in western temperate North America (Seager584

et al., 2007) could have profound effects on the carbon cycle (Schwalm et al., 2012), with585

increasing temperatures and aridity driving reductions in growing season productivity586

and carbon uptake. Although, TBMs suggest that carbon loss due to climate change will587

be partially mitigated by increasing CO2 (Huntzinger et al., 2018). In eastern temper-588

ate North America, the results of this study suggest that temperature increases will re-589

sult in a shift of the growing season to earlier in the year, with increased uptake during590

the spring but decreased uptake during the summer. However, the observationally-constrained591

flux estimates do not show sensitivity of growing season net GPP and NEE to environ-592

mental anomalies, suggesting that eastern temperate North American ecosystems may593

be more resilient to climate change than simulated by the models.594

6 Conclusions595

Observationally-constrained FluxSat GPP and CO2 flux inversion NEE show that596

there are substantial differences in IAV between the arid west and wetter east of tem-597

perate North America. In western temperate North America, spring and summer anoma-598

lies are found to be correlated, such that IAV is characterized by an amplification of the599

mean GPP and NEE during the growing season. These western ecosystems are gener-600

ally water limited, such that increased GPP and net uptake are associated with cooler-601

wetter conditions. In eastern temperate North America, spring and summer anomalies602

are anti-correlated, leading to compensating anomalies over the growing season. Anoma-603

lies in GPP and NEE are closely associated to temperature, with a shift in the seasonal604

cycle to earlier in the year during warm years, resulting in increased GPP and net up-605

take in Apr–Jun but decreased GPP and net uptake in Jun-Sep.606

Due to the dominance of amplification in the west and seasonal compensation in607

the east, western temperate North America contributes more to IAV than the eastern608

temperate North America in GPP (104% of east) and NEE (127% of east) during the609

growing season (April-September), despite the fact that the mean growing season fluxes610

are larger in the east (7.6× for GPP, 3.5× for NEE). Simulated GPP and NEE from the611

MsTMIP ensemble generally recover larger IAV in the west relative to the east, although612

there is considerable spread between models. These results suggest that ecosystems in613

western temperate North America are sensitive to increases in temperature and aridity614

expected under climate change, and that reductions in growing season productivity and615

net uptake could occur under climate change.616
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