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Abstract

Quantifying how climate change drives drought is a priority to inform policy and adaptation planning. We show that the latest

Coupled Model Intercomparison Project (CMIP6) simulations project coherent regional patterns in meteorological drought for

two emissions scenarios to 2100. We find robust projected changes in seasonal drought duration and frequency (robust over

>45% of the global land area), despite a lack of agreement across models in projected changes in mean precipitation (24% of

the land area). Future drought changes are larger and more consistent in CMIP6 compared to CMIP5. We find regionalised

increases and decreases in drought duration and frequency that are driven by changes in both precipitation mean and variability.

Conversely, drought intensity increases over most regions but is not simulated well historically by the climate models. The more

robust projections of meteorological drought compared to mean precipitation in CMIP6 provides significant new opportunities

for water resource planning.

1



 1 

Robust future changes in meteorological drought in CMIP6 projections 1 
despite uncertainty in precipitation 2 
 3 
 4 
Anna M. Ukkola1, Martin G. De Kauwe2,3, Michael L. Roderick1, Gab Abramowitz2 and 5 
Andrew J. Pitman2 6 
 7 
1ARC Centre of Excellence for Climate Extremes and Research School of Earth Sciences, 8 
Australian National University, Canberra, ACT, Australia 9 
2ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, 10 
University of New South Wales, Sydney, NSW, Australia 11 
3Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 12 
2052, Australia 13 
 14 
Corresponding author: A.M. Ukkola (a.ukkola@unsw.edu.au) 15 
 16 
 17 
For submission to Geophysical Research Letters 18 
 19 
 20 
 21 
Key points:  22 
 23 

• Quantifying meteorological droughts using changes in both the mean and variability of 24 
precipitation leads to more robust projections 25 

• CMIP6 projections show robust changes in the frequency and duration of seasonal 26 
meteorological drought over > 45% of the global land area 27 

• Future drought changes are larger and more consistent in CMIP6 compared to CMIP5 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 



 2 

Abstract 1 
 2 
Quantifying how climate change drives drought is a priority to inform policy and adaptation 3 
planning. We show that the latest Coupled Model Intercomparison Project (CMIP6) 4 
simulations project coherent regional patterns in meteorological drought for two emissions 5 
scenarios to 2100. We find robust projected changes in seasonal drought duration and 6 
frequency (robust over >45% of the global land area), despite a lack of agreement across 7 
models in projected changes in mean precipitation (24% of the land area). Future drought 8 
changes are larger and more consistent in CMIP6 compared to CMIP5. We find regionalised 9 
increases and decreases in drought duration and frequency that are driven by changes in both 10 
precipitation mean and variability. Conversely, drought intensity increases over most regions 11 
but is not simulated well historically by the climate models. The more robust projections of 12 
meteorological drought compared to mean precipitation in CMIP6 provides significant new 13 
opportunities for water resource planning. 14 
 15 
Plain language summary 16 
 17 
Understanding how climate change affects droughts guides adaptation planning in agriculture, 18 
water security and ecosystem management. Earlier climate projections have highlighted high 19 
uncertainty in future drought projections, hindering effective planning. We use the latest 20 
projections and find more robust projections of meteorological drought compared to mean 21 
precipitation. These more robust projections provide clearer direction for water resource 22 
planning and the identification of agricultural and natural ecosystems at risk. 23 
 24 
1 Introduction 25 
Droughts cause significant economic, social and ecosystem impacts worldwide (IPCC, 2014). 26 
Many devastating droughts have occurred in recent decades, such as those in California (Griffin 27 
& Anchukaitis, 2014), the Horn of Africa (Chris Funk et al., 2019), Europe (Ciais et al., 2005) 28 
and Australia (van Dijk et al., 2013), risking regional food and water security. Between 1998 29 
and 2017, droughts are estimated to have impacted 1.5 billion people and accounted for a third 30 
of all natural disaster impacts (United Nations, n.d.; Funk et al., 2019a). Climate change may 31 
be increasing the severity and frequency of droughts (Dai, 2013; Trenberth et al., 2014), posing 32 
challenges for water management, agriculture and natural ecosystems. Understanding how 33 
droughts will change under increasing greenhouse gas concentrations is therefore an urgent 34 
research question of widespread importance. 35 
 36 
A lack of precipitation is the primary cause of drought (McKee et al., 1993). Climate change 37 
can influence precipitation (meteorological) droughts through changes in atmospheric water 38 
holding capacity, circulation patterns and moisture supply. Globally, coupled climate models 39 
project an increase in precipitation of ~2% for every 1°C of warming (Held & Soden, 2006), 40 
with stronger and sometimes opposing changes regionally, but also simulate changes in the 41 
frequency and intensity of precipitation events (Sillmann et al., 2013). More intense but less 42 
frequent precipitation events have been observed across many regions (Donat et al., 2019), 43 
with projections of an increased incidence of extreme precipitation events coupled with longer 44 
dry spells (Sillmann et al., 2013). Changes in atmospheric dynamics and modes of variability 45 
such as El Niño Southern Oscillation can further influence regional precipitation patterns 46 
(Trenberth et al., 2014), together with changes in evapotranspiration which shows contrasting 47 
trends over land and oceans (Roderick et al., 2014). Meteorological droughts are negative 48 
anomalies in water supply and changes in droughts at regional scales thus result from complex 49 
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interactions of the different processes influencing long-term precipitation totals and variability 1 
(Sheffield & Wood, 2011). 2 
 3 
It is widely reported that droughts and aridity will worsen under increasing greenhouse gas 4 
concentrations (Dai, 2013; Dai et al., 2018; Mirzabaev et al., 2019; Park et al., 2018; Sherwood 5 
& Fu, 2014) but this is not supported by recent observations of precipitation (Funk et al., 2019; 6 
Orlowsky & Seneviratne, 2013) and other hydrological quantities, including runoff, actual 7 
evapotranspiration and pan evaporation (Roderick & Farquhar, 2002; Scheff, 2018; Ukkola & 8 
Prentice, 2013). The previous suggestions of more severe droughts largely arises from 9 
uncoupled modelling studies (Sheffield et al., 2012) that do not capture the various climate 10 
interactions and generally quantify droughts using potential evapotranspiration in addition to 11 
precipitation (Dai, 2013). Recent studies (Greve et al., 2019; Milly & Dunne, 2016; Justin 12 
Sheffield et al., 2012; Swann et al., 2016; Yang et al., 2019) have shown that these uncoupled 13 
approaches strongly overestimate regional drought and aridity increases due to inappropriate 14 
assumptions under increasing CO2 and are inconsistent with coupled climate model 15 
projections. As such, those studies have encouraged the use of direct climate model outputs in 16 
drought assessments. Previous studies analysing droughts from climate models have often 17 
quantified drought from mean precipitation and/or other water balance components (Lehner et 18 
al., 2017; Swann et al., 2016), or by analysing the full range (i.e. negative and positive 19 
anomalies) of indices such as Standardised Precipitation Index (Orlowsky & Seneviratne, 20 
2013), and have concluded uncertain, “elusive” trends in droughts (Collins et al., 2013; Hoegh-21 
Guldberg et al., 2018; Orlowsky & Seneviratne, 2013). However, it has been suggested that 22 
quantifying droughts from percentiles instead of mean values would allow a better 23 
characterisation of the changes in drought (Trenberth et al., 2014). 24 
 25 
We quantify projected changes in meteorological droughts using the new state-of-the-art 26 
CMIP6 climate model projections (Eyring et al., 2016) that underpin the 6th Intergovernmental 27 
Panel on Climate Change assessment report. We use nine models from CMIP6 and contrast 28 
those with equivalent models from the previous generation of projections from CMIP5 (Taylor 29 
et al., 2012). We characterise meteorological droughts as seasonal-scale negative precipitation 30 
anomalies. Drought impacts depend on their duration, intensity and frequency (Sheffield & 31 
Wood, 2011) and we quantify future changes in these key characteristics. 32 
 33 
2 Materials and Methods 34 
 35 
2.1 Data 36 
For observed precipitation, we used three global products at 0.5° resolution that cover the 37 
period 1950-2014. These were monthly time series products by the Climatic Research Unit 38 
(CRU TS4.02) (Harris et al., 2014) and Global Precipitation Climatology Centre (GPCC; 39 
version 2018) (Schneider et al., 2016) as well as the daily product Rainfall Estimate of a 40 
Gridded Network (REGEN) (Contractor et al., 2020).  41 
 42 
For modelled precipitation, we obtained monthly simulations of total precipitation (variable 43 
pr) from the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6, 44 
respectively). We used the historical experiment, as well as two future scenarios reaching 45 
radiative forcing of 4.5 and 8.5 W m-2 by 2100 from each project. These radiative forcing levels 46 
were chosen as they are available for both CMIP5 and CMIP6. For CMIP6, the two future 47 
scenarios used were the Shared Socioeconomic Pathways (SSP) 2-4.5 and 5-8.5. SSP2-4.5 48 
represents an intermediate “middle of the road” scenario and SSP5-8.5 is a high emissions 49 
“fossil-fuelled development” scenario (O’Neill et al., 2016). For CMIP5, the two scenarios 50 
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used were the Representative Concentration Pathways (RCP) 4.5 and 8.5 (van Vuuren et al., 1 
2011). Results for the higher 8.5 W m-2 scenario are presented in the main paper and for the 2 
4.5 W m-2 scenario in Supplementary Figures S7-9.  3 
 4 
We used nine models from each project that were common to both CMIP6 and CMIP5 to 5 
enable comparison between projections from the two projects (Table S1). We also present the 6 
full CMIP5 range in Figure S1 using all available models that report precipitation for the 7 
historical and future scenarios (31 models and 71 individual model realisations; Table S2). 8 
These results are consistent with the subset of nine models, suggesting our results are 9 
representative of the full CMIP5 uncertainty and not an artefact of model selection. For each 10 
model, all ensemble members that were available for both historical and future experiments 11 
were used to better account for internal variability. Ensemble members used for each model 12 
are listed in Tables S1 and S2. We calculated all drought metrics at the models’ native 13 
resolution and regridded the outputs to a common 1° resolution for plotting using bilinear 14 
interpolation. As a land-sea mask was not available for all models, the global land area was 15 
determined as the common pixels across the three observational datasets and used to mask 16 
model outputs. Land pixels for which drought metrics could not be determined from 17 
observations (mainly due to non-varying precipitation in the CRU dataset) were masked out 18 
from all analyses. 19 
 20 
 21 
2.2 Defining droughts 22 
Many definitions of drought exist. Here we only consider meteorological droughts (rainfall 23 
deficits) as these can be underpinned by long-term global observations. Lack of rainfall is 24 
usually the primary cause of other types of drought, such as hydrological (streamflow) and 25 
agricultural (soil moisture or yield) droughts (McKee et al., 1993). Global climate models also 26 
show better agreement and higher skill for precipitation droughts compared with runoff and 27 
soil moisture droughts (Ukkola et al., 2018). Despite being a common method for defining 28 
droughts, we do not use a metric that includes potential evapotranspiration (PET), such as 29 
Standardised Precipitation Evapotranspiration Index (Vicente-Serrano et al., 2010), as the use 30 
of PET has been shown to lead to overestimation of future drought compared to direct climate 31 
model outputs (Milly & Dunne, 2016; Sheffield et al., 2012; Swann et al., 2016; Yang et al., 32 
2019) and double-counting of the effects of surface humidity and temperature on droughts 33 
(Swann et al., 2016). Rather, the effect of climate change, including temperature and vapour 34 
pressure deficit increase, is included in our study through the feedbacks within climate models 35 
on the water cycle and consequently on precipitation. 36 
 37 
We use percentile thresholds to determine drought periods as this method involves no 38 
assumptions about the data distribution. We use the 15th percentile as the drought threshold, 39 
such that any month below this threshold is classified as drought. The 15th percentile 40 
corresponds approximately to a threshold of -1 for the widely used Standardised Precipitation 41 
Index (McKee et al., 1993) (SPI) and is commonly used to characterise “moderate” droughts 42 
(McKee et al., 1993). We use this threshold to ensure we have a sufficient number of drought 43 
events to infer trends in drought metrics reliably. Previous work has shown that whilst 44 
simulated drought characteristics can be somewhat sensitive to the choice of threshold, inter-45 
model differences represent a much greater source of uncertainty (Ukkola et al., 2018). 46 
 47 
We first converted the monthly precipitation time series into 3-month running means to smooth 48 
out short-term variations. This is analogous to calculating SPI at scale 3 and reflects changes 49 
in seasonal droughts, which have widespread impacts on ecosystems, agriculture and water 50 
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resources in many tropical and temperate regions (Ciais et al., 2005; Lewis et al., 2011; Saleska 1 
et al., 2007). Using the 3-monthly running means also incorporates soil moisture “memory” 2 
effects (Orth & Seneviratne, 2012). However, for completeness we also present results for 12-3 
month running means in the Supplementary Information for annual-scale droughts (Figure 4 
S10-12), which are more relevant in water-limited environments adapted to short-term 5 
droughts and found these results to be largely qualitatively consistent with the changes in 6 
seasonal droughts. 7 
 8 
We then define the 15th percentile threshold separately for each month to account for 9 
seasonality. We use the period 1950-2014 to determine the monthly percentile thresholds so 10 
that all drought metrics are relative to this historical baseline period. We use this 65-year period 11 
to define the thresholds instead of commonly used 30-year periods to better account for climate 12 
variability, which should allow for more reliable determination of the percentiles and therefore 13 
drought. We chose 1950 as the start year as the three observational rainfall products used here 14 
become available then and are generally more reliable ~1950s onwards (Sun et al., 2012) (for 15 
CESM1-WACCM, 1955 was used as the start year as this is the first available year in the 16 
historical simulation). As CMIP6 historical simulations finish in 2014, this was chosen as the 17 
end year for the baseline period. CMIP5 historical simulations finish in 2005 and were 18 
extended with the RCP8.5 scenario to calculate the thresholds. 19 
 20 
 21 
2.3 Drought metrics  22 
We calculated three common droughts metrics: duration, intensity and frequency (Sheffield & 23 
Wood, 2011). Duration (D; months) was defined as the number of consecutive months below 24 
the drought threshold and frequency is the number of drought events over a time period. 25 
Intensity (I; mm month-1) is the difference between the drought threshold (x15,m; mm) and the 26 
monthly precipitation value (xm; mm), averaged over all months during a drought event: 27 
 28 
𝐼 = ∑(%&',)*%))

,
;𝑚 ∈ [𝑖, 𝑗]         (1) 29 

 30 
where i is the drought start month and j the end month. 31 
 32 
 33 
2.4 Statistical methods 34 
We defined projections as “robust” when the magnitude of the multi-model mean future change 35 
exceeded the inter-model standard deviation of the change (Meehl et al., 2007). All multi-36 
model means and standard deviations were weighted to account for the different number of 37 
ensemble members for individual models by assigning each model realisation a weight of 1/n, 38 
where n is the total number of ensemble members for that model. 39 
 40 
For the regional case studies in Figure 3, we used a paired t-test weighted for ensemble 41 
members to assess the significance of multi-model mean changes in the mean and standard 42 
deviation of monthly precipitation from the historical baseline period to the 2050-2100 future 43 
period. The t-test was performed using the R package “weights” (https://cran.r-44 
project.org/web/packages/weights/weights.pdf). 45 
 46 
 47 
3 Results 48 
 49 
3.1 Projected changes in drought characteristics 50 
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Focusing first on the historical period, models compare well with observed drought duration 1 
over most regions, with the exception of the tropics (see stippling in Figure 1a). This suggests 2 
good model skill in simulating drought duration (Ukkola et al., 2018), increasing confidence 3 
in the projections. Many subtropical regions are projected to experience longer drought 4 
durations in 2051-2100 compared to the historical baseline period (Figure 1c). The strongest, 5 
most robust increases are projected in Central America, Chile, the Mediterranean, southern 6 
Australia and southern and western Africa, with increases in drought duration from ~2 months 7 
during the historical period to ~4 months in the future. Strong increases are also projected over 8 
the Amazon but models show lower skill in capturing observed drought durations in this region 9 
(Figure 1a,b). By contrast, shorter droughts are projected in central Sahel, eastern Russia, 10 
northern China and northern high latitudes, with declines up to 1 month. Overall, the pattern 11 
of drought duration changes is similar between CMIP6 and CMIP5, but the changes in CMIP6 12 
are stronger and more robust compared to the nine equivalent CMIP5 models as well as the 13 
full CMIP5 range (increased model agreement, Figure 1c,d and S1). In particular, model 14 
agreement in CMIP6 is higher over Australia, the Mediterranean, Central America, Chile and 15 
Amazon, but lower over parts of central Russia. Projected changes in drought frequency show 16 
a similar footprint to duration, with the models generally capturing the observed frequency well 17 
over the historical period, except over the tropics (Figure S2a). Fewer drought events are 18 
projected in the northern mid- to high latitudes and eastern Sahel and more frequent droughts 19 
in the subtropics and the Amazon (Figure S2b). 20 
 21 
Projected changes in drought intensity suggest an increasing trend over several regions, with 22 
some differences in spatial patterns compared to duration. The largest intensification of 23 
droughts is predicted in the tropics, including the Amazon, central Africa and southeast Asia, 24 
as well as Chile and Central America (Figure 2c). These increases are much stronger and more 25 
robust in CMIP6 compared to CMIP5 (Figure 2c,d). Droughts are also projected to intensify 26 
over Europe and the Mediterranean. In the U.S. and western Russia, projections of drought 27 
duration remain uncertain but models show robust increases in intensity. Conversely, over 28 
southern Africa, Australia and northwest North America, models agree on projected changes 29 
in duration but not intensity. In northern mid- and high latitudes, droughts are projected to 30 
become shorter but more intense. However, neither CMIP6 nor CMIP5 simulations show good 31 
agreement with observations (see lack of stippling in Figure 2a,b), suggesting low model skill 32 
over most of the world in simulating drought intensity. The evaluation of model skill is, 33 
however, complicated by higher observational uncertainty for intensity compared to other 34 
drought metrics, especially in the tropics and sub-tropics (Figure S3). Capturing intensity 35 
correctly requires skilful simulation of both mean precipitation and variability and previous 36 
work (Ukkola et al., 2018) has shown systematic biases in CMIP5 in both metrics, in particular 37 
an underestimation of monthly precipitation variability relative to its mean (i.e. coefficient of 38 
variation) in humid regions. Figure S4 suggests that model biases in drought intensity remain 39 
similar in CMIP6 compared to CMIP5, suggesting future projections of drought intensity 40 
should be interpreted with caution, particularly over the tropics. 41 
 42 
The above results consider uncertainties in drought projections arising from model responses 43 
(structure & parameterisation). The emissions scenarios represent another source of uncertainty 44 
in the drought projections. Overall, the spatial patterns for future drought changes in the lower 45 
4.5 W m-2 emissions scenarios are consistent with the higher 8.5 W m-2 scenario (Figures S7-46 
S9). However, the changes are smaller in magnitude and less robust in the 4.5 W m-2 scenario. 47 
The global land area showing robust changes under the lower emissions scenario decreases 48 
from 45% to 36% for duration, from 26% to 10% for intensity and 57% to 52% in frequency 49 
in the CMIP6 models compared to the higher scenario. This suggests some of the future 50 
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changes in drought could be mitigated through lower greenhouse emissions. However, robust 1 
changes especially in drought duration and frequency are projected over many regions even 2 
under the lower emissions scenario.  3 
 4 
Internal variability, i.e. the natural variability independent of external forcing, presents a third 5 
major source of uncertainty in climate change projections (Deser et al., 2010) and must be 6 
accounted for when assessing changes in drought (Trenberth et al., 2014). We analysed all 7 
available model ensemble members that were common to the historical and future experiments 8 
over five hotspot regions to explore the robustness of the projections to internal variability 9 
(Figure S5; see Figure 3 for regions). Individual ensemble members differ in the magnitude of 10 
change, but the direction of change is highly consistent within ensemble members for 11 
individual models over all regions. This suggests that the projected changes are a robust feature 12 
of each model’s projections and agrees with previous work which showed that internal 13 
variability is a minor source of uncertainty in drought metrics compared to inter-model 14 
differences during the historical period (Ukkola et al., 2018). 15 
 16 
3.2 Role of mean and variability changes 17 
Changes in future drought can arise from both changes in precipitation mean and variability 18 
(Trenberth et al., 2014). We explored mean and variability changes as the drivers of future 19 
drought by analysing changes in the mean and standard deviation of monthly precipitation 20 
(Figure 3). Mean precipitation shows both increases and decreases, whereas precipitation 21 
variability is largely increasing, in line with previous studies (Figure 3; Collins et al., 2013; 22 
Pendergrass et al., 2017). Broadly, changes in drought duration correspond to changes in mean 23 
precipitation, but intensity changes are driven by both the mean and variability (cf. Figure 1c, 24 
2c and 3a,b). The Mediterranean and southern Africa represents regions where increased 25 
drought duration and intensity are primarily driven by declines in mean monthly precipitation, 26 
even though mean precipitation changes are less robust than those in the drought metrics 27 
(Figure 3c). In the Mediterranean, mean precipitation is projected to decline by 14% (p = 0.002 28 
from a paired t-test; see Methods) under the higher emissions scenario and in southern Africa 29 
by 9% (p = 0.050). Other similar regions include Chile and Central America. By contrast, over 30 
central Europe, the models simulate a small increase in mean precipitation of 3% (p = 0.040) 31 
but a concurrent 18% increase in drought intensity (p < 0.0001). This can be attributed to an 32 
increase in standard deviation by 37% (p < 0.0001) (Figure 3d,g). Similarly, over Australia, 33 
model agreement on mean precipitation change is low (Figure 3a) but standard deviation is 34 
projected to increase by 13% (p = 0.028), with concurrent increases in drought intensity and 35 
duration when averaged over the region (21%, p < 0.0001 and 20%, p < 0.001, respectively). 36 
 37 
The Amazon presents an interesting example where drought projections are partly driven by 38 
both mean and variability changes. Mean precipitation is projected to decline by 7% and 39 
standard deviation increase by 11% but neither change is statistically significant (p = 0.179 and 40 
p = 0.122, respectively) (Figure 3e,h). Yet, drought duration and intensity changes are highly 41 
significant (p < 0.0001), highlighting the need to consider both mean and variability when 42 
assessing drought changes. Overall, changes in seasonal drought duration, intensity and 43 
frequency are robust over 45%, 26% and 57% of the global land area (excluding Antarctica) in 44 
CMIP6, respectively (i.e. the magnitude of the multi-model mean future change exceeds the 45 
inter-model standard deviation; Methods). The level of model agreement is higher compared 46 
to CMIP5 which shows robust changes over 31%, 10% and 51% of the land area, respectively. 47 
By contrast, changes in mean precipitation in CMIP6 are robust over 24% of the land area, 48 
indicating more robust projections of drought than mean precipitation. These results suggest 49 
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that using long-term mean precipitation to quantify drought changes is insufficient and leads 1 
to lower confidence in future drought projections. 2 
 3 
4 Discussion and Conclusions 4 
CMIP6 models indicate robust future changes in droughts in hot spot regions such as the 5 
Amazon, the Mediterranean and northern mid- and high latitude regions, despite uncertainty in 6 
the magnitude of changes. The models project widespread increases in drought intensity but at 7 
regional scales the projections for meteorological drought duration and frequency are more 8 
nuanced. Longer or more intense droughts are projected in the high biomass regions of the 9 
Amazon and northern boreal zone, with potential implications for ecosystem function and long-10 
lived carbon sinks. However, some of the negative drought impacts may be buffered by 11 
vegetation adaptions and/or increased vegetation water use efficiency under elevated CO2 12 
(Swann et al., 2016). Similarly, more intense droughts are projected over several agricultural 13 
regions, including Chile, central Europe, eastern U.S. and parts of China, exposing these key 14 
food basket regions to potential economic losses. Some highly populated, water scarce regions, 15 
such as the Mediterranean, southern and western Africa and southern North America are 16 
projected to experience more severe droughts, risking water and food security. In other dry 17 
regions, in particular eastern Sahel which has experienced devastating droughts in the past 18 
(Sheffield & Wood, 2011), climate models project less severe droughts in the future.  19 
 20 
Projections of mean precipitation have remained highly uncertain over many land areas 21 
(Collins et al., 2013). Surprisingly, our study shows more robust projections of meteorological 22 
droughts than mean precipitation. This result indicates that the common approach of using 23 
mean precipitation to quantify drought changes leads to lower confidence in future drought 24 
projections. The more robust drought projections over many hotspot regions provide significant 25 
opportunities for policy interventions and adaptation decisions to improve water security under 26 
climate change. Our results highlight how changes in drought are increasingly consistent, and 27 
hot spot regions are increasingly clear in newer CMIP projects and several attributes of drought 28 
are now consistently simulated by climate models. This offers considerable potential for 29 
evidence-based strategies to enhance water and food security and the identification of regions 30 
with high value ecosystems at risk from increased drought. Finally, we note that the projected 31 
changes in droughts are stronger under the higher emissions scenario; future drought risk in 32 
hot spot regions would be mitigated by reducing greenhouse gas emissions.  33 
 34 
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Figure 1. Projected changes in drought duration. Multi-model mean historical drought duration 3 
for nine (a) CMIP6 and (b) CMIP5 models during the 1950-2014 baseline period. Stippling 4 
indicates where ³75% of models are within 10% of the observed mean (34% of land area in a 5 
and 32% in b) (see Figure S3a for observed mean duration). (c) Projected future change in 6 
drought duration from 1950-2014 to 2051-2100 for CMIP6 and (d) CMIP5 using the 8.5 W m-7 
2 scenario. Stippling indicates where the magnitude of the multi-model mean future change 8 
exceeds the inter-model standard deviation (45% of land area in c and 31% in d).  9 
 10 
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 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
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 24 
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Figure 2. Projected changes in drought intensity. Multi-model mean historical drought 3 
intensity for nine (a) CMIP6 and (b) CMIP5 models during the 1950-2014 baseline period. 4 
Stippling indicates where ³75% of models are within 10% of the observed mean (0.2% of land 5 
area in a and 0.16% in b) (see Figure S3b for observed mean intensity). (c) Projected future 6 
change in drought intensity from 1950-2014 to 2051-2100 for CMIP6 and (d) CMIP5 using 7 
the 8.5 W m-2 scenario. Stippling indicates where the magnitude of the multi-model mean future 8 
change exceeds the inter-model standard deviation (26% of land area in c and 10% in d). 9 
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 16 
 17 
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Figure 3. Projected changes in monthly precipitation mean and variability. (a) Projected multi-3 
model mean change in monthly mean precipitation and (b) standard deviation for nine CMIP6 4 
models under the 8.5 W m-2 scenario compared to the 1950-2014 period. Stippling indicates 5 
where the magnitude of the multi-model mean future change exceeded the inter-model standard 6 
deviation (24% of land area in a and 21% in b). Data for the historical and future periods were 7 
linearly detrended prior to calculating the standard deviation to remove effects from changes 8 
in the mean. (c-e) show a time series of monthly mean precipitation for the Mediterranean, 9 
central Europe and Amazon regions, respectively, smoothed using a 24-month running 10 
window. (f-h) show a time series of 10-year running standard deviation of monthly 11 
precipitation for the same regions. In (c-f) the shading shows the full model range and the solid 12 
lines the multi-model means. For observations, the mean of the three observed products is 13 
shown. Data for the southern African and Australian regions are shown in Supplementary 14 
Figure S6. 15 
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Table S1. CMIP5 and CMIP6 models used in this study. Where possible, the equivalent 
models from CMIP5 and CMIP6 were chosen and otherwise available models by the same 
institution were matched. Resolution shows the model resolution as degrees latitude and 
longitude, respectively. For CMIP6 models, gn indicates native resolution and gr regridded 
resolution. Ensembles shows the individual model ensemble members used in this study for 
all historical and future simulations. 
 
 

 
 
 
 
 
 
 
 
 

CMIP6   CMIP5   
Model Resolution  Ensembles Model Resolution Ensembles 

BCC-CSM2-MR 1.12, 1.13 
(gn) 

r1i1p1f1 BCC-CSM1-1 2.79, 2.81 r1i1p1 

CanESM5 2.79, 2.81 
(gn) 
 

r1i1p1f1 CanESM2 2.79, 2.81 r1i1p1, r2i1p1, 
r3i1p1, r4i1p1, 
r5i1p1 

CESM2-
WACCM 

0.94, 1.25 
(gn) 

r1i1p1f1 CESM1-
WACCM 

1.88, 2.5 r2i1p1, r3i1p1, 
r4i1p1 

CNRM-CM6-1 1.40, 1.41 
(gr) 

r1i1p1f2, 
r2i1p1f2, 
r3i1p1f2, 
r4i1p1f2, 
r5i1p1f2, 
r6i1p1f2 

CNRM-CM5 1.40, 1.41 r1i1p1 

GFDL-CM4 1.00, 1.25 
(gr) 

r1i1p1f1 GFDL-CM3 2.00, 2.50 r1i1p1 

IPSL-CM6A-LR 1.27, 2.50 
(gr) 

r1i1p1f1 IPSL-CM5A-
LR 

1.89, 3.75 r1i1p1, r2i1p1, 
r3i1p1, r4i1p1 

MIROC6 1.40, 1.41 
(gn) 

r1i1p1f1 MIROC5 1.40, 1.41 r1i1p1, r2i1p1, 
r3i1p1 

MRI-ESM2-0 1.12, 1.13 
(gn) 

r1i1p1f1 MRI-CGCM3 1.12, 1.13 r1i1p1 

UKESM1-0-LL 1.25, 1.86 
(gn) 

r1i1p1f2, 
r2i1p1f2, 
r3i1p1f2, 
r4i1p1f2, 
r8i1p1f2 

HadGEM2-ES 1.25, 1.88 r1i1p1, r2i1p1, 
r3i1p1, r4i1p1 



Table 2: Additional CMIP5 models used in Supplementary Figure S1. Resolution shows 
the model resolution as degrees latitude and longitude, respectively. Ensembles shows the 
individual model ensemble members used in this study for all historical and future 
simulations. 
 
 
Model Resolution Ensembles 
ACCESS1-0   1.25, 1.88 r1i1p1 
ACCESS1-3   1.25, 1.88 r1i1p1 
BNU-ESM   2.79, 2.81 r1i1p1 
CCSM4 0.94, 1.25 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, r6i1p1 
CESM1-BGC 0.94, 1.25 r1i1p1 
CESM1-CAM5 0.94, 1.25 r1i1p1, r2i1p1, r3i1p1 
CSIRO-Mk3-6-0   1.87, 1.88 r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, r6i1p1, 

r7i1p1, r8i1p1, r9i1p1, r10i1p1 
FGOALS-g2   2.79, 2.81 r1i1p1 
GFDL-ESM2G   2.02, 2.00 r1i1p1 
GFDL-ESM2M   2.02, 2.50 r1i1p1 
GISS-E2-H   2.00, 2.50 r1i1p1, r1i1p2, r1i1p3, r2i1p1, r2i1p3 
GISS-E2-R   2.00, 2.50 r1i1p1, r1i1p2, r1i1p3, r2i1p1, r2i1p3 
HadGEM2-CC   1.25, 1.88 r1i1p1 
INMCM4 1.50, 2.00 r1i1p1 
IPSL-CM5A-MR 1.27, 2.50 r1i1p1 
IPSL-CM5B-LR   1.89, 3.75 r1i1p1 
MIROC-ESM      2.79, 2.81 r1i1p1 
MIROC-ESM-CHEM   2.79, 2.81 r1i1p1 
MPI-ESM-LR   1.87, 1.88 r1i1p1, r2i1p1, r3i1p1 
MPI-ESM-MR   1.87, 1.88 r1i1p1 
NorESM1-M   1.89, 2.50 r1i1p1 
NorESM1-ME   1.89, 2.50 r1i1p1 
 
   
 
        
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. S1. Projected changes in drought metrics in the full CMIP5 archive. (a,b,c) the multi-
model mean historical drought duration, intensity and frequency, respectively, for 31 CMIP5 
models during the 1950-2014 baseline period. Stippling indicates where ³75% of models are 
within 10% of the observed mean (27% of land area in a, 0% in b and 26% in c) (see Figure 
S3 for observed metrics). (d,e,f) projected future change in drought duration, intensity and 
frequency, respectively, relative to the historical mean using the 8.5 W m-2 scenario. 
Stippling indicates where the magnitude of the multi-model mean future change exceeds the 
inter-model standard deviation (26% of land area in d, 8% in e and 46% in f). 
 
 
 
 
 
 



 
 
 
Fig. S2. Projected changes in drought frequency. (a) multi-model mean historical drought 
frequency for nine CMIP6 and (b) CMIP5 models during the 1950-2014 baseline period. 
Stippling indicates where ³75% of models are within 10% of the observed mean (33% of 
land area in a and 29% in b) (see Figure S3c for observed mean frequency). (c) projected 
future change in drought frequency relative to the historical mean for CMIP6 and (d) CMIP5 
using the 8.5 W m-2 scenario. Stippling indicates where the magnitude of the multi-model 
mean future change exceeds the inter-model standard deviation (57% of land area in c and 
51% in d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Fig. S3. Mean observed drought metrics during the 1950-2014 baseline period. Mean 
historical drought (a) duration (b) intensity and (c) frequency for the three observed 
precipitation products. Stippling indicates where all three observed datasets are within 10% 
of the mean.  
 
 
 
 
 
 

 
 
 
Fig. S4. Bias in historical mean drought intensity. Difference in (a) CMIP6 and (b) CMIP5 
ensemble mean drought intensity compared to the mean of the three observational products 
during the 1950-2014 baseline period. 



 
 
Fig. S5. Range in drought projections due to internal variability in five key regions. The two 
left-hand panels show time series in drought duration for CMIP6 and CMIP5, respectively, 
and the two right-hand panels that for drought intensity for the SSP5-8.5 and RCP8.5 
emissions scenarios. The coloured shading shows the range across individual ensemble 
members for each model and the grey shading shows the full range across all models and 
ensembles. See Table S1 for ensemble members and Figure 3 for regions. 
 
 
 
 



 
Fig. S6. Projected changes in monthly precipitation mean and variability in southern African 
and Australian regions. (a-b) show a time series of monthly mean precipitation for the 
southern African and southern Australian regions, respectively, smoothed using a 24-month 
running window. (c-d) show a time series of 10-year running standard deviation for the same 
regions. In (a-d) the shading shows the full model range and the solid lines the multi-model 
means. For observations, the mean of the three observed products is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Future projections of drought for the 4.5 W m-2 emissions scenario 
 
 
 

 
 
Fig. S7. Projected changes in drought duration for the 4.5 W m-2 emissions scenario. 
Projected future change in drought duration relative to the historical mean for a) CMIP6 
SSP2-4.5 scenario and b) CMIP5 RCP4.5 scenario. Stippling indicates where the magnitude 
of the multi-model mean future change exceeds the inter-model standard deviation (36% of 
land area in a and 29% in b). 
 
 
 
 
 
 
 
 

 
  
Fig. S8. Projected changes in drought intensity for the 4.5 W m-2 emissions scenario. 
Projected future change in drought intensity relative to the historical mean for a) CMIP6 
SSP2-4.5 scenario and b) CMIP5 RCP4.5 scenario. Stippling indicates where the magnitude 
of the multi-model mean future change exceeds the inter-model standard deviation (10% of 
land area in a and 2% in b). 
 
 
 
 
 
 



 

 
 
Fig. S9. Projected changes in drought frequency for the 4.5 W m-2 emissions scenario. 
Projected future change in drought frequency relative to the historical mean for a) CMIP6 
SSP2-4.5 scenario and b) CMIP5 RCP4.5 scenario. Stippling indicates where the magnitude 
of the multi-model mean future change exceeds the inter-model standard deviation (52% of 
land area in a and 45% in b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Future projections of drought using 12-month running means 
 
 
 

 
 
Fig. S10. Projected changes in drought duration using 12-month running means. (a) mean 
historical drought duration for nine CMIP6 and (b) CMIP5 models during the 1950-2014 
baseline period. Stippling indicates where ³75% of models are within 10% of the observed 
mean. (c) projected future change in drought duration relative to the historical mean for 
CMIP6 and (d) CMIP5 using the 8.5 W m-2 emissions scenario. Stippling indicates where the 
magnitude of the multi-model mean future change exceeds the inter-model standard 
deviation. 
 
 
 
 
 
 
 
 
 



 
 
Fig. S11. Projected changes in drought intensity using 12-month running means. (a) mean 
historical drought intensity for nine CMIP6 and (b) CMIP5 models during the 1950-2014 
baseline period. Stippling indicates where ³75% of models are within 10% of the observed 
mean. (c) projected future change in drought intensity relative to the historical mean for 
CMIP6 and (d) CMIP5 using the 8.5 W m-2 emissions scenario. Stippling indicates where the 
magnitude of the multi-model mean future change exceeds the inter-model standard 
deviation. 
 
 
 
 
 
 
 
 



 
 
Fig. S12. Projected changes in drought frequency using 12-month running means. (a) mean 
historical drought frequency for nine CMIP6 and (b) CMIP5 models during the 1950-2014 
baseline period. Stippling indicates where ³75% of models are within 10% of the observed 
mean. (c) projected future change in drought frequency relative to the historical mean for 
CMIP6 and (d) CMIP5 using the 8.5 W m-2 emissions scenario. Stippling indicates where the 
magnitude of the multi-model mean future change exceeds the inter-model standard 
deviation. 
 
 
 
 


