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Abstract

Alaska and the Yukon are a challenging area to develop observationally based spatial estimates of meteorology. Complex

topography, frozen precipitation undercatch, and extremely sparse observations all limit our capability to accurately estimate

historical conditions. In this environment it is useful to develop probabilistic estimates of precipitation and temperature that

explicitly incorporate spatiotemporally varying uncertainty and bias corrections. In this paper we exploit recently-developed

ensemble Climatologically Aided Interpolation (eCAI) systems to produce daily historical observations of precipitation and

temperature across Alaska and the Yukon territory at a 2 km grid spacing for the time period 1980-2013. We extend the previous

eCAI method to include an ensemble correction methodology to address precipitation gauge undercatch and wetting loss, which

is of high importance for this region. Leave-one-out cross-validation shows our ensemble has little bias in daily precipitation

and mean temperature at the station locations, with an overestimate in the daily standard deviation of precipitation. The

ensemble has skillful reliability compared to climatology and significant discrimination of events across different precipitation

thresholds. Comparing the ensemble mean climatology of precipitation and temperature to PRISM and Daymet v3 show large

inter-product differences, particularly in precipitation across the complex terrain of SE and northern Alaska. Finally, long-term

mean loss adjusted precipitation is up to 36% greater than the unadjusted estimate in windy areas that receive a large fraction

of frozen precipitation.
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Key Points: 12 
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observations, and frozen precipitation 14 

 We developed a probabilistic approach to estimate precipitation and temperature 15 
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Abstract 20 

Alaska and the Yukon are a challenging area to develop observationally based spatial estimates 21 

of meteorology. Complex topography, frozen precipitation undercatch, and extremely sparse in 22 

situ observations all limit our capability to accurately estimate historical conditions. In this 23 

environment it is useful to develop probabilistic estimates of precipitation and temperature that 24 

explicitly incorporate spatiotemporally varying uncertainty and bias corrections. In this paper we 25 

exploit recently-developed ensemble Climatologically Aided Interpolation (eCAI) systems to 26 

produce daily historical observations of precipitation and temperature across Alaska and the 27 

Yukon territory at a 2km grid spacing for the time period 1980-2013. We extend the previous 28 

eCAI method to include an ensemble correction methodology to address precipitation gauge 29 

undercatch and wetting loss, which is of high importance for this region. Leave-one-out cross-30 

validation shows our ensemble has little bias in daily precipitation and mean temperature at the 31 

station locations, with an overestimate in the daily standard deviation of precipitation. The 32 

ensemble has skillful reliability compared to climatology and significant discrimination of events 33 

across different precipitation thresholds. Comparing the ensemble mean climatology of 34 

precipitation and temperature to PRISM and Daymet v3 show large inter-product differences, 35 

particularly in precipitation across the complex terrain of SE and northern Alaska. Finally, long-36 

term mean loss adjusted precipitation is up to 36% greater than the unadjusted estimate in windy 37 

areas that receive a large fraction of frozen precipitation. 38 

Plain Language Summary 39 

Alaska and the Yukon are a challenging area to create spatial maps of precipitation and 40 

temperature.  Very rugged terrain and extreme conditions, particularly snow and wind limit our 41 

ability to measure historical conditions.  Because of this, it is critical to understand how 42 

uncertain our products are.  Here we develop a new estimate of uncertainty for historical 43 

meteorology and include corrections to precipitation measurements for errors due to snowfall 44 

and wind.  We show that our uncertainty estimates are reliable as compared to our observations, 45 

and there are large differences between several independent mapping efforts, and our 46 

precipitation corrections increase precipitation by more than 30% in some regions. 47 

1 Introduction 48 

Complex topography, extremely sparse in situ observations, and a high percentage of 49 

frozen precipitation and resultant precipitation undercatch issues limit our ability to estimate 50 

historical conditions across the Arctic (Serreze et al., 2003).  The sparse observation networks 51 

across the Arctic may not be adequate, resulting in interpolation uncertainties and biases. 52 

Additional systematic biases such as wind undercatch or wetting loss can be corrected using 53 

existing empirical functions, but these correction functions are uncertain and often require 54 

additional observations not directly available (e.g., wind speed at station locations). As a 55 

consequence, historical estimates of precipitation and temperature based only on station 56 

observations in the Arctic can have significant biases and are intrinsically uncertain.  57 

It is important to explicitly estimate the uncertainty in precipitation estimates in the 58 

Arctic. Traditional deterministic products may use complex interpolation routines to account for 59 

the impact of topographic gradients on spatial meteorological estimates (e.g. Daly et al. 1994, 60 

2009) or implement under-catch corrections to reduce systematic precipitation biases (Adam and 61 

Lettenmaier 2003). Yet these deterministic products do not generally account for uncertainty or 62 
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create ensemble estimates for the end-user community. Ad-hoc “ensembles of opportunity” from 63 

deterministic products may be created if at least a few products are available for the domain of 64 

interest (e.g. Henn et al. 2018). However, this method is of limited value if there are very few 65 

products available, particularly if the products use similar methods (e.g. the same topographic 66 

correction method). For the Alaska and Yukon region, two daily gridded in situ observation-67 

based products are available as of May 2019: Daymet version 3 (https://daymet.ornl.gov/, 68 

Thornton et al. 2018), and a new product from the Pacific Climate Impacts Consortium product 69 

(Werner et al. 2019). Other remotely sensed (e.g. IMERG, Huffman et al. 2018) and model-70 

based products available (e.g. ERA5, Hershbach and Dee 2016) that could be included in an ad-71 

hoc or weighted ensemble (e.g. Beck et al. 2019), depending on user preferences and application 72 

needs. 73 

In this study we modify the ensemble CAI (eCAI) methodology developed in Newman et 74 

al. (2019a) in two ways. First, we incorporate probabilistic estimates of the climatological 75 

precipitation and temperatures (Newman and Clark 2019). This method follows the general 76 

concepts of Daly et al. (1994, 2000, 2002, 2007, 2008), where a DEM provides additional spatial 77 

information by including known physical relationships between topography and meteorological 78 

variables in the statistical model. The ensemble of daily precipitation and temperature is 79 

conditioned on the probabilistic climatological estimates. Second, we include an ensemble 80 

correction methodology to address precipitation gauge undercatch and wetting loss, which is of 81 

high importance for this region. The final dataset provides daily probabilistic estimates of 82 

precipitation and temperature at 2 km spatial resolution over the time period 1980-2013; high 83 

spatial resolution data is needed in areas with large climate gradients for many applications such 84 

as streamflow forecasting.  85 

The remainder of this paper is organized as follows. The input datasets are described in 86 

section 2, the underlying methods are presented in section 3. Section 4 contains detailed 87 

ensemble validation and comparisons to other datasets, and section 5 has description of the 88 

ensemble after loss corrections are applied. Finally, summary and data availability are found in 89 

sections 6 and 7, respectively. 90 

2 Datasets 91 

A variety of input data sources are used including a digital elevation model (DEM), point 92 

observations from various sources, and the gridded North American Regional Reanalysis 93 

(NARR, Mesigner et al. 2006) product. The NARR is used in estimating the default temperature 94 

lapse rates in the climatologically aided interpolation (Section 3a) and the monthly 95 

climatological wind speed for gauge undercatch estimates (Section 3b) instead of other products 96 

(e.g. the high resolution WRF simulations in Monaghan et al. 2018) because it provides data for 97 

the same temporal period as our ensemble product. 98 

2.1 Domain 99 

The domain of the ensemble product (Figure 1) covers nearly the entire U.S. state of 100 

Alaska and the Canadian Yukon Territory, and NW portions of British Columbia within the 101 

Yukon River watershed. This domain balances coverage over areas with observations, 102 

population, and key watersheds that flow through Alaska. The DEM is at 2 km grid spacing and 103 

is based on the Scenarios Network for Alaska and Arctic Planning (SNAP) DEM, which is a 104 

https://daymet.ornl.gov/
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‘Barnes filtered GTOPO30 DEM obtained from the PRISM climate group’ (SNAP 2019). The 105 

use of this DEM provides the opportunity to compare against the PRISM products. 106 

 107 

Figure 1. Spatial extent of the domain (colored pixels) with geopolitical boundaries in gray.  108 

2.2 Input Station Data 109 

Station observations were obtained from two sources, the Imiq Hydroclimate Database 110 

and Data Portal through the Arctic Landscape Conservation Cooperative (Cherry et al. 2016), 111 

and the adjusted daily precipitation dataset for Canada (Wang et al. 2017). The Imiq dataset 112 

contains many local network stations across Alaska not included in the GHCN-D as well as the 113 

available Alaskan stations in the GHCN-D. The adjusted daily precipitation dataset for Canada 114 

contains observations from Environment and Climate Change Canada, with extensive quality 115 

control and undercatch corrections (e.g. wind undercatch and wetting losses) applied to the data 116 

(Wang et al. 2017). Therefore, we did not use the Global Historical Climatology Network – 117 

Daily (GHCN-D) from the National Centers for Environmental Information (Menne et al. 118 

2012a,b). Figure 2 illustrates the input precipitation and temperature station networks.  119 

Differences in gauge type and measurement practices between the U.S. and Canada, 120 

particularly for snowfall, result in discontinuities in both amount and occurrence for precipitation 121 

estimates across the US-Canadian border irrespective of the native input station data from 122 

Canada (e.g. Adam and Lettenmaier 2003, hereafter AL03; Scaff et al. 2015). Here we attempt to 123 

minimize the differences between the two datasets through additional quality control of the Imiq 124 

data as well as producing ensemble estimates of gauge losses due to wind undercatch and 125 

wetting losses (section 3b). Gauge wind undercatch can be extreme for frozen precipitation 126 

depending on the gauge type (Goodison et al. 1998; Kochendorfer et al. 2018); thus an initial 127 

quality screening step was performed during the colder half of the year (November-April) for 128 

stations in the Imiq database with significantly less precipitation occurrence than a reference 129 

climatology. Canadian stations were not screened because Wang et al. (2017) perform extensive 130 

quality control. 131 
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The reference climatology is a high-resolution, 4 km grid spacing, WRF regional climate 132 

model (RCM) simulation shown to have good representation of the Alaskan climate (Monaghan 133 

et al. 2018). The long-term November-April probability of precipitation (PoP) from the WRF 134 

simulation (2002-2016) using a precipitation threshold of 0.5 mm was compared to the long-term 135 

PoP from all Imiq stations. Stations that had significantly smaller PoP, more than 0.15 less than 136 

the WRF estimated PoP, were removed for this half of the year (Fig. 2a). Often these stations 137 

reported little-to-no precipitation for the entire period while the WRF simulation or other higher 138 

quality stations within the same general area had PoP values ~0.2-0.3. 139 

 140 

Figure 2. a) Precipitation stations and b) temperature stations included in the daily ensemble 141 

product. Precipitation stations denoted with light shaded triangles are included only for the warm 142 

season (May-October), while dark circles in both a) and b) are used over all days. 143 

3 Ensemble Methodology 144 

The ensemble generation methodology, the Gridded Meteorological Ensemble Tool 145 

(GMET), has been applied to a diverse range of climate conditions across the Contiguous United 146 

States (CONUS) and southern Canada (Clark and Slater 2006, Newman et al. 2015), Hawaii 147 

(Newman et al. 2019a), and now Alaska (this study). The CONUS application is a 148 

straightforward application of probabilistic interpolation methods on daily time scales (Newman 149 

et al. 2015), while the Hawaii application developed the ensemble Climatologically Aided 150 
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Interpolation (eCAI) method. In Hawaii, the climatological station network was sufficiently 151 

dense to use the same underlying methodology for both the climatology and daily steps. 152 

In Alaska, our climatological station network is also the same as the daily network, but is 153 

of insufficient density to use the ensemble methodology for both the climatology and the daily 154 

time steps. This was determined during initial testing wherein non-physical lapse rates where 155 

estimated for many grid points. Hence we implemented knowledge-based climatology 156 

interpolation for climatological estimation within the general eCAI method. Further, because 157 

gauge undercatch from wind and wetting loss can be significant at high latitudes (e.g. AL03) an 158 

ensemble approach to estimating wind undercatch and wetting loss has been developed and is 159 

described in Section 3b. Figure 3 provides a flow chart of GMET development from the initial 160 

concept (Clark and Slater 2006) through the current ensemble gauge undercatch methodological 161 

addition. 162 

 163 

Figure 3. Development flow chart for the Gridded Meteorological Ensemble Tool (GMET) and 164 

other directly related development from the initial GMET concept paper, Clark and Slater 165 

(2006), through the current work. 166 

3.1 Ensemble Climatologically Aided Interpolation 167 

The ensemble generation methodology uses locally weighted multiple logistic and linear 168 

regression to estimate grid point distributions of precipitation (Clark and Slater 2006, Newman et 169 

al. 2015, 2019a). Locally weighted multiple linear regression is used to estimate mean daily 170 

temperature and the diurnal temperature range (DTR) distributions (Newman et al. 2019a). After 171 

grid point distributions are estimated, ensemble members are generated by sampling from those 172 

distributions using spatiotemporally correlated random fields. These fields include spatial and 173 

temporal correlation length scales for each variable estimated from the input data (Newman et al. 174 

2019a). In Clark et al. (2006) and Newman et al. (2015), these probability distributions for 175 

precipitation and temperature are estimated for each grid point and day using the daily data. 176 

Clark and Slater (2006)
Initial GMET concept

Climatological CDF defines precipitation (P) transform

Daily P ensemble
Applied to Colorado mountains

Newman et al. (2015)
Expand GMET domain

Changed P transform to power-law, expanded predictors

Daily P and temperature (T) ensemble
Applied to Contiguous United States (1980-2016)

Newman et al. (2019a)
Ensemble CAI (eCAI) concept

Uncertain climatological P and T ensembles inform daily 

anomaly ensemble estimates
Applied to Hawaii (1990-2014)

Current application
Develop ensemble gauge undercatch methodology
First large scale application of TIER for climatology

Daily raw P, corrected P, and T ensemble (1980-2013)
Applied to Alaska and Yukon Territory

Newman and Clark (2019)
Initial TIER development

Knowledge-based system following Daly et al. (1994, 

2000, 2002, 2007, 2008)
Climatological P, T, and uncertainty
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In CAI, climatological grids are used to inform the spatial interpolation of climate 177 

variables (e.g. Willmott and Robeson 1995). In CAI daily ratios are interpolated for precipitation 178 

(the fraction of climatological precipitation on a given day), and anomalies are interpolated for 179 

mean temperature and the DTR (the difference between temperature and the climatological mean 180 

temperature). The interpolated daily ratios (or daily anomalies) are then multiplied (added) to the 181 

climatological values. In the eCAI system, an ensemble of climatological values is first 182 

estimated, and the ensemble mean values are used to compute the station daily ratios for 183 

precipitation or anomalies for temperature. Distributions of daily ratio or anomalies are then 184 

estimated using multiple logistic/linear regression techniques and sampled using 185 

spatiotemporally correlated random fields. Finally, the ensemble of climatological values is used 186 

in the back transformation of the estimated daily ratios or anomalies. This accounts for 187 

uncertainty in both the climatological and daily time scales (Newman et al. 2019a). Here we 188 

summarize the GMET theory and eCAI methodology following Newman et al. (2019a), then 189 

briefly review the TIER methodology (Newman and Clark 2019). 190 

3.1.1 Theory 191 

Precipitation is an intermittent process at many timescales, thus the probability 192 

distribution function (PDF) of precipitation usually contains a concentration at zero. Precipitation 193 

can therefore be modeled as 𝑃(𝑋𝑃 = 0) = 𝑝𝑜 , where 𝑝𝑜is the probability of zero precipitation, 194 

with a CDF for the rest of the values 𝑋𝑃 > 0. From Papalexiou (2018) and Newman et al. 195 

(2019a), the CDF for precipitation, 𝑋𝑃, can be written as 196 

 𝐹𝑋𝑃
(𝑥𝑃) = (1 − 𝑝𝑜)𝐹𝑋𝑃|𝑋𝑃>0(𝑥𝑃) + 𝑝𝑜 ,     for 𝑥𝑃 ≥ 0 (1a) 197 

where 𝐹𝑋𝑃|𝑋𝑃>0(∙) is the CDF of precipitation given that precipitation occurs. Because 198 

temperatures, 𝑋𝑇 and 𝑋𝐷, are not intermittent, the CDFs for mean temperature and the DTR 199 

(subscript D) can be given as: 200 

 𝐹𝑋𝑇
(𝑥𝑇) (1b) 201 

 𝐹𝑋𝐷
(𝑥𝐷) (1c) 202 

Transformation functions are used to map precipitation to a normal distribution. While 203 

Clark and Slater (2006) use the empirical CDF of precipitation derived from the historical 204 

observations, Newman et al. (2015) use a parametric power-law transformation to remove the 205 

requirement of computing and storing the empirical CDFs for each station: 206 

 𝑋𝑃 = 𝑣(𝑌𝑃) = 𝑌𝑃
𝛼 (2a) 207 

 𝑌𝑃 = 𝑣−1(𝑋𝑃) = 𝑋𝑃
1/𝛼 (2b) 208 

where 𝛼 is the transform exponent and the transformation is performed on only non-zero 209 

precipitation values. YP is assumed to be normally distributed: 210 

 𝑌𝑃~𝒩(𝜇𝑌𝑃
, 𝜎𝑌𝑃

2 ),             for 𝑥𝑃 > 0 (3a) 211 

with mean 𝜇𝑌𝑃
 and variance 𝜎𝑌𝑃

2 . Temperature and the DTR are assumed to be Gaussian without 212 

having to perform any transformation:  213 

 𝑋𝑇~𝒩(𝜇𝑇 , 𝜎𝑇) (3b) 214 

 𝑋𝐷~𝒩(𝜇𝐷, 𝜎𝐷) (3c) 215 
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Ensemble realizations of precipitation and temperature are generated by sampling from 216 

the estimated distributions of 𝐘P, 𝐗T, and 𝐗D at all valid grid points and time steps through the 217 

use of spatiotemporally correlated random fields. At the first timestep, we draw from: 218 

 𝐙0~𝒩(𝟎, 𝚺𝑍) (4a) 219 

where 𝚺𝑍 is the covariance matrix: 220 

 𝚺𝑍 = [𝜓𝑔𝑔′] = 𝜓(|𝑠𝑔 − 𝑠𝑔′|) (4b) 221 

𝑠𝑔 and 𝑠𝑔′ are the spatial locations of grid points 𝑔 and 𝑔′, and 𝜓(∙) is a spatial correlation 222 

function that depends only on the distance between two stations. See Newman et al. (2019a) for 223 

specific details regarding the spatial correlation function. 224 

The spatial fields at subsequent times, 𝐙t~𝒩(𝟎, 𝚺𝑍) are defined to represent the 225 

autocorrelation for mean temperature and the DTR, as well as the instantaneous cross-correlation 226 

between the DTR and precipitation (see Newman et al. 2019a). Once 𝐙(∙),𝒕 is computed, physical 227 

values are generated through:  228 

 �̂�𝑢,𝑔 = 𝑣 (𝐹𝑍
−1(𝑢𝑔)) (5) 229 

where 𝐹𝑍~𝒩(𝜇, 𝜎), 𝑢𝑔 is the cumulative probability of 𝐙(∙),𝒕 at gridpoint 𝑔, and �̂�𝑢,𝑔 is the 230 

estimated value at 𝑢𝑔. 231 

Finally, precipitation and temperature at one time step and grid point are (the subscripts t 232 

and 𝑔 are dropped to simplify notation): 233 

 �̂�𝑢,𝑃 = {

0                                      , 0 ≤ 𝑢𝑃 ≤ �̂�𝑜

𝑣 (𝐹𝑃
−1 (

𝑢𝑃−�̂�𝑜

1−�̂�𝑜
)),   �̂�𝑜 < 𝑢𝑃 ≤ 1

 (6a) 234 

 �̂�𝑢,𝑇 = 𝐹𝑇
−1(𝑢𝑇) (6b) 235 

 �̂�𝑢,𝐷 = 𝐹𝐷
−1(𝑢𝐷) (6c) 236 

where 𝑣(∙) is the transformation defined in Equation (2). 237 

To implement CAI into the ensemble framework, monthly climatological values and an 238 

ensemble of monthly climatological values are computed first following Eq. 6: 239 

 �̂�𝑢𝑃𝐶 = {

0                                 , 0 ≤ 𝑢𝑃𝐶 ≤ �̂�𝑜𝐶

𝑣 (𝐹𝑃𝐶
−1 (

𝑢𝑃𝐶−�̂�𝑜𝐶

1−�̂�𝑜𝐶
)) , �̂�𝑜𝐶 < 𝑢𝑃𝐶 ≤ 1

 (7a) 240 

 �̂�𝑢𝑇𝐶 = 𝐹𝑇𝐶
−1(𝑢𝑇𝐶) (7b) 241 

 �̂�𝑢𝐷𝐶 = 𝐹𝐷𝐶
−1(𝑢𝐷𝐶) (7c) 242 

The daily ratio and daily anomalies for precipitation, temperature, and DTR are then computed 243 

using the estimated climatological ensemble means for the closest grid point to each station. 244 

Ensemble realizations of daily precipitation and temperature at each time step and grid point 245 

follow Equations (4-5), with the inclusion of transforming the anomalies back to physical space. 246 

Precipitation is computed as:    247 
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 �̂�𝑢𝑃𝐴 = {

0                                    , 0 ≤ 𝑢𝑃𝐴 ≤ �̂�𝑜𝐴

𝑣 (𝐹𝑌𝑃𝐴

−1 (
𝑢𝑃𝐴−�̂�𝑜𝐴

1−�̂�𝑜𝐴
)) ,   �̂�𝑜𝐴 < 𝑢𝑃𝐴 ≤ 1

 (8) 248 

Then the rank of �̂�𝑢𝑃𝐴
 is used to determine which climatological precipitation ensemble member 249 

is used for the final transformation: 250 

 �̂�𝑢𝑃
= �̂�𝑢𝑃𝐶

(𝑖)
�̂�𝑢𝑃𝐴

(𝑖)
 (9) 251 

 where (i) is the i
th

 ranked value of �̂�𝑢𝑃𝐴
. Mean daily temperature and DTR are simple because 252 

they are continuous, assumed Gaussian, and the anomalies have physical units. Thus, the 253 

simulated mean temperature and DTR are simply: 254 

 �̂�𝑢𝑇
= 𝐹𝑇

−1(�̂�𝑇) (10a) 255 

 �̂�𝑢𝐷
= 𝐹𝐷

−1(�̂�𝐷) (10b) 256 

3.1.2 Topographically Informed Regression 257 

One of the underlying assumptions of the ensemble system is that the observation station 258 

density is sufficient to resolve gradients given the chosen predictor set. GMET uses the simple 259 

least squares estimate and no bounds are placed on the regression coefficients to enforce physical 260 

realism in the final regression equation. In Hawaii, the station density assumption was not met 261 

for the daily station network, necessitating development of eCAI. In Alaska, this assumption is 262 

not met for either the climatology or daily time steps. We therefore applied the Topographically 263 

InformEd Regression (TIER) model to generate the climatological precipitation, mean 264 

temperature, and DTR, and their corresponding uncertainty estimates for input into the 265 

climatological ensemble generation step. 266 

It is well known that surface characteristics influence the climatological distribution of 267 

precipitation and temperature (e.g. Alter 1919; Spreen 1947; Chua and Bras 1982; Phillips et al. 268 

1992; Daly et al. 1994; Clark and Slater 2006). The Topographically InformEd Regression 269 

(TIER) model is a knowledge-based, meteorological variable-elevation locally weighted linear 270 

regression model. It incorporates our knowledge of atmospheric physics through modification of 271 

the weights assigned to each observation for each grid point in the linear regression model 272 

following Daly et al. (1994, 2000, 2002, 2007, 2008) (Newman and Clark 2019). Specifically, 273 

Daly et al. (1994) developed a knowledge based regression system focused on topographic 274 

facets. A facet is defined as a continuous area with similar aspects, or slope orientation, using a 275 

smoothed DEM (Daly et al. 1994). Additional studies added complexity to this base model 276 

through further additions to account for physics related to new variables (e.g. Temperature) and 277 

other processes responsible for spatial gradients such as distance from the coast or valley 278 

inversions (e.g. Daly et al. 2008). 279 

Before spatial estimates of precipitation and temperature are generated, several 280 

preprocessing steps are performed with the DEM to derive the necessary topographical 281 

attributes. First, the DEM is smoothed to remove high frequency, microscale topographic 282 

features. Once the DEM is smoothed, topographic facets are created. Currently, TIER has five 283 

(5) facets: 1) North (aspect > 315°, aspect ≤ 45°); 2) East (45° < aspect ≤ 135°); 3) South (135° 284 

< aspect ≤ 225°); 4) West (225° < aspect ≤ 315°); and 5) Flat. Flat aspects are areas with terrain 285 

gradients (slopes) less than a user-specified gradient value. Next, the topographic position of 286 
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each grid cell and the corresponding placement within an idealized two layer atmosphere are 287 

computed. These two attributes are focused on temperature as they identify valleys and areas 288 

commonly within inversion layers in an idealized two-layer atmosphere (Daly et al. 2002). 289 

Finally, the distance to the coast is determined for all valid grid points in the domain. 290 

The core of the TIER model is the locally varying station weight vector defined at each 291 

grid point (Newman and Clark 2019): 292 

 𝐖 = 𝐖𝐝𝐖𝐟𝐖𝐥𝐖𝐭𝐖𝐩 (11) 293 

Where W is the final weight vector, Wd are the distance dependent weights, Wf are the facet 294 

weights, Wl are the atmospheric layer weights, Wt are the topographic position weights, and Wp 295 

are the coastal proximity weights. For precipitation, only Wd, Wf, and Wp are used in the final 296 

W, while all five component weights are used for calculating W for temperature. Once the 297 

station weight vector is defined, a base grid point estimate is developed as the weighted average 298 

of nearby stations up to n stations:  299 

 �̂�(∙)𝑜
= ∑ 𝑦𝑖

𝑛𝑠
𝑖=1 ∗ 𝑊𝑖 (12) 300 

where �̂�(∙)𝑜
 is the base grid point estimate of precipitation (�̂�𝑃𝑜

), mean temperature (�̂�𝑇𝑜
), or DTR 301 

(�̂�𝐷𝑜
), and 𝑦𝑖 and Wi are the observed station value and the station weight for station i, 302 

respectively. Next, the meteorological field-elevation lapse rate is estimated, and then the grid 303 

point value is estimated as: 304 

 �̂�(∙) = �̂�(∙)𝑜
+ �̂�1,(∙)∆𝐸,                 𝛽1𝑀,(∙) ≤ �̂�1,(∙) ≤ 𝛽1𝑋,(∙) (13) 305 

where �̂�1,(∙) is the regression estimated lapse rate for any variable, ∆𝐸 is the difference between 306 

the smoothed DEM elevation and the W weighted station elevation using the smoothed DEM 307 

station elevations, and 𝛽1𝑀,(∙) and 𝛽1𝑋,(∙) are the user defined, variable specific minimum and 308 

maximum valid regression lapse rates. 309 

 In TIER, the uncertainty of �̂�(∙)𝑜
 is estimated as the standard deviation of the leave-one-310 

out estimates, which is all possible combinations of nr-1 stations, ( 𝑛𝑟
𝑛𝑟−1

):  311 

 �̂�(∙)𝑜
= √

∑ (�̂�(∙)𝑜,−1)
2𝑛𝑟

𝑖=1

𝑛𝑟−1
 (14) 312 

where nr is the subset of stations that are both within a user defined distance threshold and on the 313 

same facet as the current grid cell, �̂�(∙)𝑜
 is the estimated standard deviation of �̂�(∙)𝑜

, and �̂�(∙),−1 is 314 

the estimated value when the i-th station is withheld. The standard deviation of all valid lapse 315 

rate estimates from the leave-one-out estimates, ( 𝑛𝑟
𝑛𝑟−1

), is used as the uncertainty estimate of 316 

�̂�1,(∙): 317 

 �̂�𝛽1,(∙)
= √

∑ (�̂�1,(∙),−1)
2𝑛𝑟

𝑖=1

𝑛𝑟−1
 (15) 318 

where �̂�𝛽1,(∙)
is the estimated standard deviation of �̂�1,(∙) and �̂�1,(∙),−1 is the estimated value when 319 

the i-th station is withheld. For precipitation, the lapse rates are normalized after the regression 320 
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estimates are made; this reduces the large spatial variability due to inherently large differences in 321 

climatological precipitation amounts, which allows for lapse rate bounds to be applied domain-322 

wide (Daly et al. 1994). Then, several post-processing steps are undertaken including filtering 323 

and feathering on the full precipitation field to reduce any remaining non-physical gradients in 324 

the precipitation field (e.g. Daly et al. 1994). For temperature, a spatial filter is used to smooth 325 

the lapse rate before the final temperature field is estimated (Newman and Clark 2019). 326 

 Finally, uncertainty estimates, �̂�𝑃, �̂�𝑇, and �̂�𝐷 are computed as the combined standard 327 

deviation of the two-component uncertainty estimates in Eq. (14-15): 328 

 �̂�(∙) = �̂�(∙)𝑜
+ �̂�𝛽1,(∙) + 2√cov(�̂�(∙)𝑜

, �̂�𝛽,(∙))  (16) 329 

Equation (16) accounts for any covariance between the two component uncertainties. The 330 

covariance is computed locally with a user-defined 2-D window of points around the current grid 331 

point. The results of Eq. (13) and (16) are used as inputs into the monthly climatological 332 

ensemble generation step (Eq. 6). 333 

To summarize, the TIER approach differs from the climatological interpolation step in 334 

Newman et al. (2019a) in two important ways.  First, TIER uses knowledge of the physical 335 

system to enforce spatial consistency in the interpolated fields (see the discussion at the 336 

beginning of this section).  Second, TIER estimates the uncertainty in the interpolation using an 337 

estimate of the variance in the slope and intercept of the regression coefficients (Eqs. 14-16), 338 

while Newman et al. (2019a) uses the cross-validation error of the regression equation.  Lastly, 339 

TIER uses geophysical attributes to estimate the spatial patterns of precipitation and temperature, 340 

which is similar to Newman et al. (2019a), except that TIER uses a simple linear regression 341 

formulation while Newman et al. (2019a) uses multiple linear regression.  Exploration of how 342 

these differences could manifest in a final precipitation or temperature estimate is the subject of 343 

future work. 344 

3.2 Ensemble Gauge Loss Corrections 345 

 Since gauge losses can be substantial in the snow-dominated environments in Alaska and 346 

the Yukon, we developed a gauge loss correction methodology in order to explicitly represent 347 

uncertainty in precipitation undercatch. Following AL03, we focus only on wetting loss and 348 

wind-induced undercatch. To account for uncertainty in the gauge undercatch terms, we use 349 

separate Gaussian distributions for wetting loss and wind undercatch: 350 

 𝑋𝑎~𝒩(�̅�, 𝜎𝑎) (17a) 351 

 𝑋𝑅~𝒩(𝐶𝑅 , 𝜎𝑅) (17b) 352 

Where �̅�, and 𝐶𝑅 are the grid point mean wetting loss and wind undercatch estimates with 353 

corresponding standard deviations 𝜎𝑎 and 𝜎𝑅. We sample from Eq. (17) to generate an ensemble 354 

of monthly climatological correction factors. Note that this approach represents spatial variability 355 

in undercatch and assumes that temporal variability in undercatch is constant for each month. 356 

 Wetting loss, where precipitation is underestimated due to moisture wetting the gauge 357 

surfaces, is taken as the average wetting loss per event. We base our wetting loss estimates, �̅�, on 358 

the study of Sevruk and Hammon (1984), who calculated wetting losses for multiple gauge types 359 

in locations around the world. Sevruk and Hammon (1984) found negligible uncertainty in the 360 



manuscript submitted to Journal of Geophysical Research - Atmospheres 

 

estimate of �̅� for a particular gauge, but larger differences between gauges, possibly as high as 361 

0.2-0.3 mm per event between gauges. While Sevruk and Hammon (1984) define �̅� for the US 362 

standard 8” non-recording gauge, this gauge type is not used at every site in Alaska. Because the 363 

ensemble system uses many gauges in each grid point estimate, a mix of gauge types is likely for 364 

each grid point.  Assuming a blend of half U.S. standard gauges and half tipping bucket gauges, 365 

an ad-hoc estimate of wetting loss can be given for the Imiq gauges as: 366 

 �̅�𝐼 = 0.13 ± 0.05 mm (18) 367 

This estimate is based on �̅� = 0.2 mm for the US standard gauges (Sevruk and Hammon 1984) 368 

and �̅� = 0.06 ± 0.02 mm from qualitative inspection of the results in Niemczynowicz (1986) 369 

and Fankhauser (1998). The subscript I denotes the Imiq network stations. Eq. (18) accounts for 370 

the small uncertainty in an individual gauge estimate combined with the uncertainty of gauge 371 

type for an individual grid point. 372 

 Wind undercatch results from the gauge orifice disturbing the airflow, and creating 373 

updrafts that are able to divert some hydrometeors from entering the gauge (Groisman and 374 

Legates 1994; Nespor and Sevruk 1999). Gauge wind undercatch is particularly acute for low 375 

mass hydrometeors that respond quickly to the flow, such as snowfall, for which undercatch can 376 

be 20-50% or more depending on gauge configuration (Goodison et al. 1998; Kochendorfer et al. 377 

2018). Typically, a power law relationship using wind speed as the explanatory variable is used 378 

for a specific gauge configuration to estimate the gauge catch efficiency; in the case of the U.S. 379 

standard 8” gauge with no shield for frozen precipitation, this is (Goodison et al. 1998):  380 

 𝐶 = exp(𝑎 − 𝑏𝑚𝑐) (19) 381 

where C is the catch efficiency in percent (0-100+), m is the wind speed at gauge height, and the 382 

coefficients are found through fitting experimental data. Goodison et al. (1988) used the 383 

coefficients a=4.61, b=0.16 and c=1.28. For the ensemble in this study we convert C into a catch 384 

ratio 𝐶𝑅,𝐼 = max (
100

𝐶
, 1), the multiplicative factor used to correct gauge undercatch. 385 

Examination of Goodison et al. (1998) reveals significant scatter around the best estimate of C 386 

for a given wind speed for all gauge types. 387 

 Final grid point �̅� and 𝐶𝑅values in Eq. (17) are the weighted average of the estimates for 388 

Imiq and Canadian stations as: 389 

 �̅� = 𝑤𝐼�̅�𝐼 + (1 − 𝑤𝐼)�̅�𝐶 (20a) 390 

 𝐶𝑅 = 𝑤𝐼𝐶𝑅,𝐼 + (1 − 𝑤𝐼)𝐶𝑅,𝐶 (20b) 391 

where w is the fractional contribution of stations from a given network to the total for a grid 392 

point, and the subscripts I and C denote the Imiq and Canadian networks, respectively. �̅�𝐼 is 393 

determined from Eq. (18), 𝐶𝑅,𝐼 from Eq. (19), and �̅�𝐶 = 0, and 𝐶𝑅,𝐶 = 1 because the Canadian 394 

stations are already deterministically adjusted. 395 

 Lastly, 𝜎𝑎 and 𝜎𝑅 in Eq. (17) are determined in the same fashion using Eq. (20): 396 

 𝜎𝑎 = 𝑤𝐼𝜎𝑎,𝐼 + (1 − 𝑤𝐼)𝜎𝑎,𝐶 (21a) 397 

 𝜎𝑅 = 𝑤𝐼𝜎𝑅,𝐼 + (1 − 𝑤𝐼)𝜎𝑅,𝐶 (21b) 398 
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where 𝜎𝑎,𝐼 is taken from Eq. (18), 𝜎𝑎,𝐶 is set to 0.05 mm to account for unknown gauge 399 

distributions and correction methodologies in Canada. 𝜎𝑅,𝐶 and 𝜎𝑎,𝐼 are set to 0.05 from a 400 

qualitative examination of Goodison et al. (1998).  401 

For this domain, there are very few wind measurements with significant record length, 402 

and fewer spanning a majority of the ensemble generation period. Therefore, we use the 1980-403 

2013 monthly NARR 10-m climatological wind speed reduced to gauge height (1.1 m, Sevruk 404 

and Klemm (1989)) using a logarithmic wind profile with roughness lengths of 0.01 and 0.03 m 405 

for the cold and warm seasons respectively (Golubev et al. 1992), and a threshold wind speed of 406 

6.5 m s
-1

 (Yang et al. 1998) as input to Eq. (19). Figure 4 illustrates the NARR climatological 407 

wind field for January and the corresponding climatological wind undercatch values using Eq. 408 

(19). 409 

 410 

Figure 4. a) NARR 1980-2013 climatological January wind speed (m s
-1

), and b) the 411 

corresponding January catch ratio (𝐶𝑅) using only Eq. (19). 412 

 The grid point estimate for one day is a blended estimate using the estimated fractional 413 

liquid/frozen precipitation type as (Legates and Willmott 1990; AL03): 414 

 �̂�𝑢,𝑃′ = (1 − 𝑆)𝜅𝑟(�̂�𝑢,𝑃 + 𝑋𝑎) + 𝑆𝑋𝑅(�̂�𝑢,𝑃 + 𝑋𝑎) (22) 415 

where �̂�𝑢,𝑃′  is the final adjusted precipitation, and �̂�𝑢,𝑃 is the raw current ensemble member 416 

precipitation from Eq. (6a), S is the fraction of precipitation falling as snow, and 𝜅𝑟 is the wind 417 

undercatch correction factor for rainfall and is set to 1 here. S is estimated at each grid point and 418 

day following Froidurot et al. (2014) using only daily mean air temperature: 419 

 𝑆 = 1 −
1

1+𝑒𝑎𝑜+𝑎1�̂�𝑢,𝑇
 (23) 420 

where �̂�𝑢,𝑇 is the current ensemble member mean daily 2 m air temperature from Eq. (6b), and a0 421 

and a1 are fitted coefficients set here as a0 = 2.2347 and a1 = -1.7108. 422 

4 Comparisons and Validation 423 

In this section, comparisons between PRISM, Daymet, the WRF RCM simulation, and 424 

the ensemble product are presented along with in-depth deterministic and probabilistic leave-425 

one-out validation statistics. Note that all precipitation comparisons and verification discussion 426 

in this section is in reference to the unadjusted precipitation. 427 
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4.1. Climatological Comparisons and Validation 428 

The ensemble (hereafter Ensemble) mean 1980-2013 precipitation (mm yr
-1

) and mean 429 

temperature (°C) are compared to PRISM, Daymet v3 (Thornton et al. 2018), and the WRF 430 

RCM. PRISM is a 1971-2000 climatology, while the Ensemble and Daymet are the 1980-2013 431 

mean values from the daily fields, and the WRF RCM simulation spans 2002-2016. There is a 432 

general maximum in precipitation across Alaska along coastal zones, and the SE portion of the 433 

state in particular. Areas of complex terrain are also locations of relative maxima in precipitation 434 

(Fig. 5a-d). Of note are the large inter-product differences seen in precipitation, particularly 435 

across the complex terrain of SE and northern Alaska. Mean temperatures generally decrease 436 

from South to North across the domain, with the warmest areas near the southern coastline and 437 

the coldest areas along the northern edge of the state (Fig. 5e-h). All products have local minima 438 

in temperature at higher elevations, and PRISM, Daymet, and WRF are colder than the Ensemble 439 

mean (Fig. 5e-h).  This suggests the temperature-elevation lapse rate in the Ensemble may need 440 

further investigation.   441 

 442 
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Figure 5. Long-term mean daily precipitation (mm yr
-1

) along the left column for a) the 443 

Ensemble mean (1980-2013), b) Daymet (1980-2013), c) PRISM (1971-2000), and d) WRF 444 

(2002-2016). Long term mean temperature (°C) along the right column for a) the Ensemble mean 445 

(1980-2013), b) Daymet (1980-2013), c) PRISM (1971-2000), and d) WRF (2002-2016). 446 

Figure 6 highlights differences in precipitation across Alaska between PRISM, Daymet, 447 

WRF RCM, and the Ensemble products. Differences in precipitation range from ± 50 % up to 448 

120% in a few isolated areas across the domain. Overall, the Ensemble is the wettest observation 449 

based product using domain average precipitation with 2.73, 2.53, 2.76 mm day
-1

 or 997, 925, 450 

1008 mm yr
-1

 for PRISM, Daymet, and the Ensemble mean respectively, while WRF has a 451 

domain average of 2.72 mm day
-1

 (994 mm yr
-1

).  However, PRISM is the wettest using grid cell 452 

comparisons with 51%, 31%, and 18% of the common domain having PRISM, Daymet, and the 453 

Ensemble mean as the maximum precipitation product.  Finally WRF is wetter than all three 454 

observation based products in northern portions of the domain where gauge undercatch can be 455 

more severe (section 5). Correspondingly, the Ensemble estimated climatological relative 456 

uncertainty using the Ensemble standard deviation is greater than 20% for 65% of the domain, 457 

which empirically supports large differences between distinct products (not shown). 458 

 459 

Figure 6. Relative (%) precipitation differences between a) PRISM – Ensemble mean, b) Daymet 460 

– Ensemble mean, and c) WRF – Ensemble mean. 461 
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Finally, Daymet and Ensemble climatological PoP values are compared in Figure 7. The 462 

Ensemble has higher PoP across most of the domain than Daymet with the largest differences 463 

occurring over the Canadian portion of the domain. Across the state of Alaska, the PoP 464 

differences are smaller in an absolute sense, but in most of interior Alaska, climatological PoP is 465 

~0.2 or less. Specifically for the Ensemble product, leave-one-out cross validation (LOOCV) 466 

statistics for PoP show the Ensemble is nearly unbiased in Figure 8 when compared to the 467 

observations included in the Ensemble product, while Daymet PoP is underestimated for nearly 468 

all of the same observation sites, particularly for stations with less precipitation (Fig. 8b). 469 

 470 

Figure 7. Climatological probability of precipitation (PoP) for a) Daymet, b) Ensemble, and c) 471 

Ensemble – Daymet difference field. 472 

Because the PoP differences between Daymet and the Ensemble arise from either 473 

methodological or input data, or a combination, we can attempt to separate the influence of the 474 

two to identify the primary contributor. For this comparison, the inputs are significantly 475 

different. Daymet uses only GHCN-D data, which has not been quality checked for severe wind 476 

undercatch in winter, while the Ensemble discards these stations across Alaska and uses the 477 

adjusted daily precipitation dataset for Canada (Wang et al. 2017), which are the stations used 478 

for comparisons here, implying that the Daymet comparison may have many out-of-sample 479 

stations, while the Ensemble comparison uses LOOCV.  Additionally, there is a conditional bias 480 
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in the Daymet data with precipitation amount, which indicates a constant threshold for 481 

occurrence is problematic (e.g. Newman et al. 2019b).  Thus, both input station differences and 482 

methodological decisions are playing a role in the PoP differences shown here. 483 

484 
Figure 8. a) Leave-one-out cross-validation probability of precipitation (PoP) bias as compared 485 

to observations for the Ensemble, and b) PoP bias for Daymet using the same stations. 486 

Overall, differences in precipitation and temperature may arise from many factors. First, 487 

PRISM is generated using a different climatological period. Next, each product is generated 488 

using different methodologies and input station networks. For example, the three products 489 

estimate the elevation lapse rate of precipitation and temperature in different ways. PRISM and 490 

the Ensemble use similar methods, but have many subtle differences in model parameters and 491 

methodological decisions. Furthermore, PRISM includes additional manual adjustments to more 492 

closely represent observed conditions in specific locations through a process of local expert 493 

review (Daly et al. 2009). Unfortunately, it is difficult to disentangle the precise choice(s) 494 

underlying these differences, even for PoP in this case, and is an area of active research (e.g. 495 

Newman et al. 2019b, Newman and Clark 2019). 496 

4.2 Deterministic Daily Validation 497 

Deterministic cross-validation comparisons to observation locations for precipitation 498 

amount and variability (represented as the standard deviation of the daily precipitation time 499 

series) shows that the Ensemble is nearly unbiased (Table 1) overall.  The Ensemble has a small 500 

conditional bias for precipitation as seen in Figure 9a with a fitted slope of 1.09, indicating 501 

underestimation at low rainfall rates and overestimation at high rainfall rates.  The conditional 502 

bias is worse for variability (slope of 1.46) with overestimation of daily variability for the 503 

stations with daily variability >5 mm day (Fig. 9b).  The Ensemble mean normalized MAE 504 

decreases with increasing rainfall rate and has increasing Spearman rank correlation with 505 

increasing rainfall rate (Fig. 9c-d).  There is a tendency for higher MAE and lower correlation at 506 

higher elevation stations, primarily because those stations tend to have lower rainfall rates (Fig. 507 

9c-d). 508 
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509 
Figure 9. Ensemble deterministic leave-one-out cross-validation for a) mean daily precipitation 510 

(mm day
-1

), b) precipitation variability (mm day
-1

) as the standard deviation of the daily 511 

precipitation time series, c) normalized mean absolute error (MAE), and d) spearman rank 512 

correlation of Ensemble and observed precipitation. 513 

For temperature, the Ensemble mean is essentially unbiased for mean daily temperature 514 

and DTR (Table 1). There is little spatial pattern to any non-zero bias, but more isolated stations 515 

tend to have higher MAE values because less information is available nearby for interpolation 516 

(not shown). (not shown). The Ensemble has little conditional bias (Figure 10a) for mean 517 

temperature with a fitted slope of 0.96 as compared to the observations. A larger conditional bias 518 

is present for DTR (Fig. 10b) with a slope of 0.9, signifying overestimation of DTR for small 519 

observed DTR and underestimation of DTR for large observed DTR.  Mean temperature MAE 520 

values are about two-thirds of DTR (Table 1, Fig. 10a-b), which is expected considering DTR 521 

implicitly models maximum and minimum temperatures. Somewhat unexpectedly, the Pearson 522 

correlation of DTR is significantly lower than mean temperature with a drop in the median 523 

correlation of around 0.2 (Fig. 10c).  524 
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 525 

Figure 10. Ensemble deterministic leave-one-out cross-validation for a) Ensemble mean daily 526 

temperature (°C), b) Ensemble mean daily diurnal temperature range (DTR) (°C ), and c) 527 

Pearson correlation of daily Ensemble mean temperature and DTR. 528 

Table 1. Summary deterministic cross-validation statistics for Ensemble daily values of 529 

precipitation, precipitation variability (standard deviation), mean temperature, and diurnal 530 

temperature range. 90% bootstrapped (1000 iterations) confidence intervals are in parentheses. 531 

 Precipitation 

Precipitation 

Variability 

Mean 

Temperature 

Diurnal Range 

Mean Bias 

0.1 (-0.1 – 0.24) 

mm day
-1

 

2.9 (2.6 – 3.3) 

mm day
-1

 

0.0 (-0.1 – 0.1) K 0 (-0.1 – 0.1) K 

Median Bias 

0.5 (0.4 – 0.7) 

mm day
-1

 

1.6 (1.5 – 1.8) 

mm day
-1

 

0.0 (-0.1 – 0.1) K -0.1 (-0.1 – 0.1) K 
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Mean Absolute 

Error 

3.7 (3.4 – 3.9) 

mm day
-1

 

3.3 (3.0 – 3.6) 

mm day
-1

 

1.6 (1.5 – 1.6) K 2.3 (2.3 – 2.4) K 

4.3 Probabilistic Daily Validation 532 

The Ensemble product probabilistic daily leave-one-out cross validation (Figure 11 and 533 

Table 2) indicates a reliable product compared to climatology and the ability to discriminate 534 

between events and non-events . For all non-zero precipitation days the Ensemble has an 535 

underestimation at low estimated probabilities and an overestimation at high estimated 536 

probabilities, or overconfidence (lack of resolution) in the predicted probabilities. For other event 537 

thresholds, the Ensemble overestimates event probabilities, particularly at low observed 538 

probabilities (Fig. 11a-d). For all non-zero precipitation days, the Ensemble has significant 539 

discrimination as noted by distributions that have minimal overlap and likelihood distribution 540 

mean values for events and non-events of 0.70 and 0.22, respectively. Ensemble event 541 

discrimination decreases with increasing event threshold, but maintains significant distributional 542 

separation for all thresholds (Wilks 2006). 543 
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 544 

Figure 11. a-d) Reliability diagrams for 0, 5, 10, and 20 mm event thresholds, and e-h) 545 

discrimination plots for the same thresholds. The light gray shaded areas in a-d) indicate skillful 546 

reliability above climatology and the black and red lines in e-h) denote non-events and event 547 

probability distributions respectively. Areas with dark gray shading in any panel indicate 548 

uncertainty bounds using bootstrapping (1000 samples); where no dark gray shading is present, 549 

the sampling uncertainty is less than the plotted line thickness. 550 

 551 
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Table 2. Ensemble cross-validation non-event and event distribution mean probabilities across 552 

precipitation thresholds. 553 

Event threshold Non-event Probability Event Probability 

0 mm 0.22 0.70 

5 mm 0.11 0.59 

10 mm 0.08 0.54 

20 mm 0.07 0.48 

5 Loss Correction 554 

Systematic loss adjustments from wind induced undercatch of frozen precipitation and 555 

gauge wetting are applied to each day and ensemble member uniquely using the specific 556 

ensemble member daily precipitation, temperature, and monthly climatological wind speed. The 557 

1980-2013 Ensemble mean precipitation relative adjustment is shown in Figure 12. The 558 

Ensemble mean adjustment is zero for grid points with a Canadian station weight of 1 because 559 

these stations have already been deterministically adjusted. However, there is spread across the 560 

ensemble members for any given day due to the estimated uncertainty in Eq. (17) as shown in an 561 

example distribution of undercatch correction ratios for one grid point for one day (Fig. 12b). 562 

Elsewhere, relative adjustments of several percent are common in climatologically less windy 563 

locations, while areas such as the northern coastal regions of Alaska and the high, windy, coastal 564 

glacial areas of southern Alaska with high fractions of frozen precipitation and higher wind 565 

speeds can have precipitation adjustments of greater than 30%. 566 

 567 

Figure 12. a) Mean relative precipitation adjustment (%), and b) example distribution undercatch 568 

correction ratios (CRs) for one grid point for one day. 569 
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6 Conclusions 570 

Here we present probabilistic precipitation and temperature estimates for Alaska and the 571 

Canadian portion of the Yukon River watershed using an ensemble Climatologically Aided 572 

Interpolation (eCAI) system (Newman et al. 2019a, c). This region is a challenging environment 573 

to develop gridded observation estimates given the complex topography, sparse observations, 574 

and large fraction of frozen precipitation and associated measurement errors. The ensemble 575 

estimates developed here includes spatiotemporally varying uncertainty loss correction estimates. 576 

Overall, the Ensemble represents the spatial complexity of temperature and precipitation 577 

as compared to PRISM, Daymet, and a WRF RCM simulation (Fig. 5). Qualitatively there are 578 

sometimes significant differences between the products, particularly in precipitation, with the 579 

climatological component of the eCAI system estimating relative uncertainty greater than 20% 580 

over a majority of the domain, and at high elevations in southern Alaska. The Ensemble 581 

probability of precipitation (PoP) is generally higher than Daymet and much higher across 582 

Canada. This is most likely due to the different input data sources across the two products. 583 

Daymet uses only global historical climatology network daily (GHCN-D) observations while the 584 

Ensemble uses Canadian data with more extensive quality control, additional observations across 585 

Alaska not available in GHCN-D, and data with additional quality control of Alaskan 586 

observations (section 2b). However, differences in climatological precipitation and temperature 587 

are harder to diagnose without more systematic comparisons (Newman et al. 2019b). 588 

Leave-one-out deterministic cross-validation shows the Ensemble has little bias in daily 589 

precipitation and mean temperature but overestimates the daily standard deviation of 590 

precipitation given these specific input observations used (Fig. 9 Table 1). The MAE of diurnal 591 

temperature range (DTR) is 50% larger than that of mean temperature because DTR is more 592 

difficult to estimate as it includes both maximum and minimum temperature (Fig. 10, Table 1). 593 

The Ensemble has skillful reliability compared to climatology, and significant discrimination of 594 

events across many precipitation thresholds (Fig. 11). At higher event thresholds the Ensemble 595 

creates a wet bias, indicating an overprediction of higher threshold events and supporting the 596 

positive bias of daily precipitation standard deviation. 597 

The major advance for this Alaska-Yukon effort is the simple ensemble loss correction 598 

methodology. Currently we consider only wetting loss and gauge wind undercatch for frozen 599 

precipitation. A distance-weighted blend of the deterministically adjusted Canadian stations with 600 

unadjusted US stations was created to account for spatially varying station contributions across 601 

the grid. Then monthly ensemble loss multipliers are developed to account for seasonality in 602 

wind speed and uncertainty in wind speed, gauge type, precipitation fraction, and undercatch 603 

estimates. The adjusted precipitation is up to 36% greater than the unadjusted estimate in windy 604 

areas also having a frozen precipitation majority, primarily along the southern and northern 605 

Alaskan coastlines (Fig. 12).  606 

This product was not developed with trend analysis in mind, and so should not be used 607 

for trend analysis for several reasons. First, is length of the time series is limited to 34 years. 608 

Second, the input station data underwent various levels of QA/QC, but not all station data are 609 

homogenized and tested for measurement discontinuities. Finally, missing data were filled using 610 

quantile mapping, which relies on the assumption of stationary distributions in time. 611 

Nevertheless, we hope that this product will be useful for the community for many other impact 612 

and data-based studies. 613 
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7 Data Availability 614 

This dataset is freely available at https://doi.org/10.5065/hsbv-b152 and was generated 615 

using National Center for Atmospheric Research (NCAR) high-performance computing 616 

resources (CISL, 2017). The ensemble files include daily unadjusted and adjusted precipitation 617 

(mm day
-1

), daily mean temperature (°C), diurnal temperature range (°C), fraction of 618 

precipitation falling as snow, and the wetting loss and wind undercatch correction factors.  619 

GMET is available at https://github.com/NCAR/GMET and TIER is available at 620 

https://doi.org/10.5281/zenodo.3234938. The input station data used to generate the gridded 621 

ensemble is available Wang et al. (2017) for Canada and the Imiq database (http://imiq-622 

map.gina.alaska.edu), and also from the corresponding author. 623 
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