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Abstract

Wheat production plays an important role in Morocco with the country typically producing more than half of Northwest

African grain production. Current wheat forecast systems use weather and vegetation data during the crop growing phase,

thus limiting the earliest possible release date to early spring. However, Morocco’s wheat production is mostly rainfed and

thus strongly tied to fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a source of

predictability at longer timescales. Using physically-guided causal discovery algorithms we extract climate precursors for wheat

yield variabilityfrom gridded fields of geopotential height and sea surface temperatures which show potential for accurate yield

forecasts already in December. The detected interactions are physically meaningful and consistent with documented ocean-

atmosphere feedbacks. Reliable yield forecasts at such long lead times could provide farmers and policy-makers with necessary

information for early action and strategic adaptation measurements to support food security.
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Abstract 18 

Wheat production plays an important role in Morocco with the country typically producing more 19 

than half of Northwest African grain production. Current wheat forecast systems use weather and 20 

vegetation data during the crop growing phase, thus limiting the earliest possible release date to 21 

early spring. However, Morocco’s wheat production is mostly rainfed and thus strongly tied to 22 

fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a 23 

source of predictability at longer timescales. Using physically-guided causal discovery 24 

algorithms we extract climate precursors for wheat yield variability from gridded fields of 25 

geopotential height and sea surface temperatures which show potential for accurate yield 26 

forecasts already in December. The detected interactions are physically meaningful and 27 

consistent with documented ocean-atmosphere feedbacks. Reliable yield forecasts at such long 28 

lead times could provide farmers and policy-makers with necessary information for early action 29 

and strategic adaptation measurements to support food security. 30 

 31 

Plain Language Summary 32 

The per capita consumption of cereals in Morocco is one of the highest in the world placing a 33 

significant role to wheat production in the framework of national food security. Early wheat 34 

forecasts are crucial to increase the resilience of the agricultural sector to climate risks. So far, 35 

operational forecast systems provide first yield estimates in March-April and hence around one 36 

month before harvest starts in May. These systems use weather and vegetation data during the 37 

crop growing phase thus limiting the earliest possible release date to this very time period. Here, 38 

we present a different approach based on causal interactions in the climate system to provide 39 

accurate forecasts of year-to-year wheat yield changes already in December. We make use of the 40 

fact that wheat production is mostly rainfed and thus strongly coupled to prevailing rain 41 

conditions which, in turn, are influenced by slowly evolving circulation patterns and sea surface 42 

temperatures in the Atlantic and Pacific Ocean. These links between far-away regions, also 43 

known as teleconnections, can last for several months and thus provide predictability at seasonal 44 

timescales relevant for strategic adaptation decisions, e.g. regarding crop import planning or the 45 

choice and intensity of agronomic practices. 46 

  47 
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1 Introduction 48 

Agriculture is of particular strategic importance in Morocco. Most of the arable land is devoted 49 

to cereals with wheat accounting for the majority of total cereal production and thus playing a 50 

key factor for national food security. However, most of the arable land is located in arid or semi-51 

arid regions which are characterized by long dry periods and high year-to-year rainfall variations 52 

(Born et al., 2008). Since very little of the arable land is irrigated, this leaves Morocco’s wheat 53 

production heavily dependent on large fluctuations in rainfall intensities (Berdai et al., 2011). 54 

Reliable seasonal forecasts could help in reducing the vulnerability of the Moroccan agriculture 55 

to weather risks by enabling timely in-season adaptation. Since the Moroccan climate is 56 

projected to become drier and hotter with ongoing global warming, such forecasts will likely 57 

become even more important in the future (Born et al., 2008; Filahi et al., 2017). 58 

 59 

Operational yield forecasting systems provide estimates at lead times of a few days up to three 60 

months before harvest in May-June. Provisional forecasts are released every year by the Crop 61 

Growth Monitoring System – Morocco (CGMC-MAROC) in April and then constantly revised 62 

over the course of the season. CGMS-MAROC uses a physical crop growth model combined 63 

with statistical models (Bernardi, 2016; Bregaglio et al., 2014). Based on empirical regression 64 

models using weather and vegetation data Balaghi et al. (2008) accurately forecast grain yields 65 

as early as of March. Yet, both approaches use the Normalized Difference Vegetation Index 66 

(NDVI) during mid-season of the growing phase which limits the earliest possible release date to 67 

early spring. 68 

 69 

Longer lead times may be achieved through utilization of remote climatic drivers which 70 

influence rainfall variability over Morocco and thus wheat production. Total annual wheat yields 71 

are significantly correlated to accumulated rainfall during the rainy season lasting from 72 

September to May (De Wit et al., 2013). Intra-seasonal rainfall variability  in turn is influenced 73 

by large-scale climate dynamics including atmospheric circulation patterns and sea surface 74 

temperatures over the Pacific and Atlantic Ocean which may persist over months allowing for 75 

skillful forecasts at extended lead times (Knippertz et al., 2003; Rodríguez-Fonseca et al., 2006). 76 

The most prominent mode of large-scale variability in the Atlantic, the North Atlantic Oscillation 77 

(NAO), has been shown to directly influence the early stage of Moroccan wheat growth in 78 

December by shaping the storm tracks which bring moist air from the Atlantic Ocean to the land 79 

(Jarlan et al., 2014). Moreover, indirect influences on Moroccan rainfall may occur via 80 

atmospheric teleconnections; wave trains, for instance, can emerge from sea surface temperature 81 

forcing and may lead to temperature and rainfall changes in far-away regions downstream of the 82 

wave (Schlueter et al., 2019; Shaman & Tziperman, 2011). 83 

 84 

Tapping into this potential source of forecasting rainfall and thus Moroccan wheat yields, we 85 

here apply a physically motivated approach based on causal discovery algorithms (Runge et al., 86 

2019) to find causal climate precursors for interannual wheat yield variability at least four 87 
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months before harvest. Previous studies have successfully applied the methodology of causal 88 

precursors to forecast extreme stratospheric polar vortex states relevant for mid-latitude winter 89 

weather (Kretschmer et al., 2017) and the Indian summer monsoon intensity (Di Capua et al., 90 

2019). 91 

 92 

2 Data 93 

Moroccan wheat yield (MWY) data. Nationally aggregated annual wheat yield data for the time 94 

period 1979-2017 is taken from the website of the Food and Agriculture Organization (FAO) 95 

(FAOSTAT, 2017) with wheat yields given in hectograms per hectare (hg/ha). Annual anomalies 96 

are calculated based on the difference to the yield in the previous year (first differences) thereby 97 

removing possible linear trends. 98 

Climate data. Precursors are derived from two climate variables: sea surface temperature (SST) 99 

and geopotential height at 500 hPa (Z500), with the latter being a commonly used level to 100 

describe high and low pressure systems in the mid troposphere. We selected these climate 101 

variables because they were shown to be linked to Moroccan winter climate and/or wheat yields 102 

(e.g. Jarlan et al., 2014; Knippertz et al., 2003; Tuel & Eltahir, 2018). Both climate variables are 103 

taken from the ERA5 reanalysis product provided on a 1° x 1° longitude-latitude grid covering 104 

the time period 1979-2017 at monthly time resolution (Hersbach et al., 2019). Similarly, as for 105 

the MWY time series, monthly climate anomalies are calculated at each grid cell by calculating 106 

the difference to the same month of the previous year. Due to the first differences approach for 107 

anomaly calculation and the wheat growing season lasting from November to June, the analysis 108 

is limited to the years 1981-2017. 109 

 110 

3 Building the statistical forecast model – a three step approach 111 

Building the forecast model consists of three steps: (1) defining potential precursors from 112 

gridded climate variables by hierarchical clustering of correlation maps, (2) selecting causal 113 

precursors from potential precursors using causal discovery algorithms and (3) applying 114 

multiple-linear regressions on observed yield anomalies using causal precursor time series. 115 

Step 1: Define potential precursors 116 

Potential precursors are defined as confined regions of a climate variable whose changes precede 117 

changes in the target variable, i.e. nationally aggregated MWY anomalies. In a first step, 118 

pairwise correlation analyses are conducted between MWY anomalies and lagged time series of 119 

monthly Z500 and SST anomalies at each grid cell of the gridded globe between 90°N and 20°S 120 

to include possible teleconnections from the northern hemisphere and the tropics. Thereby, 121 

statistical significance at the grid cell level is defined at the 2% threshold (two-tailed p-value < 122 

0.02). Using two climate variables (Z500 and SST) and four time lags (September to December) 123 

thus leads to eight correlation maps from which potential precursors are extracted. Potential 124 

precursors are defined by grouping significantly correlated grid cells of the same correlation sign 125 

using Density-Based Spatial Clustering of Applications with Noise (DBSCAN, Ester et al., 1996; 126 
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Schubert et al., 2017). In DBSCAN a radius of 300 km is chosen to define neighboring grid cells 127 

which is found to produce regions of reasonable sizes and spatial separation.  128 

Step 2: Select causal precursors from potential precursors 129 

So far potential precursor regions have been identified which are correlated with the target 130 

variable MWY. These lagged correlations, however, do not necessarily imply causation. Non-131 

causal, spurious correlations can emerge from indirect links, common drivers or autocorrelation 132 

effects. To remove such spuriously correlated precursors we apply a multivariate causal 133 

discovery algorithm (Runge et al., 2019). The algorithm uses partial correlations to iteratively 134 

check whether the link between a given potential precursor and the target variable can be 135 

explained by any combination of the remaining potential precursors. If this is the case, i.e. if the 136 

given potential precursor is conditionally independent from the target variable, then this potential 137 

precursor is removed. Otherwise, it is considered as a causal precursor. A detailed step-by-step 138 

description of this causal selection step can be found in Kretschmer et al. (2016). Despite the 139 

thorough selection process the definition of causality given here, like any causal interpretation, 140 

rests on several underlying assumptions (J. Runge, 2018). In this sense, causal precursors as 141 

defined in this study should be understood as climatic indices which exhibit a significant, time-142 

lagged linear dependence with MWY anomalies that cannot be explained by any other identified 143 

potential precursor or combination of those. 144 

The combination of step 1 and step 2 of the method part was first introduced by Kretschmer et al. 145 

(2017) as the response-guided causal precursor detection. Here, we apply the same method albeit 146 

with the modification of clustering significantly correlated grid cells in step 1 in contrast to 147 

merging only directly neighboring grid cells. This has shown to improve the robustness of 148 

detecting potential precursor regions. 149 

 150 

Step 3: Build the forecast model based on causal precursors 151 

In the last step we perform a multiple-linear regression between the anomaly time series of the 152 

selected causal precursors and MWY anomalies to build the forecast model in the form 153 

MWYforecast = α+ ∑ βi∙CPi+εi
n
i , where 𝛼 is the intercept, 𝛽𝑖 is the parameter of the 𝑖-th causal 154 

precursor (𝐶𝑃𝑖) with error term 𝜀𝑖 and n is the total number of causal precursors. 155 

 156 

4 Results 157 

4.1 Extracting causal precursors from climate data 158 

In total 61 potential precursors are extracted (step 1) from the pairwise correlation analysis 159 

between the gridded climate variables and MWY anomalies indicating both positive as well as 160 

negative correlations (respective red and blue regions with contours in Fig. 1). Potential 161 

precursors are found in each correlation map with spatial patterns of Z500 precursors showing 162 

larger differences between time lags compared to SST as expected from higher variability in the  163 
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 164 

Fig. 1: Potential precursors derived from 500 hPa geopotential height anomaly fields (Z500, 165 

left) and sea surface temperature anomaly fields (SST, right). Pairwise correlations are 166 

calculated between wheat yield anomalies and the respective climate variable at each grid cell 167 

and time lag ranging from lag 4 (December) to lag 7 (September). Significantly correlated grid 168 

cells are then aggregated to homogeneous regions using cluster analysis (black contours). 169 

atmosphere. Correlation maps are robust with similar regions found for different significance 170 

thresholds and subsamples of the studied time period (see details in Supporting Information (SI), 171 

Fig. S1).  172 
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 173 

Fig. 2: Causal precursors of Moroccan wheat yield anomalies. Five causal precursor regions 174 

are extracted from geopotential height anomaly fields (Z500, green) and sea surface temperature 175 

anomalies (SST, red) at different time lags. Contours indicate whether a precursor is positively 176 

(solid line) or negatively (dotted line) correlated with yield anomalies. 177 

 178 

Amongst all 61 potential precursors only five are found to be causally linked to WWY anomalies 179 

following step 2 of the model building approach (Fig. 2). These causal precursors include a 180 

region of negatively correlated Z500 anomalies over Central to Southwestern Europe in 181 

November and December suggesting that Z500 anomalies in these months provide relevant, 182 

independent information for MWY. Otherwise, the applied causal discovery algorithm should 183 

have eliminated one of the two precursors during the conditional independence test. Consistently, 184 

the correlation between both Z500 regions is only weak (Pearson correlation coefficient of 185 

r=0.36, Fig. S2). A second causal precursor is found in December which refers to positively 186 

correlated SST anomalies in the Coral Sea northwest of Australia. Two causal precursors emerge 187 

in October and relate to positively correlated SST anomaly fields – one in the North Atlantic off 188 

the East Cost of the USA and the other in the tropical Atlantic along the western African 189 

coastline. In September no causal precursor for MWY is identified. 190 

 191 

We test the robustness of the causal selection step by altering significance thresholds and 192 

applying them to subsamples of the data and overall find consistent results (see detailed 193 

discussion in SI, Fig. S3). Particularly, causal precursors 1-4 only show little sensitivity to the 194 

chosen settings. 195 

 196 
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4.2 Validation of the Moroccan wheat yield hindcasts 197 

Hindcasted yield anomalies strongly correlate with observed anomalies, explaining 88% of the 198 

observed yield variance over the full time period (Fig. 3a). Thereby, each causal precursor 199 

contributes a similar individual share of 15-25% to the total explained variance (Fig. S4) as 200 

computed from variance decomposition of the multiple-linear regression model (Grömping, 201 

2007). Oscillating MWY variability over the last decade seems to be driven by similar variability 202 

of the causal Z500 precursor regions in December and November (Fig. S5) which is in line with 203 

an increased correlation strength over time between both precursors and MWY (Fig. S6). In 204 

contrast, correlation strength between MWY and the causal SST precursor in the equatorial 205 

Atlantic starts at a high level of around r=0.8 and then decreases to around r=0.4 in 2010. The 206 

transition phase when the correlation of MWY with the Z500 precursors becomes stronger than 207 

with the SST precursor corresponds to the time period where hindcasts diverge most from 208 

observations (1999-2003) and may thus play a role for this discrepancy. Analyses of the hindcast 209 

residuals confirm that the assumptions of a multiple-linear regression model are fulfilled; that is 210 

that residuals are characterized by a mean value of zero, constant variance (homoscedasticity), 211 

no significant auto-correlation and follow a normal distribution (Fig. S7). 212 

 213 

The regression model is robust with respect to its regression parameters of the identified causal 214 

precursors. To show this we divide the time series into two parts; regression parameters are 215 

derived from the training period (19 years, 1981-1999) and then used to hindcast MWY 216 

anomalies over the test period (18 years, 2000-2017). The explained variance over the training 217 

period (91%) is high and similar to the explained variance over the test period (85%), indicating 218 

that the regression model does not suffer from overfitting given the hypothetical case that all five 219 

causal precursors were known (Fig. 3b).  220 

 221 

We next implement an out-of-sample cross validation to further validate the predictive skill of 222 

our hindcast model in the case that causal precursors are not know a priori. For this, we 223 

iteratively remove two consecutive years from the time series with the remaining years serving 224 

as the training period and the left-out years as the test period. We choose to remove two 225 

consecutive years instead of just one to account for the strong year-to-year autocorrelation of the 226 

causal precursor time series (Fig. S8). The full hindcast model (step1-3) is then calculated using 227 

data from the training period only to ensure that data against which the model skill is validated 228 

does not enter any part of the model building process.  229 

 230 

Hindcasted yield anomalies from this cross validation still explain 46% of the observed variance 231 

over the full time period with observations mostly staying within the 95% prediction interval 232 

(Fig. 3c). The drop in explained variance is due to the fact that not all five causal precursors are 233 

detected in each training period which is primarily due to small changes in the identified 234 

potential precursor sets. Repeating the cross-validation using prescribed potential precursors 235 

from the full time period increases the explained variance to 76% (Fig. S9). 236 
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 237 
Fig. 3 Hindcasts based on causal precursors. (a) Hindcasted yields strongly correlate with 238 

observed yields over the studied time period. (b) Observed and hindcasted yields over a train and 239 

a test period with same causal precursors as in (a) and regression parameters calculated from the 240 

train period only. (c) Leave-2-out cross validation with strict train-test splitting for all three 241 

model building steps. Observed yields mostly stay within the 95% prediction interval. 242 
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 243 

Fig. 4: One-step-ahead forecast. The forecast model is iteratively computed from the 25-year 244 

period prior to the to-be-forecasted year. Vertical lines indicate the 95% prediction interval. 245 

 246 

4.3 Forecasting wheat yields and comparison to other statistical methods 247 

We next assess the potential of our approach to forecast interannual MWY changes and find it to 248 

produce accurate forecasts when operated in a one-step ahead mode. For this, we use climate and 249 

yield data from the 25-year period prior to the to-be-forecasted year to build the full forecast 250 

model, i.e. to define potential precursors, select causal precursors and derive the regression 251 

parameters. Regression parameters are then applied to causal precursor aomalies from the 26th 252 

year to produce the forecast. Afterwards the 25-year period is shifted by one year to re-build the 253 

complete model used to forecast the next year and so on. This way, possible long-term changes 254 

in teleconnections affecting MWY can in principle be captured. The forecast model accurately 255 

forecasts MWY anomalies showing the right direction of change in each year and explaining 256 

72% of its variance between 2006 and 2017. Years before 2006 could not be tested because of a 257 

required reasonably long training period prior to the forecasted year. Observed yield anomalies 258 

are within the 95% prediction interval except for 2007 and 2016 where the observed decline in 259 

yield is significantly lower than forecasted and in 2009 where the observed yield anomaly is 260 

significantly higher. 261 

 262 

 263 
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 264 

To assess the added value of our forecast model we compare results to two simple forecast 265 

models; one which assumes that the forecasted yield is equal to the average of historical yields 266 

plus a linear trend and a second one which sets all forecasts to be the anomaly of the previous 267 

year but inversed in sign (see details in SI, Fig. S10-S11). The latter model has no physical 268 

meaning but is motivated by the characteristic time series of strongly alternating yield anomalies. 269 

The average+trend model and the previous-year model show some skill in forecasting next 270 

year’s yield during 2006-2017 (𝑟2 = 0.71 and 0.58, respectively). However, predictive skill 271 

drastically decreases in the out-of-sample cross validation with two years omitted in the training 272 

phase (𝑟2 = 0.29 and 0.24, respectively), indicating that most of the skill in the forecast mode 273 

comes from the strong year-to-year autocorrelation of MWY and causal precursor anomalies. 274 

Our causal precursor based model outperforms both simple models by a factor of around two 275 

with respect to explained variance. 276 

 277 

5 Discussion and Conclusions 278 

We have shown that Moroccan wheat yield anomalies which are strongly linked to winter 279 

rainfall changes can be robustly predicted using five causal precursors extracted from 280 

geopotential height anomalies at 500 hPa and sea surface temperatures. The physical 281 

interpretation of the discovered links is discussed in the following. 282 

A clear direct effect can be derived from the November and December geopotential height 283 

anomalies over Europe indicated as causal precursors 1 and 3 (see Fig. 2). A high pressure 284 

system over this region deflects extratropical storms to the north which bring moist air from the 285 

Atlantic Ocean to the land (Hurrell, 1995). In turn, negative geopotential height anomalies would 286 

favor more zonal storm tracks leading to more rainfall over Morocco (and thus higher yields) 287 

consistent with the negative link we find between the precursors and wheat yields. The center 288 

and spatial pattern of the two precursors resemble the southern region of pressure anomalies 289 

characteristic for the North Atlantic Oscillation (NAO). Indeed, also the NAO counterpart of 290 

positively correlated Z500 anomalies over Greenland/Iceland was identified in the correlation 291 

maps (Fig. 1) but not found to add additional information for MWY. A strong link between NAO 292 

and Moroccan precipitation has already been reported and used for predictions (El Hamly & 293 

Sebbar, 1998; Jarlan et al., 2014; Knippertz et al., 2003). Here, this region is selected from our 294 

data-driven method directly, confirming earlier findings. 295 

The positive correlation between October SST anomalies at the East Coast of the USA (precursor 296 

4, Fig. 2) and changes in wheat yields may arise via extratropical storm track activity. The causal 297 

precursor region largely overlaps with a region of strong cyclogenesis of extratropical storms.  298 

Cyclogenesis is largely determined by the surface layer and hence by sea surface temperatures 299 

(Hoskins & Valdes, 1990). High temperature gradients in this region provide favorable 300 

conditions for the creation of extratropical storms and thus increased storm track activity 301 
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associated with anomalously wet conditions over Europe and North Africa (Lehmann & 302 

Coumou, 2015). 303 

A more indirect effect can be assumed from both tropical sea surface temperature precursors on 304 

Moroccan winter rainfall and thus wheat yields. There is an extensive body of literature on 305 

tropical-extratropical interactions which explain how tropical thermal forcing impacts on 306 

extratropical weather conditions through induced atmospheric responses (see e.g. Robertson & 307 

Vitart, 2019 and references therein). The most important tropical-extratropical teleconnection at 308 

the subseasonal to seasonal timescale emerges from the Madden-Julian Oscillation (MJO) (Stan 309 

et al., 2017; Vitart, 2017). It has been shown that phase 6-7 of the MJO can enhance poleward 310 

and vertical Rossby wave propagation leading to negative NAO-like conditions via a 311 

stratospheric pathway (Lee et al., 2019) and thus positive precipitation anomalies over western 312 

North Africa (Cassou, 2008; Lin et al., 2009). This link is in agreement with December precursor 313 

2 in the West Pacific suggesting that it provides predictability for Moroccan wheat yields via its 314 

remote influence on winter rainfall. The reported SST precursor 5 in October is consistent with a 315 

documented tropical driver of Moroccan wheat yields. Warming of this region along the western 316 

African coastline has been shown to enhance latitudinal moisture transport via changes in trade 317 

winds which is important for autumn rainfall in Morocco and thus for the early phase of wheat 318 

development (Knippertz et al., 2003). 319 

 320 

The reported set of causal precursors is robust over the studied time period. However, for some 321 

shorter time intervals only a subsample of the set is found to be significant. Assessing the origin 322 

of these differences using data from climate models could give valuable insights into whether 323 

this is a statistical artefact or due to actual changes in physical teleconnections. Moreover, albeit 324 

all five causal precursors were found to be similarly important to forecast Moroccan wheat 325 

yields, each of them may be relevant for different phases of rainfall during the rainy season or 326 

rainfall at different locations. For example, it has been suggested that pressure anomalies 327 

consistent with precursor 1 are important for early wheat growth (Jarlan et al., 2014) whereas 328 

tropical Pacific SSTs corresponding to precursor 2 are relevant for late-season precipitation (El 329 

Hamly & Sebbar, 1998). This should be assessed in subsequent research by linking climate 330 

drivers to spatially resolved rainfall over Morocco using the causal discovery algorithm 331 

presented in this. Finally, further insights can be gained by analyzing how teleconnections 332 

operating on longer timescales might affect the precursors identified in this study. For example, 333 

Lee et al. (2019) showed that the El Niño Southern Oscillation (ENSO) influences the above 334 

mentioned MJO-NAO link through modulation of the seasonal mean background state. 335 

 336 

Recent research showed the great potential of teleconnections as a source of predictability on 337 

subseasonal to seasonal timescales, relevant for a multitude of applications (Dobrynin et al., 338 

2018; Merryfield et al., 2020; White et al., 2017). Here we showed that climatic information can 339 

be used to forecast Moroccan wheat yields four months before harvest through its direct link to 340 

prevailing rainfall conditions. Such long lead times could significantly improve strategic 341 
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adaptation measures from the state to farm level including early wheat import planning, the 342 

application of plant protection materials and fertilizers, and provide humanitarian actors with 343 

timely information for early action. The presented method can easily be transferred to other 344 

indicators and regions. Yet, we emphasize that expert knowledge, e.g. about appropriate climate 345 

precursors, and a careful interpretation of the results is crucial to extract meaningful results. 346 
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Fig. S 1: Robustness of potential precursors. (a) Colors indicate how often a grid cell is 

attributed to a potential precursor region. (b) Grid cells which are selected more than 50% of the 

time in (a) are grouped to robust potential precursors which show strong agreement with 

potential precursors found for the full time period (Fig. 1 in main manuscript). The significance 

threshold was raised to p-value < 0.04 to compensate for the shorter time series length of the 

subsamples. 

Potential precursors are calculated based on subsamples of 30 years which are derived by 

iteratively removing 7-year periods from the full time series with each year removed only once. 

Dark blue and dark red regions in Fig. S1a indicate that similar potential precursors are detected 

throughout the studied time period. For better comparison with results from the full time series 

(Fig. 1 in main manuscript) we agregate results from all subsamples into one figure by showing 

only those regions that were detected more than 50% of the time. This gives an impression of the 

most robust potential precursor regions. Varying the threshold level at which significance is 

defined (p-value < 0.02, 003, 0.04, 0.05) leads to similar potential precursor regions, however, 

with small effects on the overall number and spatial extend of the regions as one would expect. 

We also tested the robustness based on 30-year running time periods and found consistent 

results. 
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Fig. S 2: Correlogram of causal precursor time series and Moroccan wheat yields 

anomalies. 

Causal precursor anomalies show strong correlation with yield anomalies as indicated by the size 

and color of the circles. Correlation between individual causal precursors is much smaller as 

expected from the partial independence tests (see step 2 in Methods section of main manuscript). 
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Fig. S 3: Robustness of causal precursors. (a) Colors indicate how often a grid cell is attributed 

to a causal precursor region. (b) Causal precursors which are selected at least 50% of the time in 

(a) show strong overlap with causal precursors extracted from the full time period (Fig. 2 in main 

manuscript). 

To test the robustness of the causal selection step we extract causal precursors from the given set 

of potential precursors (Fig. 1 of the main manuscript) by using only data from 30-year 

subsamples. Similarly to the approach in Fig. S 1, subsamples are derived by iteratively 

removing a 7-year period from the full time series with each year removed only once. On 

average, each set consists of five causal precursors with no set having less than two or more than 

six (Fig. S3a). Different sets of causal precursors could be due to statistical shortcomings based 

on the limited (and in case of the subsamples reduced) amount of data but may also reflect actual 

changes in the relationship between precursors and wheat yields over the studied time period. 

Note that these changes may arise from physical changes in ocean-atmosphere feedbacks 

impacting on Moroccan rainfall or from the link between rainfall and wheat yields. The most 
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robust causal precursors strongly overlap with causal precursor regions found for the full time 

period. This also holds for different significance thresholds in the partial independence test 

(𝛼𝛼 = 0.05, 0.10, 0.20) and also when the set of potential precursors is replaced by the robust set 

depicted in Fig. S1b. 

 

 

Fig. S 4: Relative importance of causal precursors for overall explained variance. Relative 

importance is calculated from variance decomposition of the multiple-linear regression model. 
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Fig. S 5: Variability of causal precursors. Observed wheat yield anomalies (blue line) are 

overlaid with time series of hindcasted yield anomalies and causal precursor time series for 

qualitative comparison. 

For better comparison time series are divided by their standard deviation and in case of precursor 

1 and 3 inversed in sign to account for their anti-correlation with yield anomalies. 
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Fig. S 6: Correlation strength between causal precursors and Moroccan wheat yield 

anomalies. Changes in correlation strength over time are calculated using a rolling window of 15 

years. 
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Fig. S 7: Analysis of the residuals from the hindcast model. All requirements of a multiple-

linear regression model are fulfilled. 
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Fig. S 8: Autocorrelation of Moroccan wheat yield anomalies and causal precursors. 

Autocorrelation is mostly insignificant except for Lag 1, i.e. from one year to the next, where all 

time series show a significant autocorrelation. 
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Fig. S 9: Out-of-sample cross validation with prescribed potential precursors. Potential 

precursors are calculated from the full studied time period (1979-2017) whereas causal 

precursors and regression parameters are computed using data from the training period only with 

two years omitted in each training period. 

Fig. S 9 shows the result of the cross validation with a significance threshold of α = 0.10 in the 

causal precursor selection (step 2). The value was raised from α = 0.05 used for the full time 

period to compensate for the shorter time series length of the training period. 

Accordingly, Fig. 3c of the main manuscript shows results with p-value < 0.03 in step 1 and α = 

0.10 in step 2 of the model building process since in this case potential and causal precursors are 

calculated from the training period. Testing different thresholds leads to overall consistent 

results. 
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Fig. S 10: Comparison of different forecast models. One-step-ahead forecasted yield 

anomalies from our model (pink bars) are compared to forecasts from two simple models; one 

which assumes that the forecasted yield is equal to the average of historical yield totals (not 

anomalies) plus a linear trend (green bars) and another which sets all forecasts to be the anomaly 

of the previous year but inversed in sign (orange bars). Observed yield anomalies are shown as 

grey bars. For each model the explained variance (𝑟𝑟2) and the root mean squared error (rmse) are 

given. Vertical lines indicate the 95% prediction interval. 

The average+trend model explains 71% of the observed variability over the last 12 years but 

tends to forecast too low yields. The root mean squared error (rmse = 5800 hg/ha) is thus 

considerably higher than in our model (rmse = 5300 hg/ha) although explained variance is almost 

the same. The previous-year model has its strength in episodes of alternating yield anomalies but, 

by default, fails when anomalies deviate from this pattern. 
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Fig. S 11: Comparison the hindcast skill. Out-of-sample hindcasts from our model (pink line) 

are compared to out-of-sample hindcasts from the same two simple models described in Fig. 

S10. Observed yield anomalies are shown as a grey line. Two years are left out in each training 

period. 

Our hindcast model outperforms the two simple models both in terms of explained variance as 

well as root mean squared error. Both simple hindcast models show drastic reductions in 𝑟𝑟2and 

rmse in the out-of-sample cross validation compared to their one-step-ahead forecast mode 

indicating that most of the skill in the forecast mode comes from the strong year-to-year 

autocorrelation of MWY and causal precursor anomalies. 


