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Abstract

The empirical Bath’s law is derived from the statistical Gutenberg-Richter distribution in magnitude difference of pairs of

earthquakes. The derivation of the statistical Gutenberg-Richter distributions in energy and magnitude is presented, as resulting

from a geometric-growth model of energy accumulation in the focal region. It is shown that the most suitable framework of

understanding the origin of the Bath’s law is the extension of the statistical distributions to pairs of earthquakes, where the

difference in magnitude is allowed to take negative values. If the seismic activity which accompanies a main shock is viewed as

a relaxation process, then we need to include both the aftershocks and the foreshocks in this accompanying seismic activity, and

to view it as fluctuations in magnitude. The extension of the magnitude difference to negative values leads to a vanishing mean

value of the fluctuations and to accepting the standard deviation as a measure of these fluctuations. It is suggested that the

standard deviation of the magnitude difference is the average difference in magnitude between the main shock and its largest

aftershock (foreshock), thus providing an insight into the nature and the origin of the Bath’s law. The geometric-growth model

of energy accumulation in the focal region induces a lower bound to the magnitudes of the largest aftershocks (foreshocks), such

that the (average) reference value $\Delta M=1.2$ between the magnitudes of the main shock and the largest accompanying

seismic event corresponds to the smallest aftershock (foreshock) in the whole set of the largest aftershocks (foreshocks).
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Abstract

The empirical Bath’s law is derived from the statistical Gutenberg-
Richter distribution in magnitude difference of pairs of earthquakes.
The derivation of the statistical Gutenberg-Richter distributions in en-
ergy and magnitude is presented, as resulting from a geometric-growth
model of energy accumulation in the focal region. It is shown that the
most suitable framework of understanding the origin of the Bath’s law
is the extension of the statistical distributions to pairs of earthquakes,
where the difference in magnitude is allowed to take negative values. If
the seismic activity which accompanies a main shock is viewed as a re-
laxation process, then we need to include both the aftershocks and the
foreshocks in this accompanying seismic activity, and to view it as fluc-
tuations in magnitude. The extension of the magnitude difference to
negative values leads to a vanishing mean value of the fluctuations and
to accepting the standard deviation as a measure of these fluctuations.
It is suggested that the standard deviation of the magnitude difference
is the average difference in magnitude between the main shock and
its largest aftershock (foreshock), thus providing an insight into the
nature and the origin of the Bath’s law. The geometric-growth model
of energy accumulation in the focal region induces a lower bound to
the magnitudes of the largest aftershocks (foreshocks), such that the
(average) reference value ∆M = 1.2 between the magnitudes of the
main shock and the largest accompanying seismic event corresponds
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to the smallest aftershock (foreshock) in the whole set of the largest
aftershocks (foreshocks).

1 Introduction

Bath’s law states that the average difference ∆M between the magnitude
of a main shock and the magnitude of its largest aftershock is a number
independent of the magnitude of the main shock (Bath, 1965; see also Richter,
1958). The reference value of the average magnitude difference is ∆M = 1.2.
Deviations from this value have been reported (see, for instance, Felzer et al,
2002; Console et al, 2003), some being discussed even by Bath, 1965.

The Bath’s law is an empirical law. The earliest advance in understand-
ing its origin was made by Vere-Jones, (1969), who viewed the main shock
and its aftershocks as statistical events of the same statistical ensemble, dis-
tributed in magnitude. The distribution in magnitude difference, introduced
by Vere-Jones, 1969, implies correlations, which are viewed sometimes as
reflecting the opinion that the main shocks are statistically distinct from
the aftershocks (Utsu, 1969. Evison and Rhoades, 2001). The Bath’s law
enjoyed many discussions and attempts of elucidation (Papazachos, 1974;
Purcaru, 1974; Tsapanos, 1990; Kisslinger and Jones, 1991; Evison, 1999;
Lavenda and Cipollone, 2300; Lombardi, 2002; Helmstetter and Sornette,
2003). The prevailing opinion ascribes the variations in ∆M to the bias
in selecting data and the insufficiency of the realizations of the statistical
ensemble. This standpoint was substantiated by means of the binomial dis-
tribution for the earthquakes (Console, 2003; Lombardi, 2002; Helmstetter
and Sornette, 2003). In order to account for the deviations of ∆M Helmstet-
ter and Sornette, 2003, employed the ETAS model (epidemic-type aftershock
sequence) for the differences in the selection procedure of the mainshocks and
the aftershocks. These authors showed that the variations in the number ∆M
are related to the realizations of the statistical ensemble and the values of
the fitting parameters (see also Lombardi, 2002; Console, 2003).

The statistical hypothesis for the distributions of earthquakes is far-reaching.
Usually, a statistical distribution is independent of time (it is an equilibrium
distribution), such that the aftershocks distribution should be identical with
the foreshocks distribution. However, it seems that there are differences
between these two distributions (Utsu, 2002; Shearer, 2012). Then, for the
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law to be operational in practice, we need to have a large statistical ensemble
of aftershocks (and foreshocks), disentangled from the main shock, which is
a difficult issue. In addition, the realizations of the distribution should be
repetitive, a point which is debatable in different conditions of moments of
time and locations.

We show in this paper that the appropriate tool of discussing the accompa-
nying seismic activity (foreshocks and aftershocks) of the main shocks is the
pair distribution function for the difference in magnitude, according to Vere-
Jones, 1969. The derivation of this distribution is made herein by means of
the conditional probabilities and the Bayes theorem. The difference in mag-
nitude is extended to the whole real axis, leading to a symmetric distribution
for the foreshocks and aftershocks, with a vanishing mean value for the mag-
nitude difference. This suggests to view the accompanying seismic activity as
consisting of fluctuations, and to take their standard deviation as a measure
for the Bath’s average difference ∆M between the magnitude of the main
shock and its largest aftershock (foreshock). Moreover, we show here that
the reference value ∆M = 1.2 corresponds to the smallest aftershock (fore-
shock) in the whole set of the largest aftershocks (foreshocks), i.e. it is a
lower bound to the (average) magnitude of the largest accompanying seismic
events. This later point is related to the geometry of energy-accumulation
process in the focal region. By pointing out a limiting value, the Bath’s law
acquires, indeed, a special relevance.

2 Gutenberg-Richter statistical distributions

Apostol, 2006a,b, put forward a geometric-growth model of energy accumu-
lation in a localized earthquake focal region. According to this model, the
accumulated energy E is related to the accumulation time t by

1 + t/t0 = (1 + E/E0)r , (1)

where t0 and E0 are time and energy thresholds and r is a geometrical pa-
rameter which characterizes the focal region. This parameter is related to
the reciprocal of the number of effective dimensions of the focal region and to
the strain accumulation rate (which, in general, is anisotropic). Very likely,
the parameter r varies in the range 1/3 < r < 1. For a pointlike focal region
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with a uniform accumulation rate r = 1/3 (three dimensions), for a two-
dimensional uniform focal region r = 1/2, while for a one-dimensional focal
region r tends to unity. An average parameter r may take any value in this
range.

In equation (1) the threshold parameters should be viewed as very small,
such that t/t0, E/E0 � 1 and equation (1) may be written as

t/t0 ' (E/E0)r . (2)

A uniform frequency of events ∼ t0/t in time t indicates that the parame-
ter t0 may be viewed as the reciprocal of a seismicity rate 1/t0. It follows
immediately the time distribution

P (t)dt =
1

(t/t0)2

dt

t0
(3)

and, making use of equation (2), the energy distribution

P (E)dE =
r

(E/E0)1+r

dE

E0

. (4)

At this point we may use an exponential law E/E0 = ebM , where M is
the earthquake magnitude and b = 3

2
· ln 10 = 3.45, according to Kanamori,

1977, and Hanks and Kanamori, 1979 (see also, Gutenberg and Richter, 1944,
1956); we get the (normalized) magnitude distribution

P (M)dM = βe−βMdM , (5)

where β = br. In decimal logarithms, P (M) = β · 101.5r, where 0.5 < 1.5r <
1.5 (for 1/3 < r < 1). Usually, the average value 1.5r = 1 (β = 2.3) is
currently used as a reference value, corresponding to r = 2/3 (' 0.66) (see,
for instance, Stein and Wysesssion, 2003; Udias, 1999; Lay and Wallace,
1995; Frohlich and Davis, 1993).

It is worth noting that the magnitude distribution (equation (5)) has the
property P (M1 + M2) ∼ P (M1)P (M2), while the time and energy distribu-
tions (equations (3) and (4)) have not this property. This is viewed sometimes
as indicating that the earthquakes would be correlated in time of occurrence,
and in energy, but not in magnitude (Corral, 2006).
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The magnitude distribution is particularly important because it can be used
to analyze the empirical distribution

P (M) =
∆N

N0∆M
=
t0∆N

T∆M
, (6)

of ∆N earthquakes with magnitude in the range (M, M + ∆M) out of a
total number N0 = T/t0 of earthquakes occurred in time T . We get

ln (∆N/T ) = ln

(
β∆M

t0

)
− βM . (7)

From the magnitude frequency ∆N/T (equation (6)) we get the mean recur-
rence time

tr =
t0

β∆M
eβM (8)

for an earthquake with magnitude M (i.e. in the interval (M, M + ∆M)).
This time should be compared with the accumulation time ta = t0e

βM for an
earthquake with magnitude M , given by equation (2) and the exponential
law E/E0 = ebM . These times are related by ta = (β∆M)tr, whence one
can see that ta < tr (for β∆M < 1), a relationship which shows that the
energy corresponding to a magnitude M may be lost by seismic events lower
in magnitude, as expected. Moreover, by the definition of the seismicity
rate, an earthquake with magnitude M is equivalent with a total number
ta/t0 = eβM of earthquakes with zero magnitude (energy E0) (Felzer et al,
2002; Michael and Jones, 1998). It is worth noting that the magnitude
distribution βe−βM implies an error of the order

(√
M2 −M

)
/M =

√
2− 1

at least, i.e., ∆tr/tr ' 0.41, which is too large to be useful. For a maximal
entropy with mean recurrence time tr we get easily a Poisson distribution
(1/tr)e

−t/tr for the recurrence time, which has a large standard deviation√
(t− tr)2 = tr.

Similarly, from equation (5) we get the excedence rate (the so-called re-
currence law), which gives the number Nex of earthquakes with magnitude
greater than M . The corresponding probability is readily obtained from (5)
as Pex = e−βM , such that the excedence rate reads

lnNex = lnN0 − βM . (9)
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The distributions given above may be called the statistical Gutenberg-Richter
distributions (equations (7) and (9) and, implicitly, (5)). They are currently
used in statistical analysis of the earthquakes. The parameter β is derived
by fitting these distributions to data. For 1/3 < r < 1 it varies in the range
1.15 < β < 3.45 (for decimal logarithms 0.5 < 1.5r < 1.5). For instance, an
analysis of a large set of global earthquakes with 5.8 < M < 7.3 (∆M = 0.1)
indicates β = 1.38 (and 1/t0 = 105.5 per year), corresponding to r = 0.4, a
value which suggests an intermediate two/three-dimensional focal mechanism
(Bullen, 1963). For r = 1/3, corresponding to a uniform pointlike focal
geometry, we get β = 1.15. Equations (5), (7) and (9) have been fitted to a
set of 1999 earthquakes with magnitude M ≥ 3 (∆M = 0.1), which occurred
in Vrancea between 1974 − 2004 (31 years) (Apostol 2006a,b). The mean
values of the fitting parameters are − ln t0 = 9.68 and β = 1.89 (r = 0.54).
The same fit have been done for a set of 3640 earthquakes with magnitude
M ≥ 3 which occurred in Vrancea during 1981−2018 (38 years). The fitting
parameters for this set are − ln t0 = 11.32 and β = 2.26 (r = 0.65). The
data for Vrancea have been taken from the Romanian Earthquake Catalog,
2008).

The statistical analysis gives a generic image of a collective, global earthquake
focal region (a distribution of foci). Particularly interesting is the parameter
r, which is related to the reciprocal of the (average) number of effective
dimensions of the focal region and the rate of energy accumulation. The value
r = 0.54 (Vrancea, period 1974− 2004) indicates a (quasi-) two-dimensional
geometry of the focal region in Vrancea, while the more recent value r = 0.65
for the same region suggests an evolution of this (average) geometry towards
one dimension. At the same time, we note an increase of the seismicity
rate 1/t0 in the recent period in Vrancea. The increase of the geometrical
parameter r determines an increase of the parameter β, which dominates the
mean recurrence time. For instance, the accumulation time for magnitude
M = 7 is increased from ta ' 34.9 years (period 1974 − 2004) to at least
ta ' 59 years. This large variability indicates the great sensitivity of the
statistical analysis to the data set, and, consequently, the limited usefulness
of the statistical analyses. In particular, for any fixed M we may view the
exponential Me−Mβ as a distribution of the parameter β, which indicates an
error ' 0.41 in determining this parameter.

Also, we note that inherent errors occur in a statistical analysis. For instance,
an error is associated to the threshold magnitude M = 3, because the large
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amount of data with M < 3 may affect the fit. Also, it is difficult to include
events with high magnitude in a set with statistical significance, because
such events are rare. In addition, the size of the statistical set may affect the
results. The fitting values given above have an error of approximately 10%.
Such difficulties are carefully analyzed (e.g., Felzer et al, 2002; Console et al,
2003; Lombardi, 2002; Helmstetter and Sornette, 2003).

The statistical distributions given above may be employed to estimate con-
ditional probabilities, and to derive Omori laws for the associated (accom-
panying) seismic activity. Also, the conditional probabilities can be used for
analyzing the next-earthquake distributions (inter-event time distributions),
(Apostol and Cune, 2020) which may offer information for seismic hazard
and risk estimation. We present here another example of using these distri-
butions, in analyzing the Bath’s empirical law.

3 Bath’s law

If the (statistical) Gutenberg-Richter distribution ∼ e−βM can be viewed as a
statistical distribution, it follows that we may view all the earthquakes with
magnitude M as members of the same statistical ensemble, characterized by
the parameter β. Such a set of earthquakes includes both the main shocks
and the events of the accompanying seismic activity, i.e. the foreshocks and
the aftershocks (Kisslinger, 1996). This is the standpoint of Vere-Jones, 1969.
Let us look for the distribution of the difference in magnitude M1 −M2 of
any pair of seismic events with magnitude M1 and M2. Looking for this
magnitude-difference distribution, we already assume that the two events
M1,2 are correlated. In the Gutenberg-Richter law the magnitude M is pos-
itive, but for the difference M1 − M2 we need to extend this variable to
negative values. Since M1 = M1 −M2 + M2 and M2 = M2 −M1 + M1, the
Gutenberg-Richter laws ∼ e−βM1,2 gives a magnitude-difference distribution
∼ e−β(M1−M2) for M1 > M2 and fixed M2, and a distribution ∼ e−β(M2−M1)

for M2 > M1 and fixed M1. These are conditional probabilities (related to
the Bayes theorem). In both cases, these distributions can be written as
∼ e−β|m|, where m = M1 −M2 (or m = M2 −M1), irrespective of which
M1,2 is fixed. It follows that the (normalized) distribution of the difference
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in magnitude m is

p(m)dm =
1

2
βe−β|m|dm ,−∞ < m < +∞ . (10)

Making use of this distribution, we can see that the mean value of the magni-
tude difference is zero, m = 0 (as expected for fluctuations), while the mean
value of the squared difference in magnitude is

m2 =
2

β2
. (11)

It is worth noting that by using the distribution of the pairs given by equation
(10), the partners of the pair are not independent of one another anymore;
they become correlated, because, for a given value ofm the magnitudeM1 (or
M2) cannot take any value, irrespective of the value taken by the magnitude
M2 (orM1). In spite of their similar (exponential) form, the pair distribution
p(m) is different from the distribution ∼ e−βM of independent magnitudes,
because the statistical variable m = M1−M2 is different from the statistical
variable M (M = M1,2).

If the foreshocks may foretell a relaxation of the accumulated seismic stress
and the aftershocks are viewed as a relaxation after the main seismic event,
then the standard deviation

∆m =
√
m2 −m2 =

(
m2
)1/2

=

√
2

β
(12)

may be taken as a measure of the largest fluctuation of the statistical equilib-
rium of the ensemble of magnitude differences. It follows that the quantity
given by equation (12) may be viewed as the average difference in magnitude
∆M = ∆m between the main shock and its largest aftershock (or foreshock).
This is the Bath’s law. The number

√
2/β does not depend on the magni-

tudes M1,2 (but it depends on the parameter β, corresponding to various
realizations of the statistical ensemble). It is worth noting that ∆m given by
equation (12) implies an averaging of the squared magnitude differences.

Making use of β = 1.15 (r = 1/3) given above, we get ∆m = 1.23, a value
close to the reference value of the Bath’s law; for β = 1.38 (r = 0.4) (Bullen,
1963) we get ∆m = 1.02, for β = 1.89(2.26) (Vrancea region, Apostol,
2006a,b) we get ∆m = 0.75(0.62). For the average value β = 2.3 (1.5r = 1)
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Figure 1: The magnitudeM2 of the accompanying seismic events vs the time
τ elapsed from the main event with magnitude M1 and accumulation time t1
(equation (16) for M1 = 5, b = 3.45, r = 0.66). The Bath partner M2 ' 4.38
corresponds to τ0/t1 = 0.078. Higher values of the magnitude M2 occur at
much longer times, where the correlations are unlikely.

we get ∆m = 0.61. We can see that ∆m = ∆M is variable, depending on
the fitting parameter β, which can be obtained from the statistical analysis
of the data; this is in agreement with the prevailing opinion in statistical
analysis of the earthquakes (see, for instance, Lombardi, 2002; Console et al,
2003; Helmstetter and Sornette, 2003, and References therein).

According to the geometric-growth model of energy accumulation in the focal
region the parameter r varies in the range 1/3 < r < 1. It entails a variation
of the parameter β = 3

2
ln 10 · r in the range 1.15 < β < 3.45. The parameter

r cannot acquire values smaller than r = 1/3, because the maximum number
of effective dimensions in a focal region cannot be higher than 3 (nor lower
than 1). Consequently, the largest value of the Bath’s difference ∆M is
∆M = 2

√
2/ ln 10 = 1.23. We can say that the reference value ∆M = 1.2 of

the Bath difference corresponds to its largest value among all possible values
in the range 0.41 < ∆M < 1.23. This value corresponds to the smallest
accompanying seismic event among all the largest ones. It indicates a lower
bound to the magnitudes of the largest aftershocks (and foreshocks). By this
limiting value, the Bath’s law (with ∆M = 1.2) acquires indeed a certain
appearance of an absolute law. This result has a formal similarity with the
limit theorem of Vere-Jones, 2008.

The correlation between the partners of a pair can be seen form the estimation
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of the accumulation time t given by equation (2) for a pair of earthquakes
with energies E1,2, E = E1 + E2; from equation (2) we get

t/t0 = (E/E0)r = (E1/E0 + E2/E0)r =

=
(
ebM1 + ebM2

)r
= (t1/t0)

(
1 + e−bm

)r
,

(13)

where t1 is the accumulation time of the earthquake with energy E1 (mag-
nitude M1), viewed as the main shock; the earthquake with magnitude
M2 = M1 − m (m > 0) is viewed as the largest aftershock (foreshock).
It follows that the occurrence time τ0 of this "Bath partner" (m = ∆m),
measured from the occurrence time of the main shock (t = t1 + τ0), is given
by

τ0 = t1
[(

1 + e−b∆m
)r
− 1

]
'

' rt1e
−b∆m = rt1e

−
√

2/r

(14)

(for b∆m� 1). We can see that the duration τ0 depends on the accumulation
time t1 of the main shock, which reflects the correlation between the two
events. The ratio τ0/t1 varies between 5× 10−3 (r = 1/3) and 0.24 (r = 1);
for r = 0.65 (Vrancea) we get τ0/t1 = 0.074.

It is worth noting, according to equation (13), that an associated partner
close to the main shock in magnitude (bm� 1) occurs after a lapse of time

∆t ' t1 (2r − 1) , (15)

which is greater than τ0 (∆t/t1 varies between 0.26 and 1). We can see that,
even if the pair probability p(m) = (2/β)e−β|m| is greater for m = 0, an
earthquake close in magnitude to the main shock occurs much later, where it
may be difficult to view it as an aftershock (and similarly for the foreshocks).
Since

(
1 + e−bm

)r
is a decreasing function of m, we can say, indeed, that

the largest aftershock is farther in time with respect to the main shock in
comparison with aftershocks lower in magnitude. The duration τ0 given by
equation (14) for the occurrence of the largest aftershock may be taken as
a measure of the extension in time of the aftershock (and the foreshock)
activity.

From equation (13) we can get the distribution of the magnitudes M2 of
the acompanying earthquakes with respect to the time τ , measured from
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the occurrence of the main shock with magnitude M1, either in the future
(aftershocks) or in the past (foreshocks). Indeed, we get from equation (13),

M2 = M1 +
1

b
ln
[
(1 + τ/t1)1/r − 1

]
, (16)

where t1 (= t0e
βM1) is the accumulation time of the main shock; M2 in

equation (16) is defined for
(
1 + e−bM1

)r
−1 < τ/t1 < 2r−1 (0 < M2 < M1).

The function M2 is plotted in Fig. 1 vs τ/t1 for b = 3.45, r = 2/3 (' 0.66)
and M1 = 5 (β = 2.3). For τ/t1 very close to zero M2 is vanishing, and for
τ/t1 −→ 2r − 1 the magnitude M2 tends to M1. The Bath partner occurs
at τ0/t1 ' re−

√
2/r ' 0.078 with the magnitude M2 ' 4.39 (∆M ' 0.61).

The function M2(τ/t1) is a very steep function, for the whole (reasonable)
range of parameters; the whole accompanying seismic activity is, practically,
concentrated in the lapse of time τ0. On the scale τ/t1 the pair probability
of this activity is an abruptly increasing function of M2.

Finally, we note that in empirical studies the parameter ∆M is an average
over various realizations of statistical ensembles. Such realizations may in-
clude focal regions with various parameters r, or variations in time of the
parameter r, such that the resulting, effective value of r in the above formu-
lae is larger than 1/3 and, consequently, the effective value of β is larger than
1.15, and the resulting ∆M is smaller than 1.2. Therefore, in such circum-
stances, the value ∆M remains only a theoretical limit. The results may tend
to this value by adjusting the magnitude cutoffs, (Lombardi, 2002; Console,
2003) or by chosing particular values of (many) fitting parameters (Helmstet-
ter and Sornette, 2003); there are cases when the data exhibit values close
to ∆M = 1.2 (Felzer et al, 2002).

4 Concluding remarks

The Gutenberg-Richter-type statistical distributions are derived from a geometric-
growth model of energy accumulation in the focal region, where a particularly
interesting geometrical parameter reflects the (average) geometry of the focal
region and the rate of the accumulation process. The statistical distribution
in magnitude is used to derive the empirical Bath’s law. The main role in
this derivation is played by the distribution of the difference in magnitude of
earthquake pairs, where the magnitude difference, as a statistical variable, is
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allowed to extend to negative values. Making use of this pair distribution,
the mean value of the magnitude difference is zero and the standard devia-
tion is viewed as a measure of the average difference in magnitude between
the main shock and its largest aftershock (foreshock). The associated seismic
activity of foreshocks and aftershocks is viewed as consisting of fluctuations
in a relaxation process. The use of the pair distribution in magnitude differ-
ence is based on the assumption made by Vere-Jones of the same statistical
ensemble for both the main shocks and the accompanying foreshocks and
aftershocks (Vere-Jones, 1969), though the pair distribution implies corre-
lations. It is shown that the Bath’s deviation in magnitude is a statistical
parameter, which depends on the particular realization of the statistical en-
semble. The reference value ∆M = 1.2 for Bath’s difference in magnitude
corresponds to a lower bound to the magnitudes of the largest aftershocks
and foreshocks.
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