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Abstract

To date, analyses of magnetic induction in putative oceans in Jupiter’s large icy moons have assumed uniform conductivity

in the modeled oceans. However, the phase and amplitude response of the induced fields will be influenced by the increasing

electrical conductivity along oceans’ convective adiabatic temperature profiles. Here, we examine the amplitudes and phase

lags for magnetic diffusion in modeled oceans of Europa, Ganymede, and Callisto. We restrict our analysis to spherically

symmetric configurations, treating interior structures based on self-consistent thermodynamics, accounting for variations in

electrical conductivity with depth in convective oceans (missing citation). The numerical approach considers tens of radial

layers. The induction response of the adiabatic conductivity profile differs from that of an ocean with uniform conductivity set

to that at the ice-ocean interface, or to the mean value of the adiabatic profile, by more than 10\% in many cases. We compare

these modeled signals with magnetic fields induced by oceanic fluid motions that might be used to measure oceanic flows

(missing citation); (missing citation); (missing citation). For turbulent convection (missing citation), we find that these signals

can dominate induction signal at low latitudes, underscoring the need for spatial coverage in magnetic investigations. Based

on end-member ocean compositions (missing citation); (missing citation), we quantify the residual magnetic induction signals

that might be used to infer the oxidation state of Europa’s ocean and to investigate stable liquids under high-pressure ices in

Ganymede and Callisto. Fully exploring this parameter space for the sake of planned missions requires electrical conductivity

measurements in fluids at low temperature and to high salinity and pressure.
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• Diffusive induction accounting for adiabatic ocean temperatures is distinct in11
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Abstract18

To date, analyses of magnetic induction in putative oceans in Jupiter’s large icy moons19

have assumed uniform conductivity in the modeled oceans. However, the phase and20

amplitude response of the induced fields will be influenced by the increasing electri-21

cal conductivity along oceans’ convective adiabatic temperature profiles. Here, we22

examine the amplitudes and phase lags for magnetic diffusion in modeled oceans of23

Europa, Ganymede, and Callisto. We restrict our analysis to spherically symmetric24

configurations, treating interior structures based on self-consistent thermodynamics,25

accounting for variations in electrical conductivity with depth in convective oceans26

(Vance et al., 2018). The numerical approach considers tens of radial layers. The in-27

duction response of the adiabatic conductivity profile differs from that of an ocean with28

uniform conductivity set to that at the ice-ocean interface, or to the mean value of the29

adiabatic profile, by more than 10% in many cases. We compare these modeled signals30

with magnetic fields induced by oceanic fluid motions that might be used to measure31

oceanic flows (e.g., Chave, 1983; Minami, 2017; Tyler, 2011). For turbulent convection32

(Soderlund et al., Soderlund et al.2014), we find that these signals can dominate in-33

duction signal at low latitudes, underscoring the need for spatial coverage in magnetic34

investigations. Based on end-member ocean compositions (Zolotov, 2008; Zolotov &35

Kargel, 2009), we quantify the residual magnetic induction signals that might be used36

to infer the oxidation state of Europa’s ocean and to investigate stable liquids under37

high-pressure ices in Ganymede and Callisto. Fully exploring this parameter space for38

the sake of planned missions requires electrical conductivity measurements in fluids at39

low temperature and to high salinity and pressure.40

1 Introduction41

The jovian system is of particular interest for studying magnetic induction in42

icy ocean worlds. Jupiter has a strong magnetic field whose dipole axis is tilted 9.5◦43

with respect to its rotation axis (Acuna & Ness, 1976), while the orbits of the Galilean44

moons lie very nearly in the equatorial plane of Jupiter. This means that Jupiter?s45

magnetic field varies in time at the orbital positions of the satellites. Also, the outer46

layers of the satellites themselves are believed to consist mainly of water ice at the47

surface, underlain by salty oceans. Brines are good conductors, while ice is a significant48

insulator.49

Magnetic induction from Jupiter’s diurnal signal sensed by the Galileo mission50

provides the most compelling direct observational evidence for the existence of oceans51

within Europa and Ganymede (Hand & Chyba, 2007; K. Khurana, Kivelson, Hand, &52

Russell, 2009; Khurana et al., 1998; Kivelson et al., 2000; Saur, Strobel, & Neubauer,53

1998; Schilling, Neubauer, & Saur, 2007). The case has also been made for an induction54

response from an ocean in Callisto (Zimmer, Khurana, & Kivelson, 2000), but this55

interpretation is clouded by possible ionospheric interference (Hartkorn & Saur, 2017;56

Liuzzo, Feyerabend, Simon, & Motschmann, 2015).57

Longer period signals penetrate more deeply, as penetration of the magnetic58

field into the interior is a diffusive process. It is convenient that the skin depths at59

the dominant periods of variation experienced by Europa, Ganymede, and Callisto60

are comparable to the expected ocean depths, which makes it possible to probe the61

properties of their oceans using magnetic induction. The spectrum of frequencies driv-62

ing induced magnetic responses includes not just the orbits of the Galilean satellites63

and the rotation of Jupiter’s tilted dipole field, but also their harmonics and natural64

oscillations (Saur, Neubauer, & Glassmeier, 2009; Seufert, Saur, & Neubauer, 2011).65

Electrical conductivity structure within the subsurface oceans—for example, from con-66

vective adiabatic temperature gradients (Vance et al., 2018) and stratification (Vance67

& Goodman, 2009a)—will respond at these frequencies.68
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Further variations in the magnetic fields arise from the motion of the moons about69

Jupiter. Perturbations to the orbits of the moons arise from multiple sources, including70

the oblate figure of Jupiter, gravitational interactions with the other satellites, and even71

from Saturn and the Sun (Lainey, Duriez, & Vienne, 2006; Lieske, 1998).72

Here, we examine the amplitudes and phase lags for magnetic diffusion in mod-73

eled oceans of Europa, Ganymede, and Callisto. We restrict our analysis to spherically74

symmetric configurations, treating interior structures based on self-consistent thermo-75

dynamics, which account for variations in electrical conductivity with depth in con-76

vective oceans (Vance et al., 2018). In addition, we consider the generation of induced77

magnetic fields by oceanic fluid motions that may bias the interpretation of a satel-78

lite’s magnetic behavior if not accommodated and which, more optimistically, might be79

used to probe the ocean flows directly (e.g., Chave, 1983; Minami, 2017; Tyler, 2011).80

Based on end-member ocean compositions (Zolotov, 2008; Zolotov & Kargel, 2009),81

we demonstrate the possibilities for using magnetic induction to infer the oxidation82

state of Europa’s ocean and to identify stable liquid layers under high-pressure ices in83

Ganymede and Callisto.84

In Section 2 we describe a numerical method for computing the induction re-85

sponse. Section 3 examines the diffusive induction response of Jupiter’s ocean moons,86

first describing the frequency content of temporal variations in Jupiter’s field in the87

reference frames of the Galilean moons (S 3.1), then the interior structure models88

that include layered electrical conductivity consistent with the modeled compositions89

(S 3.2). In Section 3.3, we detail the corresponding amplitude and phase responses of90

the diffusive magnetic induction, and finally in Section 3.4, we compare the diffusive91

fields to the field imposed by Jupiter. Section 4 describes simulations of oceanic flows92

(S 4.1) and resulting magnetic induction (S 4.2) that adds to the diffusive component.93

Section 5 describes the prospects for detecting these different signals.94

2 Induction Response Model95

We are interested in the magnetic fields induced within a spherically symmetric
body, in which electrical conductivity is a piece-wise constant function of distance from
the center. We thus assume bounding radii

{r1, r2, r3, · · · , rm} (1)

where
rm = R (2)

is the outer radius of the spherical body.96

The corresponding conductivity values are

{σ1, σ2, σ3, · · · , σm} (3)

We also assume that there is an imposed external magnetic potential, represented
by a sum of terms, each of which has the form

Φ[r, θ, φ, t] = R Be

( r
R

)n
Sn,m[θ, φ] exp[−i ω t] (4)

where {r, θ, φ} are spherical coordinates (r is radius, θ is colatitude, and φ is longitude)97

of the field point, Be is a scale factor, Sn,m[θ, φ] is a surface spherical harmonic function98

of degree n and order m, while t is time and ω is the frequency of oscillation of the99

imposed potential.100

Within each layer, the magnetic field vector B must satisfy the differential equa-
tion

∇2B = −k2B (5)
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where k is a scalar wavenumber given by

k2 = i ω µ0 σ (6)

where ω is frequency, σ is electrical conductivity, and the magnetic constant (perme-
ability of free space) is given by

µ0 = 4π × 10−7N/A2 (7)

with units N and A being Newton and Ampere.101

2.1 Radial Basis Functions102

The poloidal component of the magnetic field inside the body is given by sums
of terms with the forms

Br[r, θ, φ, t] =
C

r
(F [r]) n(n+ 1) Sn,m[θ, φ] exp[−i ω t] (8)

Bθ[r, θ, φ, t] =
C

r

(
d rF [r]

dr

)
dSn,m[θ, φ]

dθ
exp[−i ω t] (9)

Bφ[r, θ, φ, t] =
C

r sin[θ]

(
d rF [r]

dr

)
dSn,m[θ, φ]

dφ
exp[−i ω t] (10)

where C is a constant, and F [r] is a function of radius, which we need to determine.103

Applying separation of variables to the governing differential equation (5), one
finds that the radial factor F [r] in the solution must satisfy the ordinary differential
equation

d2F

dr2
+

(
2

r

)
dF

dr
+ (k2 − n(n+ 1)

r2
)F = 0 (11)

This is a second order equation having two solutions:104

F+
n [r] = jn[k r] (12)

F−n [r] = yn[k r] (13)

where jn[x] is a spherical Bessel function of the first kind of order n, and argument x,105

and yn[x] is a spherical Bessel function of the second kind.106

It will also be convenient to define another set of related functions107

G+
n [r] =

d

dr

(
r F+

n [r]
)

(14)

= (n+ 1) jn[k r]− (k r) jn+1[k r]

and108

G−n [r] =
d

dr

(
r F−n [r]

)
(15)

= (n+ 1) yn[k r]− (k r) yn+1[k r]

In the magnetic induction problem, as applied to the Galilean satellites, the only109

case of interest is for an imposed dipole field, where n = 1. In that case, the radial110

basis functions for the radial component of the field, are111

F+
1 [k r] = j1[k r] (16)

=
sin[k r]− (k r) cos[k r]

(k r)
2
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and112

F−1 [k r] = y1[k r] (17)

=
− cos[k r]− (k r) sin[k r]

(k r)
2

In similar fashion, the radial basis functions for the transverse components are113

G+
1 [k r] = 2 j1[k r]− (k r) j2[k r] (18)

=
(k r) cos[k r]−

(
1− k2 r2

)
sin[k r]

(k r)
2

and114

G−1 [k r] = 2 y1[k r]− (k r) y2[k r] (19)

=
(k r) sin[k r] +

(
1− k2 r2

)
cos[k r]

(k r)
2

In both cases, the latter form is singular at the origin (r = 0), so in the inner-115

most spherical layer, we only use F+[k r] and G+[k r]. In other layers, we use linear116

combinations of F+ and F− and linear combinations of G+ and G−.117

2.2 Internal Boundary Conditions118

The resulting piece-wise-defined radial functions characterize the radial part of
the magnetic field. The radial component has the form

F [r] =


c1 F

+[k1r] if 0 < r ≤ r1
c2 F

+[k2r] + d2 F
−[k2r] if r1 < r ≤ r2

c3 F
+[k3r] + d3 F

−[k3r] if r2 < r ≤ r3

cm F+[kmr] + dm F−[kmr] if rm−1 < r ≤ rm

(20)

The transverse components yield similar structure, but with G replacing F .119

The constants cj and dj are determined by continuity of radial (r) and trans-120

verse (θ, φ) components of the magnetic field across the boundaries. For each internal121

boundary, it must hold that122

F [rj ] = cj F
+ [kj rj ] + dj F

− [kj rj ] (21)

= cj+1 F
+ [kj+1 rj ] + dj+1 F

− [kj+1 rj ]

to ensure continuity of the radial component of the magnetic field, and likewise for123

G to ensure continuity of the transverse components. These continuity constraints124

yield two equations at each internal boundary, from which we can determine the layer125

coefficients.126

The internal boundary conditions are only part of the story. In a model with m127

layers, we have 2m− 1 coefficients to determine (recall that d1 = 0, to avoid singular128

behavior at the origin), but only m − 1 internal boundaries, and thus only 2m − 2129

constraints. The external boundary condition provides the additional information to130

make the problem evenly determined.131

Even without the external boundary condition, a provisional solution is obtained
by setting c1 = 1 and using the internal boundary constraints to determine the other
coefficient values. Using notation similar to that of Parkinson (1983, page 314), we can
write a recursion relation that transforms the coefficients in the jth layer into those
for the layer above it [

cj+1

dj+1

]
= Tj [kj , kj+1, rj ] ·

[
cj
dj

]
(22)

–5–
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where the transformation matrix has elements

Tj [kj , kj+1, rj ] =
1

αj

[
βj γj
δj εj

]
(23)

with
αj = F+ [kj+1 rj ] ∗G− [kj+1 rj ]− F− [kj+1 rj ] ∗G+ [kj+1 rj ] (24)

which is a function of the conductivity in the layer above the boundary only. The
other elements depend on the conductivities on both sides of the boundary

βj = F+ [kj rj ] ∗G− [kj+1 rj ]− F− [kj+1 rj ] ∗G+ [kj rj ] (25)

γj = F− [kj rj ] ∗G− [kj+1 rj ]− F− [kj+1 rj ] ∗G− [kj rj ] (26)

and
δj = F+ [kj+1 rj ] ∗G+ [kj rj ]− F+ [kj rj ] ∗G+ [kj+1 rj ] (27)

εj = F+ [kj+1 rj ] ∗G− [kj rj ]− F− [kj rj ] ∗G+ [kj+1 rj ] (28)

We thus start in the central spherical layer, with c1 = 1 and d1 = 0, and then132

propagate upward through the stack of layers until we have the coefficients in each133

of the m layers. This set of layer coefficients, with the radial basis functions, yields134

structures as given in equations (22) and (23).135

2.3 External Boundary Conditions136

The final step is matching the external surface boundary condition. Outside the
sphere, the magnetic field is represented by a scalar potential which is the sum of an
imposed external contribution and an induced internal contribution. That sum has
spatial dependence given by the form

Φ[r, θ, φ] = R

(
Be

( r
R

)n
+Bi

(
R

r

)n+1
)
Sn[θ, φ] (29)

We have dropped the subscript m from Sn,m because a suitable choice of axes results
in m = 0 for both external and internal fields for the case of spherical symmetry we
consider here. The vector field is obtained from the potential via

B = −∇Φ (30)

The radial component of the vector field, evaluated at the surface (r = R), is

Br = − (n Be − (n+ 1)Bi)Sn[θ, φ] (31)

and the tangential components are

Bθ = −(Be +Bi)
∂Sn[θ, φ]

∂θ
(32)

and

Bφ = −(Be +Bi)
1

sin[θ]

∂Sn[θ, φ]

∂φ
(33)

Matching these with the corresponding interior components, as given in equations
(8), (9), and (10), but evaluated at the top of the upper-most layer, we obtain

−(n Be − (n+ 1) Bi)R = n (n+ 1) (cm F+[km R] + dm F−[km R]) (34)

and
−(Be +Bi)R =

(
cm G+[km R] + dm G−[km R]

)
(35)
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From these two equations, we can first solve for Be and Bi. The result is

B̂e =
−1

R(2n+ 1)
(cm Am + dm Bm) (36)

B̂i =
1

R(2n+ 1)
(cm Cm + dm Dm) (37)

where we introduce B̂e and B̂i to distinguish solutions in terms of internal properties137

from the external and induced magnetic moments. We also define the parameters Am,138

Bm, Cm, and Dm by139

Am = (n+ 1)
(
n F+[km R] + G+[km R]

)
(38)

Bm = (n+ 1)
(
n F−[km R] + G−[km R]

)
and140

Cm = n
(
(n+ 1)F+[km R]−G+[km R]

)
(39)

Dm = n
(
(n+ 1)F−[km R]−G−[km R]

)
As previously noted, choice of c1 = 1 permits solution of layer coefficients cj and

dj relative to each other with only knowledge of the interior properties. We can then

solve for B̂e and B̂i in terms of the interior structure quantities kj and rj . We can then
conveniently relate this to the magnetic field that will be induced from the conducting
body for a given external field B∗e by introducing a scale factor:

S =
B∗e

B̂e
(40)

Choosing a normalized value of
B∗e = 1 (41)

means that physically correct layer coefficients may be determined by multiplying the
magnitude of the applied external field to the coefficients c∗j and d∗j , obtained from[

c∗j
d∗j

]
= S

[
cj
dj

]
(42)

For an applied external field B∗e in real units, the physical magnetic field within each141

layer is then given by142

Br,j [r, θ, φ, t] =
B∗e
r

(
c∗jF

+[kjr] + d∗jF
−[kjr]

)
n(n+ 1)Sn[θ, φ] exp[−i ω t]

Bθ,j [r, θ, φ, t] =
B∗e
r

(
c∗jG

+[kjr] + d∗jG
−[kjr]

) dSn[θ, φ]

dθ
exp[−i ω t] (43)

Bφ,j [r, θ, φ, t] =
B∗e

r sin[θ]

(
c∗jG

+[kjr] + d∗jG
−[kjr]

) dSn[θ, φ]

dφ
exp[−i ω t]

The ratio of internal and external field strengths at the exterior surface is given
from equations (36) and (37) via

Q ≡ B̂i

B̂e
= −c

∗
m Cm + d∗m Dm

c∗m Am + d∗m Bm
(44)

In Zimmer et al. (2000) and Khurana et al. (2009), this complex ratio is written
as the product of a real magnitude and a phase shift:

Q = A∗ exp[i γ∗] (45)

–7–
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where A∗ is a positive real number representing amplitude and γ∗ is a real number143

representing the phase of the induced field relative to the imposed field.144

In the aforementioned previous work, an explicit formula is given for the result145

from a 3-layer model, in which the conductivities in the innermost (j = 1) and out-146

ermost (j = 3) layers are zero, and the middle layer (intended to represent a salty147

ocean in Europa) has a finite conductivity. In this model, there are essentially four148

free parameters—3 bounding radii (r1, r2, r3) and a middle layer conductivity (σ2)—149

that determine the critical wavenumber (k2). We refer to this model as the ocean-only150

model.151

In our notation, the resulting ratio Q for the ocean-only model is152

Q =
−n
n+ 1

jn+1[k2 r1] ∗ yn+1[k2 r2]− jn+1[k2 r2] ∗ yn+1[k2 r1]

jn+1[k2 r1] ∗ yn−1[k2 r2]− jn−1[k2 r2] ∗ yn+1[k2 r1]
(46)

Because we know the complex phase of the wavenumber k, we can use properties of
Bessel functions to solve for the amplitude and phase for the induced magnetic field.
We defined k2 = iωµσ (Eq. 6), so k = exp[iπ/4]

√
ωµσ. The (real) magnitude of k is

|k| =
√
ωµσ, and all layers will have the same complex phase π/4. We can therefore

express the wavenumber for each layer as

kj = κj exp[iπ/4], κj =
√
ωµjσj (47)

When κ2r2 is large, jn+1[κ2 r2] = −jn−1[κ2 r2] and yn+1[κ2 r2] = −yn−1[κ2 r2]. We
can make use of these relations to note that the amplitude and phase for the induced
magnetic field for a perfectly conducting sphere of radius r2 will be n/(n + 1) and
0, respectively. Thus, we can also define an amplitude and phase for the induction
response relative to those for a perfectly conducting sphere of radius R:

A = A∗
n+ 1

n

(r2
R

)3
, γ = γ∗ (48)

A perfectly conducting sphere of radius R therefore has a relative amplitude of A = 1153

and γ = 0.154

3 Diffusive Induction in Jupiter’s Ocean Moons155

3.1 Spectral Content of the Imposed Magnetic Field Variations156

Temporal variations in the magnetic field occur in the reference frames of Jupiter’s157

satellites. Figure 1 shows the strongest components, arising from the orbital and syn-158

odic periods and their harmonics. Seufert et al. (2011) determined the frequency spec-159

tra for the time-varying magnetic perturbations applied to each of the four Galilean160

moons based on the VIP4 model of J. Connerney, Acuna, Ness, and Satoh (1998) and161

the Jovian current sheet model of Khurana (1997). Seufert et al. (2011) also examined162

the frequency spectra of magnetic perturbations from dynamic migration of the Jovian163

magnetopause based on solar wind data from the Ulysses spacecraft, which we do not164

consider here.165

To calculate the frequencies, we first compute the magnetic field using the JRM09166

Jupiter field model accounting for Juno measurements (J. E. P. Connerney et al., 2018)167

and using the plasma sheet model from Khurana (1997). We then compute the field168

at the orbital positions of the moons using the most recent and up-to-date NAIF-169

produced spice kernels and three years of data covering the duration of the Europa170

Clipper mission (tour 17F12v2). Finally, we compute the Fourier transform of the171

entire data sets to determine the induction frequencies.172

The temporal variations in imposed magnetic field at each satellite depend on
the orbits of the satellites and the magnetic field of Jupiter. To find them, we com-
pute Jupiter’s magnetic field in a Jupiter-centered coordinate system from a spherical

–8–
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Figure 1: Europa: Variations in orbital parameters over time introduce magnetic fluctua-
tions at multiple frequencies beyond the Jupiter rotation and satellite orbital frequencies.
The different vector components contain unique information at multiple frequencies re-
sulting from the harmonics and beats of the orbital and rotational oscillations.

harmonic series representation of the magnetic potential, which is a variant of Eq. 4:

Φ[r, θ, φ] = R
∑
n=1

(
R

r

)n+1 n∑
m=0

Pn,m[sin[θ]] (gn,m cos[mφ] + hn,m sin[mφ]) . (49)

The magnetic field vector is the negative gradient of the scalar potential173

B = −∇Φ (50)

= −
{
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

}
(51)

The mean radius is R = 71, 492 km. The rotation rate of Jupiter, as defined in the174

System III longitude (Seidelmann & Divine, 1977), is ω = 870.536◦/day.175

3.2 Electrical Conductivity in Adiabatic Galilean Oceans176

Fluid temperature, pressure, and salt content determine the electrical conduc-177

tivity of an aqueous solution, and thus dictate the magnetic induction responses of178

the Galilean oceans. The amplitude and phase of the magnetic fields induced by the179

oceans depend on the conductive properties of the oceans, which are influenced by the180

composition of the dissolved salts. With sufficient prior knowledge of the ice thickness181

and hints to the ocean’s composition—for example, from geological and compositional182

measurements by the Europa Clipper (Buffington et al., 2017)—magnetic induction183

–9–
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Figure 2: Ganymede: Variations in orbital parameters over time introduce magnetic
fluctuations at multiple frequencies beyond the Jupiter rotation and satellite orbital fre-
quencies.

studies can provide information on the amounts and compositions of the salts that184

link to global thermal and geochemical processes. On Europa, the flux of surface-185

generated oxygen to the ocean may have created oxidizing (acidic) conditions (Hand186

& Chyba, 2007; Pasek & Greenberg, 2012; Vance et al. , 2016) permitting the presence187

of dissolved MgSO4 in addition to NaCl (Zolotov, 2008; Zolotov & Kargel, 2009).188

Depth-dependent electrical conductivity can arise from melting or freezing at189

the ice–ocean interface, and from dissolution and precipitation within the ocean or190

at the water–rock interface. Even for oceans with uniform salinity, as is typically as-191

sumed, conductivity will increase with depth along the ocean’s convective adiabatic192

profile because the greater temperature and pressure increase the electrical conduc-193

tivity. Figure 4 depicts this variation for Europa and Ganymede, based on forward194

models of Vance et al. (2018) that use available thermodynamic and geophysical data195

to explore the influences of the ocean, rock layer, and any metallic core on the ra-196

dial structures of known icy ocean worlds. For each ocean, we consider a nominal197

10 wt% MgSO4 salinity, as investigated in previous work. The published equation198

of state and electrical conductivity data are adequate for the pressures in the largest199

moon, Ganymede, up to 1.6 GPa (Vance et al., 2018). The pressure conditions in200

Europa’s ocean are low enough (< 200 MPa) that the equation of state for seawater201

(McDougall & Barker, 2011) provides plausible values of conductivity for salinity of202

35 ppt less. For Europa, the respective radial models of electrical conductivity for203

oceans containing seawater and MgSO4 are consistent with compositions linked to204

chemically reducing and oxidizing model oceans cited above.205
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Figure 3: Callisto: Variations in orbital parameters over time introduce magnetic fluctua-
tions at multiple frequencies beyond the Jupiter rotation and satellite orbital frequencies.

Radial conductivity profiles for Europa (Fig. 4; top) illustrate the coupling to206

temperature and composition. We consider ice thicknesses of 5 and 30 km (magenta207

and blue curves, respectively) as representative extremes. Seawater (dot–dashed lines),208

though less concentrated than the modeled composition of MgSO4 (dashed lines), has209

a stronger melting point suppression, leading to an overall colder ocean for the same210

thickness of ice. Adiabats for pure water (solid lines) are shown for comparison. The211

lower temperature for seawater combines with the different electrical conductivity for212

the different dissolved ions to create distinct profiles unique to ocean composition and213

ice thickness (upper right).214

Larger Ganymede (Fig. 4; bottom) also has distinct conductivity profiles for215

both ice thickness and ocean composition. They reveal an additional nuance to deep216

planetary oceans that can influence the induction response. Although electrical con-217

ductivity generally increases with depth, it begins to decrease at the greatest depths218

for the warm Ganymede ocean (right-most curve). This inflection occurs because the219

ocean achieves GPa+ pressures, at which the packing of water molecules begins to220

inhibit the charge exchange of the dissolved ions (Schmidt & Manning, 2017).221

Dense brines may also reside at the base of the high-pressure ices on Ganymede,222

and even between them (Journaux, Daniel, Caracas, Montagnac, & Cardon, 2013;223

Journaux et al., 2017; S. Vance, Bouffard, Choukroun, & Sotin, 2014; Vance et al.,224

2018). Although more detailed modeling of the coupled geochemical and geodynamic225

regimes is needed, this scenario seems consistent with recent simulations of two-phase226

convection in high-pressure ices (Choblet, Tobie, Sotin, Kalousová, & Grasset, 2017).227

These simulations imply that fluids should occur at the water-rock interface through228
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Figure 4: Adiabatic ocean temperature (left) and electrical conductivity (right). Con-
vecting oceans with MgSO4 (dashed lines) are warmer. Standard seawater (mostly NaCl;
dot–dashed lines) creates colder oceans and lower electrical conductivities. Thicker ice
(blue), corresponds to colder adiabatic profiles in the underlying oceans, which also lowers
electrical conductivity. Open and closed circles correspond to the inferred depth to the
upper boundary of the silicate layer for the saline and pure water oceans, respectively.
Conductivities in the liquid regions are several orders of magnitude larger than in the ice
and rock. Adapted from Vance et al. (2018).

long periods of the evolution of even of large icy world containing high-pressure ices. If229

such a fluid layer exists under the high-pressure ice, it will create an induction response230

at low frequencies, as discussed below.231

3.3 Amplitude and Phase Lag of the Diffusive Response232

The normalized surface induction response for Europa, Ganymede, and Callisto,233

shown in Fig. 5, are based on the adiabatic ocean electrical conductivity profiles shown234

in Fig. 4, assuming spherical symmetry (Section 2). Warmer and thus thicker oceans235

(magenta curves) have larger amplitude responses, corresponding to overall higher236

values of the conductance. The induction signatures for the adiabatic ocean profile237

are nearly equal to those of oceans with uniform conductivity equal to the mean of the238

adiabatic model (Section 2). These signatures differ, however, from those of an ocean239

with uniform conductivity based on the temperature and electrical conductivity at the240

ice–ocean interface.241

For Europa, the induction signatures for modeled oxidized (10 wt% MgSO4) and242

reduced (seawater) oceans are nearly identical in their amplitude responses. However,243

the two ocean models show phase separation of a few degrees at the orbital frequency244

of 3.6×10−6 Hz (85.23 hr period).245
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Local enhancements in the ocean conductivity can have a discernible induction246

response. For Ganymede, we simulated a second ocean layer at the water–rock interface247

at a depth of 900 km, under 530 km of ice VI (Vance et al., 2018), modeled as a248

10-km-thick high-conductivity region (20 S/m) corresponding to a nearly saturated249

MgSO4 solution, consistent with (Hogenboom, Kargel, Ganasan, & Lee, 1995) and250

(Calvert, Cornelius, Griffiths, & Stock, 1958). The influence of such a layer (dotted251

lines in Fig. 5) is a ∼4% increase in the amplitude response and a corresponding ∼7%252

decrease in the phase response around 2.3×10−7 Hz. A ∼1% decrease in amplitude is253

also seen at frequencies of 0.93×10−6 Hz and 1.6×10−6 Hz.254

For Callisto, there is a small range of conditions under which oceans may be255

present. Salty oceans considered by Vance et al. (2018) have thicknesses of 20 and256

132 km. For the thinner ocean, a 96 km layer of high-pressure ice underlies the ocean.257

The depicted state is likely transient, as ice III is buoyant in the modeled 10wt%258

MgSO4 composition, and an upward snow effect should hasten the transfer of heat259

from the interior. Simulating a subsequent stage with ice III above the ocean awaits260

improved thermodynamic data, and will be discussed in future work. The present261

simulations illustrate the effect of the greater skin depth for the thicker and deeper262

ocean in terms of a higher amplitude response at lower frequencies and phase curve263

also shifted in the direction of lower frequencies.264
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Figure 5: Normalized magnetic induction amplitudes (left) and phases (right) for the
conductivity profiles in Fig. 4, at frequencies including the induction peaks noted in Fig. 1
(vertical red lines).

3.4 Mean Diffusive Response Relative to the Imposed Field265

For the sake of comparing the passive induction responses of Europa, Ganymede
and Callisto with fields induced by oceanic flows, we introduce the residual field,
BR. This quantity allows us to quickly examine the frequency dependent induction
response for a given interior model, accounting for both the amplitude (A) and phase
shift (φ). For the geometric mean frequency components of Jupiter’s field (|B| =√
B2
x +B2

y +B2
z ), we define BR as

BR = |B|(cosφ−A) (52)
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Figure 6: Europa:Residual field (BR) of the diffusive induction response. Thick lines are
higher salinities (10wt% and 3.5wt%, respectively) for oceans with aqueous MgSO4 (ma-
genta and blue −−) and seawater (cyan dash-dot). Thinner lines are for oceans with 10%
of those concentrations. The lower pane shows responses at the strongest inducing fre-
quencies in Figure 1. Filled symbols are for the higher concentrations. Upward triangles
are for thicker ice (30 km) and downward triangles are for thinner ice (5 km).

More information can be gained by examining the directional components of Jupiter’s266

field (Figure 1).267

Figures 6, 7, and 8 show the spectra of residual fields for Europa, Ganymede, and268

Callisto, respectively. Subpanels in each figure isolate the peak responses at the main269

driving frequencies shown in Figure 1. Tables 1, 2, and 3 include the corresponding270

data. Figures S1-S3 illustrate possible errors arising from analyses assuming a uniform271

conductivity of the ocean. They plot the deviations (in percent) between the residual272

fields (BR) of the adiabatic oceans (Figure 4) and the equivalent responses obtained273

by giving the oceans uniform conductivity, either as the equivalent mean value or the274

value at the top of the ocean (i.e. at the ice–ocean interface).275

4 Magnetic Induction from Oceanic Fluid Flows276

Another component of the induced magnetic response might occur in the icy277

Galilean satellites, arising not from Jupiter’s changing magnetic field, but from charges278

moving with oceanic fluid flows. Such induced magnetic fields are typically neglected279

because they are expected to be relatively weak. On Earth, ocean currents induce280

fields on the order of 100 nT in a background field of about 40,000 nT; these fields281
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Figure 7: Ganymede: Residual field (BR) of the diffusive induction response. Thick lines
are higher salinities (10wt%) for oceans with aqueous MgSO4 (magenta and blue −−).
Thinner lines are for oceans with 1wt% MgSO4. The dotted line is for the case with a 30-
km-thick oceanic layer underneath the high-pressure ice. The lower pane shows responses
at the strongest inducing frequencies in Figure 1. Filled symbols are for the higher con-
centrations. Upward triangles are for thicker ice (∼ 100 km) and downward triangles are
for thinner ice (∼ 30 km)
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Figure 8: Callisto: Residual field (BR) of the diffusive induction response. Thick lines
are higher salinities (10wt%) for oceans with aqueous MgSO4 (magenta and blue −−).
Thinner lines are for oceans with 1wt% MgSO4. The lower pane shows responses at the
strongest inducing frequencies in Figure 1. Filled symbols are for the higher concentra-
tions. Upward triangles are for thicker ice (∼ 130 km) and downward triangles are for
thinner ice (∼ 100 km).
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Tb Tmean DI Docean BR
(K) (K) (km) (km) (nT)

Europa f (×10−6Hz) 3.25 24.73 49.46

MgSO4 1Wt% 270.4 271.5 31 120 0.841 21.862 2.715
< σ >= 0.4227 S m−1 270.4 271.5 31 120 0.823 21.417 2.654
σtop = 0.3847 S m−1 270.4 271.5 31 120 0.769 21.304 2.650

273.1 274.3 6 147 0.791 16.892 1.980
< σ >= 0.4640 S m−1 273.1 274.3 6 147 0.755 15.964 1.900
σtop = 0.4107 S m−1 273.1 274.3 6 147 0.702 16.122 1.928

MgSO4 10Wt% 269.8 271.3 30 127 1.591 18.741 1.983
< σ >= 3.4478 S m−1 269.8 271.3 30 127 1.539 18.234 1.961
σtop = 3.0763 S m−1 269.8 271.3 30 127 1.536 18.686 2.008

272.7 274.5 5 154 1.233 10.477 0.982
< σ >= 3.8547 S m−1 272.7 274.5 5 154 1.167 9.800 0.935
σtop = 3.3197 S m−1 272.7 274.5 5 154 1.173 10.634 1.000

Seawater 0.35165 Wt% 270.0 271.1 31 120 0.763 21.749 2.719
< σ >= 0.3734 S m−1 270.0 271.1 31 120 0.746 21.112 2.645
σtop = 0.3339 S m−1 270.0 271.1 31 120 0.684 21.026 2.636

272.5 273.6 6 146 0.712 16.850 2.029
< σ >= 0.3945 S m−1 272.5 273.6 6 146 0.678 16.046 1.926
σtop = 0.3415 S m−1 272.5 273.6 6 146 0.614 15.921 1.947

Seawater 3.5165 Wt% 268.2 269.7 31 122 1.559 19.524 2.091
< σ >= 2.9548 S m−1 268.2 269.7 31 122 1.523 18.989 2.052
σtop = 2.6476 S m−1 268.2 269.7 31 122 1.510 19.349 2.098

270.8 272.3 5 148 1.205 11.538 1.079
< σ >= 3.1457 S m−1 270.8 272.3 5 148 1.138 10.805 1.024
σtop = 2.7346 S m−1 270.8 272.3 5 148 1.140 11.350 1.068

Table 1: Europa: Residual fields (BR) at the main inducing frequencies in Fig 1. For the
different ocean compositions and thicknesses of the upper ice I lithosphere (DI ; Figure 4,
the adiabatic response is given first, followed by the response for the ocean with uniform
conductivity set to the mean of the adiabatic ocean (〈σ〉), and then for the case with
uniform conductivity set to the value at the ice-ocean interface (σtop).

are observable by space-based magnetometers and have been used to monitor ocean282

currents (Constable & Constable, 2004; Tyler, Maus, & Luhr, 2003). If there are283

oceanic flow-driven induction signals present in the icy Galilean satellites, and if the284

spatial or temporal structures of these induction signals allow them to be separated285

from the contributions driven by variations in Jupiter’s magnetic field, it would permit286

characterization of the ocean flows themselves as has been done for the Earth’s ocean287

(e.g., Chave, 1983; Grayver et al., 2016; Minami, 2017; Tyler et al., 2003). Conversely,288

if such induced signals are present but the analysis does not accommodate that fact,289

then the recovered electrical conductivity estimates will be biased and inaccurate.290

While Tyler (2011) discusses the possibility of magnetic remote sensing to detect291

resonant ocean tides on Europa in the limits of shallow water equations and thin-292
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Tb Tmean DI Docean BR
(K) (K) (km) (km) (nT)

Ganymede f (×10−6Hz) 1.62 26.37 52.74

MgSO4 1Wt% 270.7 279.0 25 442 0.265 9.580 0.517
< σ >= 0.5166 S m−1 270.7 279.0 25 442 0.243 8.753 0.477
σtop = 0.3890 S m−1 270.7 279.0 25 442 0.229 9.601 0.516

261.5 266.1 93 272 0.212 16.389 1.007
< σ >= 0.3295 S m−1 261.5 266.1 93 272 0.203 15.626 0.967
σtop = 0.2608 S m−1 261.5 266.1 93 272 0.175 15.906 0.999

MgSO4 10Wt% 270.1 278.2 28 455 0.226 5.286 0.309
< σ >= 4.0541 S m−1 270.1 278.2 28 455 0.209 4.991 0.290
σtop = 3.1056 S m−1 270.1 278.2 28 455 0.226 5.325 0.306

260.0 263.5 96 282 0.316 12.202 0.762
< σ >= 2.3476 S m−1 260.0 263.5 96 282 0.304 11.919 0.750
σtop = 1.9483 S m−1 260.0 263.5 96 282 0.304 12.174 0.761

30 km 20 S m−1 layer 260.0 263.5 96 282 0.332 12.156 0.765

Table 2: Ganymede: Residual fields (BR) at the main inducing frequencies in Fig 1. For
the different ocean compositions and thicknesses of the upper ice I lithosphere (DI ; Fig-
ure 4, the adiabatic response is given first, followed by the response for the ocean with
uniform conductivity set to the mean of the adiabatic ocean (〈σ〉), and then for the case
with uniform conductivity set to the value at the ice-ocean interface (σtop).

shell electrodynamics, we are not aware of any studies that have examined magnetic293

induction signatures due to other flows or for other satellites (e.g., Gissinger & Pe-294

titdemange, 2019; Lemasquerier et al., 2017; Rovira-Navarro et al., 2019; Soderlund,295

2019). Here, we focus on global fluid motions that may be driven by convection within296

the oceans of Europa, Ganymede, and Callisto, followed by estimates of the induction297

response that may be expected from these flows.298

4.1 Oceanic Fluid Motions299

The majority of ocean circulation studies have focused on hydrothermal plumes at300

Europa, with global models being developed relatively recently (, Soderlund et al.2014;301

Soderlund, 2019; Vance & Goodman, 2009b). Thermal convection in Europa’s ocean302

is expected in order to efficiently transport heat from the deeper interior that arises303

primarily from radiogenic and tidal heating in the mantle. Moreover, by estimating304

the extent to which rotation will organize the convective flows, Europa’s ocean was305

predicted to have quasi-three-dimensional turbulence (, Soderlund et al.2014; Soder-306

lund, 2019). As shown in Figure 9, this turbulence generates three-jet zonal flows with307

retrograde (westward) flow at low latitudes, prograde (eastward) flow at high latitudes,308

and meridional overturning circulation. Upwelling at the equator and downwelling at309

middle to high latitudes from this circulation effectively forms a Hadley-like cell in310

each hemisphere.311

Application of these calculations to Ganymede suggests convection is expected312

within its ocean as well and may have similar convective flows, although there is313

significantly more uncertainty in the predicted convective regime (Soderlund, 2019).314
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Tb Tmean DI Docean BR
(K) (K) (km) (km) (nT)

Callisto f (×10−6Hz) 0.69 26.60 27.29 27.99

MgSO4 1Wt% 257.4 259.6 99 132 0.012 0.085 9.201 0.052
< σ >= 0.2307 S m−1 257.4 259.6 99 132 0.012 0.084 8.990 0.050
σtop = 0.1965 S m−1 257.4 259.6 99 132 0.010 0.083 8.926 0.050

250.8 250.9 128 21 0.001 0.024 2.688 0.015
< σ >= 0.0895 S m−1 250.8 250.9 128 21 0.001 0.025 2.740 0.016
σtop = 0.0874 S m−1 250.8 250.9 128 21 0.001 0.024 2.689 0.015

MgSO4 10Wt% 255.7 256.9 99 130 0.063 0.083 8.875 0.050
< σ >= 1.5256 S m−1 255.7 256.9 99 130 0.062 0.082 8.763 0.049
σtop = 1.3789 S m−1 255.7 256.9 99 130 0.058 0.082 8.822 0.049

250.0 251.5 129 18 0.004 0.072 7.778 0.044
< σ >= 0.6025 S m−1 250.0 251.5 129 18 0.005 0.072 7.781 0.044
σtop = 0.6062 S m−1 250.0 251.5 129 18 0.005 0.072 7.790 0.044

Table 3: Callisto: Residual fields (BR) at the main inducing frequencies in Fig 1. For the
different ocean compositions and thicknesses of the upper ice I lithosphere (DI ; Figure 4,
the adiabatic response is given first, followed by the response for the ocean with uniform
conductivity set to the mean of the adiabatic ocean (〈σ〉), and then for the case with
uniform conductivity set to the value at the ice-ocean interface (σtop).

Convection in Callisto’s potential ocean may be in the double-diffusive regime if the315

ocean’s composition is nearly saturated (Vance et al., 2018). However, considering316

thermal convection as an upper bound, application of the scaling arguments in Soder-317

lund (2019) to Callisto suggest similar ocean flows may be expected here as well.318

The nominal ocean model shown in Figure 9 is, therefore, applicable to all three319

ocean worlds considered here. As described in Soderlund (2019), the model was carried320

out using the MagIC code (Wicht, 2002) with the SHTns library for the spherical har-321

monics transforms (Schaeffer, 2013) and is characterized by the following dimensionless322

input parameters: shell geometry χ = ri/ro = 0.9, Prandtl number Pr = ν/κ = 1,323

Ekman number E = ν/ΩD2 = 3.0× 10−4, and Rayleigh number Ra = αg∆TD3/νκ,324

where ri and ro are the inner and outer radii of the ocean, D = ro − ri is ocean325

thickness, Ω is rotation rate, ν is kinematic viscosity, κ is thermal diffusivity, α is ther-326

mal expansivity, g is gravitational acceleration, and ∆T is superadiabatic temperature327

contrast. The boundaries are impenetrable, stress-free, and isothermal.328

The model outputs, such as the velocity field, are also non-dimensional. For329

example, the Rossby number Ro = U/ΩD is the ratio of rotational Ω−1 to inertial330

D/U timescales that allows the dimensional flow speeds to be determined: U = ΩDRo331

using ocean thickness D as the length scale and rotation rates Ω = [2.1× 10−5, 1.0×332

10−5, 4.4 × 10−6] s−1 for Europa, Ganymede, and Callisto, respectively. Following333

Table 1, Europan ocean thicknesses of 120−154 km are considered. This range of liquid334

ocean thicknesses extends to 272− 455 km for Ganymede (Table 2) and 18− 132 km335

for Callisto (Table 3), given the larger uncertainties on their internal structures. We336

therefore assume the following mean parameter values in Figure 9: DEuropa = 135337

km, DGanymede = 360 km, and DCallisto = 75 km, with the ranges considered in338

Table 4. Flows are fastest for Ganymede and Europa, where the zonal jets can reach339
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m/s speeds, the mean latitudinal flows have peak speeds of tens of cm/s, and the mean340

radial flows are ∼ 10 cm/s.341

-1.5 1.5Ro -0.15 0.15Ro -0.03` 0.03Ro

a) Mean Azimuthal Velocity b) Mean Theta Velocity c) Mean Radial Velocity

Dimensionless,
Ro=U/ΩD

Dimensional, Europa
(Ω=2.1•10-5 s-1, D=135 km)

Dimensional, Ganymede
(Ω=1.0•10-5 s-1, D=360 km)

Dimensional, Callisto
(Ω=4.4•10-6 s-1, D=75 km)

-4 4[m/s] -0.4 0.4[m/s] -9 9[cm/s]

-5 5[m/s] -0.5 0.5[m/s] -11 11[cm/s]

-0.5 0.5[m/s] -0.05 0.05[m/s] -1 1[cm/s]

Figure 9: Mean flow fields in our nominal global ocean model from Soderlund (2019),
averaged over 18 planetary rotations and all longitudes. a) Zonal velocity field where red
denotes prograde flows and blue denotes retrograde flows. b) Theta velocity field where
red denotes away from the north pole and blue denotes toward the north pole. c) Radial
velocity field where red denotes upwelling flows and blue denotes downwelling flows.

4.2 Generation of Induced Magnetic Fields342

The magnetic induction equation can be used to estimate the components of the
magnetic field B induced by ocean currents with velocity u and those arising from
changes in the externally imposed field:

∂B

∂t
= ∇× (u×B)−∇× (η∇×B) (53)

where η = (µ0σ)−1 is the magnetic diffusivity. Here, the first term represents the343

evolution of the magnetic field, the second term represents magnetic induction, and344

the third term represents magnetic diffusion.345

Neglecting variations in oceanic electrical conductivity with depth and assuming
an incompressible fluid, equation 53 simplifies to

∂B

∂t
= (B · ∇)u− (u · ∇)B + η∇2B, (54)

after also expanding the induction term and utilizing ∇ ·B = 0 and ∇ · u = 0. Let us
decompose the total magnetic field into jovian imposed F and the satellite’s induced
b field components:

B = F + b (55)

with |F| � |b|. The induction equation then becomes

∂b

∂t
= −∂F

∂t
+ (F · ∇)u− (u · ∇)(F + b) + η∇2(F + b) (56)
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Here, the first term is the evolution of the induced magnetic field, the second term is346

induction due to variations in Jupiter’s magnetic field, the third term is induction due347

to oceanic fluid motions, the fourth term is advection of the field by ocean flows, and348

the fifth and sixth terms are diffusion of the Jovian and induced fields.349

Let us next assume that the Jovian field can be approximated by F = Foẑ, where
Fo is constant and homogeneous and ẑ is aligned with the rotation axis, in which case
equation 56 further simplifies to:

∂b

∂t
= Fo

∂u

∂z
− (u · ∇)b + η∇2b. (57)

We will also focus on the quasi-steady induction signal generated by ocean flows rather
than the rapidly varying contribution that could be difficult to distinguish from other
magnetic field perturbations. Towards this end, the induced magnetic field and velocity
fields are decomposed into mean and fluctuating components: b = b + b′ and u =
u + u′. Inserting this into equation 57 and using Reynolds averaging yields

∂b

∂t
= Fo

∂u

∂z
− (u · ∇)b− (u′ · ∇)b′ + η∇2b. (58)

Next, we focus on the radial and latitudinal components because the zonal flow (uφ)
is nearly invariant in the z-direction (Figure 9a), noting also that azimuthally oriented
(toroidal) magnetic fields would not be detectable by spacecraft:

∂br
∂t

= Fo
∂ur
∂z
− (u · ∇)br − (u′ · ∇)b′r + η∇2br (59)

∂bθ
∂t

= Fo
∂uθ
∂z
− (u · ∇)bθ − (u′ · ∇)b′θ + η∇2bθ (60)

Using simple scaling arguments, the second and third terms on the right sides are
likely small compared to the first term since |F | � |b| (assuming similar characteristic
flow speeds and length scales) such that

∂br
∂t
≈ Fo

∂ur
∂z

+ η∇2br (61)

∂bθ
∂t
≈ Fo

∂uθ
∂z

+ η∇2bθ. (62)

In the steady state limit and approximating the gradient length scales as D
and flow speeds as Ur and Uθ, the magnetic fields induced by ocean currents can be
estimated as:

FoUr
D
∼ ηbr
D2

such that br ∼
FoUrD

η
= µoσDUrFo (63)

FoUθ
D
∼ ηbθ
D2

such that bθ ∼
FoUθD

η
= µoσDUθFo. (64)

The resulting induced magnetic fields are then stronger for larger electrical conductiv-350

ities, ocean thicknesses, flow velocities, and satellites closer to the host planet, since351

Fo decreases with distance.352

Table 4 summarizes the ambient Jovian conditions at Europa, Ganymede, and353

Callisto as well as the relevant characteristics of their oceans, and the computed upper354

bounds on the induced magnetic field strengths. Here, we assume flow speeds typical355

of the global, steady overturning cells due to their temporal persistence and large spa-356

tial scale, which we hypothesize will produce the strongest induced magnetic signature357

that would be detectable at spacecraft altitudes. We find that the theta magnetic field358

components are larger than the radial components by roughly a factor of five, reaching359
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∼ 200 nT for both Europa and Ganymede (higher salt content, thinner ice shell mod-360

els); estimates can be an order of magnitude weaker in the lower salt content, thicker361

ice shell models). The radial variations correspond to signals up to 33% (Ganymede)362

and 8% (Europa) of the ambient Jovian field, which could be detectable with future363

missions. The signature at Callisto is small (. 1 nT). In addition, we predict the fields364

to be strongest near the equator where large vertical gradients in the convective flows365

exist (Figure 9b-c).366

σ D Ur Uθ Fo br bθ
[S/m] [km] [m/s] [m/s] [nT] [nT] [nT]

Europa

MgSO4 1 Wt%, Thicker ice shell 0.4 120 0.08 0.38 420 2 10
MgSO4 1 Wt%, Thinner ice shell 0.5 147 0.09 0.46 420 3 18
MgSO4 10 Wt%, Thicker ice shell 3.4 127 0.08 0.40 420 18 91
MgSO4 10 Wt%, Thinner ice shell 3.9 154 0.10 0.49 420 32 155
Seawater 0.35 Wt%, Thicker ice shell 0.4 120 0.08 0.38 420 2 10
Seawater 0.35 Wt%, Thinner ice shell 0.4 146 0.09 0.46 420 3 14
Seawater 3.5 Wt%, Thicker ice shell 3.0 122 0.08 0.38 420 15 73
Seawater 3.5 Wt%, Thinner ice shell 3.1 148 0.09 0.47 420 22 114

Ganymede

MgSO4 1 Wt%, Thicker ice shell 0.3 272 0.08 0.41 120 1 5
MgSO4 1 Wt%, Thinner ice shell 0.5 442 0.13 0.66 120 4 22
MgSO4 10 Wt%, Thicker ice shell 2.3 282 0.08 0.42 120 8 41
MgSO4 10 Wt%, Thinner ice shell 4.1 455 0.14 0.68 120 39 191

Callisto

MgSO4 1 Wt%, Thicker ice shell 0.09 21 0.003 0.01 35 � 1 � 1
MgSO4 1 Wt%, Thinner ice shell 0.2 132 0.02 0.09 35 0.02 0.1
MgSO4 10 Wt%, Thicker ice shell 0.6 18 0.002 0.01 35 � 1 � 1
MgSO4 10 Wt%, Thinner ice shell 1.5 130 0.02 0.09 35 0.2 0.8

Table 4: Assumed properties and resulting calculated upper bounds on the strengths
of the magnetic fields induced by oceanic fluid flows. Ambient magnetic field strengths,
Fo, from Showman and Malhotra (1999); radial and theta flow speeds, Ur and Uθ with
U = ΩDRo, from Figure 9; ocean thicknesses, D, from Vance et al. (2018); and electri-
cal conductivity, σ, from Figure 4. These signals are anticipated to be largest near the
equator where Uθ and Ur are strongest, as indicated in Figure 9b-c.

The simplified approach shown above gives an order of magnitude estimate of the367

maximum induced field. Future work will assess the implications of these assumptions368

through more detailed calculations. For example, we have assumed a homogeneous369

and constant Jovian field; however, the magnetic environment throughout the orbit370

close in to Jupiter may be highly variable and the external field is affected by the371

presence of heavy ions and a variable magnetosphere dynamics throughout a single372

orbit (e.g., Schilling, Neubauer, & Saur, 2008). The temporal and spatial variation of373

the ambient field is expected to be significant and the influence of these variations on374

ocean flow-driven magnetic field signatures remains to be explored. Kinematic models375

that directly solve the coupled momentum and induction equations are also an exciting376

avenue to refine these estimates.377
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5 Discussion and Conclusions378

The inverse problem of reconstructing the full induction response is complex and379

is discussed in detail in Cochrane, Murphy, and Raymond (2020). Here, we focus380

instead on how the adiababic conductivity profile of the ocean affects the induction381

response relative to the mean case that is usually considered in space physics analyses382

(e.g., Kivelson et al., 2000), and relative to the isothermal case often considered in383

analyses of interior structure (e.g., Schubert, Anderson, Spohn, & McKinnon, 2004).384

Differences between the adiabatic and mean conductivity cases have less depen-385

dence on frequency (Tables 1-3 and Figures S1, S3, and S5). For Europa, the nominal386

oceans with ice shells 5- and 30-km thick have errors of about 6% and 3%, respectively,387

and amount to nearly a 1 nT difference for the largest signals that exceed 20 nT. For388

Ganymede, the nominal oceans with ice shells ∼25- and ∼100-km thick have errors of389

about 7% and 3%, and are also nearly 1 nT for the largest signals that exceed 10 nT.390

For Callisto, the induction response of the mean conductivity ocean for ice shells of391

∼100- and ∼130-km thickness is within about 2% of the response for the adiabatic392

ocean, less than 0.3 nT for the largest signals that approach 10 nT.393

The induction response of the adiabatic ocean differs from that of the equivalent394

ocean with the conductivity of fluid at the ice-ocean interface. The greater mismatch395

of conductivities of the lower part of the ocean causes large differences in amplitude396

and phase at lower frequencies (i.e. for larger skin depths). For Europa, this means397

that the lower-frequency mean-motion signal (3.2×10−6 Hz; Table 1) differs by more398

than 15% for the warmer lower-salinity oceans, or about 0.1 nT. For Ganymede, the399

differences at the mean-motion frequency (1.62×10−6 Hz; Table 2) can approach 25%,400

which amounts to 0.04 nT. For Callisto, the differences at the mean-motion frequency401

(6.9×10−7 Hz; Table 3) approach 20%, which amounts to only 2 pT for the small402

predicted residual field based on the mean field. By contrast, the higher-frequency403

diurnal signals differ by less than 5%.404

Based on the circulation models and upper bound induced magnetic field esti-405

mates described in Section 4, flow-induced fields may be a prominent component of the406

magnetic fields measured in the low latitudes for Europa and Ganymede. The peak407

flow-induced magnitude is 30-40 nT (Table 4) compared with Jovian-induced residual408

fields of less than 20 nT for both Europa (Table 1) and Ganymede (Table 2).409

5.1 Implications for future missions410

The Europa Clipper mission will conduct multiple (>40) flybys of Europa, and411

will investigate its induction response with the goal of constraining the ocean conduc-412

tivity to within ±0.5 S m−1 and ice thickness to within ±2 km (Buffington et al.,413

2017). The flybys at high latitudes will allow the Europa Clipper investigation to iso-414

late flow-induced fields from the diffusive response, and possibly to derive constraints415

on currents in the ocean. With independent constraints on ice thickness obtained from416

the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)417

and Europa Imaging System (EIS) investigations (Steinbrügge et al., 2018), it may be418

possible to constrain the ocean’s temperature and thus the adiabatic structure for the419

best-fit ocean composition inferred from compositional investigations. The analyses420

provided here (Figure 6 and Table 1) indicate that a sensitivity of 1.5 nT is probably421

insufficient to distinguish between end-member MgSO4 and NaCl oceans, but might422

be sufficient to distinguish between order-of-magnitude differences in salinity.423

The JUpiter ICy moons Explorer (JUICE) will execute two Europa flybys and424

nine Callisto flybys, and will orbit Ganymede (Grasset et al., 2013). The magnetic425

field investigation seeks to determine the induction response to better than 0.1 nT.426

The Europa flybys might aid the Europa Clipper investigation in constraining the427
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composition of the ocean. At Ganymede, the magnetic field investigation will not be428

sufficient to discern the presence of a basal liquid layer at the ice VI-rock interface.429

Although the ability to discern between ocean compositions could not be assessed430

owing to insufficient electrical conductivity data at high pressures, it seems likely431

that useful constraints could be derived based on the signal strengths at Ganymede,432

if laboratory-derived electrical conductivity data for relevant solutions under pressure433

became available. At Callisto, 0.1 nT accuracy may only allow sensing of the induction434

response to Jupiter’s synodic field, which might be sufficient to infer the thickness and435

salinity of an ocean if adequate temporal coverage is obtained to confirm the phase of436

the response.437
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tance of René Dotson with 85 collaborating authors. University of Arizona517

Press, Tucson, 2009. The University of Arizona space science series ISBN:518

9780816528448, p. 571 , 1 , 571.519

Khurana, K., Kivelson, M., Stevenson, D., Schubert, G., Russell, C., Walker, R.,520

& Polanskey, C. (1998). Induced magnetic fields as evidence for subsurface521

oceans in Europa and Callisto. Nature, 395 (6704), 777–780.522

Khurana, K. K. (1997, Jun). Euler potential models of Jupiter’s magnetospheric523

field. Journal of Geophysical Research: Space Physics, 102 (A6), 11295–524

11306. Retrieved from http://dx.doi.org/10.1029/97JA00563 doi:525

10.1029/97ja00563526

Kivelson, M., Khurana, K., Russell, C., Volwerk, M., Walker, R., & Zimmer, C.527

(2000). Galileo magnetometer measurements: A stronger case for a subsurface528

ocean at Europa. Science, 289 , 1340–1343.529

Lainey, V., Duriez, L., & Vienne, A. (2006). Synthetic representation of the Galilean530

satellites’ orbital motions from L1 ephemerides. A&A, 456 , 783–788.531

–25–



manuscript submitted to JGR-Planets

Lemasquerier, D., Grannan, A. M., Vidal, J., Cébron, D., Favier, B., Le Bars, M., &532
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Abstract18

Prior analyses of oceanic magnetic induction within Jupiter’s large icy moons have as-19

sumed uniform electrical conductivity. However, the phase and amplitude responses of20

the induced fields will be influenced by the natural depth-dependence of the electrical21

conductivity. Here, we examine the amplitudes and phase delays for magnetic di↵usion22

in modeled oceans of Europa, Ganymede, and Callisto. For spherically symmetric con-23

figurations, we consider thermodynamically consistent interior structures that include24

realistic electrical conductivity along the oceans’ adiabatic temperature profiles. Con-25

ductances depend strongly on salinity, especially in the large moons. The induction re-26

sponses of the adiabatic profiles di↵er from those of oceans with uniform conductivity27

set to values at the ice–ocean interface, or to the mean values of the adiabatic profile,28

by more than 10% for some signals. We also consider motionally induced magnetic fields29

generated by convective fluid motions within the oceans, which might optimistically be30

used to infer ocean flows or, pessimistically, act to bias the ocean conductivity inversions.31

Our upper-bound scaling estimates suggest this e↵ect may be important at Europa and32

Ganymede, with a negligible contribution at Callisto. Based on end-member ocean com-33

positions, we quantify the magnetic induction signals that might be used to infer the ox-34

idation state of Europa’s ocean and to investigate stable liquids under high-pressure ices35

in Ganymede and Callisto. Fully exploring this parameter space for the sake of planned36

missions requires thermodynamic and electrical conductivity measurements in fluids at37

low temperature and to high salinity and pressure as well as modeling of motional in-38

duction responses.39

1 Introduction40

The jovian system is of particular interest for studying magnetic induction in icy41

ocean worlds. Jupiter has a strong magnetic field whose dipole axis is tilted 9.6� with42

respect to its rotation axis (Acuna & Ness, 1976), while the orbits of the Galilean moons43

lie very nearly in the equatorial plane of Jupiter. This means that Jupiter’s magnetic44

field varies in time at the orbital positions of the satellites. Also, the outer layers of the45

satellites themselves are believed to consist mainly of water ice at the surface, underlain46

by salty oceans. Brines are good conductors, while ice is a significant insulator.47

Magnetic induction from Jupiter’s diurnal signal sensed by the Galileo mission pro-48

vides the most compelling direct observational evidence for the existence of oceans within49

Europa and Ganymede (Saur et al., 1998; Khurana et al., 1998; Kivelson et al., 2000; Schilling50

et al., 2007; Hand & Chyba, 2007; Khurana et al., 2009). The case has also been made51

for an induction response from an ocean in Callisto (Zimmer et al., 2000), but this in-52

terpretation is clouded by ionospheric interaction (Liuzzo et al., 2015; Hartkorn & Saur,53

2017).54

Longer-period signals penetrate more deeply, as penetration of the magnetic field55

into the interior is a di↵usive process. It is convenient that the skin depths at the dom-56

inant periods of variation experienced by Europa, Ganymede, and Callisto are compa-57

rable to the expected ocean depths, which makes it possible to probe the properties of58

their oceans using magnetic induction (Saur et al., 2009). The spectrum of frequencies59

driving induced magnetic responses includes not just the orbits of the Galilean satellites60

and the rotation of Jupiter’s tilted dipole field, but also their harmonics and natural os-61

cillations (Seufert et al., 2011). Electrical conductivity structure within the subsurface62

oceans—for example, from convective adiabatic temperature gradients (Vance et al., 2018)63

and stratification (Vance & Goodman, 2009)—will a↵ect the induction response at these64

frequencies.65

Further variations in the magnetic fields arise from the motion of the moons about66

Jupiter. Perturbations to the orbits of the moons arise from multiple sources, including67

the oblate figure of Jupiter, gravitational interactions with the other satellites, and even68
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from Saturn and the Sun (Lieske, 1998; Lainey et al., 2006). These subtle perturbations69

introduce additional frequencies of oscillation in the magnetic fields the bodies experi-70

ence. These additional oscillations, in turn, induce magnetic fields that oscillate on the71

same time scales. A complete understanding of the dominant frequencies of oscillation72

is vital to a physically consistent interpretation of spacecraft measurements; for our anal-73

ysis, we use the NAIF-produced SPICE kernels to obtain the most precise ephemeris data74

available as they include the orbital perturbations responsible for most magnetic oscil-75

lation for the bodies we study.76

An additional induced magnetic response may occur in the icy Galilean satellites,77

arising not from Jupiter’s changing magnetic field, but from motions of salty water within78

the oceans themselves. Such motionally induced magnetic fields are typically neglected79

because they are expected to be relatively weak. On Earth, ocean currents induce fields80

on the order of 100 nT in a background field of about 40,000 nT; these fields are observ-81

able by space-based magnetometers and have been used to monitor ocean currents (Constable82

& Constable, 2004; Tyler et al., 2003). If there are motional induction signals present83

in the icy Galilean satellites, and if the spatial or temporal structures of these induction84

signals allow them to be separated from the contributions driven by variations in the jo-85

vian magnetic field, it would permit characterization of the ocean flows themselves as86

has been done for the oceans of Earth (e.g., Chave, 1983; Tyler et al., 2003; Grayver et87

al., 2016; Minami, 2017). Conversely, if such induced signals are present but the anal-88

ysis of spacecraft magnetic field measurements does not accommodate that fact, then89

the recovered electrical conductivity estimates may be biased and inaccurate.90

Here, we examine the amplitudes and phase delays for magnetic di↵usion in mod-91

eled oceans of Europa, Ganymede, and Callisto. For Europa, we focus on whether these92

responses might reveal not just the ocean’s thickness and electrical conductivity, but also93

the speciation of dissolved salts in the ocean—–here either MgSO4 or seawater dominated94

by NaCl. We restrict our analysis to spherically symmetric configurations, treating in-95

terior structures based on self-consistent thermodynamics, which account for variations96

in electrical conductivity with depth in convective oceans (Vance et al., 2018).97

In addition, we consider the generation of motionally induced magnetic fields due98

to oceanic thermal convection and estimate upper-bound field amplitudes using a scal-99

ing analysis. Based on end-member ocean compositions (Zolotov, 2008; Zolotov & Kargel,100

2009), we demonstrate the possibilities for using magnetic induction to infer the oxida-101

tion state of Europa’s ocean and to identify stable liquid layers under high-pressure ices102

in Ganymede and Callisto.103

In Section 2, we examine the di↵usive induction response of Jupiter’s ocean moons.104

We build on the prior work of Seufert et al. (2011) by including electrical conductivity105

profiles that follow the adiabatic profiles of pressure and temperature within the ocean106

of each moon. In Section 3, we describe possible ocean flows due to thermal convection107

and use a scaling relationship to estimate upper bounds for motionally induced magnetic108

field strengths. In Section 4, we discuss these results and describe the prospects for de-109

tecting signals from each. The Supplemental Material includes detailed derivations of110

the theoretical techniques we use to model the induced magnetic fields, as well as ad-111

ditional results for field components not covered in Sections 2–4.112

2 Di↵usive Induction in Jupiter’s Ocean Moons113

The complex response to the excitation field Ae
1 describes the frequency-dependent,114

normalized amplitude A = |Ae
n| and phase delay � = � arg(Ae

n) for a uniform exci-115

tation field from Jupiter (degree n = 1). We compute the magnetic induction ampli-116

tude and phase delay for a spherically symmetric system with multiple conducting lay-117

ers. This complex response function is the same as employed by, e.g., Zimmer et al. (2000);118
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Khurana et al. (2002); Seufert et al. (2011), generalized to an arbitrary number of lay-119

ers and any degree n in the excitation field. A derivation for this solution was first de-120

scribed by Srivastava (1966). Our adapted version from Eckhardt (1963) is provided in121

the supplement, along with a description of the optimized numerical implementation used122

in this work. The analytical benchmark described in the supplement builds on recent work123

by Styczinski et al. (in progress) examining perturbations from spherical symmetry.124

2.1 Spectral Content of the Imposed Magnetic Field Variations125

Temporal variations in the magnetic field occur in the reference frames of Jupiter’s126

satellites. Figure 1 shows time series spectra over the range of periods showing the strongest127

components for each of Europa, Ganymede, and Callisto, arising from their orbital and128

synodic periods, as well as beats and harmonics of these periods. Table 1 lists the three129

main periods (in hr) and the corresponding component fields (in nT). For these anal-130

yses, we use body-centric �⌦ coordinates E�⌦, G�⌦, and C�⌦ (e.g. “E-phi-O”; Khu-131

rana et al., 2009). In these coordinate systems, x̂ is directed along the corotation direc-132

tion, approximately along the orbital velocity vector, ŷ is directed toward the jovian spin133

axis, approximately toward Jupiter’s center of mass, and ẑ is directed along the jovian134

spin axis in a right-handed sense. These coordinate systems are constantly rotating, and135

remain fixed to center of each satellite. Seufert et al. (2011) determined the time series136

spectra for the time-varying magnetic perturbations applied to each of the four Galilean137

moons based on the VIP4 model of Connerney et al. (1998) combined with the jovian138

current sheet model of Khurana (1997). In contrast, we use the JRM09 Jupiter field model139

accounting for Juno measurements (Connerney et al., 2018). Along with this, we use the140

current sheet model of Connerney et al. (1981) because the JRM09 model is derived us-141

ing this current sheet model. Together, the latter two match the Juno measurements well.142

We compute a time series of the field at the orbital positions of the moons using the NAIF143

SPICE kernels and ten years of data sampled at a ten-minute cadence. To determine the144

primary periods relevant to the di↵usive interaction with the satellites, we compute the145

Fourier transform of the entire data set.146

We note that Seufert et al. (2011) also examined the time series spectra of mag-147

netic perturbations from dynamic migration of the jovian magnetopause based on so-148

lar wind data from the Ulysses spacecraft, which we do not consider.149

The temporal variations in imposed magnetic field at each satellite depend on the
orbits of the satellites and the magnetic field of Jupiter. To find them, we compute Jupiter’s
magnetic field in a Jupiter-centered coordinate system from a spherical harmonic series
representation of the magnetic potential (Parkinson, 1983):

�(r, ✓,�, t) = R
X

n=1

✓
R

r

◆n+1 nX

m=0

Sn,m(✓,')e�i!t (1)

for Jupiter’s rotation rate ! and R the outer radius of the body. The internally gener-
ated magnetic field vector is the negative gradient of the scalar potential

Bint,Jup = �r� (2)

The external field including the current systems is

Bexternal = r⇥A(⇢0, z0)e�i!t (3)

where A(⇢0, z0) is described by the current sheet model of Connerney et al. (1981), ⇢0

and z0 are radial and axial coordinates in the magnetic equatorial cylindrical coordinate
system, and ! is again Jupiter’s rotation rate. The magnetic field applied to the Galilean
moons is found by taking the sum of these

Bo = Bint,Jup +Bexternal (4)
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Within the conducting portion of the satellites, the net magnetic field B must satisfy
the Helmholtz equation

r2
B = �k2B (5)

which is a di↵usion equation for B. The wavenumber k is a function of the material prop-
erties and the angular frequency of oscillation of B within the body (see Section S1):

k =
p
i!pµ0� (6)

All terms within B are proportional to an oscillation factor e�i!pt, where !p is the an-150

gular frequency of oscillation. Only the largest oscillation amplitudes induce significant151

di↵usive responses.152

The di↵usive response may be expressed in terms of the normalized excitation am-
plitude

Ae
n =

(n+ 1)

n

Bi

Be
(7)

which is a complex quantity that has the desirable property of ranging from 0 for a non-153

conducting body to (1+0i) for a perfect conductor. Bi and Be are magnetic potentials154

for the induced and excitation fields, respectively, outside the moon (see Section S1.1.2).155

The magnetic field Bo applied to the Galilean moons is close to uniform across the
body of each satellite, so it is customary to choose n = 1 in the excitation field. In this
case, the potential Be is equal to the amplitude of oscillation of the applied field for a
particular angular frequency !p and has units of nT. On the surface of the body, at the
poles, the di↵usive response field is directed opposite the applied field. It oscillates as

Bdif,p(t) = BeAe
1e

�i!pt (8)

and it has the form of a dipole (see Section S1.3). The measured magnetic field is then
the real part of the net field outside the moon

Bnet = Bo +Bdif (9)

which includes sums over all n, m, and p. The motionally induced fields discussed in Sec-156

tion 3 add another term to Equation 9. For our full mathematical derivation, see Sec-157

tion S1.158

Unique among the satellites in our solar system, Ganymede has an internally gen-159

erated dynamo field (Kivelson et al., 2002). In the case of this satellite, the analysis of160

the di↵usive field is no di↵erent because this intrinsic field does not vary with time in161

the frame of the body. As with the mean background field applied by Jupiter, the dy-162

namo field from Ganymede simply presents a static o↵set to magnetometer measurements163

near the body, and does not appear in the Fourier analysis. The magnitude of this net164

background field, around 800 nT at Ganymede’s surface, is about a factor of two larger165

than that experienced by Europa (Zimmer et al., 2000) and thus does not present sig-166

nificant additional challenges to measurement precision scaling.167

2.2 Parameter Space of the Di↵usive Induction Response168

A continuous parameter space of ocean thickness and conductivity has been explored169

previously for three-layer models consisting of a non-conducting mantle (and core), salty170

ocean, and non-conducting ice (Zimmer et al., 2000; Khurana et al., 2002) and for a five-171

layer model that adds an ionosphere and metallic core (Schilling, 2006). More recent work172

by Seufert et al. (2011) has further examined the influence of a metallic core and an iono-173

sphere. No prior work has required the self-consistency among the ocean temperature174

and density, composition, ice and ocean thickness, etc., that are the focus of this paper.175

Prior work exploring the parameter space of ocean thickness and conductivity is useful176
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Figure 1: Time series spectra (in hr) for the largest magnetic field oscillations (in nT)
experienced by the Galilean moons. Variations in orbital parameters over time intro-
duce magnetic fluctuations at multiple periods in addition to Jupiter’s synodic rotation
and the satellites’ orbits. The coordinate axes are detailed in Section 2.1. Peak values
for the main three periods for each moon are provided in Table 1. The input time series
is ten years long; the spectra are sampled with about 500,000 data points in uniform,
ten-minute increments.
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Period (hr)

Bx,y,z (nT) Bx,y,z (nT) Bx,y,z (nT)

Europa 5.62 11.23 85.20

10.03 15.03 1.22 75.55 209.78 15.24 3.17 10.65 11.97

Ganymede 5.27 10.53 171.57

1.76 2.64 1.78 16.64 82.61 2.42 0.14 1.21 0.38

Callisto 5.09 10.18 400.33

0.17 0.25 1.82 1.31 37.57 0.20 0.03 1.72 0.14

Table 1: Peak periods (in hr) and component field strengths (in nT) for the time series
spectra shown in Figure 1.

for assessing the general range of possible responses. We produce comparable plots here177

for their utility and for ease of comparison to prior work.178

Figures 2–4 show contours of the maximum induced magnetic field at the surface179

as a function of ocean thickness and mean ocean conductivity for each body. These fig-180

ures show the signals for the three strongest driving periods, which are described in Sec-181

tion 2.1 and shown in Figure 1. Phase delays for the Jupiter synodic frequencies for Eu-182

ropa and Callisto match those described by Zimmer et al. (2000). An ice thickness of183

20 km was set for Europa, consistent with previous calculations by Khurana et al. (2002)184

(we note that these authors did not specify what ice thickness was used). For both Ganymede185

and Callisto, 50 km ice shells were used. In each case, the fixed ice thickness means the186

seafloor depth varies to accommodate the range of Docean.187

The amplitudes for Europa’s orbital and synodic frequencies (85.23 hr and 11.23 hr)188

match those described by Khurana et al. (2002, 2009). However, these authors scaled189

the di↵usive induction response to an excitation amplitude of 14 nT and 250 nT for Eu-190

ropa’s orbital and synodic periods, respectively; in this work, each contour plot in Fig-191

ures 2–4 is scaled to the largest relevant peak in the frequency spectrum in Figure 1. When192

we instead apply a matching scaling along with a 20 km ice shell, we generate match-193

ing figures.194

By choosing a scaling that matches the applied excitation amplitudes, Figures 2–195

4 indicate the maximum magnetic field components that a magnetometer on the surface196

of each body would measure at key locations. For example, the largest variation at Ganymede’s197

synodic period is in its By component in G�⌦ coordinates, approximately along the di-198

rection toward Jupiter. If a lander at the sub- or anti-jovian point on Ganymede’s sur-199

face measures an induced field amplitude of 75 nT at that period, the matching ocean200

thickness Docean and mean conductivity �ocean must lie along the 75 nT contour. Ganymede’s201

orbital period also has its largest oscillation in By, so including the measured amplitude202

at that period too determines the values for both Docean and �ocean, at the crossover point203

between the two contours. The phase delay for each frequency o↵ers complementary in-204

formation.205

In contrast with the parameter exploration reproduced here and employed in pre-206

vious work, we allow ice thickness to vary. We consider how the ocean conductivity varies207

in accordance with the ice thickness: the melting temperature at the base sets the adi-208

abatic temperature of the ocean, and is determined by the ocean’s salinity and the pres-209

sure at the base of the ice (Vance et al., 2018). Also in contrast with the parameter space210

exploration depicted in Figure 2–4, we examine a smaller space of �ocean and Docean con-211
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sistent with previous models of Europa’s ocean composition, as described in the next sec-212

tion and summarized in Tables 2–4.213

In this work, we do not consider the e↵ect on the di↵usive induction signal from214

a possible highly conductive metallic core or moderately conductive, hydrated rocky man-215

tle in any of the satellites. One past study of Europa by Schilling (2006) determined that216

for even modest ocean conductivities (& 0.06 S/m), the presence of a core would be all217

but undetectable. A mantle would similarly be easily screened by a moderately conduc-218

tive ocean. Seufert et al. (2011), however, found that for some combinations of Docean219

and �ocean, a metallic core would change the amplitude of the di↵usive response by sev-220

eral percent and decrease the phase delay by 10� or more. A conductive core will have221

the most dramatic e↵ect for the thinnest and least conductive ocean layers, at the bottom-222

left of Figures 2–4. For an ocean that fails to entirely screen a highly conductive core,223

new contours with a smaller phase delay appear in this corner of the plot. Modeling the224

wide parameter space of possible interior configurations that also include a core or man-225

tle is beyond the scope of this work.226

We also add to the rich set of previous analyses the exploration of a third, shorter-227

period signal of intermediate strength to the orbital and synodic signals. We do not con-228

sider the longer-period solar oscillation studied by Seufert et al. (2011).229

Figure 2: Europa: Contours of the maximum induced field By components (in nT) and
phase delays (in �) at the strongest inducing periods—orbital (85.20 hr; dotted), Jupiter
synodic (11.23 hr; solid), and 2nd synodic harmonic (5.62 hr; dot–dash)—shown in Fig-
ure 1. The assumed, fixed ice thickness of 20 km and variable seafloor depth yield nor-
malized amplitudes consistent with the previous calculations by Khurana et al. (2002),
and phase delays for the synodic frequency matching those described by Zimmer et al.
(2000). Unlike in previous work, we scale the amplitudes to the maximum component of
the magnetic oscillation the satellite actually experiences at each frequency, which are the
largest peaks in Figure 1.
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Figure 3: Ganymede: Contours of the maximum induced field By components (in nT)
and phase delays (in �) at the strongest inducing periods—orbital (171.57 hr; dotted),
Jupiter synodic (10.53 hr; solid), and 2nd synodic harmonic (5.27 hr; dot–dash)—shown
in Figure 1. The amplitudes and phases for the synodic and orbital periods are com-
parable to those described by Seufert et al. (2011) for greater ocean conductivities and
thicknesses, but these authors model a highly conducting core, which we do not consider.
A 50 km ice shell is assumed at the surface, implying that the seafloor depth varies to
accommodate the range of Docean.
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Figure 4: Callisto: Contours of the maximum induced field By components (in nT) and
phase delays (in �) at the strongest inducing periods—orbital (400.33 hr; dotted), Jupiter
synodic (10.18 hr; solid), and 2nd synodic harmonic (5.09 hr; dot–dash)—shown in Fig-
ure 1. Additional harmonic short-period components will be advantageous for investigat-
ing Callisto’s interior structure. The normalized amplitudes and phases for the synodic
frequencies are consistent with those described by Zimmer et al. (2000). The amplitudes
and phases for the synodic and orbital periods are similar to those described by Seufert et
al. (2011), but these authors model a moderately conducting silicate interior, which we do
not consider. A 50 km ice shell is assumed at the surface, implying that the seafloor depth
varies to accommodate the range of Docean.
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2.3 Depth-Dependent Electrical Conductivity in Adiabatic Oceans230

Fluid temperature, pressure, and salt content determine the electrical conductiv-231

ity of an aqueous solution, and thus dictate the magnetic induction responses of the Galilean232

oceans. With su�cient prior knowledge of the ice thickness and the ocean’s composition—233

for example, from geological and compositional measurements by the planned Europa234

Clipper mission (Bu�ngton et al., 2017)—magnetic induction studies can provide infor-235

mation on the amounts and compositions of the salts that link to global thermal and geo-236

chemical processes.237

Depth-dependence in the ocean’s electrical conductivity can arise from stratifica-238

tion in the ocean due to melting or freezing at the ice–ocean interface, and dissolution239

and precipitation within the ocean or at the water–rock interface (Vance & Brown, 2005;240

Travis et al., 2012). Even for oceans with uniform salinity, as is typically assumed, elec-241

trical conductivity will increase with depth along the ocean’s convective adiabatic pro-242

file because the greater temperature and pressure increase the electrical conductivity. Fig-243

ure 5 depicts this variation for Europa, Ganymede, and Callisto, based on the forward244

models of Vance et al. (2018) that use available thermodynamic and geophysical data245

to explore the influences of the ocean, rock layer, and any metallic core on the radial struc-246

tures of known icy ocean worlds. As noted by Hand and Chyba (2007), the adiabatic gra-247

dient for Europa is rather small, albeit non-zero. A more significant influence on the ocean’s248

temperature is the influence of pressure on the melting temperature of the ice, which in249

turn depends on the ocean’s salinity. For Ganymede and Callisto, the adiabatic gradi-250

ents are large, with temperatures at the base of the thickest Ganymede ocean reaching251

290 K.252

As detailed in Section 2.2, we examine the magnetic induction signals from the small253

set of self-consistent adiabatic ocean models, taken primarily from those described in de-254

tail by Vance et al. (2018). Minor changes to the PlanetProfile software used to gener-255

ate the models (Melwani Daswani et al., under review, S3) do not significantly change256

the ocean thicknesses and electrical conductivities reported in the previous work. We do257

not consider significant induction from rocky or metallic layers. For each ocean, we con-258

sider a nominal 10 wt% MgSO4 salinity, as investigated in previous work. The published259

equation of state and electrical conductivity data are adequate for the pressures in the260

largest moon, Ganymede, up to 1.6 GPa, with the caveat that both have been extrap-261

olated in pressure above about 0.7 GPa, and the laboratory data for electrical conduc-262

tivity have been extrapolated below 298 K and above 1 wt% (Vance et al., 2018). The263

pressure conditions in Europa’s ocean are low enough (< 200 MPa) to be in the range264

covered by the TEOS-10 package (McDougall & Barker, 2011), which provides plausi-265

ble values of conductivity for concentrations of seawater equivalent to that of Earth’s ocean266

(3.5 wt% NaCl) or less. For this work, we created additional lower-conductivity mod-267

els for the same ice thickness, but with salinities reduced by a factor of 10 from the nom-268

inal cases.269

On Europa, the flux of surface-generated oxygen to the ocean may have created270

oxidizing (acidic) conditions (Hand & Chyba, 2007; Pasek & Greenberg, 2012; Vance et271

al., 2016), permitting the presence of dissolved MgSO4 in addition to NaCl (Zolotov, 2008;272

Zolotov & Kargel, 2009). The respective radial models of electrical conductivity for oceans273

containing seawater and MgSO4 are consistent with compositions linked to the thermal274

evolution scenarios cited above (Zolotov & Kargel, 2009). In one scenario, Europa’s ocean275

remains relatively reducing and high pH, with a composition dominated by NaCl. In the276

other, the flux into the ocean of oxidants generated by radiolysis of Europa’s ice causes277

the ocean to become more oxidized and low pH, containing quantities of MgSO4 exceed-278

ing the amount of NaCl. Thus the ocean’s salinity and composition that might be con-279

strained by magnetic induction measurements relate to the thermal history of Europa.280

The salinity measurement is also a key indicator of the types of life that might be able281
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Figure 5: Adiabatic ocean temperature (left) and electrical conductivity (right). Con-
vecting oceans with MgSO4 (dashed lines) are warmer. Standard seawater (mostly NaCl;
dot–dashed lines) creates colder oceans and lower electrical conductivities. Thicker ice
(blue), corresponds to colder adiabatic profiles in the underlying oceans, which also lowers
electrical conductivity. Filled circles show the inferred depth to the upper boundary of
the silicate layer for the saline and pure water oceans, respectively. Conductivities in the
liquid regions are several orders of magnitude larger than in the ice and rock, and are set
to zero for this study. Adapted from Vance et al. (2018).

to live in the ocean because the chemical a�nity—or energy in excess of equilibrium—282

for di↵erent metabolic reactions depends on the ocean’s pH (Glein et al., 2019).283

Radial conductivity profiles for Europa (Figure 5; top) illustrate the coupling to284

temperature and composition. We consider ice thicknesses of 5 and 30 km (magenta and285

blue curves, respectively) as representative extremes. Because we consider only the mean286

inferred value of the gravitational moment of inertia (C/MR2 = 0.346 ± 0.005 Schu-287

bert et al., 2004a), the hydrosphere thickness is fixed at about 125 km. Seawater (solid288

and dot–dashed lines), though less concentrated than the modeled composition of MgSO4289

(dashed lines), has a stronger melting point suppression, leading to an overall colder ocean290

for the same thickness of ice. The lower temperature for seawater combines with the dif-291

ferent electrical conductivity for the di↵erent dissolved ions to create distinct profiles unique292

to ocean composition and ice thickness (upper right). As a result, our conductivity val-293

ues di↵er from the summary predictions in Figure 1 of Hand and Chyba (2007) for T =294

0 �C and 1 atm. This discrepancy from previously published values of electrical conduc-295

tivity is further evident in the larger moons Ganymede and Callisto, where ocean tem-296

peratures vary farther from the freezing point at standard temperature and pressure.297
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Although we also fix the moments of inertia for Ganymede and Callisto to their298

mean published values, the depths of the ocean vary due to the presence of high pres-299

sure ices (as further discussed in Section S3). Because the melting of high pressure ices300

also depends on pressure (e.g., Hogenboom et al., 1995) the presence of ices above and301

below the ocean increases the sensitivity of the ocean’s conductance to the composition302

and abundance of dissolved salts.303

Larger Ganymede (Figure 5; middle) has distinct conductivity profiles for both ice304

thickness and ocean composition. Although electrical conductivity generally increases305

with depth, it begins to decrease at the greatest depths for the warm Ganymede ocean306

(right-most curve). This inflection occurs because the ocean achieves GPa+ pressures,307

at which the packing of water molecules begins to inhibit the charge exchange of the dis-308

solved ions (Schmidt & Manning, 2017).309

Dense brines may also reside at the base of the high-pressure ices on Ganymede,310

and even between them (Journaux et al., 2013, 2017; Vance et al., 2014, 2018). Although311

more detailed modeling of the coupled geochemical and geodynamic regimes is needed,312

this scenario seems consistent with recent simulations of two-phase convection in high-313

pressure ices (Choblet et al., 2017; Kalousová et al., 2018). These simulations show that314

even without the e↵ects of dissolved salts, meltwater should form at the water–rock in-315

terface as part of the geodynamic evolution of the ice. If such a stable fluid layer exists316

under the high-pressure ice within Ganymede, it will create an induction response at longer317

periods, as discussed below.318

For Callisto, there is a small range of ice I thicknesses and ocean salinities for which319

oceans may be present. Salty oceans considered by Vance et al. (2018) have thicknesses320

of 20 and 132 km. For the thinner ocean, a 96 km layer of high-pressure ice underlies321

the ocean. The depicted state is likely transient, as ice III is buoyant in the modeled 10 wt%322

MgSO4 composition, and an upward snow e↵ect should hasten the transfer of heat from323

the interior. Simulating a subsequent stage with ice III above the ocean awaits improved324

thermodynamic data that couples recently improved ice thermodynamics (Journaux et325

al., 2020) to the thermodynamics of aqueous phases (Bollengier et al., 2019), and is left326

for future work. Because of the thicker ice considered for Callisto and the consequen-327

tially lower temperature at the upper ice-ocean interface, the electrical conductivities in328

all Callisto models are lower than for the corresponding concentrations in Ganymede.329

In terms of the magnetic induction response, as shown in Section2.6, these lower con-330

ductivity values compound the lower overall conductance resulting from the thinner ocean,331

and also the smaller driving magnetic oscillations at more distant Callisto.332

2.4 Accounting for the Ionospheres333

For each of the above models, we add an overlying ionospheric layer based on re-334

cent analyses by Hartkorn and Saur (2017). We adopt their simplified ionospheric mod-335

els, while also noting that the detailed radial and asymmetric structures of the ionospheres336

will a↵ect the complex induction response and should be considered in future work. For337

each satellite, we consider a 100-km-thick layer extending from the surface, with Ped-338

ersen conductances of {30,2,800} S for Europa, Ganymede, and Callisto, respectively.339

For Callisto, we also consider a higher value of 6850 S corresponding to a Cowling chan-340

nel enhancement near the equator arising from anisotropy in the current sheet, consis-341

tent with Hartkorn and Saur (2017). We use this value as an extreme case to inform the342

analysis of measurements near the equator. In reality, the non-spherical character of the343

ionosphere will influence the induction response from the one computed here, perhaps344

up to the order of nT (Styczinski & Harnett, 2021). The enhancement of the Cowling345

e↵ect is expected to create an e↵ective conductance only twice that of the Pedersen value346

at higher latitudes. For clarity in presenting the results, the e↵ects of the ionosphere are347

included only in the tabulated results (Tables 2–4). Amplitudes are normalized to the348
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moons’ surface radii R: Asurf = (Rtop/R)3A, where Rtop = R + 100km, so they can349

be larger than unity.350

2.5 Amplitude and Phase Delay of the Di↵usive Response351

Figure 6 shows the normalized surface induction responses for Europa, Ganymede,352

and Callisto based on the adiabatic ocean electrical conductivity profiles shown in Fig-353

ure 5. Some general characteristics of the induction response may be discerned. Warmer354

and thus thicker oceans (magenta curves for MgSO4 compositions) have larger ampli-355

tude responses, corresponding to overall higher values of the conductance. For longer pe-356

riods, the influence of salinity on the amplitude responses dominate, while the thickness357

of the ocean dominates at shorter periods. Amplitudes approach zero around periods of358

104 hr. Less saline oceans have more significant phase delays at longer periods.359

For Europa, the induction characteristics for modeled oxidized (10 wt% MgSO4)360

and reduced (seawater) oceans are nearly identical in their amplitude responses. How-361

ever, the two ocean models show a separation in phase delay of a few degrees at the or-362

bital period of 85.20 hr. The combination of these features that constitutes the complex363

induction waveform will be key to separating them, as shown in Section 2.6.364

Regional enhancements in the ocean conductivity can have a significant induction365

response. For Ganymede, we simulate a second ocean layer at the water–rock interface366

at a depth of 900 km. Lying under 530 km of ice VI (Vance et al., 2018), this layer is367

modeled as a 30-km-thick high-conductivity region (20 S/m) corresponding to a nearly368

saturated MgSO4 solution, consistent with (Hogenboom et al., 1995) and (Calvert et al.,369

1958). The influence of such a layer (dotted lines in Figure 6) is a ⇠1% decrease in am-370

plitude at the orbital period of 171.57 hr. The amplitude decrease results from mutual371

induction between the conducting layers at this period.372

For Callisto, the present simulations illustrate the influence of the thicker and deeper373

oceans in terms of a higher amplitude response at lower frequencies and a phase delay374

curve also shifted in the direction of lower frequencies.375

2.6 Distinguishing Di↵usive Responses for Di↵erent Model Oceans376

We examine the possible separability of di↵erent model oceans by plotting the real
and imaginary components of the induced waveforms for the peak values of Jupiter’s in-
ducing field vectors. Figure 7 shows the real and imaginary parts of the complex di↵u-
sive induction response. The normalized complex response Ae

n is multiplied by the strength
of the excitation field By at the driving periods shown in Figure 1, in accordance with
Equation 8. Ae

1 is equal to Ae�i�, with the normalized amplitude A and phase delay �
equal to those used in past studies such as Zimmer et al. (2000, see Section S1). Previ-
ous authors (including Zimmer et al. (2000)) have defined the complex response as Aei�,
but they obtain a result equal to the complex conjugate of Ae

1 because they rely on a
derivation in Parkinson (1983) that contains an error (see Section S1). Relating Ae

1 to
A and � as we do enables us to use the same representation as past authors in compar-
ing the induced magnetic field to that which would result from a perfectly conducting
ocean Bdif,1 at an earlier time t� �/!:

Bdif(t) = ABdif,1(t� �/!) (10)

If we were to instead define Ae
1 as equal to Aei�conj , �90�  �conj < 0� and Equation 10

would then become
Bdif(t) = ABdif,1(t+ �conj/!) (11)

Both definitions represent the same physical result.377

The quantities By|{Re,Im}(Ae
1)|, equivalent to ByA cos� and ByA sin�, describe378

the strengths of the responses that are in phase with the excitation field—an instanta-379
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Figure 6: Normalized magnetic induction amplitudes (A = |Ae
1|; left) and phase delays

(� = � arg(Ae
1); right) for Europa, Ganymede, and Callisto at periods including the in-

duction peaks noted in Figure 1 (vertical red lines). As in Figure 5, dashed lines are for
oceans containing MgSO4. Solid and dot–dashed lines are for oceans containing seawater.
Thicker lines have higher concentrations of {10,3.5} wt%, respectively, and thinner lines
correspond to oceans diluted by a factor of 10. For the MgSO4-bearing oceans, thinner
ice corresponding to warmer oceans is denoted with magenta and thicker ice is dark blue.
The trends with ice thickness/ocean temperature are the same for seawater oceans: larger
amplitude and lower phase delay for thinner ice/warmer oceans. For Ganymede, the dot-
ted line indicates the e↵ect of introducing a 30-km-thick, 20 S/m layer at the seafloor for
the thick-ice and high-salinity ocean, which is the thicker blue dashed line.

neous response that opposes the external field—and the component that is exactly 90�380

out of phase, respectively. Thus, the two components together describe the full range of381

the induction response. Tables 2–4 include the corresponding data; absolute values are382

implied on the out-of-phase components, consistent with considering spectral informa-383

tion and required by the choice of positive phase delay as in Equation 10. These tables384

also provide the computed values that include the modeled ionospheres, and the values385

computed for the equivalent oceans with the conductivity set to the mean of the adia-386

bat and to the value at the top of the ocean. For convenience, Figures S6–S7 and Ta-387

bles S1–S6 provide the corresponding data for Bx and Bz; these corresponding values388

may also be obtained by substituting the field strengths in Table 1 in the data and ta-389

bles for By.390

2.6.1 Europa391

The di↵erent phase delays and amplitudes at the orbital and synodic harmonic pe-392

riods described in Section 2.5 create di↵erences in the induction responses for di↵erent393

models of as much as 25 nT, comparing the in-phase synodic component of the more saline394

and thick ocean with the less-saline, thin ocean. The imaginary component of the in-395

duced field (ByA sin�) reveals the influence of the stronger phase delay for the lower-396

salinity oceans (Figure 7, empty symbols). The out-of-phase synodic signal in particu-397

lar separates the MgSO4 and seawater models of constant ice thickness by 6 nT for the398

lower-salinity models. For the 5 and 30 km ice thickness models, for fixed ocean com-399
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position, the separation of the stronger in-phase synodic components is 9 and 13 nT for400

the nominal and lower-salinity models. The synodic harmonic components di↵er with401

salinity by as much as 1.5 nT in the out-of-phase response, and by at most 0.7 nT with402

ice thickness in the in-phase component.403

The modeled Pedersen ionosphere has a maximum induction response of about 0.7 nT404

in the out-of-phase synodic component Table 2. This is significant relative to the numer-405

ical precision of the calculation of about 0.001% (Figure S2). Including the ionosphere406

with the modeled adiabatic ocean conductivity profiles changes By{Re,Im}(Ae
n) less than407

0.05 nT. Distinguishing such signal di↵erences in spacecraft measurements of the mag-408

netic field requires a very careful accounting of the fields generated by plasma, which is409

beyond the scope of this work.410

Comparing the ocean with uniform conductivity set to the mean of the adiabatic411

profile � with the adiabatic conductivity profile, the di↵erences in the amplitude of the412

response field at the surface are as much as 0.7 nT (0.4%) and 0.3 nT (0.7%) for the syn-413

odic and orbital periods. For the uniform ocean using the conductivity at the ice–ocean414

interface �top, the orbital-period signal (85.20 hr) di↵ers by up to 20% for the warmer415

and lower-salinity oceans, or about 0.5 nT.416

2.6.2 Ganymede417

The synodic component separates the modeled ice thicknesses of 25 and 90 km (Docean ⇠418

450 and 280 km) by about 7 nT in the in-phase By component, and for the nominal- and419

low-salinity models (10 and 1 wt% MgSO4) by about 4 nT in both the in- the out-of-420

phase components. The orbital and synodic harmonic components show a similar pat-421

tern, with separations of about 0.2 nT and 0.1 nT.422

Ganymede’s ionospheric conductivity is smaller than Europa’s. The resulting in-423

duction response is a maximum of about 0.03 nT, which adds small contributions to the424

oceanic fields that are comparable to the numerical resolution of the calculation.425

The uniformly conducting ocean with conductivity set to the mean of the adiabatic426

profile � di↵ers from the adiabatic profile in the amplitude of the response field at the427

surface by up to 1.2 nT (1%) and 0.03 nT (2%) at the synodic and orbital periods (Ta-428

ble 3 and Figure S4). The uniform ocean using the conductivity at the outermost ice–429

ocean interface �top di↵ers from the adiabatic case by up to 0.18 nT (2%) for the orbital430

period.431

2.6.3 Callisto432

The synodic component shows di↵erent o↵sets for the thick/thin ice/ocean (130/20 km)433

and thinner ice/thicker ocean (100/130 km) for the two examined MgSO4 compositions434

({1,10} wt%). For the thinner ice (downward arrows), the in-phase synodic components435

di↵er by 1.6 nT, while the out-of-phase components di↵er by nearly 5 nT. Models with436

thicker ice (upward arrows) have larger phase delays as well as larger separations in their437

amplitudes at the synodic period, creating a stronger in-phase separation of 21.4 nT, and438

a weaker out-of-phase separation of 4.1 nT. The synodic component has a similar con-439

figuration for the amplitude and phase responses, being close in period to the synodic440

period, and thus shows a similar pattern of separations as the synodic signal, albeit with441

smaller magnitudes on the order of 0.1 nT. The orbital component has stronger sepa-442

ration in both amplitude and phase for the thinner ice models, leading to a proportion-443

ally larger di↵erences in the induced field strengths, albeit for small overall magnitudes444

approaching zero except for the thin ice/thick ocean model that has a high salinity.445

Both the Pedersen and Cowling ionospheres have strong induced field strengths and446

a↵ect the induction in the presence of and ocean. For the thick-ice/thin-ocean case with447
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low salinity the presence of the modeled ionospheres create signals of comparable or much448

greater magnitude than the signal of the ocean by itself. In the Cowling case the phase449

responses become reversed, such that the stronger field occurs for the in-phase compo-450

nent. Comparing these di↵erent models, the influence of the oceans creates distinct in-451

and out-of-phase induction responses, such that with su�cient knowledge of the prop-452

erties of the ionosphere it might be possible to infer the presence of an ocean.453

The uniformly conducting ocean with conductivity set to the mean of the adiabatic454

profile � di↵ers from the adiabatic profile in the amplitude of the response field at the455

surface at the orbital period (400.33 hr) by . 2 pT. The induction responses of the �top456

ocean models di↵er by up to 8 pT (10-20%) for the orbital period.457

3 Motional Induction Due to Ocean Convection458

We next consider motional induction driven by fluid flows within the oceans, which459

further complicates the interpretation of magnetic measurements. This e↵ect is treated460

independently of the di↵usive response considered above as a first approximation. Fu-461

ture work should consider the coupled induction response. Previous work by Tyler (2011)462

considered the possibility of magnetic remote sensing to detect resonant ocean tides on463

Europa in the limits of shallow water equations and thin-shell electrodynamics. Here,464

we focus instead on global fluid motions that may be driven by thermal convection within465

the oceans of Europa, Ganymede, and Callisto in the low-magnetic-Reynolds-number ap-466

proximation in order to estimate upper bounds for motionally induced magnetic field am-467

plitudes.468

Thermal convection in icy satellite oceans is expected in order to e�ciently trans-469

port heat from the deeper interior that arises primarily from radiogenic and tidal heat-470

ing in the mantle (e.g., Soderlund et al., 2020). Using a combination of global convec-471

tion models in combination with rotating convection theory, Soderlund et al. (2014) and472

Soderlund (2019) predicted the ocean of Europa to have large-scale flows organized into473

three zonal jets with retrograde (westward) flow at low latitudes and prograde (eastward)474

flow at high latitudes (Figure 8a). Upwelling at the equator and downwelling at mid to475

high latitudes e↵ectively forms an overturning Hadley-like cell in each hemisphere (Fig-476

ure 8b-c). Non-axisymmetric convective motions are quasi-three-dimensional, due to ro-477

tational and inertial timescales of the flow being comparable. Predictions for Ganymede478

are significantly more uncertain, but a similar configuration may be expected (Soderlund,479

2019). Convection in a possible Callisto ocean may be in the double-di↵usive regime (Vance480

& Brown, 2005; Vance & Goodman, 2009) if the ocean’s salt concentration is nearly sat-481

urated (Vance et al., 2018). However, considering thermal convection as an upper bound,482

application of the scaling arguments in Soderlund (2019) to Callisto suggest similar ocean483

flows here as well. The nominal ocean model shown in Figure 8 will, therefore, be as-484

sumed for all three ocean worlds considered here, noting that the use of non-dimensional485

units permits di↵erent physical properties to be assumed for each satellite.486

Because the modeled velocity field is given in units of the dimensionless Rossby num-487

ber Ro = U/⌦D (the ratio of rotational to inertial timescales), the results can be scaled488

to the di↵erent satellites with assumptions about ocean thickness D and rotation rate489

⌦. A range of di↵erent ocean compositions, and therefore ocean thicknesses, are consid-490

ered for velocity estimates that are given in Table 5. Intermediate ocean thicknesses across491

the model ranges are assumed in Figure 8. Flows are fastest for Ganymede and Europa,492

where the zonal jets can reach m/s speeds, the mean latitudinal flows have peak speeds493

of tens of cm/s, and the mean radial flows are ⇠ 10 cm/s. At Callisto, flow speeds tend494

to be roughly an order of magnitude weaker.495

Characteristic flow speeds U , in combination with the physical ocean properties
� and D, allow the ratio of magnetic induction to magnetic di↵usion to be estimated via
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Figure 7: Real and imaginary components of the di↵usive induction response to the
changing By component of Jupiter’s magnetic field at the main driving periods (Figure 1)
for {Europa,Ganymede,Callisto}. The real component (on the x-axis) is in phase with
the excitation field, and the imaginary component (on the y-axis) is 90� out of phase,
as detailed in Section 2.6. Subpanels on the left side show the lower-magnitude signals
of panels on the right. Filled symbols are for the higher concentrations. Upward and
downward triangles are for thicker ice ({30,95,130} km) and thinner ice ({5,26,100} km),
respectively. Symbol sizes scale with the period of the oscillation, denoting the orbital
(largest), the synodic (intermediate), and the synodic harmonic (smallest). Circles are
added to the orbital periods to guide the eye.
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Figure 8: Mean flow fields in our nominal global ocean model from Soderlund (2019),
averaged over 18 planetary rotations and all longitudes. (a) Geometry of the 3D ocean
model. (b) Zonal (east–west) velocity field where red denotes prograde flows and blue
denotes retrograde flows. (c) Meridional (latitudinal) velocity field where red denotes
away from the north pole and blue denotes toward the north pole. (d) Radial velocity
field where red denotes upwelling flows and blue denotes downwelling flows. The model
has the following dimensionless input parameters: shell geometry � = ri/ro = 0.9, Prandtl
number Pr = ⌫/ = 1, Ekman number E = ⌫/⌦D2 = 3.0 ⇥ 10�4, and Rayleigh number
Ra = ↵g�TD3/⌫, where ri and ro are the inner and outer radii of the ocean, D = ro�ri
is ocean thickness, ⌦ is rotation rate, ⌫ is kinematic viscosity,  is thermal di↵usivity, ↵ is
thermal expansivity, g is gravitational acceleration, and �T = Ti � To is the superadia-
batic temperature contrast. The boundaries are impenetrable, stress-free, and isothermal.

the magnetic Reynolds number: Rm = µ0�UD. Using the values of these parameters
from Table 5, Rm . 1 such that the low-magnetic-Reynolds approximation may be ap-
plied (Davidson, 2016). Here, the magnetic field b associated with induced current J ⇠
�u⇥B (Ohm’s Law) due to velocity field u is small compared to the imposed magnetic
field Bo. Using Ampere’s Law, the mean motionally induced field strength in the ocean
can be estimated as

b ⇠ µ0�DUBo ⇠ RmBo. (12)

The resulting induced magnetic fields are thus stronger for larger electrical conductiv-496

ities, ocean thicknesses, flow velocities, and satellites closer to the host planet since Bo497

decreases with distance as Bo = {420, 120, 35} nT for {Europa,Ganymede,Callisto} (Showman498

& Malhotra, 1999). Ganymede is a special case because of its intrinsic magnetic field with499

surface field strength of 720 nT at the equator and approximately twice that near the500

poles (Kivelson et al., 2002); thus, we assume here Bo ⇡ 1000 nT as a mean value. Note501

that a more rigorous derivation of this relationship is given in Section S2, which demon-502

strates that these b estimates should be taken as loose upper bounds.503

Table 5 summarizes the assumed ocean flows at Europa, Ganymede, and Callisto504

as well as estimates of their induced magnetic field strengths at the top of the ocean. Field505

strengths at the surface will be a factor of (rocean/rsatellite)(l+2) times weaker, where l506

is spherical harmonic degree, so the surface fields will be weaker by . {6%,10%,15%}507

at {Europa,Ganymede,Callisto} assuming a dipole l = 1 configuration for the most op-508

timistic amplitude. Our analysis focuses on the radial br component because boundary-509
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confined surface currents can cause discontinuities in the tangential induced magnetic510

components. We also assume flow speeds typical of the steady overturning cells due to511

their temporal persistence and large spatial scale, which we hypothesize will produce the512

strongest induced magnetic signatures and would be more easily discernable by space-513

craft. We find that br . 20 nT for Europa, br . 300 nT for Ganymede, and br . 1 nT514

for Callisto. Implications of these field estimates on magnetic measurements and future515

work needed for their refinement are discussed in the next section.516

4 Discussion and Conclusions517

The inverse problem of reconstructing the full induction response from spacecraft518

data is beyond the scope of this work, and is discussed in detail elsewhere (e.g., Khu-519

rana et al., 2009, and Cochrane et al. in progress). We focus here on the significance520

and separability of the di↵usive induction responses for the physically consistent mod-521

els described above. We examine the likelihood of being able to detect and separate the522

signals of motional induction from the di↵usive signals. We also discuss the merits of us-523

ing physically consistent models as inputs to the inverse problem, the future experimen-524

tal and modeling work that is needed for material properties and motional induction,525

and the implications for future missions.526

4.1 Significance and Separability of the Di↵usive and Motional Signals527

The representative, physically consistent structures of Jupiter’s ocean moons that528

we model have distinct magnetic induction signals when the phase delays are considered.529

The waveform responses at the three characteristic periods identified for each moon (Fig-530

ure 7; Tables 2–4) illustrate the possibility for inferring key properties of the moons, pos-531

sibly by planning missions (Section 4.3). This study demonstrates the existence of mag-532

netic induction responses tracing to the unique melting curves of di↵erent ocean com-533

positions, and thus to physical features arising from their coupled thermal and chem-534

ical evolution. Lower salinity oceans have larger induced responses that are out of phase535

with Jupiter’s rotating field.536

For Europa, models consistent with reducing/oxidizing (MgSO4-/NaCl-dominated)537

oceans have distinct induction features at all three periods considered here. We find that538

a motionally induced field of br . 20 nT for Europa, or up to 5% of the ambient jo-539

vian field. For comparison, the field strength induced by tidal motions (Rossby–Haurwitz540

response to obliquity tidal forcing) is ⇠ 1 nT (Tyler, 2011) and at Jupiter’s synodic pe-541

riod of 11.23 hr is .200 nT (Figure 7; Table 2). Schilling et al. (2004) found an upper542

limit for an intrinsic magnetic field at Europa to be 25 nT at the surface, implying that543

an observable signal from motional flows may have gone unnoticed there. A detailed anal-544

ysis is required to better characterize the potential response and its implications for de-545

termining ocean composition, salinity, and convective flows.546

For Ganymede, the tabulated results (Table 3) show that a plausible liquid layer547

at the rock interface beneath the high pressure ice would create an in-phase signal of about 0.01 nT548

at the orbital period. The ionosphere should not impede sensing the induction response549

of the ocean. Here, br . 300 nT, which approaches half of the equatorial surface strength550

of the satellite’s intrinsic field for the thickest, saltiest ocean considered; magnetic fields551

induced at Jupiter’s synodic period of 10.53 hr are .80 nT (Figure 7; Table 3). As a re-552

sult, these motionally induced magnetic fields warrant further study as they may allow553

ocean flows to be inferred, may bias electrical conductivity inversions, and/or may com-554

plicate extraction of Ganymede’s core dynamo magnetic field component.555

For Callisto, strong induction responses (> 10 nT) characteristic of the ocean’s556

conductivity and thickness might exist at the synodic period of Jupiter’s rotation, with557

smaller signals (> nT). However, the modeled Cowling ionosphere without any ocean558
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creates a strong induction response that is not easily distinguished from an oceanic sig-559

nal. Motional inductions signals of br . 1 nT are less significant relative to the peak560

strength (. 30 nT) of the field induced at Jupiter’s synodic period of 10.18 hr (Figure 7;561

Table 4). Thus, as demonstrated and further discussed by Hartkorn and Saur (2017),562

magnetic induction measured by the Galileo spacecraft (Kivelson et al., 1999) might be563

explained as resulting from the response of Callisto’s ionosphere and not an ocean.564

Structural models of ocean worlds (e.g., Schubert et al., 2004b) often assume a uni-565

form ocean temperature determined by the melting temperature of the ice–ocean inter-566

face. Using this temperature as the basis for the ocean’s electrical conductivity leads to567

large di↵erences from the more physically consistent, adiabatic case. The greater mis-568

match of conductivities of the lower part of the ocean causes large di↵erences in ampli-569

tude and phase at longer periods (i.e. for larger skin depths).570

Prior analyses of magnetic induction in Jupiter’s ocean moons have all assumed571

a uniform conductivity of the oceans (Kivelson et al., 2000, 2002; Khurana et al., 2002;572

Schilling et al., 2007; Seufert et al., 2011). For all three moons, we compared the di↵u-573

sive response for a uniformly conducting ocean with conductivity set to a reference value574

from the adiabatic conductivity profile. We find that the di↵usive induction responses575

of the oceans with uniform conductivity equal to the mean of the adiabatic profile are,576

for many interior configurations, a reasonable approximation to the induction response577

for a more realistic electrical conductivity following the adiabatic profile. The response578

amplitudes are most distinct between the adiabatic and mean-conductivity oceans for579

the thin-ice, lower-salinity configurations.580

For the mean-conductivity oceans (�), the in-phase response amplitudes are all larger581

than for the corresponding adiabatic profiles and the out-of-phase amplitudes mostly de-582

crease slightly (see Tables 2–4).583

For Europa, the in-phase response amplitudes range from about 0.22% to 0.46% greater584

for the synodic period and from 0.28% to 1.02% greater for the orbital period; the585

out-of-phase responses range from 2.87% less to 0.03% greater for the synodic pe-586

riod and from 0.10% less to 0.63% greater for the orbital period. Larger di↵erences587

are observed for thinner-ice, warmer oceans in all cases.588

For Ganymede, the in-phase response amplitudes range from about 0.38% to 1.23%589

greater for the synodic period and from 1.01% to 2.61% greater for the orbital pe-590

riod; the out-of-phase responses range from 9.78% to 2.65% less for the synodic591

period and from 3.07% less to 1.41% greater for the orbital period. These excesses/deficits592

in the synodic/orbital component di↵erences arise because the mean conductiv-593

ity case increases/reduces the conductance contributed by the shallower/deeper594

parts of the ocean (Figure 5) associated with smaller/larger skin depths of the dif-595

fusive response.596

For Callisto, the in-phase response amplitudes range from 0.00% to 0.53% greater for597

the synodic period and from 0.00% to 1.45% greater for the orbital period; the out-598

of-phase responses range from 1.74% less to 0.03% greater for the synodic period599

and from 0.00% to 0.96% greater for the orbital period. For the thicker oceans,600

where conductivity changes with depth, the di↵erences are similar to those for Ganymede.601

We also considered the di↵usive response from uniformly conducting oceans with602

a conductivity equal to that at the ice–ocean interface (�top) in comparison to the adi-603

abatic profiles (see Tables 2–4). Unlike the mean-conductivity oceans, there is not a con-604

sistent pattern of larger or smaller responses when compared to the adiabatic case.605

For Europa, the in-phase response amplitudes range from about 1.49% less to 0.10%606

greater for the synodic period and from 16.33% to 0.34% less for the orbital pe-607

riod; the out-of-phase responses range from 2.13% to 10.77% greater for the syn-608
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odic period and from 5.92% less to 11.33% greater for the orbital period. Di↵er-609

ences are consistently large in this comparison.610

For Ganymede, the in-phase response amplitudes range from about 0.14% less to 0.45%611

greater for the synodic period and from 22.82% to 0.11% less for the orbital pe-612

riod; the out-of-phase responses range from 2.51% less to 10.74% greater for the613

synodic period and from 3.32% less to 17.09% greater for the orbital period. For614

the lower-salinity ocean we model, the marked di↵erence in phase delay between615

the thin-ice, warmer profile and the thick-ice, colder profile (Figure 6) is evident616

in how the in-phase and out-of-phase components change between the two cases.617

For Callisto, the in-phase response amplitudes range from about 4.12% less to 0.28%618

greater for the synodic period and from 26.08% less to 1.23% greater for the or-619

bital period; the out-of-phase responses range from 1.87% less to 15.03% greater620

for the synodic period and from 13.62% less to 0.61% greater for the orbital pe-621

riod. The lower phase lag of the nominal salinity case for the thicker ocean is ev-622

ident in the di↵erences between the in-phase and out-of-phase components from623

the other cases.624

For larger oceans, where the non-linear pressure behavior of the adiabat introduces625

curvature to the electrical conductivity profile, slightly larger di↵erences can arise for thicker626

oceans. The presence of high pressure ice also enhances the sensitivity of the overall ocean627

thickness to the ocean’s salinity.628

4.2 Future Experimental and Modeling Work629

The di↵usive induction models described in Section 2.3 make use of thermodynamic630

and electrical conductivity data developed for applications to ocean worlds (Vance & Brown,631

2013; Vance et al., 2018). Future work should explore a broader space of compositions.632

Constructing models that account for the e↵ects of high concentration and pressure re-633

quires updated thermodynamic data (Bollengier et al., 2019; Journaux et al., 2020), as634

described above, matched with accurate electrical conductivity data. Recent progress635

in applying electrical conductivity to geochemical systems at Earth’s surface (McCleskey636

et al., 2012) provides a starting point for considering oceanic concentrations with real-637

istic assemblages of salts (Zolotov & Shock, 2001; Kargel et al., 2000). Extending these638

data to high pressures and concentrations requires further experimental work (e.g., Kep-639

pler, 2014; Guo & Keppler, 2019). Future investigations should also examine a fuller pa-640

rameter space of interior structures, including conductivity in the solid layers. Such fu-641

ture work should examine a broader range of ice and hydrosphere thicknesses, includ-642

ing density structures that explore the full range of constraints based on Galileo grav-643

ity data, not just the mean values of the moments of inertia (Schubert et al., 2004a; Vance644

et al., 2019). Future work should also examine asymmetry in the conducting layers. Re-645

cent work by Styczinski and Harnett (2021) permits consideration of small deviations646

from spherical symmetry, for example due to long-wavelength variations in the thickness647

of Europa’s ice (Nimmo et al., 2007). Ultimately, the ability to consider di↵usive mag-648

netic induction from electrically conducting regions with arbitrary geometry would en-649

able accounting for the e↵ects of the Cowling ionosphere at Callisto (Hartkorn & Saur,650

2017), meridional variations in salinity at Europa (Zhu et al., 2017), brine lenses in Eu-651

ropa’s ice (Schmidt et al., 2011).652

The simplified approach to motional induction described in Section 3 gives order-653

of-magnitude estimates of the maximum induced fields due to ocean convection and shows654

that these fields may be large enough to impact interpretations of magnetic measurements.655

Future work will assess the implications of the simplifying assumptions made through656

more detailed calculations. For example, we have assumed homogeneous and constant657

jovian and Ganymede background fields; however, the temporal and spatial variation of658

the ambient fields are expected to be significant and the magnetic environment each satel-659

lite experiences throughout its orbit is highly dynamic (e.g., Bagenal et al., 2015). The660
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influence of these variations on ocean-flow-driven magnetic field signatures also remains661

to be explored (cf. Gissinger & Petitdemange, 2019). Kinematic models that directly solve662

the coupled momentum and induction equations to determine the motionally induced663

magnetic fields are an exciting and necessary future venue to refine these estimates. The664

resulting predictions for field strength and spatial structure may allow the motional and665

di↵usive components of the induced magnetic field to be separated, facilitating better666

electrical conductivity inversions and ocean flow hypothesis tests.667

4.3 Implications for Future Missions668

The Europa Clipper mission will conduct multiple (>40) flybys of Europa, and will669

investigate its magnetic induction response with the goal of constraining the ocean salin-670

ity and ice thickness, each to within 50%. With independent constraints on ice thick-671

ness obtained from the Radar for Europa Assessment and Sounding: Ocean to Near-surface672

(REASON) and Europa Imaging System (EIS) investigations (Steinbrügge et al., 2018),673

it may be possible to constrain the ocean’s temperature and thus the adiabatic struc-674

ture for the best-fit ocean composition inferred from compositional investigations. The675

analyses provided here (Figure 7 and Table 2) indicate that a sensitivity of 1.5 nT is prob-676

ably su�cient to distinguish between the end-member MgSO4 and NaCl oceans, and the677

corresponding ice thicknesses considered here.678

The JUpiter ICy moons Explorer (JUICE) mission will execute two Europa flybys679

and nine Callisto flybys, and will orbit Ganymede (Grasset et al., 2013). The magnetic680

field investigation seeks to determine the induction response to better than 0.1 nT. The681

Europa flybys might aid the Europa Clipper investigation in constraining the compo-682

sition of the ocean. We find that at Ganymede, JUICE’s magnetic field investigation will683

not be su�cient to discern the modeled basal liquid layer at the ice VI–rock interface,684

which would require sensitivity better than 0.01 nT. Although the ability to discern be-685

tween ocean compositions could not be assessed owing to insu�cient thermodynamic and686

electrical conductivity data at high pressures, it seems likely that useful constraints could687

be derived based on the signal strengths at Ganymede, if appropriate laboratory-derived688

data for relevant solutions under pressure became available. Motional induction also ap-689

pears to be even more important to consider at Ganymede than Europa.690

At Callisto, both Europa Clipper and JUICE would be able to investigate the syn-691

odic signals that vary by more than 2 nT for the di↵erent models considered here, in-692

cluding models with only an ionosphere. JUICE’s 0.1 nT sensitivity might be able to ob-693

tain useful information at the orbital and first harmonic periods as well. In contrast with694

Europa and Ganymede, however, good knowledge of the ionospheric structure at Cal-695

listo is required for detecting an ocean.696
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Europa Period (hr): 5.62 11.23 85.20

By (nT): 15.03 209.78 10.65

Tb T DI Docean ByAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.001 0.104 0.002 0.727 0.000 0.005

MgSO4 1 wt% Re Im Re Im Re Im

273.1 273.9 5 117 13.641 1.527 184.568 38.142 2.942 4.479

Pedersen �Ae
1 (%) 0.02 0.17 0.03 0.03 0.10 0.05

� = 0.4533 S/m �Ae
1 (%) 0.36 -0.41 0.39 -0.08 0.85 0.50

�top = 0.4107 S/m �Ae
1 (%) 0.10 7.75 -0.45 8.80 -12.31 -3.57

270.4 271.1 30 91 13.054 1.917 172.021 49.195 1.680 3.611

Pedersen �Ae
1 (%) 0.04 0.18 0.05 0.03 0.15 0.09

� = 0.4132 S/m �Ae
1 (%) 0.22 -0.10 0.24 0.01 0.55 0.34

�top = 0.3847 S/m �Ae
1 (%) -0.09 6.49 -0.88 6.09 -10.65 -4.23

MgSO4 10 wt% Re Im Re Im Re Im

272.7 274.1 5 124 14.309 0.539 196.395 10.221 9.414 1.714

Pedersen �Ae
1 (%) 0.01 0.38 0.00 0.16 0.00 0.01

� = 3.7646 S/m �Ae
1 (%) 0.23 -3.83 0.33 -2.87 0.49 -0.10

�top = 3.3197 S/m �Ae
1 (%) -0.01 2.28 -0.01 2.13 -0.34 11.33

269.8 270.8 30 96 13.595 0.534 187.098 9.765 8.853 2.245

Pedersen �Ae
1 (%) 0.01 0.64 0.01 0.27 0.01 0.01

� = 3.3661 S/m �Ae
1 (%) 0.18 -2.30 0.23 -1.35 0.30 0.02

�top = 3.0763 S/m �Ae
1 (%) -0.01 1.41 0.08 2.77 -0.81 7.99

Seawater 0.35165 wt% Re Im Re Im Re Im

272.5 273.2 5 117 13.567 1.744 181.600 44.022 2.299 4.139

Pedersen �Ae
1 (%) 0.03 0.14 0.03 0.02 0.12 0.06

� = 0.3855 S/m �Ae
1 (%) 0.43 -0.30 0.46 -0.02 1.02 0.63

�top = 0.3415 S/m �Ae
1 (%) 0.01 10.36 -0.98 10.77 -16.33 -5.92

270.0 270.7 30 91 12.983 2.139 168.558 54.379 1.368 3.324

Pedersen �Ae
1 (%) 0.04 0.15 0.05 0.03 0.18 0.10

� = 0.3651 S/m �Ae
1 (%) 0.26 -0.07 0.29 0.03 0.65 0.42

�top = 0.3339 S/m �Ae
1 (%) -0.23 8.27 -1.49 7.33 -13.72 -5.87

Seawater 3.5165 wt% Re Im Re Im Re Im

270.8 271.9 5 119 14.245 0.590 195.352 10.912 9.274 2.109

Pedersen �Ae
1 (%) 0.01 0.36 0.01 0.16 0.00 0.00

� = 3.0760 S/m �Ae
1 (%) 0.24 -3.32 0.33 -2.24 0.46 -0.03

�top = 2.7347 S/m �Ae
1 (%) -0.02 2.08 0.04 2.37 -0.74 10.53

268.2 269.1 30 91 13.530 0.560 186.582 10.460 8.612 2.664

Pedersen �Ae
1 (%) 0.01 0.63 0.01 0.26 0.01 0.00

� = 2.8862 S/m �Ae
1 (%) 0.18 -1.89 0.22 -0.95 0.28 0.03

�top = 2.6476 S/m �Ae
1 (%) 0.01 1.46 0.10 3.88 -1.26 7.23

Table 2: Europa: Magnetic induction field strengths {Re,Im}(ByAe
1), in nT, at the main

inducing periods in Figure 1. For the di↵erent ocean compositions and thicknesses of the
upper ice I lithosphere/ocean (DI/Docean; Figure 5), the adiabatic response is listed first.
These values are also shown in Figure 7. Following these are the deviations from the adi-
abatic response (in %) when including a 100 km ionosphere with Pedersen conductance
of 30 S (Hartkorn & Saur, 2017), then for the ocean with uniform conductivity set to the
mean of the adiabatic ocean (�), and then for the case with uniform conductivity set to
the value at the ice–ocean interface (�top). The surface responses of the ionosphere in the
absence of an ocean are listed at the top of the table.
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Ganymede Period (hr): 5.27 10.53 171.57

By (nT): 2.64 82.61 1.21

Tb T DI Docean ByAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.002 0.000 0.033 0.000 0.000

MgSO4 1 wt% Re Im Re Im Re Im

270.7 279.0 25 442 2.393 0.150 72.835 6.420 0.791 0.390

Pedersen �Ae
1 (%) 0.00 0.03 0.00 0.01 0.00 0.00

� = 0.5166 S/m �Ae
1 (%) 0.87 -8.82 1.23 -7.04 2.61 1.01

�top = 0.3890 S/m �Ae
1 (%) -0.03 4.54 -0.14 5.86 -9.33 17.09

261.6 266.2 92 276 2.169 0.165 66.167 6.714 0.417 0.476

Pedersen �Ae
1 (%) 0.00 0.06 0.00 0.03 0.00 0.00

� = 0.3322 S/m �Ae
1 (%) 0.95 -5.29 1.18 -2.65 2.44 1.41

�top = 0.2623 S/m �Ae
1 (%) 0.08 3.83 0.45 10.74 -22.82 -3.32

MgSO4 10 wt% Re Im Re Im Re Im

270.2 278.3 25 458 2.499 0.056 77.528 2.435 1.020 0.124

Pedersen �Ae
1 (%) 0.00 0.04 0.00 0.02 0.00 0.00

� = 4.0699 S/m �Ae
1 (%) 0.29 -10.57 0.41 -9.78 1.48 -3.07

�top = 3.1150 S/m �Ae
1 (%) -0.00 2.03 -0.01 2.84 -0.18 7.55

260.0 263.5 93 282 2.290 0.067 70.816 2.910 0.936 0.163

Pedersen �Ae
1 (%) 0.00 0.10 0.00 0.04 0.00 0.00

� = 2.3476 S/m �Ae
1 (%) 0.27 -7.17 0.38 -6.43 1.01 -0.28

�top = 1.9483 S/m �Ae
1 (%) 0.00 1.71 -0.00 2.51 -0.11 15.65

bottom layer: 30 km 20 S/m �Ae
1 (%) 0.00 -0.00 0.00 -0.00 -1.20 0.20

Pedersen �Ae
1 (%) 0.00 0.10 0.00 0.04 -1.20 0.20

Table 3: Ganymede: Magnetic induction field strengths {Re,Im}(ByAe
1), in nT, at the

main inducing periods in Figure 1. For the di↵erent ocean compositions and thicknesses of
the upper ice I lithosphere (DI; Figure 5), the adiabatic response is listed first. These val-
ues are also shown in Figure 7. Following these are deviations from the adiabatic response
(in %) when including a 100 km ionosphere with Pedersen conductance of 2 S (Hartkorn
& Saur, 2017), then for the ocean with uniform conductivity set to the mean of the adi-
abatic ocean (�), and then for the case with uniform conductivity set to the value at the
ice–ocean interface (�top). The surface responses of the ionosphere in the absence of an
ocean are listed at the top of the table.
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Callisto Period (hr): 5.09 10.18 400.33

By (nT): 0.25 37.57 1.72

Tb T DI Docean ByAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.019 0.070 0.769 5.549 0.000 0.007
Cowling 0.230 0.097 23.854 20.120 0.002 0.056

MgSO4 1 wt% Re Im Re Im Re Im

257.4 259.6 99 132 0.204 0.023 29.774 6.332 0.021 0.171

Pedersen 0.207 0.026 30.227 6.544 0.022 0.177
Cowling 0.231 0.036 33.248 7.167 0.033 0.225
� = 0.2307 S/m �Ae

1 (%) 0.49 -0.44 0.53 -0.08 1.45 0.96
�top = 0.1965 S/m �Ae

1 (%) 0.06 14.62 -1.03 15.03 -26.08 -13.62

250.8 250.9 128 21 0.060 0.095 2.885 9.085 0.000 0.012

Pedersen 0.102 0.119 5.702 13.168 0.000 0.018
Cowling 0.238 0.083 27.259 18.811 0.003 0.068
� = 0.0895 S/m �Ae

1 (%) 0.04 0.02 0.04 0.03 0.05 0.03
�top = 0.0874 S/m �Ae

1 (%) -3.26 -0.99 -4.12 -1.87 -4.52 -2.28

MgSO4 10 wt% Re Im Re Im Re Im

255.7 256.9 99 130 0.211 0.008 31.391 1.533 0.552 0.696

Pedersen 0.212 0.011 31.490 1.787 0.556 0.698
Cowling 0.226 0.027 32.566 3.378 0.582 0.715
� = 1.5256 S/m �Ae

1 (%) 0.20 -2.91 0.26 -1.74 0.69 0.39
�top = 1.3789 S/m �Ae

1 (%) 0.01 1.12 0.12 3.18 -10.78 -1.59

250.8 250.9 128 21 0.195 0.053 24.308 13.231 0.003 0.067

Pedersen 0.202 0.055 25.716 13.402 0.004 0.074
Cowling 0.239 0.049 32.873 12.030 0.009 0.123
� = 0.6025 S/m �Ae

1 (%) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
�top = 0.6062 S/m �Ae

1 (%) 0.08 -0.53 0.28 -0.34 1.23 0.61

Table 4: Callisto: Magnetic induction field strengths {Re,Im}(ByAe
1), in nT, at the main

inducing periods in Figure 1. For the di↵erent ocean compositions and thicknesses of the
upper ice I lithosphere/ocean (DI/Docean; Figure 5), the adiabatic response is listed first.
These values are also shown in Figure 7. Following these are the responses (in nT) includ-
ing a 100 km ionosphere with {Pedersen,Cowling} conductance of {800,6850} S (Hartkorn
& Saur, 2017), then the deviations from the adiabatic response (in %) for the ocean with
uniform conductivity set to the mean of the adiabatic ocean (�), and then for the case
with uniform conductivity set to the value at the ice–ocean interface (�top). The surface
responses of the ionosphere in the absence of an ocean are listed at the top of the table.
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� D Ur U✓ U� br
[S/m] [km] [m/s] [m/s] [m/s] [nT]

Europa

MgSO4 1 wt%, Thicker ice shell 0.4 91 0.06 0.29 2.9 1
MgSO4 1 wt%, Thinner ice shell 0.5 117 0.07 0.37 3.7 2
MgSO4 10 wt%, Thicker ice shell 3.4 96 0.06 0.30 3.0 10
MgSO4 10 wt%, Thinner ice shell 3.8 124 0.08 0.39 3.9 20
Seawater 0.35 wt%, Thicker ice shell 0.4 91 0.06 0.29 2.9 1
Seawater 0.35 wt%, Thinner ice shell 0.4 117 0.07 0.37 3.7 2
Seawater 3.5 wt%, Thicker ice shell 2.9 91 0.06 0.29 2.9 8
Seawater 3.5 wt%, Thinner ice shell 3.1 119 0.07 0.37 3.7 14

Ganymede

MgSO4 1 wt%, Thicker ice shell 0.3 276 0.08 0.41 4.1 8
MgSO4 1 wt%, Thinner ice shell 0.5 442 0.13 0.66 6.6 36
MgSO4 10 wt%, Thicker ice shell 2.3 282 0.08 0.42 4.2 65
MgSO4 10 wt%, Thinner ice shell 4.1 458 0.14 0.69 6.9 330

Callisto

MgSO4 1 wt%, Thicker ice shell 0.09 21 0.003 0.01 0.14 ⌧ 1
MgSO4 1 wt%, Thinner ice shell 0.2 132 0.02 0.09 0.87 0.02
MgSO4 10 wt%, Thicker ice shell 0.6 21 0.002 0.01 0.12 ⌧ 1
MgSO4 10 wt%, Thinner ice shell 1.5 130 0.02 0.09 0.86 0.2

Table 5: Ocean characteristics and upper bound estimates of the motionally induced mag-
netic field strengths from Equation (12) at the top of the oceans. Radial Ur, latitudinal
U✓, and zonal U� flow speeds from Figure 8 with U = ⌦DRo; ocean thicknesses D and
electrical conductivity � from Tables 2–4.
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Text S1. Induction response model

We are interested in the magnetic fields induced within a spherically symmetric body, in

which electrical conductivity is a piece-wise constant function of distance from the center.

We thus assume bounding radii for N layers

{r1, r2, r3, · · · , rN} (S1)
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where

rN = R (S2)

is the outer radius of the spherical body.

The corresponding conductivity values are

{σ1, σ2, σ3, · · · , σN} (S3)

We also assume that there is an imposed external magnetic potential, represented by a

sum of terms, each of which has the form

Φn,m,p(r, θ, ϕ, t) = RBe

( r
R

)n
Sn,m(θ, ϕ)e−iωpt (S4)

where {r, θ, ϕ} are spherical coordinates (r is radius, θ is colatitude, and ϕ is longitude)

of the field point, Be is a scale factor, Sn,m(θ, ϕ) is a surface spherical harmonic function

of degree n and order m, while t is time and ωp is the angular frequency of oscillation

of the imposed potential. The same methods apply independently to each frequency ωp

in the excitation field, and the results sum linearly by superposition. Therefore, we now

drop the subscript on this quantity and simply use ω.

Within each layer, the magnetic field vector B must satisfy the Helmholtz equation

∇2B = −k2B (S5)

which is a diffusion equation for B. k is a scalar wavenumber given by

k2 = iωµ0σ (S6)

where ω is angular frequency, σ is electrical conductivity, and the magnetic constant

(permeability of free space) is given by

µ0 = 4π × 10−7N/A2 (S7)
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with units N and A being Newton and Ampere. In defining k in Equation S6, we have

assumed µ ≈ µ0, which holds well even for ferromagnetic materials when they are con-

sidered on a global scale (Saur et al., 2009). Note that in Equation S6, we have chosen a

different convention from that of Parkinson (1983) and numerous authors relying on their

derivation. We make this choice in order to derive the spherical Bessel equation (Equa-

tion S11) from the diffusion equation (5). Choosing k2 = −iωµ0σ results in the modified

spherical Bessel equation, meaning the derivation in Parkinson (1983) is in error. We

prefer to define k2 as in Equation S6 so that we can, in fact, reach the spherical Bessel

equation and thereby compare the remaining derivation favorably to that of Parkinson

(1983) and other past research using the standard spherical Bessel functions.

Independently from Equation S5, the net poloidal component of the magnetic field

inside the body is given by sums over n and m of terms with the forms

Br(r, θ, ϕ, t) =
C

r

(
F (r)

)
n(n+ 1) Sn,m(θ, ϕ)e−iωt (S8)

Bθ(r, θ, ϕ, t) =
C

r

d

dr

(
rF (r)

) d

dθ

(
Sn,m(θ, ϕ)

)
e−iωt (S9)

Bϕ(r, θ, ϕ, t) =
C

r sin θ

d

dr

(
rF (r)

) d

dϕ

(
Sn,m(θ, ϕ)

)
e−iωt (S10)

where C is a constant, and F (r) is a function of radius, which we need to determine.

S1.1 Analytical model based on Srivastava (1966)

For the purpose of validating our numerical model, we separately derive an analytical

solution akin to that of Srivastava (1966) and summarized by Parkinson (1983). As this

analytical approach is common throughout the literature, we later compare the analytical

(layered) approach to our numerical (ordinary differential equation, ODE) approach in

Figures S1 and S2. We find it instructive to compare the point in the derivation where

the two approaches differ, so we carry out the full derivation here, in our notation.
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Applying separation of variables to the governing differential equation (Equation S5),

one finds that the radial factor F (r) in the solution must satisfy the spherical Bessel

equation

d2F

dr2
+

(
2

r

)
dF

dr
+

(
k2 − n(n+ 1)

r2

)
F = 0 (S11)

This is a second-order equation, having two solutions, jn(kr) and yn(kr), the spherical

Bessel functions of the first and second kind, respectively, of degree n and argument kr.

Note that choosing to define k as we did in Equation S6 was a strict requirement to

obtain Equation S11. If we instead chose k2 = −iωµoσ, we would have obtained the

modified spherical Bessel equation

d2F

dr2
+

(
2

r

)
dF

dr
+

(
−k2 − n(n+ 1)

r2

)
F = 0 (S12)

with solutions in(kr) and kn(kr), the modified spherical Bessel functions, as in Schilling

et al. (2007) and ? (?). In effect, our choice of sign convention results in the complex

response we later derive Aen (Equation S46) being equal to the complex conjugate of the

analogous quantity Aeiφ appearing in past research (e.g., Zimmer et al., 2000).

It will also be convenient to define another set of related functions

F ?(r) =
d

dr

(
rF (r)

)
(S13)

with

j?n(kr) =
d

dr

(
rjn(kr)

)
(S14)

= (n+ 1)jn(kr)− kr jn+1(kr)

and

y?n(kr) =
d

dr

(
ryn(kr)

)
(S15)

= (n+ 1)yn(kr)− kr yn+1(kr)
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Both yn and y?n are singular at the origin r = 0, so in the innermost spherical layer only

jn(kr) and j?n(kr) may describe physically consistent solutions. In other layers, we use

linear combinations of jn and yn and linear combinations of j?n and y?n.

Text S1.1.1. Internal boundary conditions

The resulting piecewise-defined radial functions characterize the radial part of the mag-

netic field. The radial component has the form

Fn(r) =


c1jn(k1r) for 0 < r ≤ r1
c2jn(k2r) + d2yn(k2r) for r1 < r ≤ r2
c3jn(k3r) + d3yn(k3r) for r2 < r ≤ r3

cjjn(kjr) + djyn(kjr) for rj−1 < r ≤ rj

(S16)

The tangential components yield similar structure, but with all Fn, jn, and yn replaced

by their starred counterparts.

The constants cj and dj are determined by continuity of radial (r) and tangential (θ, ϕ)

components of the magnetic field across the boundaries. For each internal boundary, it

must hold that

F below
n (rj) = F above

n (rj)

cjjn(kjrj) + djyn(kjrj) = cj+1jn(kj+1rj) + dj+1yn(kj+1rj) (S17)

to ensure continuity of the radial component of the magnetic field, and likewise for F ?
n to

ensure continuity of the tangential components. These continuity constraints yield two

equations at each internal boundary, from which we can determine the layer coefficients.

The internal boundary conditions are only part of the story. In a model with N layers,

we have 2N − 1 coefficients to determine (recall that d1 = 0, to avoid singular behavior at

the origin), but only N − 1 internal boundaries, and thus only 2N − 2 constraints. The
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external boundary condition provides the additional information to make the problem

evenly determined.

Using notation similar to that of Parkinson (1983, Ch. 5), we can write a recursion

relation that transforms the coefficients in the jth layer into those for the layer above it[
cj+1

dj+1

]
= Tj(kj, kj+1, rj) ·

[
cj
dj

]
(S18)

where the transformation matrix Tj has elements

Tj(kj, kj+1, rj) =
1

αj

[
βj γj
δj εj

]
(S19)

with

αj = jn(kj+1rj) y
?
n(kj+1rj)− yn(kj+1rj) j

?
n(kj+1rj) =

1

kj+1rj
(S20)

which is a function of the conductivity in the layer above the boundary only. The other

elements depend on the conductivities on both sides of the boundary:

βj = jn(kjrj) y
?
n(kj+1rj)− yn(kj+1rj) j

?
n(kjrj) (S21)

γj = yn(kjrj) y
?
n(kj+1rj)− yn(kj+1rj) y

?
n(kjrj) (S22)

and

δj = jn(kj+1rj) j
?
n(kjrj)− jn(kjrj) j

?
n(kj+1rj) (S23)

εj = jn(kj+1rj) y
?
n(kjrj)− yn(kjrj) j

?
n(kj+1rj) (S24)

For computation, it is helpful to note that Equation S18 yields a convenient recursion

relation if we define a quantity

Λj =
dj
cj

(S25)

We find that Λj+1 relates to Λj by

Λj+1 =
δj + Λjεj
βj + Λjγj

(S26)
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As d1 = 0, Λ1 = 0 also for that innermost layer. Note that we define this transfer

coefficient differently than do Parkinson (1983). They define the reciprocal of Λ so that

Equations S26 and S40 appear to match. Our notation allows for Λ1 = 0, rather than

leaving this quantity undefined (Styczinski et al., in progress).

We thus start in the central spherical layer, where Λ1 = 0, then propagate upward

through the stack of layers until we have the coefficient ΛN for the outermost (N th) layer.

With a piecewise model interior structure σ(r), we compute kj for the set of rj. Repeated

application of Equation S26 then allows us to relate the interior structure to the external

boundary conditions.

Text S1.1.2. External boundary conditions

The final step is matching the external surface boundary condition. Outside the sphere,

the magnetic field is represented by a scalar potential which is the sum of an imposed

external contribution and an induced internal contribution. That sum has spatial depen-

dence given by the form

Φ(r, θ, ϕ) = R

(
Be

( r
R

)n
+Bi

(
R

r

)n+1
)
Sn(θ, ϕ) (S27)

We have now dropped the subscript m from Sn,m because for any n, a suitable choice

of axes results in m = 0 for both external and internal fields for the case of spherical

symmetry we consider here. The vector field is obtained from the potential via

B = −∇Φ (S28)

The radial component of the vector field, evaluated at the surface (r = R), is

Br = −
(
nBe − (n+ 1)Bi

)
Sn(θ, ϕ) (S29)
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and the tangential components are

Bθ = −
(
Be +Bi

)∂Sn(θ, ϕ)

∂θ
(S30)

and

Bϕ = −
(
Be +Bi

) 1

sin θ

∂Sn(θ, ϕ)

∂ϕ
(S31)

The θ and ϕ equations yield redundant information, so we consider only the θ equation

for the tangential components.

Matching these with the corresponding interior components, as given in Equations S8–

S10, but evaluated at the top of the uppermost layer, we obtain

−
(
nBe − (n+ 1)Bi

)
R = n(n+ 1)

(
cNjn(kNR) + dNyn(kNR)

)
(S32)

and

−
(
Be +Bi

)
R =

(
cNj

?
n(kNR) + dNy

?
n(kNR)

)
(S33)

From these two equations, we can relate the “Q response”

Q =
Bi

Be

(S34)

to the internal field coefficients:

Q =
n

n+ 1

cNβn + dNγn
cNδn + dNεn

(S35)

We define the parameters βn, γn, δn, and εn by

βn = j?n(kNR)− (n+ 1)jn(kNR) (S36)

γn = y?n(kNR)− (n+ 1)yn(kNR) (S37)

and

δn = njn(kNR) + j?n(kNR) (S38)

εn = nyn(kNR) + j?n(kNR) (S39)October 23, 2020, 8:30pm
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Note that we define these quantities as above for consistency with Parkinson (1983) and

for similarity between the definitions of the transfer coefficients Λj described above and Aen

described below. Also note that although they both relate Bessel functions of argument

kr, Equations S36–S39 differ substantially from Equations S21–S24.

Following the approach of Styczinski et al. (in progress), we now define a final recursion

quantity, the complex response to the excitation field Aen as

Aen =
βn + ΛNγn
δn + ΛNεn

(S40)

This normalized, complex amplitude has the desirable characteristic that it is asymptotic

to (1+0i) for a highly conducting ocean with no ice shell, for any degree n in the excitation

field. Therefore, with the recursion relation from Equation S26, Aen is a readily calculable

measure of the effectiveness of a body at behaving as a perfect conductor, and can easily

be compared to spacecraft data fit to induced magnetic moments of any order n.

For the special case of a single, uniform conducting layer representing a saline ocean,

the complex response evaluates to

Aen =
jn+1(ka)yn+1(ks)− jn+1(ks)yn+1(ka)

jn+1(ks)yn−1(ka)− jn−1(ka)yn+1(ks)
(S41)

with a the radius of the ocean outer boundary, s the radius of the ocean inner boundary,

and k =
√
iωµ0σ with σ the conductivity of the ocean layer. a = R−h, where h is the ice

shell thickness, and s = a−D, where D is the ocean thickness. This result is analogous to

the three-layer model of Zimmer et al. (2000). All past studies have considered a uniform

excitation field, with n = 1; comparison with past work is made by evaluating A = |Ae1|

and φ = − arg(Ae1).
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Text S1.2 Numerical approximation to external boundary conditions

We now detail our alternative numerical approach, based on that of Eckhardt (1963).

Returning to Equation S11 (the Bessel equation), if instead of solving for the basis func-

tions directly, we make the substitution

dF (r)

dr
= F (r)G(r) (S42)

where G(r) is another arbitrary function of r, we obtain a Riccati equation for G:

d

dr

(
r2G

)
+ r2G2 + k2r2 − n(n+ 1) = 0 (S43)

Note that we have not made any assumptions about k(r) in reaching Equation S43.

We can now exploit the external boundary conditions to obtain a new equation. In

Equations S32 and S33, on the right-hand side we insert the more general expressions

from Equations S8–S10 using the above substitution for F (r). Solving for the Q response

as in Equation S34, we obtain

Q =
n

n+ 1

rG− n
rG+ n+ 1

(S44)

Taking dQ/dr and making substitutions from Equation S43, we reach an ODE for Q that

may be solved numerically:

dQ

dr
= −k

2r(n+ 1)

(2n+ 1)n

(
Q− n

n+ 1

)2

− 2n+ 1

r
Q (S45)

Aen may then be found by

Aen =
n+ 1

n
Q (S46)

as can be seen from comparing Equations S35 and S40.

Text S1.3 Application of induced response functions

As applied to the Galilean moons, the primary case of interest in the magnetic induction

problem is for an imposed field that is effectively uniform, where n = 1. The analysis
October 23, 2020, 8:30pm
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contained in this work makes the approximation that the magnetic field applied to the

Galilean moons is entirely spatially uniform, with n = 1. The higher-order components

applied to the moons are small, mostly deriving from oscillations in the plasma at much

higher frequencies than Jupiter’s primary field (Schilling et al., 2007). In this case, ex-

pressing the complex quantity Ae1 in terms of a magnitude A and phase delay φ permits

a direct comparison to work by other authors (e.g., Zimmer et al., 2000):

Ae1 = Ae−iφ (S47)

The negative exponent in Equation S47 is ultimately the result of an error in Parkinson

(1983) propagated in the many past studies applying the results from that text. Our

choice of sign convention for k as the complex conjugate of that chosen by Parkinson

(1983), a necessary condition for deriving the spherical Bessel equation, causes our result

for the complex amplitude Ae1 to be equal to the complex conjugate of the analogous

quantity from Zimmer et al. (2000), Aeiφ. This merely negates the phase of this quantity,

as A and φ are both real-valued. By defining A and φ as in Equation S47, we can use

them exactly as in past work to evaluate the internally generated, induced magnetic field

outside the moon Bint,moon by

Bint,moon = −Ae−i(ωt−φ) Be

2

3 cos θr̂ − ẑ
r3

(S48)

where ẑ is directed along the instantaneous vector of the time-varying external magnetic

field Bext,moon applied to the moon, θ is the angle between ẑ and the measurement point

at r = rr̂, the origin is centered on the body to which the excitation field is applied, and

the factor of 2 in Equation S48 results from inserting n = 1 into the factor n/(n + 1) in

Equation S35. Note that Equation S48 only applies in the space outside the moon.

October 23, 2020, 8:30pm



X - 12 :

Figures 2–4, 6, and 7 in the main text were produced using the Eckhardt (1963)-based

numerical technique. Figure 6 plots A = |Ae1| and φ = −arg(Ae1) for Europa, Ganymede,

and Callisto. Figures 2–4 plot the same phase delay φ, but scale the amplitude A to the

maximum induced magnetic field that would be measured at a surface point. This occurs

where the time-varying external field from Jupiter is instantaneously directed vertically

into or out of the surface (θ = 0 or π, r = R, and r̂ = ±ẑ in Equation S48). These

conditions happen at key locations on the bodies’ surfaces twice per period (once outward,

once inward), and are not in general collocated for the various excitation frequencies. For

example, for Europa’s synodic period with Jupiter at 11.23 hr, the key points on the

surface are the sub- and anti-jovian points, because the maximum oscillation is along

the europacentric (EφΩ) ŷ direction. In contrast, at Europa’s orbital period of 85.23 hr,

the greatest oscillation is aligned with the EφΩ ẑ direction, so the largest induced field

will occur at the north and south spin poles. However, all of Figures 2–4, 7 scale to the

By oscillation for ease of interpretation, and therefore describe the oscillation along the

vertical at the surface at the sub- and anti-jovian points for each body.

Figures S1 and S2 show a benchmarking calculation comparing the ODE approach to

the stacked layer approach. For sufficiently stringent numerical solution parameters, the

two approaches yield effectively identical results. Furthermore, the ODE approach has

a distinct advantage in computation time for our implementation. The stacked layer

approach requires explicit calculation of many Bessel functions for the layer coefficients

at closely spaced points. The results of these functions very nearly cancel, so they must

be evaluated at enormously high precision. Sometimes over 200 digits of precision are
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required to evaluate interior models relevant to the Galilean moons, requiring special

computation packages and ample computation time.

The ODE approach, in contrast, converges faster for more closely spaced layers, which

create a smoother function to evaluate. Thus, in practice we evaluate a comparable result

that takes a small fraction of the time to compute for a highly detailed interior structure

model. Use of the ODE approach to reduce computation time for detailed interior models

enables massively parallel statistical studies, such as Monte Carlo methods, to explore

large parameter spaces in reasonable time scales. In future work, we intend to apply

such methods to better constrain the interior structures of the Galilean moons and other

moons, with current and future measurements.

Text S1.6 Comparison of adiabatic ocean profiles to uniformly conducting

oceans

In Section 2 of this work (main text), we focus on the observable signal from depth-

dependent effects that shift the conductivity away from a nominal mean value. All past

work studying magnetic induction of satellite oceans has assumed the ocean to be a

single layer of uniform conductivity and calculated the induced field using the approach

of Srivastava (1966). For comparison to this body of literature, we plot the difference in

induced field from our approach to the uniform conductivity approach in Figures S3–S5. In

each of these figures, the top panels compare our adiabatic ocean approach to a uniform

conductivity that is consistent with the mean value from the corresponding adiabatic

profile; the bottom panels compare our approach against a uniform conductivity taken to

be the value from our model at the uppermost ice–ocean boundary. In most cases, the

differences are near a few percent for the longer periods considered (red lines).
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Text S2. Motional Induction Response Model

The magnetic induction equation can be used to estimate the components of the mag-

netic field B induced by ocean currents with velocity u and those arising from changes in

the externally imposed field:

∂B

∂t
= ∇× (u×B)−∇× (η∇×B) (S49)

where η = (µ0σ)−1 is the magnetic diffusivity. Here, the first term represents the evolution

of the magnetic field, the second term represents magnetic induction, and the third term

represents magnetic diffusion.

Neglecting variations in oceanic electrical conductivity with depth and assuming an

incompressible fluid, Equation S49 simplifies to

∂B

∂t
= (B · ∇)u− (u · ∇)B + η∇2B, (S50)

after also expanding the induction term and utilizing ∇ · B = 0 and ∇ · u = 0. Let

us decompose the total magnetic field into the background imposed field Bo and the

satellite’s induced field b:

B = Bo + b (S51)

with |Bo| � |b|. The induction equation then becomes

∂b

∂t
= −∂Bo

∂t
+ (Bo · ∇)u− (u · ∇)(Bo + b) + η∇2(Bo + b) (S52)

Here, the first term is the evolution of the induced magnetic field, the second term is

induction due to variations in Jupiter’s (or Ganymede’s) intrinsic magnetic field, the third

term is induction due to oceanic fluid motions, the fourth and fifth terms are advection

of the fields by ocean flows, and the sixth and seventh terms are diffusion of the jovian

and induced fields.
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Let us next assume that the background field can be approximated by Bo = Boẑ, where

Bo is constant and homogeneous and ẑ is aligned with the rotation axis, in which case

Equation S52 further simplifies to:

∂b

∂t
= Bo

∂u

∂z
− (u · ∇)b + η∇2b. (S53)

We will also focus on the quasi-steady induction signal generated by ocean flows rather

than the rapidly varying contribution that could be difficult to distinguish from other

magnetic field perturbations. Towards this end, the induced magnetic field and velocity

fields are decomposed into mean and fluctuating components: b = b + b′ and u = u + u′.

Inserting this into Equation S53 and using Reynolds averaging yields

∂b

∂t
= Bo

∂u

∂z
− (u · ∇)b− (u′ · ∇)b′ + η∇2b. (S54)

Next, we focus on the radial and latitudinal components because the zonal flow (uφ)

is nearly invariant in the z-direction (Figure 8a), noting also that azimuthally oriented

(toroidal) magnetic fields would not be detectable by spacecraft:

∂br
∂t

= Bo
∂ur
∂z
− (u · ∇)br − (u′ · ∇)b′r + η∇2br (S55)

∂bθ
∂t

= Bo
∂uθ
∂z
− (u · ∇)bθ − (u′ · ∇)b′θ + η∇2bθ (S56)

Using simple scaling arguments, the second and third terms on the right sides are likely

small compared to the first term since |Bo| � |b| (assuming similar characteristic flow

speeds and length scales) such that

∂br
∂t
≈ Bo

∂ur
∂z

+ η∇2br (S57)

∂bθ
∂t
≈ Bo

∂uθ
∂z

+ η∇2bθ. (S58)
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Considering the poloidal flow components (Figure 8b-c), the induced fields would likely

be strongest near the equator where large vertical gradients in the convective flows exist.

In the steady-state limit and approximating the gradient length scales as D and flow

speeds as Ur and Uθ, an upper bound on magnetic fields induced by ocean currents can

be estimated as:

BoUr
D
∼ ηbr
D2

, such that br ∼
BoUrD

η
= µoσDUrBo (S59)

BoUθ
D
∼ ηbθ
D2

, such that bθ ∼
BoUθD

η
= µoσDUθBo. (S60)

Here, we neglect the coupling between br and bθ to effectively estimate maximum values

for each component.

Several aspects regarding the velocity field should also be mentioned. First, the oceans

are assumed to be in a convective regime that is weakly constrained by rotation following

Soderlund (2019). Soderlund19 also notes, however, that a stronger rotational influence

may be possible, which would lead to slower flow speeds and weaker induced magnetic

fields. In addition, it is possible that the models overestimate the meridional circulations

relative to the zonal flows compared to what might be expected in the satellites (e.g.,

Jones & Kuzanyan, 2009). Because our approach focuses on upper bound estimates, the

results are still valid if meridional circulations within the oceans are weaker than those

modeled. Finally, flows due to libration, precession, tides, and electromagnetic pumping

(e.g., Le Bars et al., 2015; Gissinger & Petitdemange, 2019; Soderlund et al., 2020) are

neglected here but may interact with the convective flows to change their configurations

and/or speeds.
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Text S3. Interior Structure Models

The interior structures and associated electrical conductivities used in this work are com-

puted with the PlanetProfile package described by Vance et al. (2018). PlanetProfile

employs self-consistent thermodynamics for the properties of ice, fluids, rock, and metals

to compute the radial structure of an ocean world. Inputs are the surface temperature

and bottom melting temperature of the ice, To and Tb; density of the rocky interior and

any metallic core, ρmantle and ρcore; salinity of the ocean, w; and gravitational moment of

inertia, C/MR2. For this work, the values for these properties are substantially the same

as those used by Vance et al. (2018), with a few minor changes that do not significantly

change the ocean thickness and electrical conductivity that are central to this work.

Properties of ice are now computed using the SeaFreeze package (Journaux et al., 2020),

which provides substantial improvements in accuracy for conditions relevant to icy moon

interiors. Solid-state convection in the surface ice I layer has been corrected from Vance

et al. (2018) to use the thermal upper boundary layer thickness, eth, from Deschamps and

Sotin (2001) rather than the mechanical thickness, emech. Properties of the rocky mantle

and metallic core for Europa are based on updated mineralogies described by Vance and

Melwani Daswani (2020). The silicate mantle composition is that of the MC-Scale model,

an aggregate of type CM and CI chondrite compositions, and the composition of comet

67P. The core composition is a Fe–FeS mixture containing 5 wt% sulfur. Sulfur is appro-

priately partitioned between the mantle and core to preserve bulk planetary distribution

of sulfur in the MC-Scale model. This approach does not account for the addition of sul-

fur to the ocean, which makes up 2.6% of the ocean’s mass for the 10 wt% MgSO4 case.
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The effect of this minor inconsistency on the thickness of the ocean is smaller than the

few-km variation in ocean thicknesses between the different ocean compositions (Table 1).

Using the moment of inertia along with supposed core and mantle densities to inform the

construction of interior models effectively fixes the hydrosphere thickness. For example,

for Europa we use the mean value from Anderson et al. (1998) of C/MR2 = 0.346±0.005.

The error bars in this result, combined with the assumed densities of the different radial

layers, provide the canonical range of hydrosphere thicknesses of 80–170 km. Our choice

of the fixed value of 0.346, and the fixed core and mantle density, create the ocean+ice

hydrosphere thickness of about 125 km. This applies to all interior structures considered

for this body. The near-fixed hydrosphere thicknesses are evident in the positions of the

filled circles in Figure 5. Note that the interior structures we infer from moments of inertia

restrict the realistic parameter space in Figures 2–4 to be a narrow region near the top of

each contour plot. This is demonstrated in Figures S8–S10, wherein the studied models

are marked on the contours from Figures 2–4.

The discrete layers in PlanetProfile are in sufficient number to provide step transitions

between layers that are smaller than 1 km in the hydrospheres and smaller than a few

km in the deeper interior. For example, the Europa models used here employ 200 steps

in the ice, 350 steps in the ocean, 500 steps in the silicate layer, and 10 steps in the core.

Similar scalings are used for Ganymede and Callisto in proportion to their thicker oceans

and ice layers.
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Soderlund, K. M., Kalousová, K., Buffo, J. J., Glein, C. R., Goodman, J. C., Mitri, G.,

. . . others (2020). Ice-ocean exchange processes in the jovian and saturnian satellites.

Space Science Reviews , 216 (5), 1–57.

Srivastava, S. P. (1966). Theory of the magnetotelluric method for a spherical conductor.

Geophysical Journal International , 11 (4), 373–387. doi: 10.1111/j.1365-246x.1966

.tb03090.x

Vance, S. D., & Melwani Daswani, M. (2020). Serpentinite and the search for life beyond

Earth. Phil. Trans. R. Soc. A, 378 (2165), 20180421.

Vance, S. D., Panning, M. P., Stähler, S., Cammarano, F., Bills, B. G., Tobie, G., . . .

et al. (2018). Geophysical investigations of habitability in ice-covered ocean worlds.

Journal of Geophysical Research: Planets . doi: 10.1002/2017je005341

Zimmer, C., Khurana, K. K., & Kivelson, M. G. (2000). Subsurface oceans on Europa

and Callisto: Constraints from Galileo magnetometer observations. Icarus , 147 (2),

329–347.

October 23, 2020, 8:30pm



: X - 21

October 23, 2020, 8:30pm



X - 22 :

10 1 10 2 10 3 10 4

Period (hr)

0.2

0.4

0.6

0.8

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

ODE solution

Layer propagation

10 1 10 2 10 3 10 4

Period (hr)

20

40

60

80

P
h

a
s
e

 D
e

la
y
 (

°)

ODE solution

Layer propagation

Figure S1. Comparison of the complex responseAe1 for the uniform field case, calculated

by two different methods. The amplitude A = |Ae1| and phase delay φ = −arg(Ae1) are

plotted separately. The Srivastava (1966) layered conductor approach common in the

literature is plotted as a blue dashed line and the Eckhardt (1963) ODE approach we

use in our analysis is plotted in as a solid green line. For sufficiently stringent numerical

solution parameters, the lines are effectively identical. A numerically challenging example

case was selected for this comparison: a Europa model of approx. 150 layers and a

1 wt% MgSO4 ocean.
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Figure S2. Difference of the lines in Figure S1. Absolute values of the difference are

plotted so that a log scale may be used to display them. The relative phase difference is

shown, i.e. normalized to a maximum of 1. The small differences belie the close overlap

of the lines in Figure S1.
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Figure S3. Europa: Differences (in %) from the nominal adiabatic case studied here, for

uniformly conducting oceans with the equivalent mean conductivity (top panel), and for

uniformly conducting oceans with the equivalent conductivity at the ice–ocean interface

(bottom panel). Dashed lines (−−) are MgSO4 oceans; dot–dashed lines are seawater

oceans ( ). Blue curves are for thicker ice (30 km), magenta curves are thinner ice

(5 km) MgSO4 oceans, and cyan curves are thinner ice (5 km) seawater oceans. Thick

lines are higher salinities (10 wt% and 3.5 Wt%, respectively) for oceans with aqueous

MgSO4 and seawater. Thinner lines are for oceans with 10% of those concentrations.

Vertical lines are the strongest inducing frequencies shown in Figure 1.
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Figure S4. Ganymede: Differences (in %) from the nominal adiabatic case studied

here for uniformly conducting oceans with the equivalent mean conductivity (top panel),

and for uniformly conducting oceans with the equivalent conductivity at the ice–ocean

interface (bottom panel). Magenta curves are for thinner ice (∼30 km) and blue curves

are for thicker ice (∼100 km). All configurations assume an ocean with aqueous MgSO4.

Thick lines are higher salinity (10 wt%) and thinner lines are for oceans with 1 wt%.

Vertical lines are the strongest inducing frequencies shown in Figure 1.
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Figure S5. Callisto: Differences (in %) from the nominal adiabatic case studied here,

for uniformly conducting oceans with the equivalent mean conductivity (top panel) and

with for uniformly conducting oceans with the equivalent conductivity at the ice–ocean

interface (bottom panel). Magenta curves are for thinner ice (∼30 km) and blue curves

are for thicker ice (∼100 km). All configurations assume an ocean with aqueous MgSO4.

Thick lines are higher salinity (10 wt%) and thinner lines are for oceans with 1 wt%.

Vertical lines are the strongest inducing frequencies shown in Figure 1.
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Figure S6. Real and imaginary components of the diffusive induction response to the

changing Bx component of Jupiter’s magnetic field at the main driving periods (Figure 1)

for {Europa,Ganymede,Callisto}. The real part (on the x-axis) is in phase with the

excitation field, and the imaginary part (on the y-axis) is 90◦ out of phase, as detailed in

Section 2.6. Subpanels on the left side show the lower-magnitude signals of panels on the

right. Filled symbols are for the higher concentrations. Upward and downward triangles

are for thicker ice ({30,95,130} km) and thinner ice ({5,26,100} km), respectively. Symbol

sizes scale with the period of the oscillation, denoting the orbital (largest), the synodic

(intermediate), and the synodic harmonic (smallest). Circles are added to the orbital

periods to guide the eye.
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Figure S7. Real and imaginary components of the diffusive induction responses

to the changing Bz component of Jupiter’s magnetic field at the main driving periods

(Figure 1) for {Europa,Ganymede,Callisto}. The real part (on the x-axis) is in phase

with the excitation field, and the imaginary part (on the y-axis) is 90◦ out of phase,

as detailed in Section 2.6. Subpanels on the left side show the lower-magnitude signals

of panels on the right. Filled symbols are for the higher concentrations. Upward and

downward triangles are for thicker ice ({30,95,130} km) and thinner ice ({5,26,100} km),

respectively. Symbol sizes scale with the period of the oscillation, denoting the orbital

(largest), the synodic (intermediate), and the synodic harmonic (smallest). Circles are

added to the orbital periods to guide the eye.
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Figure S8. Europa: Reproduction of main text Figure 2, with points showing the

coordinates of the studied models. The marked points match the identification scheme

described in Figure 7.
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Figure S9. Ganymede: Reproduction of main text Figure 3, with points showing the

coordinates of the studied models. The marked points match the identification scheme

described in Figure 7.
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Figure S10. Callisto: Reproduction of main text Figure 4, with points showing the

coordinates of the studied models. The marked points match the identification scheme

described in Figure 7.
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Europa Period (hr): 5.62 11.23 85.20

Bx (nT): 10.03 75.55 3.17

Tb T DI Docean BxAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.069 0.001 0.262 0.000 0.001

MgSO4 1 wt% Re Im Re Im Re Im

273.1 273.9 5 117 9.106 1.019 66.471 13.737 0.876 1.333

Pedersen 9.108 1.021 66.488 13.741 0.877 1.334

σ = 0.4533 S/m ∆Ae
1 (%) 0.36 -0.41 0.39 -0.08 0.85 0.50

σtop = 0.4107 S/m ∆Ae
1 (%) 0.10 7.75 -0.45 8.80 -12.31 -3.57

270.4 271.1 30 91 8.714 1.280 61.952 17.717 0.500 1.075

Pedersen 8.718 1.282 61.980 17.723 0.501 1.076

σ = 0.4132 S/m ∆Ae
1 (%) 0.22 -0.10 0.24 0.01 0.55 0.34

σtop = 0.3847 S/m ∆Ae
1 (%) -0.09 6.49 -0.88 6.09 -10.65 -4.23

MgSO4 10 wt% Re Im Re Im Re Im

272.7 274.1 5 124 9.552 0.359 70.730 3.681 2.803 0.510

Pedersen 9.553 0.361 70.733 3.687 2.803 0.510

σ = 3.7646 S/m ∆Ae
1 (%) 0.23 -3.83 0.33 -2.87 0.49 -0.10

σtop = 3.3197 S/m ∆Ae
1 (%) -0.01 2.28 -0.01 2.13 -0.34 11.33

269.8 270.8 30 96 9.075 0.357 67.382 3.517 2.635 0.668

Pedersen 9.076 0.359 67.386 3.526 2.636 0.669

σ = 3.3661 S/m ∆Ae
1 (%) 0.18 -2.30 0.23 -1.35 0.30 0.02

σtop = 3.0763 S/m ∆Ae
1 (%) -0.01 1.41 0.08 2.77 -0.81 7.99

Seawater 0.35165 wt% Re Im Re Im Re Im

274.9 275.7 5 117 9.076 1.102 65.860 14.958 0.758 1.275

Pedersen 9.078 1.103 65.879 14.961 0.759 1.276

σ = 0.4124 S/m ∆Ae
1 (%) 0.41 -0.33 0.44 -0.04 0.96 0.58

σtop = 0.3670 S/m ∆Ae
1 (%) 0.05 9.74 -0.77 10.45 -15.30 -5.17

270.0 270.7 30 91 8.667 1.428 60.705 19.584 0.407 0.990

Pedersen 8.670 1.430 60.738 19.589 0.408 0.991

σ = 0.3651 S/m ∆Ae
1 (%) 0.26 -0.07 0.29 0.03 0.65 0.42

σtop = 0.3339 S/m ∆Ae
1 (%) -0.23 8.27 -1.49 7.33 -13.72 -5.87

Seawater 3.5165 wt% Re Im Re Im Re Im

270.8 271.9 5 119 9.509 0.394 70.355 3.930 2.761 0.628

Pedersen 9.510 0.396 70.358 3.936 2.761 0.628

σ = 3.0760 S/m ∆Ae
1 (%) 0.24 -3.32 0.33 -2.24 0.46 -0.03

σtop = 2.7347 S/m ∆Ae
1 (%) -0.02 2.08 0.04 2.37 -0.74 10.53

268.2 269.1 30 91 9.032 0.374 67.196 3.767 2.564 0.793

Pedersen 9.033 0.376 67.201 3.777 2.564 0.793

σ = 2.8862 S/m ∆Ae
1 (%) 0.18 -1.89 0.22 -0.95 0.28 0.03

σtop = 2.6476 S/m ∆Ae
1 (%) 0.01 1.46 0.10 3.88 -1.26 7.23

Table S1. Europa: Magnetic induction field strengths {Re,Im}(BxAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the deviations from

the adiabatic case (in %) for the responses including a 100 km ionosphere with Pedersen

conductance of 30 S (Hartkorn & Saur, 2017), then for the ocean with uniform conductivity

set to the mean of the adiabatic ocean (σ), and then for the case with uniform conductivity

set to the value at the ice–ocean interface (σtop). The surface responses of the ionosphere

in the absence of an ocean are listed at the top of the table.
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Ganymede Period (hr): 5.27 10.53 171.57

Bx (nT): 1.76 16.64 0.14

Tb T DI Docean BxAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.001 0.000 0.007 0.000 0.000

MgSO4 1 wt% Re Im Re Im Re Im

270.7 279.0 25 442 1.598 0.100 14.669 1.293 0.094 0.047

Pedersen 1.598 0.100 14.669 1.293 0.094 0.047

σ = 0.5166 S/m ∆Ae
1 (%) 0.87 -8.82 1.23 -7.04 2.61 1.01

σtop = 0.3890 S/m ∆Ae
1 (%) -0.03 4.54 -0.14 5.86 -9.33 17.09

261.6 266.2 92 276 1.449 0.110 13.326 1.352 0.050 0.057

Pedersen 1.449 0.110 13.326 1.353 0.050 0.057

σ = 0.3322 S/m ∆Ae
1 (%) 0.95 -5.29 1.18 -2.65 2.44 1.41

σtop = 0.2623 S/m ∆Ae
1 (%) 0.08 3.83 0.45 10.74 -22.82 -3.32

MgSO4 10 wt% Re Im Re Im Re Im

270.2 278.3 25 458 1.670 0.037 15.614 0.490 0.122 0.015

Pedersen 1.670 0.037 15.614 0.491 0.122 0.015

σ = 4.0699 S/m ∆Ae
1 (%) 0.29 -10.57 0.41 -9.78 1.48 -3.07

σtop = 3.1150 S/m ∆Ae
1 (%) -0.00 2.03 -0.01 2.84 -0.18 7.55

260.0 263.5 93 282 1.530 0.045 14.262 0.586 0.112 0.019

Pedersen 1.530 0.045 14.262 0.586 0.112 0.019

σ = 2.3476 S/m ∆Ae
1 (%) 0.27 -7.17 0.38 -6.43 1.01 -0.28

σtop = 1.9483 S/m ∆Ae
1 (%) 0.00 1.71 -0.00 2.51 -0.11 15.65

bottom layer: 30 km 20 S/m ∆Ae
1 (%) 0.00 -0.00 0.00 -0.00 -1.20 0.20

Pedersen ∆Ae
1 (%) 0.00 0.10 0.00 0.04 -1.20 0.20

Table S2. Ganymede: Magnetic induction field strengths {Re,Im}(BxAen), in nT, at

the main inducing periods in Figure 1. For the different ocean compositions and thick-

nesses of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response

is listed first. These values are also shown in Figure S7. Following these are the devia-

tions from the adiabatic case (in %) for the responses including a 100 km ionosphere with

Pedersen conductance of 2 S (Hartkorn & Saur, 2017), then for the ocean with uniform

conductivity set to the mean of the adiabatic ocean (σ), and then for the case with uni-

form conductivity set to the value at the ice–ocean interface (σtop). The surface responses

of the ionosphere in the absence of an ocean are listed at the top of the table.
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Callisto Period (hr): 5.09 10.18 400.33

Bx (nT): 0.17 1.31 0.03

Tb T DI Docean BxAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.013 0.047 0.027 0.193 0.000 0.000

Cowling 0.154 0.065 0.832 0.701 0.000 0.001

MgSO4 1 wt% Re Im Re Im Re Im

257.4 259.6 99 132 0.137 0.015 1.038 0.221 0.000 0.003

Pedersen 0.139 0.017 1.054 0.228 0.000 0.003

Cowling 0.154 0.024 1.159 0.250 0.001 0.004

σ = 0.2307 S/m ∆Ae
1 (%) 0.49 -0.44 0.53 -0.08 1.45 0.96

σtop = 0.1965 S/m ∆Ae
1 (%) 0.06 14.62 -1.03 15.03 -26.08 -13.62

250.8 250.9 128 21 0.040 0.063 0.101 0.317 0.000 0.000

Pedersen 0.068 0.079 0.199 0.459 0.000 0.000

Cowling 0.159 0.055 0.950 0.656 0.000 0.001

σ = 0.0895 S/m ∆Ae
1 (%) 0.04 0.02 0.04 0.03 0.05 0.03

σtop = 0.0874 S/m ∆Ae
1 (%) -3.26 -0.99 -4.12 -1.87 -4.52 -2.28

MgSO4 10 wt% Re Im Re Im Re Im

255.7 256.9 99 130 0.141 0.005 1.094 0.053 0.009 0.011

Pedersen 0.142 0.007 1.098 0.062 0.009 0.012

Cowling 0.151 0.018 1.135 0.118 0.010 0.012

σ = 1.5256 S/m ∆Ae
1 (%) 0.20 -2.91 0.26 -1.74 0.69 0.39

σtop = 1.3789 S/m ∆Ae
1 (%) 0.01 1.12 0.12 3.18 -10.78 -1.59

250.8 250.9 128 21 0.130 0.035 0.847 0.461 0.000 0.001

Pedersen 0.135 0.037 0.897 0.467 0.000 0.001

Cowling 0.160 0.033 1.146 0.419 0.000 0.002

σ = 0.6025 S/m ∆Ae
1 (%) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

σtop = 0.6062 S/m ∆Ae
1 (%) 0.08 -0.53 0.28 -0.34 1.23 0.61

Table S3. Callisto: Magnetic induction field strengths {Re,Im}(BxAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the responses (in nT)

including a 100 km ionosphere with {Pedersen,Cowling} conductance of {800,6850} S

(Hartkorn & Saur, 2017), then the deviations from the adiabatic case (in %) for the ocean

with uniform conductivity set to the mean of the adiabatic ocean (σ), and then for the

case with uniform conductivity set to the value at the ice–ocean interface (σtop). The

surface responses of the ionosphere in the absence of an ocean are listed at the top of the

table.
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Europa Period (hr): 5.62 11.23 84.63

Bz (nT): 1.22 15.24 11.97

Tb T DI Docean BzAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.008 0.000 0.053 0.000 0.006

MgSO4 1 wt% Re Im Re Im Re Im

273.1 273.9 5 117 1.104 0.124 13.409 2.771 3.339 5.049

Pedersen 1.105 0.124 13.412 2.772 3.342 5.052

σ = 0.4533 S/m ∆Ae
1 (%) 0.36 -0.41 0.39 -0.08 0.85 0.50

σtop = 0.4107 S/m ∆Ae
1 (%) 0.10 7.75 -0.45 8.80 -12.31 -3.57

270.4 271.1 30 91 1.057 0.155 12.497 3.574 1.910 4.078

Pedersen 1.057 0.155 12.503 3.575 1.913 4.082

σ = 0.4132 S/m ∆Ae
1 (%) 0.22 -0.10 0.24 0.01 0.55 0.34

σtop = 0.3847 S/m ∆Ae
1 (%) -0.09 6.49 -0.88 6.09 -10.65 -4.23

MgSO4 10 wt% Re Im Re Im Re Im

272.7 274.1 5 124 1.158 0.044 14.268 0.743 10.590 1.916

Pedersen 1.158 0.044 14.268 0.744 10.591 1.916

σ = 3.7646 S/m ∆Ae
1 (%) 0.23 -3.83 0.33 -2.87 0.49 -0.10

σtop = 3.3197 S/m ∆Ae
1 (%) -0.01 2.28 -0.01 2.13 -0.34 11.33

269.8 270.8 30 96 1.101 0.043 13.592 0.709 9.962 2.510

Pedersen 1.101 0.044 13.593 0.711 9.963 2.510

σ = 3.3661 S/m ∆Ae
1 (%) 0.18 -2.30 0.23 -1.35 0.30 0.02

σtop = 3.0763 S/m ∆Ae
1 (%) -0.01 1.41 0.08 2.77 -0.81 7.99

Seawater 0.35165 wt% Re Im Re Im Re Im

274.9 275.7 5 117 1.101 0.134 13.285 3.017 2.893 4.833

Pedersen 1.101 0.134 13.289 3.018 2.896 4.836

σ = 0.4124 S/m ∆Ae
1 (%) 0.41 -0.33 0.44 -0.04 0.96 0.58

σtop = 0.3670 S/m ∆Ae
1 (%) 0.05 9.74 -0.77 10.45 -15.30 -5.17

270.0 270.7 30 91 1.051 0.173 12.245 3.951 1.556 3.755

Pedersen 1.051 0.173 12.252 3.952 1.559 3.759

σ = 0.3651 S/m ∆Ae
1 (%) 0.26 -0.07 0.29 0.03 0.65 0.42

σtop = 0.3339 S/m ∆Ae
1 (%) -0.23 8.27 -1.49 7.33 -13.72 -5.87

Seawater 3.5165 wt% Re Im Re Im Re Im

270.8 271.9 5 119 1.153 0.048 14.192 0.793 10.435 2.358

Pedersen 1.153 0.048 14.193 0.794 10.435 2.358

σ = 3.0760 S/m ∆Ae
1 (%) 0.24 -3.32 0.33 -2.24 0.46 -0.03

σtop = 2.7347 S/m ∆Ae
1 (%) -0.02 2.08 0.04 2.37 -0.74 10.53

268.2 269.1 30 91 1.095 0.045 13.555 0.760 9.695 2.979

Pedersen 1.095 0.046 13.556 0.762 9.696 2.979

σ = 2.8862 S/m ∆Ae
1 (%) 0.18 -1.89 0.22 -0.95 0.28 0.03

σtop = 2.6476 S/m ∆Ae
1 (%) 0.01 1.46 0.10 3.88 -1.26 7.23

Table S4. Europa: Magnetic induction field strengths {Re,Im}(BzAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the deviations from

the adiabatic case (in %) for the responses including a 100 km ionosphere with Pedersen

conductance of 30 S (Hartkorn & Saur, 2017), then for the ocean with uniform conductivity

set to the mean of the adiabatic ocean (σ), and then for the case with uniform conductivity

set to the value at the ice–ocean interface (σtop). The surface responses of the ionosphere

in the absence of an ocean are listed at the top of the table.
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Ganymede Period (hr): 5.27 10.53 171.57

Bz (nT): 1.78 2.42 0.38

Tb T DI Docean BzAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.000 0.001 0.000 0.001 0.000 0.000

MgSO4 1 wt% Re Im Re Im Re Im

270.7 279.0 25 442 1.618 0.101 2.137 0.188 0.248 0.122

Pedersen 1.618 0.101 2.137 0.188 0.248 0.122

σ = 0.5166 S/m ∆Ae
1 (%) 0.87 -8.82 1.23 -7.04 2.61 1.01

σtop = 0.3890 S/m ∆Ae
1 (%) -0.03 4.54 -0.14 5.86 -9.33 17.09

261.6 266.2 92 276 1.466 0.112 1.941 0.197 0.131 0.149

Pedersen 1.466 0.112 1.941 0.197 0.131 0.149

σ = 0.3322 S/m ∆Ae
1 (%) 0.95 -5.29 1.18 -2.65 2.44 1.41

σtop = 0.2623 S/m ∆Ae
1 (%) 0.08 3.83 0.45 10.74 -22.82 -3.32

MgSO4 10 wt% Re Im Re Im Re Im

270.2 278.3 25 458 1.690 0.038 2.274 0.071 0.320 0.039

Pedersen 1.690 0.038 2.274 0.071 0.320 0.039

σ = 4.0699 S/m ∆Ae
1 (%) 0.29 -10.57 0.41 -9.78 1.48 -3.07

σtop = 3.1150 S/m ∆Ae
1 (%) -0.00 2.03 -0.01 2.84 -0.18 7.55

260.0 263.5 93 282 1.548 0.045 2.077 0.085 0.294 0.051

Pedersen 1.548 0.045 2.077 0.085 0.294 0.051

σ = 2.3476 S/m ∆Ae
1 (%) 0.27 -7.17 0.38 -6.43 1.01 -0.28

σtop = 1.9483 S/m ∆Ae
1 (%) 0.00 1.71 -0.00 2.51 -0.11 15.65

bottom layer: 30 km 20 S/m ∆Ae
1 (%) 0.00 -0.00 0.00 -0.00 -1.20 0.20

Pedersen ∆Ae
1 (%) 0.00 0.10 0.00 0.04 -1.20 0.20

Table S5. Ganymede: Magnetic induction field strengths {Re,Im}(BzAen), in nT, at

the main inducing periods in Figure 1. For the different ocean compositions and thick-

nesses of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response

is listed first. These values are also shown in Figure S7. Following these are the devia-

tions from the adiabatic case (in %) for the responses including a 100 km ionosphere with

Pedersen conductance of 2 S (Hartkorn & Saur, 2017), then for the ocean with uniform

conductivity set to the mean of the adiabatic ocean (σ), and then for the case with uni-

form conductivity set to the value at the ice–ocean interface (σtop). The surface responses

of the ionosphere in the absence of an ocean are listed at the top of the table.
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Callisto Period (hr): 5.09 10.18 400.33

Bz (nT): 1.82 0.20 0.14

Tb T DI Docean BzAe
1

(K) (K) (km) (km) (nT)

Ionosphere Only Re Im Re Im Re Im

Pedersen 0.141 0.508 0.004 0.030 0.000 0.001

Cowling 1.677 0.708 0.130 0.110 0.000 0.005

MgSO4 1 wt% Re Im Re Im Re Im

257.4 259.6 99 132 1.489 0.166 0.162 0.034 0.002 0.014

Pedersen 1.511 0.190 0.165 0.036 0.002 0.015

Cowling 1.683 0.265 0.181 0.039 0.003 0.019

σ = 0.2307 S/m ∆Ae
1 (%) 0.49 -0.44 0.53 -0.08 1.45 0.96

σtop = 0.1965 S/m ∆Ae
1 (%) 0.06 14.62 -1.03 15.03 -26.08 -13.62

250.8 250.9 128 21 0.438 0.690 0.016 0.049 0.000 0.001

Pedersen 0.746 0.865 0.031 0.072 0.000 0.002

Cowling 1.738 0.603 0.148 0.102 0.000 0.006

σ = 0.0895 S/m ∆Ae
1 (%) 0.04 0.02 0.04 0.03 0.05 0.03

σtop = 0.0874 S/m ∆Ae
1 (%) -3.26 -0.99 -4.12 -1.87 -4.52 -2.28

MgSO4 10 wt% Re Im Re Im Re Im

255.7 256.9 99 130 1.539 0.057 0.171 0.008 0.046 0.059

Pedersen 1.546 0.079 0.171 0.010 0.047 0.059

Cowling 1.648 0.195 0.177 0.018 0.049 0.060

σ = 1.5256 S/m ∆Ae
1 (%) 0.20 -2.91 0.26 -1.74 0.69 0.39

σtop = 1.3789 S/m ∆Ae
1 (%) 0.01 1.12 0.12 3.18 -10.78 -1.59

250.8 250.9 128 21 1.420 0.386 0.132 0.072 0.000 0.006

Pedersen 1.476 0.399 0.140 0.073 0.000 0.006

Cowling 1.743 0.358 0.179 0.065 0.001 0.010

σ = 0.6025 S/m ∆Ae
1 (%) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

σtop = 0.6062 S/m ∆Ae
1 (%) 0.08 -0.53 0.28 -0.34 1.23 0.61

Table S6. Callisto: Magnetic induction field strengths {Re,Im}(BzAen), in nT, at the

main inducing periods in Figure 1. For the different ocean compositions and thicknesses

of the upper ice I lithosphere/ocean (DI/Docean; Figure 6), the adiabatic response is listed

first. These values are also shown in Figure S6. Following these are the responses (in nT)

including a 100 km ionosphere with {Pedersen,Cowling} conductance of {800,6850} S

(Hartkorn & Saur, 2017), then the deviations from the adiabatic case (in %) for the ocean

with uniform conductivity set to the mean of the adiabatic ocean (σ), and then for the

case with uniform conductivity set to the value at the ice–ocean interface (σtop). The

surface responses of the ionosphere in the absence of an ocean are listed at the top of the

table.
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