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Abstract

Estimating parameters for distributed hydrological models is a challenging and long studied task. Parameter transfer functions,

which define model parameters as functions of geo-physical properties of a catchment, might improve the calibration procedure,

increase process realism and can enable prediction in ungauged areas. We present the Function Space Optimization (FSO), a

symbolic regression method for estimating parameter transfer functions for distributed hydrological models. FSO is based on

the idea of transferring the search for mathematical expressions into a continuous vector space that can be used for optimization.

This is accomplished by using a text generating neural network with a variational autoencoder architecture, that can learn to

compress the information of mathematical functions. To evaluate the performance of FSO, we conducted a case study using a

parsimonious hydrological model and synthetic discharge data. The case study consisted of two FSO applications: Single-criteria

FSO, where only discharge was used for optimization and multi-criteria FSO, where additional spatiotemporal observations

of model states were used for transfer function estimation. The results show that FSO is able to estimate transfer functions

correctly or approximate them sufficiently. We observed a reduced fit of the parameter density functions resulting from the

inferred transfer functions for less sensitive model parameters. For those it was sufficient to estimate functions resulting in

parameter distributions with approximately the same mean parameter values as the real transfer functions. The results of the

multi-criteria FSO showed that using multiple spatiotemporal observations for optimization increased the quality of estimation

considerably.
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Abstract 15 

Estimating parameters for distributed hydrological models is a challenging and long studied task. 16 

Parameter transfer functions, which define model parameters as functions of geo-physical 17 

properties of a catchment, might improve the calibration procedure, increase process realism and 18 

can enable prediction in ungauged areas. We present the Function Space Optimization (FSO), a 19 

symbolic regression method for estimating parameter transfer functions for distributed 20 

hydrological models. FSO is based on the idea of transferring the search for mathematical 21 

expressions into a continuous vector space that can be used for optimization. This is 22 

accomplished by using a text generating neural network with a variational autoencoder 23 

architecture, that can learn to compress the information of mathematical functions. To evaluate 24 

the performance of FSO, we conducted a case study using a parsimonious hydrological model 25 

and synthetic discharge data. The case study consisted of two FSO applications: Single-criteria 26 

FSO, where only discharge was used for optimization and multi-criteria FSO, where additional 27 

spatiotemporal observations of model states were used for transfer function estimation. The 28 

results show that FSO is able to estimate transfer functions correctly or approximate them 29 

sufficiently. We observed a reduced fit of the parameter density functions resulting from the 30 

inferred transfer functions for less sensitive model parameters. For those it was sufficient to 31 

estimate functions resulting in parameter distributions with approximately the same mean 32 

parameter values as the real transfer functions. The results of the multi-criteria FSO showed that 33 

using multiple spatiotemporal observations for optimization increased the quality of estimation 34 

considerably. 35 

Plain Language Summary 36 

Hydrological models are widely used tools for predicting river runoff or other components of the 37 

hydrological cycle that are important for the management of water resources. Typically, 38 

processes in those models use parameters to characterize the unique aspect of the studied area. 39 

Usually, these parameters are optimized to produce a well performing prediction model. This 40 

potentially leads to a loss of their physical meaning. Preserving the physical meaning of model 41 

parameters can be achieved by defining them with a relationship to properties of the modelled 42 

area (soil properties, topography, …). These relationships are given as mathematical equations 43 

that compute parameters from a set of geo-physical properties. We here present a method to 44 

automatically estimate such equations, called Function Space optimization (FSO). FSO transfers 45 

the search for mathematical equations into an optimization problem by using a Neural Network 46 

to encode the information of potential equations. We show FSOs ability in a case study using a 47 

hydrological model and synthetic runoff data. The results show that FSO is able to approximate 48 

the true relationship sufficiently. Furthermore, we show that additional spatial observation data 49 

can increase FSO performance. 50 

 51 

 52 

 53 

 54 

 55 
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1 Introduction 56 

Distributed hydrological models are widely used tools to model spatiotemporal processes 57 

in catchments. The modelled processes include the simulation of spatially distributed land 58 

surface fluxes (e.g. Rakovec et al., 2016), estimating the hydrological response to climate change 59 

(e.g. Hattermann et al., 2017; Kay et al., 2015) or hydrological response to land use changes (e.g. 60 

Hundecha & Bárdossy, 2004; Wijesekara et al., 2012). In general, process-based distributed 61 

hydrological models can be classified in two groups: conceptual models and physically-based 62 

models (Devia & Ganasri, 2015). Both depend to some extend on parameter calibration (Beven, 63 

2001; Kirchner, 2006). Thus, in practice both approaches need to be calibrated and demand 64 

substantial expertise. Physically based models frequently lack observations necessary to define 65 

parameters correctly. In such situations, the uncertain parameters are either treated as physical 66 

constants (Clark et al., 2017), i.e. a fixed value for a larger area, or are optimized as well. Both 67 

methods most likely result in reduced process realism, while still producing reasonable runoff 68 

predictions.   69 

A solution to retain the process realism of hydrological models is to relate landscape 70 

properties to hydrologic behaviour (Clark et al., 2016). This can be accomplished by using geo-71 

physical information for defining model parameters. This is however non-trivial. As a matter of 72 

fact, Clark et al. (2017) described this as one of the major unsolved challenges in hydrologic 73 

parameter estimation. Most recently Blöschl et al. (2019) also mentions the “disentanglement 74 

and reduction of structural/parameter/input uncertainty in hydrological models” as one of the 75 

twenty-three unsolved problems in hydrology. Defining model parameters using the spatially 76 

distributed geo-physical properties of a basin, would: reduce parameter uncertainty, increase 77 

process realism and the predictive ability of the model, and allow for runoff prediction in 78 

ungauged basins. This challenge is closely related to the idea of regionalization, which can be 79 

summarized as the geographical migration of hydrological model structures (Buytaert & Beven, 80 

2009). Due to the problem of parameter equifinality in hydrological models (Beven, 2006), 81 

finding a relationship after parameter optimization might result in a weak or false regionalization 82 

(Hundecha & Bárdossy, 2004; Kumar et al., 2013; Samaniego et al., 2010). To prevent this, the 83 

simultaneous regionalization method (Abdulla & Lettenmaier, 1997; Hundecha & Bárdossy, 84 

2004; Parajka et al., 2005) was developed. This method tries to overcome this restriction by 85 

defining the relationship a priori in form of a transfer function and evaluating it in a set of 86 

validation basins. 87 

Samaniego et al. (2010) introduced the multiscale parameter regionalization (MPR) as an 88 

extension of simultaneous regionalization. MPR defines the parameters on the scale of geo-89 

physical observations before aggregating them to the model scale, thus including small scale 90 

variations in their computed parameters. Instead of defining transfer functions using a regression 91 

approach, they define mathematical functions of geo-physical properties of a catchment in MPR. 92 

This results in a constrained form of parameter calibration that preserves the physical 93 

interpretation of the parameter values and produces seamless parameter fields, i.e. they do not 94 

exhibit artificial spatial discontinuities often observed in distributed hydrological models 95 

(Samaniego et al., 2017). 96 

These mathematical functions are usually unknown (in many cases we do not even know 97 

if they exist in the first place). Hence, the main restriction of MPR today is the selection of 98 

suitable parameter transfer functions (Samaniego et al., 2017). Potential candidates for transfer 99 

functions for hydrological models could be pedotransfer functions. They relate soil properties to 100 
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soil parameters and were already investigated extensively in the past (see for example Van Looy 101 

et al., 2017). Besides those, functional relationships between model parameters and geo-physical 102 

properties are not well known and we still lack methods that perform adequate estimation. At the 103 

same time, we assume that they exist. 104 

Klotz et al. (2017) were the first to investigate a symbolic regression approach to 105 

automatically estimate transfer functions. The term symbolic regression refers to methods that 106 

search the space of mathematical expressions while minimizing some error metrics, usually 107 

based on evolutionary computation (Bongard & Lipson, 2007; Cornforth & Lipson, 2015; 108 

Schmidt & Lipson, 2009). By using a simple model and synthetic data, Klotz et al. (2017) 109 

showed that it is possible to automatically estimate transfer functions from stream data in a 110 

virtual setting.  111 

While the general idea of Klotz et al. seemed to work it had two main difficulties: a bias 112 

towards overly simple transfer functions  and the need to solve a difficult high dimensional 113 

discrete optimization problem. Both problems result from the representation of transfer functions 114 

as a discrete vector of a context free grammar (CFG). These limitations will be explained in 115 

detail in the methods part of this publication and are a main motivation for this work. 116 

To overcome these limitations the proposed method is based on the interpretation of 117 

mathematical functions as text, where each symbol of a function is seen as a “word”. Recent 118 

developments in Natural Language Processing (NLP) resulted in powerful Artificial Intelligence 119 

(AI) architectures which are able to translate (e.g. Srivastava et al., 2018), generate (e.g. Lu et 120 

al., 2018) and classify (e.g. Yang et al., 2019) text. While most symbolic regression methods are 121 

based on evolutionary algorithms, the method presented here is based on transferring the 122 

semantic information of text into a continuous space to adequately define nearness between 123 

functions. This is accomplished by a text generating neural network. The advantage we expect is 124 

that the search becomes more efficient and unbiased due to the continuous space and its 125 

properties. To our knowledge, only Gómez-Bombarelli et al. (2018) investigated an approach 126 

with a similar idea where they transferred discrete representations of molecules into a continuous 127 

vector representation. The application we present is focused on a relevant problem in the 128 

hydrological sciences, nevertheless it could potentially also be applied to other fields where 129 

functional relationships have to be derived from observational data. 130 

The search for parameter transfer functions is a complex task, therefore investigating 131 

ways to reduce its complexity and further constrain it is desirable. In recent years, multiple 132 

publications showed the value of using observations of spatially distributed fluxes and storage 133 

components for parameter calibration, additionally to stream data (e.g. Baroni et al., 2019; 134 

Demirel et al., 2018; Francke et al., 2018; Huang et al., 2019; Nijzink et al., 2018; Rakovec et al., 135 

2016; Stisen et al., 2011, 2018; Zink et al., 2018). Those additional observations can be included 136 

in the optimization procedure by a multi-criteria objective function. This constrains the 137 

parameter optimization and can improve the representation of hydrologic states and fluxes in a 138 

model (Zink et al., 2018). In this publication we will investigate the usefulness of multi-criteria 139 

optimization for finding transfer functions. 140 

This publication presents the Function Space Optimization (FSO) as a method for 141 

estimating parameter transfer functions for distributed hydrological models and applies the FSO 142 

method in a case study. The case study uses synthetic runoff data and consists of two tests. In the 143 

first test only runoff data is used for estimating transfer functions. In the second test we 144 
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investigate how the use of additional spatial-temporal information in a multi-objective 145 

optimization can improve the transfer function estimation.  146 

2 Methods 147 

2.2 The MPR method 148 

Let the two spatial scales used in the MPR approach be denoted by 𝒪 and ℳ, for the 149 

spatial scales of observations and the model, respectively.  Note that 𝒪 < ℳ is a necessary 150 

condition for MPR. Let 𝜃𝒪 ∈ ℝ𝑛 be the model parameters on the spatial scale of observation, 151 

defined by  152 

𝜃𝒪 =  𝑓𝑡𝑓(𝑿𝒪 , 𝛽).      ( 1 ) 

We call 𝑓𝑡𝑓: ℝ𝑛×𝑠𝑝 → ℝ𝑛 a transfer function. It uses a set of k numerical parameters 153 

𝛽 ∈ ℝ𝑘 to map the matrix 𝑿𝒪to 𝜃𝒪. Here, 𝑛 ∈ ℕ is the number of grid cells defining the 154 

catchment. The matrix 𝑿𝒪 ∈ ℝ𝑛×sp contains the sp ∈ ℕ physical properties of the catchment on 155 

the spatial scale of observations for each grid cell. We refer to those properties as spatial 156 

predictors. While 𝜃𝒪 and 𝑿𝒪 are spatially distributed, 𝛽 is a vector of global parameters. 157 

Model parameters on the spatial scale of the model, 𝜃ℳ ∈ ℝ, can thus be defined as 158 

𝜃ℳ =  𝑓𝑎(𝜃𝒪).      ( 2 ) 

Where 𝑓𝑎 denotes an aggregation function which upscales the values of 𝜃𝒪to 𝜃ℳ. 159 

Theoretically, any kind of aggregation function is possible. Samaniego et al. (2010) give the 160 

following examples for possible upscaling functions: Arithmetic mean, geometric mean, 161 

harmonic mean, maximum difference and the majority. There are no explicit averaging rules for 162 

various model parameters (Samaniego et al., 2010) and in the case of no existing theories, trying 163 

different basins and spatial scales might be the only procedure to identify them adequately 164 

(Samaniego et al., 2017). Another possible approach was described in a recent publication by 165 

Schweppe et al. (2019). They implemented MPR using the generalized mean with the form 166 

𝑀𝑝(𝑥1, … , 𝑥𝑛) = (
1

𝑛
∑ 𝑥𝑖

𝑝𝑛
𝑖=1 )

1

𝑝. The exponent 𝑝 ∈ ℝ  can be interpreted as a weighting, which 167 

gives either more importance to large values (𝑝 > 1) or smaller values (𝑝 < 1). The special case 168 

of 𝑝 = 1 is the arithmetic mean. This general form of averaging can be optimized and therefore 169 

included in any optimization routine.  170 

The problem of inferring the transfer of spatial predictors to model parameters can 171 

roughly be divided into two parts: (a) finding the correct transfer function and global parameters 172 

and (b) finding the correct aggregation function. We here apply the arithmetic mean aggregation 173 

and focus mainly on the estimation procedure of transfer functions and global parameters. For 174 

(b), one can either define an aggregation function using knowledge from previous investigations 175 

about the parameter, trying different aggregation functions; or use the generalized mean as an 176 

additional parameter to optimize.  177 

With this we can define the aim of any transfer function estimation procedure:  178 

𝑎𝑟𝑔 𝑚𝑖𝑛𝑓𝑡𝑓,𝛽 𝜀 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑓𝑡𝑓,𝛽 𝑓𝑙𝑜𝑠𝑠(𝑄𝑠𝑖𝑚, 𝑄𝑜𝑏𝑠)    ( 3 ) 

Where 𝜀 is the model loss, defined by a loss function 𝑓𝑙𝑜𝑠𝑠, which is dependent on the 179 

model simulated discharge 𝑄𝑠𝑖𝑚 and the observed discharge 𝑄𝑜𝑏𝑠. A suitable loss function must 180 
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be chosen depending on the specific problem, e.g. Nash-Sutcliffe efficiency (Nash & Sutcliffe, 181 

1970) for rainfall-runoff modelling.  182 

Considering these definitions, assumptions and restrictions, we developed a method to 183 

infer parameter transfer functions and their global numerical parameters simultaneously from 184 

data. 185 

2.2 Function Space Optimization (FSO) 186 

The main difficulty of inferring 𝑓𝑡𝑓, lies in the transfer of the task into an optimizable 187 

problem. In general, this means transferring it into a searchable numerical space. To make it 188 

searchable, close points in this space should also be close in their loss function, hence producing 189 

a smooth response surface. Since it is not possible to estimate the loss functions of all relevant 190 

transfer functions (a case where optimization would not be necessary), we have to find other 191 

properties which induce this closeness of loss function.  192 

This leads to the main idea of FSO: define a numerical space which defines distance 193 

between functions by (1) semantic closeness and (2) closeness in the resulting parameter 194 

distributions. Property (1) specifically includes the interpretation of functions as text, in which 195 

function symbols (e.g. “+”, “-“, “elevation”, …) are interpreted as words. Property (2) is 196 

necessary since physical catchment properties are often highly correlated. Hence, the functions 197 

“𝑠𝑎𝑛𝑑 × 0.3 + 1.3“ and “𝑐𝑙𝑎𝑦 × −0.38 + 1.6“ produce nearly the exact same parameters, even 198 

though their semantics are different. 199 

Property (2) implies the a priori choice of global parameters 𝛽 (the numerical values in 200 

the function) and results in distinguishing 𝑓𝑡𝑓 also by their specific 𝛽 values. This allows for the 201 

simultaneous optimization of 𝑓𝑡𝑓 and 𝛽, since they are both represented in the numerical space. 202 

For brevity, we will use the term 𝑓𝑡𝑓 or transfer function, as a synonym for 𝑓𝑡𝑓 and 𝛽. 203 

By transferring the problem in a numerical space with the above mentioned properties, 204 

any continuous global optimization method would be applicable. The steps for creating such a 205 

space and its use in the estimation of a transfer function will be described in the following 206 

sections. 207 

2.2.1 Defining relevant transfer functions 208 

In the first step of creating a search space, it is necessary to define a realm of possible 209 

transfer functions. A context-free grammar (CFG) (Knuth, 1965) is used for this purpose. In 210 

general, a CFG is a set of variables, operators and structural rules that can produce strings. It 211 

consists of nonterminal symbols and their corresponding mapping. A nonterminal symbol, in 212 

contrast to a terminal symbol, refers to a symbol that can still be further evaluated in the CFG 213 

(i.e. it has a mapping). An example of a simple CFG is given in Figure 1. A detailed and formal 214 

definition of CFGs can be found in Klotz et al. (2017). 215 

In the simple example in Figure 1 only two options are available for all nonterminals. 216 

However, in any actual application this number will be larger. The nonterminals of a CFG can be 217 

interpreted as pathways in a decision tree and the corresponding pathway options can be used to 218 

represent a function as a discrete vector. The lower left part of Figure 1 shows how a function 219 

can be derived from the CFG by choosing a certain pathway in its decision tree representation. 220 

The lower right part shows how the same function can be represented as a discrete vector. The 221 
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entries of this vector correspond to the chosen option for each of the nonterminal symbols. The 222 

discrete vector has the same length for every function in a grammar. Therefore, if a nonterminal 223 

(e.g. the second a in the vector representation in Figure 1) is not used in a function pathway, its 224 

entry is not affecting the resulting function. For that reason, one of the entries of the discrete 225 

vector in Figure 1 can either be 1 or 2 and still produce the same function.  226 

 227 

 228 

Figure 1. Example of a simple context free grammar (CFG) with an example function in its 229 

decision tree and vector representation. 230 

Klotz et al. (2017) used the vector representation of transfer functions as search space for 231 

solving the problem of 𝑓𝑡𝑓 estimation. Such process converts the search for the optimal transfer 232 

function into a discrete optimization problem. Even though this is a straightforward approach, it 233 

results in an ill-defined optimization space and a bias towards very simple solutions. Both issues 234 

result from the properties of the vector representation of a CFG. For simplicity we will here refer 235 

to the CFG vector representation of a transfer function as 𝑉𝐶𝐹𝐺.236 

Looking at the characteristics of 𝑉𝐶𝐹𝐺 regarding its ability to map functions to integers, 237 

two important properties can be noticed: (1) any distance metric for numerical vectors (e.g. 238 

Euclidean distance) does not reflect the closeness of the resulting functions in the objective 239 

function and (2) the representation of a function as 𝑉𝐶𝐹𝐺 is not unique. Both properties result 240 

from the fact that we use a discrete vector to represent a directed graph.  241 

These two properties influence the optimization of 𝑉𝐶𝐹𝐺 significantly. Property (1) results 242 

in a very difficult and ill-posed optimization problem, considering that close points in the vector 243 

space most likely will not reflect similar results in terms of the objective function. Property (2) 244 

results in an optimization problem which is strongly biased towards simple functions. Simple 245 

functions can generally be represented with less dimensions than more complex ones. Since 𝑉𝐶𝐹𝐺 246 

has the same dimensionality for all functions, this results in a large part of the 𝑉𝐶𝐹𝐺 that has no 247 

effect on the resulting functions. Hence, many different 𝑉𝐶𝐹𝐺 will produce the same function. 248 

The resulting increased probability of finding simpler functions compared to more complex 249 

functions leads to a bias in the optimization. 250 
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These issues were one of the main motivations for developing FSO. The main advantage 251 

of using a CFG for FSO, is the possibility of sampling functions, while preserving the defined 252 

function properties. Thereby, we use it to create a (very large) realm of possible function for the 253 

transfer function search. 254 

2.2.2 Variational Autoencoder 255 

One type of generative models often used in Natural language processing (NLP)   are 256 

autoencoders (Le Cun & Fogelman-Soulié, 1987). Autoencoders consist of two neural networks, 257 

an encoder network which maps the input to a continuous vector representation and a decoder 258 

network which reconstructs the encoded input from the continuous vector representation (see 259 

figure 2). A main advantage of using an autoencoder is the resulting low dimensional continuous 260 

vector representation of the inputs. This continuous vector representation is called the latent 261 

representation or latent space of the input information. After training an autoencoder to correctly 262 

encode and decode the information of a set of strings, the decoder can be used to generate strings 263 

from the latent space.  264 

When left unconstrained, the latent space could potentially be sparse, meaning that large 265 

areas within the space would not produce any valid functions. Consequently, it is necessary to 266 

constrain it. To include a constraint on the latent space, we use a variational autoencoder (VAE) 267 

architecture (Kingma & Welling, 2013). VAEs add stochasticity to the latent space, which results 268 

in a latent representation that is more robust to small variations. Furthermore, it enforces a 269 

certain distributional behaviour (usually Gaussian) onto the space by adding a penalty term. A 270 

definition of the VAE architecture is given in the supporting information (Text S1). A detailed 271 

definition and derivation of VAEs and their properties can be found in Kingma & Welling 272 

(2013). 273 

A simplified representation of the FSO VAE is shown in Figure 2. The encoder consists 274 

of a combination of word embeddings (Mikolov et al., 2013), convolutional layers (CNN) 275 

(LeCun et al., 1989) and feedforward neural network (FNN) layers (White & Rosenblatt, 1963) 276 

with selu (scaled exponential linear unit) activation functions (Klambauer et al., 2017). The 277 

decoder is a combination of FNN layers with selu activation functions and a long short-term 278 

memory (LSTM) network (Hochreiter & Schmidhuber, 1997). The chosen architecture for the 279 

encoding and decoding of function strings was inspired by an architecture developed by Gan et 280 

al. (2018). The additional encoding and decoding of the parameter distributions aims to further 281 

condition the latent space to also include the information about the resulting parameter 282 

distribution in the latent space. A detailed description of the FSO VAE is given in the supporting 283 

information (Text S2, Figure S1). 284 

To incorporate both semantic and parameter distribution information in the autoencoder, 285 

two kinds of inputs/outputs are used for training: the transfer function strings and the parameter 286 

distribution resulting from that transfer function. The transfer function is given as a vector of 287 

symbols, e.g. “sand”, “+”, “slope”. The dimension of this vector equals the maximum length of a 288 

transfer function created by the CFG. The parameter distribution is given as a numeric vector 289 

containing the 0.1 to 0.9 quantiles in 0.1 steps and is estimated from the spatial predictors of the 290 

catchment. The FSO VAE encodes this information into a 6-dimensional numerical space that 291 

we call Function Space. 292 

 293 
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 294 

Figure 2. A simplified depiction of the FSO Variational Autoencoder with an example function 295 

that gets transferred to the Function Space and reconstructed to its original form. The inputs are 296 

transferred to the Function Space using the encoder network. The Function Space representation 297 

is then passed through the decoder network to reconstruct the inputs. The Function Space is a 6-298 

dimensional continuous vector space with a Gaussian distribution. 299 

The FSO VAE is trained to minimize three type of losses: (1) The cross-entropy loss 300 

resulting from the reconstruction of functions strings, (2) the mean squared error of the 301 

parameter distribution reconstruction and (3) the Kullback-Leibler divergence (Kullback & 302 

Leibler, 1951) between the Function Space and a Multivariate normal distribution. They are 303 

weighted with factors to balance their importance during training. A detailed description of the 304 

loss function is given in the supporting information (Text S2). 305 

After training, the VAE is able to reconstruct the input data, and the decoder can generate 306 

a function from every point in Function Space, which has the same properties as defined by the 307 

CFG. 308 

2.2.3 Normalization 309 

To enable the unbiased estimation of universally applicable transfer functions, a cascade of 310 

scaling is necessary to: 311 

 make the spatial predictors of the catchment comparable, 312 
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 make the transfer functions usable in areas where the range of spatial predictors is outside 313 

of the observed range of the catchment used for transfer function estimation, 314 

 be able to predict a certain model parameter in the correct range of its feasible values. 315 

Scaling for any values x to an arbitrary interval [𝑎, 𝑏] is done in FSO by applying the min-316 

max scaling function: 𝑥[𝑎,𝑏] =  𝑎 + 
(𝑥−min (𝑥))(𝑏−𝑎)

max(𝑥)−min (𝑥)
. 317 

To be able to compare the information from multiple spatial predictors of the catchment, they 318 

are scaled to the interval [0,1] (i.e. data normalization). An issue of trying to find parameter 319 

transfer functions that are universally applicable is the dependency on the scale of the catchment 320 

that was used to derive it. To avoid this restriction, the scaling to the interval [0,1] is done by 321 

using their physically possible or reasonable minimum and maximum values. E.g. all slope 322 

values are scaled from the interval [0,90] to [0,1]. Thus, catchment characteristics outside the 323 

observation range of the current data set will still be in the range [0,1]. 324 

To be able to estimate the parameters in their corresponding scale, the values resulting from 325 

applying the transfer functions are rescaled to the parameter bounds. The parameter bounds need 326 

to be chosen for each parameter and should reflect the values in which the parameters have any 327 

(physical) meaning. This allows for global scale application. 328 

2.2.4 Optimization in Function Space (FSO) 329 

The full workflow of FSO is shown in Figure 3. It consists of two main parts: the 330 

assembly phase and the optimization phase. The steps of the assembly phase were already 331 

described in sections 2.1.1-2.1.3. It includes the selection of parameters, the selection of spatial 332 

predictors, the CFG definition and the training of the VAE.  333 

The optimization phase of the FSO is a fully automatic procedure that uses the text 334 

generating VAE which was trained in the assembly phase. It searches for the optimal point in the 335 

Function Space (i.e. transfer function(s)) to minimize the loss function. In each iteration a new 336 

function is generated from the Function Space, which is used to produce a parameter field. This 337 

new parameter field is used in the hydrological model and results in a loss function output. After 338 

a previously defined number of iterations, the function with minimum loss is chosen as the 339 

estimation for the parameter transfer function.  340 

In general, any continuous optimization algorithm can be applied in the optimization 341 

phase. We experimented with three commonly used algorithms: Genetic Algorithm (Holland, 342 

1975), Dynamically Dimensioned Search (Tolson & Shoemaker, 2007) and the Particle Swarm 343 

Optimization (Kennedy & Eberhart, n.d.). All of them were able to solve the given optimization 344 

problem equally well. Our tests showed that the Dynamically Dimensioned Search (DDS) 345 

performed slightly more consistently than the other two. Consequently, we decided on using the 346 

DDS for the optimization in function space. 347 

FSO can optimize multiple parameters at the same time. This can be done by optimizing 348 

multiple Function Spaces. Since each function is represented as a 6-dimensional continuous 349 

vector in function space, optimizing two transfer functions results in a 12-dimensional 350 

continuous optimization problem.  351 
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 352 

Figure 3. The Function Space Optimization workflow. It consists of two phases, the assembly 353 

phase with all the necessary steps to train the FSO VAE and the optimization phase in which a 354 

continuous optimization algorithm is used to optimize in Function Space. The decoder part of the 355 

VAE is used in the optimization loop to generate new functions from Function Space. 356 

3 Case Study 357 

To test whether FSO is able to sufficiently approximate transfer functions, we conducted 358 

a test in a virtual reality setting. This case study applies FSO on a parsimonious distributed 359 

model using synthetic runoff data. 360 

3.1 Mur catchment 361 

The case study was performed using hydrological, meteorological, climate and 362 

geographic data from the Mur catchment (see Figure 4), which is located in the south-eastern 363 

part of Austria and has an area of 10,420 km2. For testing FSO, we intended to use data from a 364 

catchment with a wide range in physical properties to explore its applicability on a large scale. 365 

As the Mur consists of high alpine areas in the north and significantly lower areas in the south 366 

and very diverse geology, it fulfills this condition. Another reason for selecting this catchment 367 

was to compare the further development in the regionalization method with the work by Klotz et 368 

al. (2017) 369 

 370 
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 371 

Figure 4. The digital elevation model of the Mur catchment on a 2 km grid. The 27 headwater 372 

basins used for training FSO are shown in blue. The top right part of the figure depicts the 373 

catchments locations in Austria and its elevation distribution. 374 

The 250 m gridded geo-physical properties used in this case study are: height above sea 375 

level (elevation), slope (slope), height above nearest drainage (hand), percentage of clay (clay), 376 

percentage of sand (sand), soil depth (bdim), the enhanced vegetation index (evi) and a noise 377 

layer (noise). Topographic properties (elevation, slope, hand) were calculated from a digital 378 

elevation model obtained from Rechenraum e.U (2012) and soil information (clay, sand, bdim) 379 

was obtained from SoilGrids (Hengl et al., 2017). SoilGrids is a system for digital soil mapping 380 

using state-of-the-art machine learning. The evi layer was derived by averaging an evi time series 381 

for the years 2000-2017 from Didan (2015). For further information about the enhanced 382 

vegetation index refer to Huete et al. (2002). In addition to the observation data, we generated a 383 

noise layer (noise) that consists of values sampled from a uniform distribution over the interval 384 

[0,1]. The noise layer was created for further testing FSO by providing irrelevant information as 385 

a possible predictor. 386 
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All geo-physical properties are strongly correlated with an overall mean absolute 387 

correlation coefficient of 0.55 (these values do not include noise). Very high correlation 388 

coefficients could be observed for clay/sand (-0.95), clay/elevation (-0.83) and elevation/bdim (-389 

0.82) and the lowest was observed for evi/hand (-0.35). 390 

The meteorological data used in this case study are air temperature, and precipitation 391 

from the INCA analysis (Haiden et al., 2011, 2014). The potential evapotranspiration was 392 

computed using the Thornthwaite equation (Thornthwaite & Mather, 1957). 393 

To evaluate the predictive capability of the algorithm, 2 data splits were applied. First, we 394 

split the time series and used the period 01.2003- 08.2009 for training and the years 09.2009 – 395 

12.2012 for testing. Secondly, we split the basins and used 27 headwater basins (marked as blue 396 

in Figure 4) for training and 95 basins for testing. Thereby, we not only estimate the ability to 397 

predict an independent time period, but also the ability to predict runoff in ungauged basins. 398 

3.2 Distributed GR4J 399 

For testing purposes, the parsimonious hydrological model  GR4J (Perrin et al., 2003) 400 

was chosen. GR4J is a lumped hydrological model for predicting daily mean runoff.  It is a 401 

simple 4 parameter model, consisting of two storages and two unit hydrographs (Sherman, 402 

1932). The GR4J model structure can be seen in the middle part of Figure 5a. To implement 403 

GR4J as a distributed model and to include snow and interception processes, we combined it 404 

with the routing, interception and snow module from the COSERO (Continuous SEmidistributed 405 

RunOff model) model. It is a HBV-type model which was developed by Nachtnebel et al. (1993) 406 

and was applied in lumped and semi-distributed (Kling et al., 2015; Stanzel et al., 2008) and in 407 

distributed settings (Frey & Holzmann, 2015; Herrnegger et al., 2012, 2018; Kling et al., 2006; 408 

Kling & Nachtnebel, 2009; Wesemann et al., 2018). We will refer to this extended version of 409 

GR4J as d-GR4J. The complete d-GR4J model structure can be seen in Figure 5a.  410 

GR4J consists of 4 parameters: X1 production store maximal capacity (mm), X2 411 

catchment water exchange coefficient (mm/day), X3 one-day maximal capacity of the routing 412 

reservoir (mm) and X4 unit hydrograph time base (days). A more detailed description of the 413 

GR4J model is given by Perrin et al. (2003). All parameters from the COSERO part of d-GR4J 414 

were taken from previous calibration of COSERO for the Mur catchment, leaving only the 4 415 

GR4J parameters to be optimized.   416 

In order to demonstrate that d-GR4J is generally able to adequately describe catchment 417 

hydrological processes, we performed an initial conventional parameter optimization against 418 

observed discharge data, using the DDS algorithm. To further investigate whether the GR4J 419 

parameters are a reasonable choice for the parameter transfer function estimation, we examined 420 

their sensitivity with a Monte Carlo parameter simulation and a global parameter sensitivity 421 

estimation using the Fourier amplitude sensitivity test (FAST) (Cukier et al., 1978) which was 422 

already applied on multiple hydrological models (e.g. Francos et al., 2003; Y. Gan et al., 2014; 423 

Ratto et al., 2001; Reusser et al., 2011).  While a Monte Carlo simulation provides useful insight 424 

it does not provide a quantitative sensitivity estimation (Wang, 2012). FAST estimates the 425 

fractional contribution of individual parameters to the variance of the output and therefore 426 

quantifies the sensitivity of individual parameters.  427 

 428 
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 429 

Figure 5. a d-GR4J model structure, divided into parts from COSERO and GR4J. b Overview of 430 

the case study model setup.  431 

3.3 Design of a “virtual hydrological reality” 432 

Prior to real world applications, it is necessary to test the principle functionality of FSO 433 

under more controlled conditions to avoid possible sources of errors such as measurement errors, 434 

wrong assumptions for model parameters or missing spatial predictors. We used real observation 435 

data for the catchment properties, but generated the discharge values synthetically, using a priori 436 

defined “true” transfer functions. These true transfer functions are used to generate d-GR4J 437 

parameter fields and, with observed climate data as input, time series of discharge data for each 438 

sub-basins. In the following, these discharge data were treated as observations from which the 439 

true transfer functions were re-estimated.  440 

Our objective is to re-estimate transfer functions for three GR4J parameters: X1, X3 and 441 

X4. The parameter X2 allows for water inflow or outflow of the basin. Because X2 is not 442 

reflected in precipitation or discharge, was set to 0. Hence, we assumed that there is no 443 

unobserved water in- or outflow in the catchment.  444 
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We chose the true underlying transfer functions that use one or two different spatial 445 

predictors. The transfer functions for the 3 parameters are chosen to reflect the possible physical 446 

interpretation of the parameters, e.g. large values of evi and soil depth (bdim) result in a large 447 

production store. Their resulting parameter fields are shown in Figure 6a-c. The chosen true 448 

transfer functions are: 449 

𝑋1 =  0.5 + 𝑒𝑣𝑖 ∙ 1.5 + 𝑒𝑥𝑝(𝑏𝑑𝑖𝑚) ∙ 0.9    ( 4 ) 

𝑋3 =  −1.3 − 𝑙𝑜𝑔 (𝑠𝑙𝑜𝑝𝑒)      ( 5 ) 

𝑋4 =  −1.5 − 𝑙𝑜𝑔(ℎ𝑎𝑛𝑑)  ∙ 0.2 − 𝑠𝑙𝑜𝑝𝑒 ∙ 1.5   ( 6 ) 

The CFG for the case study is chosen to be complex, to create a large search space. It 450 

included multiple recursive nonterminals, exp/log functions, power functions, reciprocal 451 

functions and linear combinations. Additionally, to include the search for the global parameters 452 

𝛽, the numerical values -1.5 to 1.5 in steps of 0.1 are added as terminal symbols. Since all spatial 453 

predictors are in the interval [0,1], the range [-1.5, 1.5] for numerical values should include 454 

enough complexity to simulate a real task. Nevertheless, in a real world application it might be 455 

helpful to increase that range and reduce the step size, which would only increase computation 456 

time in the assembly phase of FSO and not for the optimization. The complete CFG used in the 457 

case study is shown in the supporting information (Figure S2). The three true transfer functions 458 

can be generated from the CFG and are therefore included in our possible realm of transfer 459 

functions. 460 

 461 

Figure 6. True parameter field for the 3 d-GR4J parameters a X1, b X3 and c X4. 462 

 463 
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From this CFG we sampled 5 million unique functions. We used 80% as the training set 464 

and 20% as the validation set for the VAE. The minimum validation loss was reached after 132 465 

epochs of training with a batch size of 1000. 466 

After selecting the true transfer functions, the resulting parameter fields are used to 467 

produce a synthetic discharge time series using d-GR4J on a 2 km grid. Also, the internal states 468 

of the storage S and R for each grid and each time step are calculated. An overview of the case 469 

study model setup is shown in Figure 5b.  470 

3.4 Applying FSO 471 

The performance of FSO is strongly dependent on the choice of the loss function floss. 472 

Therefore, two different tests were conducted using:  473 

1. a single-objective criterion, with loss only dependent on discharge, and 474 

2. a multi-objective criterion, with loss dependent on discharge and state “observations”. 475 

For both tests, the optimization procedure was repeated five times to evaluate the variations 476 

in the retrieval process, while a maximum number of 3000 iterations for the DDS global 477 

optimization algorithm was chosen.  478 

3.4.1 Test 1: single-objective criteria 479 

Test 1 focuses on estimating transfer functions by considering a loss that is only 480 

dependent on the predicted and observed discharge. The loss function is formulated similar to the 481 

Nash-Sutcliffe efficiency 𝑁𝑆𝐸 =  
∑ (𝑄𝑚[𝑡] − 𝑄𝑜[𝑡])2T

it= 1

∑ (𝑄𝑚[𝑡] − 𝑄𝑜̅̅ ̅̅ )2T
it= 1

 (Nash & Sutcliffe, 1970), using a weighted 482 

mean NSE value of the form 483 

𝑁𝑆𝐸 𝑤𝑚 =  
∑ 𝑤𝑖𝑁𝑆𝐸(𝑄𝑠,𝑖,𝑄𝑝,𝑖)𝑚

𝑖 = 1

∑ 𝑤𝑖
𝑚
𝑖 = 1

,     ( 7 ) 

with the weights 𝑤𝑖 =  1 − 𝑁𝑆𝐸(𝑄𝑠,𝑖 , 𝑄𝑝,𝑖) for all 𝑖 ∈ {1, . . . , 𝑚}, which is a weighted arithmetic 

mean over m basins. 𝑄𝑠,𝑖 and 𝑄𝑝,𝑖 are the synthetic and predicted time series of discharge for 

basin i, respectively. By using this form of averaging, the basins with the lowest NSE values get 

the highest weight, while basins with NSE close to 1 become unimportant. This forces the 

optimization procedure to estimate transfer functions that operate equally well in all catchments.  

Finally, an additional penalty term is added to the loss function to reduce the possibility 484 

of overfitting. This term penalizes for the transfer function length, i.e. the number of symbols 485 

used in a function, which can be interpreted as the function complexity. We defined it as 486 

𝑙𝑜𝑠𝑠𝑠𝑖𝑧𝑒 =  transfer function length ⋅  0.001 resulting in 487 

𝑓𝑙𝑜𝑠𝑠 = − 𝑁𝑆𝐸𝑤𝑚 +  𝑙𝑜𝑠𝑠𝑠𝑖𝑧𝑒 .    ( 8 ) 

3.4.2 Test 2: multi-objective criteria 488 

To implement a multi-criteria optimization in FSO, we adapt 𝑓𝑙𝑜𝑠𝑠 to include the loss 489 

from additional sources. In Test 2, we assume the existence of an additional observation of time 490 

series of our GR4J system states S (production store) and R (routing store). and define a multi-491 

criteria weighted mean NSE as 492 
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𝑁𝑆𝐸𝑤𝑚 =
∑ 𝑤𝑖𝑁𝑆𝐸𝑚𝑢𝑙𝑡𝑖,𝑖

𝑛
𝑖 = 1

∑ 𝑤𝑖
𝑛
𝑖 = 1

,     ( 9 ) 

with  𝑁𝑆𝐸𝑚𝑢𝑙𝑡𝑖,𝑖  =  0.5 ⋅  (𝑁𝑆𝐸(Qs,i, Qp,i)  +  NSE(States,i, Statep,i)) and the weights 𝑤𝑖 =  1 −493 

𝑁𝑆𝐸𝑚𝑢𝑙𝑡𝑖,𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, . . . , 𝑛}. States,i and Statep,i are the mean synthetic and mean predicted 494 

time series of model states for basin i, respectively. 𝑁𝑆𝐸𝑚𝑢𝑙𝑡𝑖,𝑖 is the arithmetic mean of the NSE 495 

values used in the multi-criteria objective of basin i. Hence, when optimizing discharge and a 496 

model state, it results in using the mean of two NSE values. Using equation 8 again, we can thus 497 

define our multi-criteria loss function.  498 

We applied the multi-criteria FSO using S, R and both simultaneously. For brevity, we 

here present only the optimization using the time series of state S. The results for the other two 

can be found in the supporting information (Figures S5 and S6). 

4 Results 499 

4.1 Function Space 500 

Firstly, we will illustrate the properties of the FSO function space by analyzing the 501 

generated functions and resulting parameter distributions when moving on a straight line 502 

between two points in the space. As distance in function space should not only reflect semantic 503 

closeness, but also closeness in their resulting parameter distributions, we expect to see a gradual 504 

change in both properties in this linear interpolation, thus indicating an appropriate searchability. 505 

 506 

Figure 7. A linear interpolation in Function Space. a The functions generated along a straight 507 

line between start and end points in function space. b The corresponding quantiles of scaled 508 

parameter values.  509 

We chose two random points in Function Space, 𝐹1 and 𝐹2, and linearly interpolate 510 

between them 𝐹(𝑤)  =  𝑤 ∙ 𝐹1 + (1 − 𝑤) 𝐹2, with weights w ranging from 0.1 to 0.9 with 0.1 511 

steps between them. Hence, we produce new functions from FS while moving on a line between 512 

𝐹1 and 𝐹2 on every tenth of the way. The corresponding functions are shown in Figure 7. Figure 513 

7a shows the generated function strings. The further away we move from the starting point, the 514 
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more function strings resemble the end point function. Figure 7b shows the corresponding 515 

parameter distributions resulting for all functions in this linear interpolation. Here we observe 516 

that functions closer to each other in FS are also closer in terms of produced parameter 517 

distribution. 518 

4.2 Global Sensitivity and Model Performance 519 

The conventional optimization on real observation data showed that d-GR4J is able to 520 

map observed runoff dynamics resulting in a mean basin NSE of 0.78 with a minimum NSE of 521 

0.57 and a maximum NSE of 0.91. Therefore, we can assume a general ability of d-GR4J to 522 

model rainfall-runoff processes in catchments. A relevant property of d-GR4J regarding the 523 

estimation of transfer functions is the parameter sensitivity. Figure 8a-c shows the parameter 524 

response surfaces resulting from the Monte-Carlo simulations. We can see peaks for all 3 525 

parameters and a clearly defined response surface. Figure 8d shows the results from the 526 

parameter sensitivity analysis using FAST. X1 has the highest sensitivity with ~40% 527 

contribution to the output variance, while X3 and X4 are less sensitive with ~20% and ~5%, 528 

respectively. 529 

 530 

Figure 8. Parameter sensitivity of one sub-basin of the Mur catchment. a-c Parameter response 531 

surface for all three d-GR4J parameters with NSE values cut off below 0.  d Results from the 532 

FAST sensitivity analysis showing the percentage contribution of individual parameters to the 533 

variance of the output. 534 

4.3 Case study: single-criteria FSO 535 

Figure 9a shows the training performance of all 5 single-criterium FSO optimization runs 536 

(see 3.4), i.e. results of the training basins for the training time period. The different runs are 537 

distinguished by their color. The two line-types show the mean NSE (solid) and 𝑓𝑙𝑜𝑠𝑠 (dashed) as 538 

defined in equation 5. It is clearly visible that the performance of FSO is stable, with a spread of 539 

mean basin NSE of less than 0.001. Furthermore, all runs arrive at a solution with NSE > 0.995 540 

in less than 250 iterations.  541 
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 542 

Figure 9. a Single-criteria FSO training results for all 5 runs. b Summary of performance during 543 

testing time period for training and testing basins. 544 

For brevity, we will show the detailed results of one run only, which describes the 545 

general behaviour of all runs. Figure 9b shows the model performance in the testing time period. 546 

It is notable that we can observe the same quality of results for training (“gauged”) and test 547 

(“ungauged”) basins and both are close to the possible maximum, with an NSE of > 0.999. 548 

Naturally, such high NSE values are only possible in a synthetic setting in which we use the 549 

correct model and error free observation data.  550 

The comparison between true 𝑓𝑡𝑓 and single-criteria FSO estimated 𝑓𝑡𝑓 can be seen in 551 

Table 1. FSO was able to predict the correct spatial predictor for X3 and one of the two spatial 552 

predictors of X1. Examining the true  𝑓𝑡𝑓 for X1 we can note that due to the exponent, bdim has a 553 

larger influence of the parameter values and is therefore much easier to find than evi.  554 

 555 

Parameter True 𝑓𝑡𝑓 FSO estimated 𝑓𝑡𝑓 

X1 0.5 +  𝑒𝑣𝑖 ⋅  1.5 +  exp(𝐛𝐝𝐢𝐦) ⋅  0.9 1.1 +  ℎ𝑎𝑛𝑑 ⋅  1.3 −  elevation +  exp(𝐛𝐝𝐢𝐦) 

X3 −1.3 −  𝑙𝑜𝑔(𝒔𝒍𝒐𝒑𝒆) 1.5 − 𝒔𝒍𝒐𝒑𝒆 0.2⁄  

X4 −1.5 −  𝑙𝑜𝑔(ℎ𝑎𝑛𝑑)  ⋅  0.2 −  slope ⋅  1.5 0.7 +  𝑙𝑜𝑔(𝑐𝑙𝑎𝑦) 

Table 1. Comparison of the true 𝑓𝑡𝑓 and the single-criteria FSO estimated 𝑓𝑡𝑓. 556 

Figure 10 shows the estimated and true parameter distributions and scatterplots for all 3 557 

optimized parameters. The means of the predicted parameter values are nearly the same for all 558 

three parameters, with X1 having the largest difference (10.88 or 3.67% of the total parameter 559 

value range). We can see that for X1 and X3, the parameter distributions of true and predicted 560 

𝑓𝑡𝑓 are nearly identical for smaller values and more diverging for larger values. Figure 10b 561 

shows the linear relationship corresponding to a correlation of 0.98 for the predicted and true 562 

values of X1. Here, the predicted values of X3 seem to have a non-linear relationship but 563 

nevertheless a correlation of 0.96. For X4 we see a larger difference in the parameter density 564 

(correlation of 0.71), but it is notable that the mean value is nearly identical.  565 

A comparison of the estimated parameter fields and the true parameter fields are shown 566 

in the supporting information (Figure S3). 567 

 568 
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 569 

Figure 10. Single-criteria FSO results for all 3 optimized d-GR4J parameters on the 2 km model 570 

scale. a Estimated and true parameter densities with their mean values. b Scatterplots of true vs. 571 

estimated parameters and fitted linear model. 572 

4.4 Case study: multi-criteria FSO 573 

Figure 11a shows the training performance of all 5 multi-criteria FSO optimization runs 574 

using the d-GR4J state S as additional optimization criteria. The state S is only controlled by the 575 

parameter X1, hence we expect an improvement in estimating 𝑓𝑡𝑓 for X1. Compared to the 576 

single-criteria FSO, multi-criteria FSO has a slightly increased variance in 𝑓𝑙𝑜𝑠𝑠. It is still very 577 

stable in regards to the mean NSE. Only run 3 is somewhat different with a training mean NSE 578 

of 0.988.  579 

 580 

Figure 11. a multi-criteria FSO trainings results for all 5 runs. b Summary of performance 581 

during testing time period for training and testing basins. 582 

 583 
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For brevity, we will show the detailed results of one run only, which describes the 584 

general behaviour of all runs. Figure 11b shows the model performance in the testing time 585 

period. It is notable that we can observe the same quality of results for gauged and ungauged 586 

basins with both having an NSE ≥ 0.998.  587 

The comparison between true 𝑓𝑡𝑓 and multi-criteria FSO estimated 𝑓𝑡𝑓 can be seen in 588 

Table 2. FSO was able to predict both spatial predictors of X1 correctly. The slope was included 589 

in the estimated 𝑓𝑡𝑓 of X3 and X4 correctly, otherwise the structure of the functions is different. 590 

Table 2. Comparison of the true 𝑓𝑡𝑓 and the multi-criteria FSO estimated 𝑓𝑡𝑓. 591 

592 
Figure 12. Results from multi-criteria FSO, using the information from the S of the d-GR4J 593 

model, which is controlled by the parameter X1. All 3 optimized d-GR4J parameters are 594 

compared to the true parameters on the 2 km model scale. Estimated and true parameter densities 595 

are shown in a. Scatterplots of true vs. estimated parameters and fitted linear model are shown in 596 

b. 597 

Figure 12 shows the estimated and true parameter distributions and scatterplots for all 3 598 

multi-criteria optimized parameters. The distribution of X1 is perfectly matched and the 599 

Parameter True 𝑓𝑡𝑓 FSO estimated 𝑓𝑡𝑓 

X1 0.5 +  𝐞𝐯𝐢 ⋅  1.5 +  exp(𝐛𝐝𝐢𝐦) ⋅  0.9 0.8 +  exp(𝐞𝐯𝐢)  + 𝐛𝐝𝐢𝐦² 0.8⁄  

X3 −1.3 −  log(𝐬𝐥𝐨𝐩𝐞) log(bdim) +  𝐬𝐥𝐨𝐩𝐞 

X4 −1.5 −  log(hand)  ⋅  0.2 −  𝐬𝐥𝐨𝐩𝐞 ⋅  1.5 log(clay)  − (bdim ⋅ log(𝐬𝐥𝐨𝐩𝐞) + 𝐬𝐥𝐨𝐩𝐞) 
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predicted values have a nearly perfect linear relationship with a correlation coefficient of 1. 600 

However, X3 and X4 are less well matched compared to the single-criteria FSO results with 601 

most X3 values being underestimated and most X4 values being overestimated. Due to the small, 602 

but existing variance in the estimation procedure, some runs performed better than the one 603 

shown here, but most results were similar to the one shown in Figure 12. We chose this run as it 604 

shows the general trend of estimation results. 605 

A comparison of maps of the estimated parameter fields and the true parameter fields are 606 

shown in the supporting information (Figure S4). 607 

5 Discussion and outlook 608 

In this study, we present a method to automatically estimate parameter transfer functions 609 

for distributed hydrological models. Defining parameters as functions of the geo-physical 610 

properties of a basin results in an increased physical interpretability of the model parameters, 611 

seamless parameter fields and the possibility of prediction in ungauged basins. Our approach is 612 

based on the compression of functions from a context free grammar into a searchable continuous 613 

space (Function Space), which subsequently can be used for continuous optimization.  614 

To demonstrate the predictive ability of FSO, we conducted a case study using synthetic 615 

data to avoid any influence of potential sources of errors, such as: measurements errors and 616 

model assumptions, on the estimation procedure. The underlying true transfer functions were 617 

defined a priori and used for generating synthetic parameter fields that, in combination with the 618 

rainfall-runoff model d-GR4J, result in synthetic runoff and storage data.  619 

We demonstrated that the developed Function Space has the desired properties of being 620 

“searchable” and that our chosen model parameters are sensitive. FSO is then tested in a case 621 

study using synthetic parameter fields and corresponding synthetic runoff and/or storage data. 622 

The case study consists of two tests. Firstly, we apply a single-criteria calibration, 623 

optimizing the transfer functions only on runoff data in the calibration procedure. Secondly, this 624 

is then extended to additionally include spatially distributed time series of storage data in a 625 

multi-criteria optimization. For both tests we could find transfer functions that produce a nearly 626 

perfect discharge prediction with an NSE of 0.999 in “ungauged” basins.  627 

The results of the single-criteria optimization show that FSO can find transfer functions 628 

that result in a perfect match for runoff and that FSO results are stable and multiple runs vary 629 

only insignificantly in their resulting mean basin NSE.  630 

The results of the multi-criteria optimization showed an increasing performance when 631 

estimating the parameter (X3) that is associated with the storage observations that are added to 632 

the loss function. Looking at the results of the different optimization runs, it is noteworthy that 633 

having the additional term in the loss function increases the difficulty of the optimization 634 

problem (see Figure 11a), leading to one optimization run with a slightly lower mean basin NSE 635 

in the training period.  636 

Both single- and multi-criteria FSO did not show a decrease in performance in the testing 637 

time period for the test basins. This shows that there is no overfitting on the training data and that 638 

prediction in ungauged basins is possible and performing as well as in a gauged basin. This is 639 

most likely due to the chosen penalty for complex functions in the loss function and the use of a 640 

weighted mean basin NSE value. Without the weighted NSE, single basins might have a bad fit 641 
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while the overall training NSE is close to 1. Without the penalty for the length of the transfer 642 

functions, we could potentially find very complex functions that can approximate every other 643 

function without having any association to the process. The results let us conclude that, if FSO 644 

has a reasonable set of representative training basins, prediction in ungauged basins is possible.   645 

Comparing the estimated transfer functions with the underlying true functions for the 3 646 

chosen model parameters, it is notable that the most sensitive parameter X1 is usually estimated 647 

with the smallest deviation from the true parameter values.  648 

From the results of the case study we can define the phenomena of transfer function 649 

equifinality, i.e. non-unique best fitting transfer functions. We identified three main reasons for 650 

the occurrence of this form of equifinality. Reason one - Parameter sensitivity: A low parameter 651 

sensitivity results in a reduced ability to identify the true transfer function, since small variations 652 

in parameter values are irrelevant for the resulting model loss; Reason two - Information loss due 653 

to aggregation to the spatial scale of the model: Since aggregation generally results in loss of 654 

information, depending on the scale difference of observation and model scale, multiple transfer 655 

functions can potentially produce the same aggregated parameter field; Reason three - 656 

Correlation of geo-physical properties: Due to high correlation of geo-physical properties (see 657 

3.1), different transfer functions using different spatial predictors can potentially produce similar 658 

parameter fields, e.g. functions using sand instead of clay. Due to these three reasons, FSO 659 

estimated transfer functions might differ in structure from the true underlying transfer functions, 660 

but still perform well. Nevertheless, compared to the classical parameter equifinality, transfer 661 

function equifinality does not remove the physical interpretability of the estimated functions.  662 

Assuming that a certain parameter can be described in mathematical form by some geo-663 

physical properties of a catchment, two important requirements are necessary for finding its true 664 

underlying transfer function. The CFG must be able to generate the function and the correct geo-665 

physical parameters must be included in the CFG. In cases where these assumptions are violated, 666 

it can still be expected that FSO will find transfer functions which are associated with the 667 

physical processes described by the parameters. This is the case, because of the correlation of 668 

geo-physical properties. Meaning, that even if we have not included the “correct” geo-physical 669 

properties, we might still produce the correct parameter fields. Hence, we can assume association 670 

between model parameters and geo-physical properties, even if there is not causality. This 671 

certainly increases the range of geo-physical properties that can be used, but it is still necessary 672 

to have some that are related to the process described by a model parameter. Regarding the CFG, 673 

our results show that it is possible to include a wide range of different functions and function 674 

complexity in the CFG and still be able to search through the resulting Function Space. It is thus 675 

possible to define a (very) large space of possible functions for FSO, and therefore have a high 676 

probability of including the true or a sufficiently approximating function in it. 677 

Knowing the restrictions due to equifinality and assumptions related to FSO, we could 678 

show that the multi-criteria test increases its predictive capability. FSO was able to estimate a 679 

transfer function which included the correct spatial predictors and had the exact same parameter 680 

field on the model scale as the true one. Therefore, similar to other studies that showed an 681 

increased model performance by using multi-criteria parameter estimation, we could demonstrate 682 

an improvement in the search for a transfer function. The only disadvantage resulting from using 683 

multi-criteria optimization is the increased complexity of the optimization task, which potentially 684 

increases the number of iterations needed. 685 
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Having shown the FSO performance in a synthetic setting, in future work we will apply 686 

this methodology to a more complex hydrological model using real runoff data. This will provide 687 

further insight in the predictive capabilities of FSO and the difficulties of estimating transfer 688 

functions in a real-world setting. Additionally, we plan to apply FSO to different regions and a 689 

large spectrum of geo-physical properties.  690 
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