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Abstract

On September 5-7, 2018, a series of tremors were reported in Nigeria’s capital city, Abuja. These events followed a growing list
of tremors felt in the stable intra-plate region, where earthquakes are not expected. Here, we review available seismological,
geological, and geodetic data that may shed light on the origin of these tremors. First, we investigate the seismic records for
parent location of the orphan tremors using a technique suitable when a single-seismic station is available such as the Western
Africa region, which has a sparse seismic network. We find no evidence of the reported tremors within the seismic record of
Western Africa. Next, we consider the possibility of a local amplification of earthquakes from regional tectonics, reactivation of
local basement fractures by far-field tectonic stresses, landward continuation of oceanic fracture zones, or induced earthquakes
triggered by groundwater extraction. Our assessments pose important implications for understanding Western Africa’s intraplate

seismicity and its potential connection to tectonic inheritance, active regional tectonics, and anthropogenic stress perturbation.
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Introduction

Benchmarks of the algorithm (supplementary figures 1-3 ) are presented using example events
(supplementary Tables 1 ) and with trigger parameters (supplementary table 2 ) and properties
(supplementary table 3 ). We provide supporting information showing extended analysis e.g., sup-
plementary figure 4a shows all other anomalous cases in supplementary table 1 (similar to Figure



4). Supplementary figure 5a-d is a scan for events in the tremor sequence. We present the manual
digitization of the google earth image of Figure 6 in Dataset S1.

Benchmark of Single Station Detector
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When estimating the station-earthquake distance from the P-SV delay time, we extract dominant body
wave phases by applying a high-pass filter (> 0.1 Hz) and using the ak135 1-D model (Kennett et al.,

1995) implemented using the taup tool of (Crotwell et al., 1999). A first-order approximation for teleseismic
distances, , or local/regional events,

can be used as a quick check for most detections (Havskov & Ottemoller, 2010):
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When the true epicentral distance is greater than 90 degrees, the core diffracted, Pdiff phase might be hard
to detect, especially for low-magnitude events. In this case, the PP phase is often the clearest arrival and
can be wrongly identified as the first arriving body wave, leading to an under-estimated

(since ). We identify and correct for this error by using the differential time between the doubly reflected
SS and the Rayleigh wave as a second check on the estimated distance. Vertically polarized shear-waves
at large epicentral distances will travel at mid-lower mantle velocities ~7 km/s and compared with typical
Rayleigh wave group velocity ~3.5 km/s provides a second approximation for the epicentral distance:

With the epicentral distance estimated from the pair of body waves or body-and surface waves, the next step
is to estimate the arrival azimuth of the event. This is easily done using either the P-wave or the Rayleigh
wave. We choose to use the Rayleigh wave in this study because of their larger amplitudes. To ensure the
resistance of surface wave detection to false triggers: (1) we apply a band-pass filter for improving surface
wave signal to noise ratio (0.006-0.2 Hz (Ekstrém, 2006)), and (2) we scan a time window where surface
wave are expected to arrive:
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where 3.5 km/sec is a typical Rayleigh wave group velocity. All arrival times: ,
and correspond to the triggered on-condition (binary one) using the characteristic functions

for the P , SV |, and SW phases respectively. For the definition of the other threshold functions, , and
details of how the appropriate (de-) trigger thresholds are set, see the supplementary tables 1 and 2. For a
benchmark of the algorithm, kindly refer to the supporting information text.

Example Earthquakes

First, we demonstrate the effectiveness of our single-station approach by testing on a set of known earthquakes
selected from the U.S. Geological Survey (USGS) earthquake catalog. We use three-component seismograms
recorded at a quiet station in Albuquerque, New Mexico, USA (IU-ANMO ). We identify six different
events (M,, >6) with station-earthquake azimuth and epicentral distance ranging from 30° to 120° (see
supplementary figure 1 and supplementary table 1 ). For each event, polarization analysis is applied
to an hour-long record: a time duration long enough to observe first arriving body-waves and fundamental
mode surface waves. A time- series of polarization traces, computed from the three-component seismogram, is
then interpreted, enabling phase detection and allowing estimation of wave propagation direction. We notice
that robust phase-detection requires the original waveform data to be filtered using a high-pass frequency of



0.1 Hz and a band-pass frequency of 0.006-0.2 Hz to improve the detection of body waves and surface waves,
respectively. When comparing observed phase-arrival time using our detector with the predicted arrival
time, we compute the predicted arrival time with a 1-D earth model using event parameters obtained from
the USGS catalog (e.g., earthquake location, origin time, and magnitude). All seismograms are normalized
by the maximum amplitude in the hour-long record for display purposes only (the vector sum is used for
normalizing horizontal channels).

Limits of Seismic Detector

We test our single-station detector using a few events recorded at station ANMO (see Table 1). For the M7.6
event located in Nikolskoye, Russia, we are able to correctly identify the major seismic phases: P, S and
Surface Waves (supplementary figure 2 ). Likewise, our estimate of the event to station azimuth is also
correctly calculated from the largest principal axes. Along with the epicentral distance evaluated using the
relative phase delay between the body wave phases (S-P time), we correctly locate the epicenter of the test
events (supplementary figure 3 ). For teleseismic events to be correctly located by the single seismometer,
the magnitude of all candidate events must be larger than Mw 6.0.

A < 90

In our test-cases, the azimuth and epicentral distance for shallow teleseismic events (<50km) at moderate
distances () is well constrained (supplementary figure 3a and 3b ). However, when the events are deeper
or farther away, the misidentification of the first arriving phase, weak excitation of the surface wave, or
propagation complexities due to anisotropy (Laske & Masters, 2000) can lead to an estimation bias in the
source location caused by an incorrect estimate of azimuth or epicentral distance (supplementary figure
3c and 3d ). One approach to minimizing the error would involve incorporating information from multiple
phases or the joint application of the coherence technique (Agius & Galea, 2011; Roberts et al., 1989). While
the accuracy of our results depends on source-depth and propagation complexity, overall, the algorithm shows
good performance for most of the candidate events. For brevity, we show detailed results for selected events
only. A complete analysis of all test cases, including 2018 earthquakes recorded on the western African
network is shown supplementary figure 4, 5 & 6 ).

Supplementary Table 1: Earthquake parameters (7 exemplary events) used to test the algorithm at station
TU-ANMO and testing results.

Coordinates (Lat,

Event No. Mag. Time (UTC) Location Lon)
1 7.3 2018-12-20 Nikol’skoye, 55.099,
Russia -106.457
2 7.2 2004-09-05 Shingu, Japan 33.070, 136.735
3 7.3 2019-07-14 Laiwui, -0.586, 128.034
Indonesia
4 7.9 2018-09-06 Suva, Fiji -18.474, 179.350
5 7.5 2018-01-14 Acari, Peru -15.768, -74.709
6 7.1 2018-11-30 Anchorage, 61.346,
Alaska -149.955
7 6.5 2016-10-30 Norcia Italy 42.862, 13.096




Distance Distance Azimuth Azimuth Error Error Error Error

Distance Distance Distance Azimuth

Event A% A0l P> ®° (rode) eA° eA° eAl e ®9 (node)
1 62° 61° 69° 68° (68°) 1% 1% 46% 2% (1%)

2 90° 95° 47° 62° (64°) 5% 5% 50% 32% (36%)

3 119° 88° 50° 37° (44°) 64% 64% 26% 24% (11%)

6 38° 48° 114° 63° (76°) 25% 25% 62% 44% (33%)

A? : Actual distance in degrees between event and station.
A% Observed distance in degrees between station and event using S-P time (0) or SW-S time (1).

0,1 a

Ol = “7‘ The normalized error between observed distance and true distance between station and event
using S-P time (0) and SW-S (1) time respectively.

®?: Actual angle from events to the station.

®°: Observed azimuth from events to station from the distribution of azimuth using mean (node).

Supplementary Table 2: (De-) Trigger thresholds used to translate polarization attributes to binary charac-
teristic functions for phase detection (e.g. Russia M 7.3).

Function Description Trigger (>Percentile) Detrigger (<Percentile)
Strength of Linearity 80% 75%
e.g. 0.63 0.56
P Energy 70% 65%
0.62 0.55
S Energy 65% 60%
0.83 0.76
P Angle (<) 20% 25%
46.86 95.61
S Angle (<) 10% 15%
58.43 65.65
Surface wave (<) 80% 85%

Supplementary Table 3. Attributes used for Phase Detection

Method Attribute Description Equation

Energy Analysis Total energy
Vertical energy
Horizontal energy
Polarization Analysis Eigenvector of the dominant particle motion
, Strength of linear and elliptical polarization
Linearity of polarization
Azimuth
Incidence angle










a = 07,90°












Supplementary Figure 1. Orientation of seismic channels at station ANMO (triangle) in cartesian coordinates
and the exemplary earthquake (stars) used to demonstrate the single-station locator, showing the horizontal
(b1) and vertical planes (b2) of wave polarization for surface waves (SW) and body waves (BW: P and
S) respectively. (bl) The Azimuth

of the source-earthquake great circle path in plain view, measured relative to the two horizontal channels (H1
& H2) of the seismic station, with the H1 channel oriented at an angle, , measured clockwise from north,
and H2 perpendicular to H1. In our reference frame, coordinates N and E are oriented at respectively.
(b2) Incidence angle,, in elevation view, measured clockwise from vertical (here a P or S wave arriving
perfectly vertical from below the station would have . In single-station source location, arrival direction
can be determined by using P (BW) or Rayleigh (SW) to determine and the station-earthquake distance is
determined by the P-S delay time , following the successful phase identification (see supplementary figure 3
for E1).
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Supplementary Figure 2. (a) Three-component seismogram recorded at station ANMO, showing the unfil-
tered teleseismic P-wave arrival from a magnitude 7.3 earthquake with origin time Dec 20, 2018, in Nikolskoye,
Russia with (E1 on Figure 1). The dashed line indicates the exact arrival time of the first arriving P (blue)
and S (red) waves. (b) Application of polarization analysis on the filtered signal (BW using high-pass and
SW using a bandpass). Each trace (light grey) represents an attribute used for phase detection with all
triggered periods marked in black. Specifically, f and

represent the linearity of polarization and azimuth, with
and

representing the incidence angle and the stability of the calculated angle.
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Event1-M7.3 Event2-M 7.2
Depth 17km Distance 62° Azimuth 69° Depth 19km Distance 90° Azimuth 47°

180°

Event3-M 7.3 Event6 - M 7.0
Depth 10km Distance 119° Azimuth 50° Depth 47km Distance 38° Azimuth 114°

Supplementary Figure 3: Successful application of the multi-attribute polarization technique to the source
location of four earthquakes (see Figure 3). The actual (red) and estimated distribution (polar histogram)
of azimuth and epicentral distance demonstrate that a single-station event location is possible. For events
within 100°, the epicentral distance is computed using the relative P-S delay time comparing the relative P-S
delay time with the 1-D Earth model of (Snoke, 2009) using thetaup software tool (Crotwell et al., 1999).
For teleseismic events with an epicentral distance greater than 100° (Event 3), the relative S-SW delay time
is used instead (the initial result using P-S delay time marked with a grey dashed line). See Fig. S1 for the
result of anomalous events listed in Table 1.
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Event4-M 7.9 Event5- M 7.1
Depth 618km Distance 88° Azimuth 52° Depth 39km Distance 59° Azimuth 330°

0° 0°

180° 180°

Event7 - M 6.6
Depth 10km Distance 85° Azimuth 314°

0°

180°

Supplementary Figure 4a. Single-station location using polarization attributes. Events with large bias
showing types of errors for 3 test cases (similar to Figure 4).
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Supplementary Figure 4b. Demonstration of single-station location for three earthquakes in 2018 using
stations: GT.DBIC and G.MBO (inset map). (Left -1) Guinea event (Middle-2) Central Mid Atlantic, and
(Right-3) Ascension Island event. Location and phase identification for events 2 and 3 are better than for
event 1. Only a single phase is identified for the Guinea event (compare with Fig. 4 for details).
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Supplementary Figure 5a. Scan anecdotal event 1: Sept 5. 13:30 UTC.
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Supplementary Figure 5b. Scan anecdotal event 2: Sept 5. 16:30 UTC.
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Supplementary Figure 5c. Scan anecdotal event 3. Sept 6. 01:30 UTC
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Supplementary Figure 5d. Scan anecdotal event 4. Sept 7. 05:30 UTC
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On September 5-7, 2018, a series of tremors were reported in Nigeria's capital city, Abuja. These events followed a growing list of
tremors felt in the stable intra-plate region, where earthquakes are not expected. Here, we review available seismological,
geological, and geodetic data that may shed light on the origin of these tremors. First, we investigate the seismic records for
parent location of the orphan tremors using a technique suitable when a single-seismic station is available such as the Western
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triggered by groundwater extraction. Our assessments pose important implications for understanding Western Africa’s intraplate
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Abstract

On September 5-7, 2018, a series of tremors were reported in Nigeria's capital city, Abuja.
These events followed a growing list of tremors felt in the stable intra-plate region, where
earthquakes are not expected. Here, we review available seismological, geological, and
geodetic data that may shed light on the origin of these tremors. First, we investigate the
seismic records for parent location of the orphan tremors using a technique suitable when a
single-seismic station is available such as the Western Africa region, which has a sparse
seismic network. We find no evidence of the reported tremors within the seismic record of
Western Africa. Next, we consider the possibility of a local amplification of earthquakes
from regional tectonics, reactivation of local basement fractures by far-field tectonic stresses,
post-rift crustal relaxation, landward continuation of oceanic fracture zones, or induced
earthquakes triggered by groundwater extraction. Our assessments pose important
implications for understanding Western Africa’s intraplate seismicity and its potential
connection to tectonic inheritance, active regional tectonics, and anthropogenic stress
perturbation.
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Introduction

On September 5-7, 2018, a series of low-magnitude tremors hit Nigeria's capital city in
Mpape, Abuja (“Government Report,” 2018). These events followed a series of earthquakes
felt in the region since 1933, a stable, intraplate setting, otherwise not being
earthquake-prone (Ofonime U. Akpan et al., 2014; Ofonime Umo Akpan & Yakubu, 2010;
Tsalha et al., 2015). This seismicity puts in the spotlight the issue of seismic hazards in the
Western Africa region and the need for an improved seismic monitoring network (K. U.
Afegbua et al.,, 2019; Alaneme & Okotete, 2018). Nigeria is located in the southern part of
the Neoproterozoic Trans-Saharan Mobile Belt, separating the Archean West African
Craton, Congo Craton, and the Archean-Proterozoic Sahara Metacraton. Within this mobile
belt, a large continent-scale system of elongate rift basins (aulacogens) developed during the
Cretaceous, among which is located the Benue Trough on whose flank the Abuja city is
located (Figure 1a). The extent of areas that historical seismicity felt in Nigeria encompasses
regions within the failed rifts and areas of the exposed basement on the flanks of the rift
basins (figure 1a).

Compared to historical events, the series of shakings reported on Sept, 2018 is located within
the Northern edge of Abuja. Because the capital city of Abuja is highly populated and
relatively affluent, most of the citizens felt considerable shaking and this was reported by the
local news agencies and picked up by increased social media activity. Although the local
population felt these events, very little observational evidence exists for the origin of the
shaking and its connection to local geology, or regional tectonics. Here, we present the
available geological and geophysical constraints that may offer clues about the shaking and
examine the available seismic, geologic, and geodetic measurements and discuss several
viable hypotheses regarding the origin of the felt shaking, connected to the local or regional
tectonics and anthropogenic activities. In particular, we evaluate the hypotheses that these
events are due to 1) local amplification of earthquakes from regional tectonics, 2) distant
teleseismic events large enough to be felt in western Africa, 3) reactivation of local basement
fractures by far-field tectonic stresses, post-rift crustal relaxation, or landward continuation
of oceanic fracture zones, or 4) local anthropogenic activities such as groundwater
extraction.

A comprehensive search of the global earthquake catalog in the decade leading up to Sept,
2018, does not turn up any events located within Nigeria. In and around the Western African
region, most of the events are clustered around oceanic transform faults, with only a few
inland earthquakes. Similarly, all earthquakes in 2018 occurred along the oceanic transform
fault, except for a single event on Feb. 19, located in the country of Guinea about 10 degrees
northwest of Nigeria (Figure 1). Therefore, we examine the available seismic data from the
Nigerian seismic network (K. U. Afegbua et al., 2011), supplementing them with seismic
stations from the western African region where long-term real-time monitoring is available.

We conduct a rigorous search of the seismic record using a single-station detector method to
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examine the first two hypotheses, which investigate the possibility of the shaking being
related to distant earthquakes and their ability to reactivate pre-existing fault systems that
may be preferentially primed for failure (Han et al., 2017; Neves et al., 2018). We then
complement the seismic investigation with other geological and geophysical datasets. Surface
geology and basement structure is investigated using high resolution satellite images and
aeromagnetic data, and the observed patterns compared to the inferred prevailing stress field
as well as the general trends dictated by the opening and closure of the failed rifts located
close to the Abuja capital city. A final analysis explores the anthropogenic controls on
earthquake nucleation and whether these may be related to the hydrological cycle within
Nigeria. We measure surface deformation using Interferometric Synthetic Aperture Radar
(InSAR) and correlate the observed patterns with the ongoing anthropogenic activities such
as groundwater pumping and the addition of dams in the study area. Overall, the
assessments presented in this study pose important implications for understanding western
Africa’s intraplate seismicity and its connection to regional tectonics and local geology.

Method

Single-Station Seismology

Ideally, the detection of a low-magnitude local or regional event would require a proximal
high-quality seismic array. Western Africa, on the other hand, has a sparse distribution of
real-time seismic stations. Even recently deployed small-aperture seismic arrays located in
Western Africa, e.g, Nigeria (Kadiri Umar Afegbua et al, 2011) and Ghana (Ahulu &
Danuor, 2015) do not currently archive data on global waveform databases and only a few
are real-time. Therefore, we use a single-station location method that is based on polarization
analysis using eigen-decomposition of ground displacement (Bai & Kennett, 2000; J. Park et
al., 1987; Simons et al., 2009; Vidale, 1986) for event detection, seismic phase identification
(Eatle, 1999), and source localization (Bése et al., 2017). Alternative methods such as
beamforming analysis, which is widely applied to pin-pointing earthquake source direction
(Nakata et al., 2019; Rost, 2002; Rost et al., 2000) is challenging to apply because of the
sparsity of high-quality, continuously recording, small-aperture seismic arrays present at
regional distances to the location of the largest reported shaking,

The single-station location technique is based on the same principle for which polarization
analysis is most commonly used, i.e., orienting seismometers on the bottom of the sea-floor
(Doran & Laske, 2017; Scholz et al., 2017; Stachnik et al., 2012; Zha et al., 2013) or
identifying misoriented horizontal channels (Ojo et al., 2019). Used in this mode, the arrival
direction (azimuth) and the distance of a seismic event can be inferred from a three-channel
seismogram recorded on a single-station on the African continent. The geographical
orientation of the seismic channels is then determined given a known arrival direction of a
particular seismic phase (often the compression and Rayleigh waves). In the
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earthquake-location mode, however, the idea is reversed. We assume the channel orientations
are known (or can be corrected for), then, in principle, we fix the source orientation by
determining the azimuth of the incoming waves. The key idea is to identify the polarization
of particular seismic phases which are parallel to the wave propagation (e.g. compressional
and Rayleigh wave phases) and use this to determine the wave-arrival azimuth. A differential
time between the first arriving compressional wave and other phases (e.g. S, Love, and
Rayleigh), in conjunction with a given earth model, prescribes the epicentral distance and
completes the process - providing coordinates of the earthquake.

The adaptation of polarization analysis for single-station event location (Agius & Galea,
2011; Bose et al., 2017; Frohlich & Pulliam, 1999; Magotra et al., 1987, 1989) increases the
likelihood of detecting earthquakes with smaller magnitudes. In our adaptation, we
incorporate benefits from the coherence (Vidale, 1986) and covariance technique (Jurkevics,
1988; S. Park & Ishii, 2018; Schulte-Pelkum et al., 2004), and include multimode
identification (Bai & Kennett, 2000, 2001). Our idea bears some similarity to the technique
proposed for locating Mars-quakes (Bose et al.,, 2017), or the identification of the source
location of ambient seismic noise or micro-tremors (Koper & Hawley, 2010; Zha et al,,
2013). We describe a successful application for locating the epicenter of moderate-to-large
teleseismic earthquakes. We then describe the application to a few high-quality stations

recording during the three days with the largest shaking ie stations on the Geoscope
network (Roult et al., 2010), the global seismic network (GSN) (Lay et al., 2002), and the
Nigerian Seismic Network .

While single-station event location is sufficient for distinguishing between a teleseismic and a
local/tregional event, when more than one station is available, the uncertainty or bias (etror)
from a single-station detection can be improved by performing a second-stage association
analysis (Ekstrom, 2006; Ringdal & Husebye, 1982; Shearer, 1994). This allows us to improve
the confidence estimate for the location by comparing the estimated source locations from
multiple stations when they are available. Suppose all the single-station locations agree
(within uncertainty) that the hypothesized source location (Abuja, Nigeria) is not the
epicenter of the detection, in that case, we can rule out this null hypothesis and explore the
alternative hypothesis that the shaking is from a different source location (i.e. of teleseismic
origin). We require only two stations to confirm detection for a particular source location.
Application to the 360 polarization records derived from each of the five closest stations to
Nigeria results in a space-time probability of a possible event detection (Bose et al., 2017)
(see Appendix for a detailed discussion of technique).

Aeromagnetic Data Analysis

The largest shaking may have resulted from seismogenic slip on local faults or due to local
amplification. To explore how local geology in and around Abuja may have contributed to

significant shaking intensity, following standard practice, we analyze the subsurface structure
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and the spatial distribution of the sedimentary cover. The Abuja area is located in low
magnetic latitude. Thus, we first perform a reduction of the magnetic data to the magnetic
equator (RTE, e.g, (Li & Oldenburg, 2001) using an IGRF 2005 model. This transformation
corrects for the skewness of the magnetic anomalies due to the oblique angles of
magnetization at large distances from the magnetic pole.

Afterward, we upward-continue the RTE-corrected acromagnetic grid to remove noise and
apply a vertical derivative filter to better resolve the gradients that correspond to the
geological structure. Further, we estimate the distribution of depths to the top of the
magnetic sources (i.e. crystalline basement) using the Source Parameter Imaging (SPI)
method (Smith et al., 2002; Smith & Salem, 2005). Although this technique has an accuracy
of £20%, it can reliably show the relative spatial pattern of the depth of the burial of the
magnetized basement (e.g., Kolawole ez a/, 2018). We manually interpret the geological
structure-related lineaments and plot rose diagrams to identify the dominant trends in both
the satellite images and filtered acromagnetic maps.

InSAR deformation field

To map the surface deformation, we use 80 SAR images acquired in the ascending orbit of
the Sentinel-1A/B C-band satellites between 2018/01/19 and 2020/09/05. We performed
an advanced multitemporal SAR interferometric analysis to retrieve rates and time series of
surface deformation over the study area. The analysis began with co-registering SLC images to a
reference image, which includes a standard matching algorithm using a Digital Elevation Model
(DEM), precise orbital parameters, and amplitude images (Sansosti et al, 20006). For the
Sentinel-1A/B datasets, the step above is followed by an enhanced spectral diversity (ESD) approach
(M. Shirzaei & Biirgmann, 2017; Yagiie-Martinez et al., 2016). Using this dataset, we generate a set of
high-quality interferograms, considering only those with short perpendicular and temporal baselines.
We also apply a multi-looking operator of 32 and 6 pixels in range and azimuth to obtain a ground
resolution cell of ~75 m X 75 m. To calculate and remove the effect of topographic phase and flat
earth correction (Franceschetti & Lanari, 2018), we used a l-arcsecond (~30 m) Shuttle Radar
Topography Mission DEM (Farr et al., 2007) and precise satellite orbital information. To identify the
elite (i.e., less noisy) pixels, we only consider pixels with an average temporal coherence larger than
0.65. To retrieve the absolute (unwrapped) phase values, we applied a Minimum Cost Flow (MCF)
algorithm adapted for sparsely distributed elite pixels. Although the precise orbits are used, a few
interferograms were still affected by a ramp-like signal, which were corrected by fitting a 2™ order
polynomial to their unwrapped phase (Manoochehr Shirzaei & Walter, 2011). We further applied
several wavelet-based filters to correct for effects of spatially uncorrelated topography error and
topography correlated atmospheric delay (M. Shirzaei & Birgmann, 2012). Subsequently, we applied
a re-weighted least square approach iteratively to invert the corrected measurement of the unwrapped
phase at each elite pixel and solve the time series of the surface deformation. We further reduce the
effect of residual atmospheric errors by applying a high pass filter based on continuous wavelet
transform to the time series of surface deformation at each elite pixel. Finally, we estimate the
long-term line-of-sight (LOS) deformation rates as the best-fitting line slope to the time series of
surface deformation at each elite pixel.
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Data and Results

Earthquake Detection with a Sparse Network

We use the following station-selection criteria: (1) waveform data recorded during tremor
activity archived and retrievable from a global waveform database, e.g, IRIS, (2) good
back-azimuth coverage relative to Nigeria, (3) availability of three-channel seismograms
necessary for polarization analysis, (4) high signal to noise ratio, (5) correct orientations for
the horizontal channels or new analysis reflecting the proper orientations e.g.,, (Ojo et al.,
2019). We select five stations that pass our selection criteria, and their locations provide
relatively good azimuthal coverage around Nigeria (see Figure 1b and Table 1). We focus on
the three days from September 5 - 7, 2018, when anecdotal reports agree on the strongest
shaking in Nigeria, (1) three reports on Sept. 5: ~ 13:30, 16:30, and 19:00 UTC and (2) two
on Sept. 6 and 7: 01:30, 05:30 UTC. We scan hour-long records of three-component
seismograms at each station, allowing for a half-hour to extend detection duration. Our
dataset results in 360 polarization records representing 72 hour-long records (for the 3 days)
at each of the 5 stations. A preliminary data quality check based on a signal to noise
detection of earthquakes in the global catalog reveals that only two of the stations in this
region are particularly useful for seismic detection (i.e. G:.TAM and G.DBIC). In particular,
stations NJ. TORO, the closest station to the main interest area - Abuja - is very noisy and is
impractical for detection on its own (see Figure 1a and 2). This analysis further highlights the

challenge of earthquake location and the value of a single station event detector.

Null Detection & Other Coincidences: We analyze the continuous data stream in
hour-long sections during the three days of the largest reported shaking. In this 3-day scan,
we detect a notable event in the hour following 18:00 UTC on September 5" with good SNR
on most stations (Figure 2). Our attempt to associate the other tremor sequences to either a
previously undetected global or regional event proved inconclusive (supplementary figures
5a-d). For the Sept. 5 event, the stations detect P and S arrivals within only slight timing
variations. We cross-reference our detection with the USGS earthquake catalog. The arrival
time of the seismic phases is correctly matched with a source location that is consistent with
the M6.6 Hokkaido Eastern 1buri, Japanese earthquake (Figure 3 and 4b). We note that this
event is neither local nor regional (< 30 degrees) but cleatly of teleseismic origin (compare
Figure 4a,b with Figure 3). Despite the large station-earthquake distances (80 - 120 degrees),
we detect clear body-wave and surface-wave phases on the high-quality stations located
around Nigeria. Even for the station at the largest epicentral distance (GT-DBIC), strong PP
and SS phases are visibly detected and identified by our phase detector (Figure 3).

The closest stations to the Japanese event are able to pick up at least one of the two direct P
and S arrivals. For example, station II-RAYN demonstrates that our method provides
effective picks for four of the incoming phases (P, PP, S, SS, L, R: Figure 3). At stations
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MN-WDD and IU-FURI located at an epicentral distance less than 90°, we precisely identify
all the main P and S arrivals except for the reflected S5 phase. At station II-MBAR, which is
even further away (>90°) from the source location, our method is still able to detect the
diffracted phases (Pdiff and Sdiff). However, at station GT-DBIC which is located ~120°
from Japan, we are unable to detect the first-arriving diffracted Pdiff waves and only able to
detect the diffracted Sdiff phase (with a slight time shift compared to the travel time
predictions using the ak135 Earth model) and the reflected PP and SS phase. Association of
the single-station detections shows that three of the five stations (WDD, FURI, MBAR)
provide a location match with an error < 5°, while the other two stations (DBIC and
RAYN) agree on the epicentral distance with some bias in the azimuth direction (Figure 5).
This is clear evidence that the seismic event detected at all our stations is coincident in space

and time with the teleseismic Japanese event reported by the global catalog and felt in

Nigeria on September 5t

Our search for a source-origin in West Africa was inconclusive, which may suggest a low
magnitude event that may have been attenuated before being detected by the regional seismic
network.We emphasize that of the five events reported in anecdotal records, we are able to
associate a single event to a teleseismic earthquake originating in Hokkaido, Japan on Sept. 5,
2018 (18:07 UTC). This event, from far-away japan, triggered multiple landslides (~ 6,000)
that lasted for a few minutes ((Kameda et al., 2019; Shao et al., 2019; F. Wang et al., 2019;
Yamagishi & Yamazaki, 2018). None of the other tremors in the sequence identified by
anecdotal records are conclusively associated with either a local or teleseismic event. We
explore briefly, what explanation, if any, exists between the felt shaking and this landslide
event. Alternatively, we evaluate how the local geology around Abuja could host the
reactivation of existing faults. We also consider the possibility of induced earthquakes
triggered by groundwater extraction.

Geological Framework from Aeromagnetic Data Analysis and Satellite Data

We integrate available surface and subsurface geological and geophysical datasets to
constrain the first-order geological features in the Abuja area that could have localized or
amplified ground shaking. First, we delineate satellite-scale fracture systems in basement
outcrops using Google Earth satellite images at a spatial resolution of 5 m (e.g., (Kolawole et
al., 2019). Then, we utilize high-resolution aeromagnetic data first to map sub-surface
structural fabrics representing potential mega-scale fault lineaments in the granitic basement,
then to model the distribution and thickness of the sedimentary over-burden (e.g,, (Grauch
& Hudson, 2007; Kolawole et al., 2018)). The aeromagnetic data used in this study was
acquired country-wide between 2005 and 2007 by the Nigerian Geological Survey Agency
(NGSA), with 500 m line spacing and 80 m mean terrain clearance. The acromagnetic data
was provided as a grid of 100 m cell size.
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Delineated geological structures in the Abuja area

The satellite-scale fracture systems in the basement outcrops, mapped in the satellite images
of the Abuja area (Figures 6a-b) show dominant trends of 049°%+3.6° (NE-SW) and

136°£3.7°(NW-SE) (Figute 6c). Also, the subsutface basement lineaments, delineated in
filtered aeromagnetic data (Figure 6d) show dominant trends of 048°+6.4° (NE-SW),
124°£6.1° (NW-SE), and 086°%£5.4° (E-W) (Figute 6e). Further, our depth-to-basement
map, generated from the SPI transform of the aeromagnetic data (Figure 6f-g) shows that
most of the Abuja area and mainly the areas where the tremor was felt are located within a
small sedimentary basin. The thickness of this sedimentary cover ranges between ~200 - 800
m (Figure 6g). Although the three prominent trends (NE, NW, and E-W) can be observed in
the northern half of the area where basement outcrops dominate, the NE-trending
lineaments appear to dominate the southern part where the basin is located (Figure 6d).

InSAR Ground Deformation Map

Figure 7 shows the rate of LOS displacement field and selected time series at the sites of
rapid subsidence. The negative values (cool colors) correspond with movement away from
satellite, hereafter, subsidence. The map is characterized by widespread subsidence up to 35
mm/yt. Roughly the zone of subsidence is bounded by the administrative divides, suggesting
an anthropogenic drive. A rapidly declining trend characterizes the selected time series of
LOS displacement at sites (b), (c) and (d) until 2020. The slightly rising time series (Fig, 7¢)
also follows a similar pattern, whose rising trend is interrupted by 2020. This behavior
change might be attributed to the COVID-19 global pandemic, which has caused a reduction
of economic activities worldwide.

Discussions

Origin of Tremor: Perspective, Interpretation & Outstanding Questions

In our study, we were able to associate only one of the tremor sequences to an event in the
global catalog. Our attempt to associate the other events in the tremor sequences to either a
previously undetected global or regional event proved inconclusive. This lack of
corroborating seismic evidence confirming anecdotal reports could be due to either of the
following: (1) the inaccuracy of the timing or the number of the reports, (2) localized
low-magnitude shaking not detectable by the seismic station closest to Abuja, due to the
quality of the data recovered from that seismic station (i.e. TORO). While this is an
unsatisfactory conclusion, it emphasizes the need for high-quality data in regions that are
often ignored due to the assumption of lack of seismicity. We also demonstrated that one of
the reported tremor activities in Abuja, Nigeria, and recorded by the Western African
stations, is coincident with the Hokkaido Eastern Iburi, Japanese earthquake of Sept 5. 2018.
It is very puzzling that this moderate-sized earthquake (~M6.7) generated enough seismic
energy to be felt in the capital city of Nigeria, considering that Japan is located at
considerable teleseismic distances (~112 degrees). Here, we discuss a few plausible scenarios
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that may offer more insights into these results taken together.

Hypothesis I: A Unique Teleseismic Event

While we are aware that a moderate teleseismic event is improbable to cause significant
shaking at a considerable distance, it is tempting to explore the possibility that there is a
direct connection to this event due to a large number of co-seismic landslides (Zhang et al.,
2019) generated significant long-period surface wave energy that propagated to large
distances without much dissipation (Allstadt, 2013). Landslides can be effectively modeled by
single-forces, where the orientation of the force exerted on the earth is in the direction
opposite landslide acceleration, generating maximum surface wave amplitudes along the
trajectory of mass loss (Ekstrom et al., 2003; Kawakatsu, 1989; Tsai & Ekstrom, 2007). For
shallow landslides with estimated mass volumes and a simple trajectory, it should be
straightforward to model the effective forces, using synthetic seismograms (Ekstrom &
Stark, 2013). However, the Hokkaido Iburi Earthquake triggered ~06,000 landslides with
complex trajectories (Figure 8), distributed over a large area making this a difficult task.
Despite this complexity, we observe that the aggregate spatial distribution of the landslides

can explain surface-wave radiation in the direction of Nigeria (310 degrees, which is in the
NW/SE direction from Japan) (Figure 8).

A comprehensive inventory of landslides (. Wang et al., 2019; Zhang et al., 2019) document
important characteristics that fit this pattern: a large concentration of 65% of the landslides
(21 per square-km) in an elliptical area of 173 squared-km with major axis oriented
NNW/SEE at 327.7 degrees (within 18 degtees of the direction of Abuja). We expect that a
considerable portion of the radiated surface-wave energy is connected to the co-seismic
landslides separate from the triggering earthquake, which has been modeled as a deep-crustal
earthquake with different rupture process, and surface wave radiation patterns (Gou et al,,
2019; Hua et al., 2019; Kobayashi et al., 2019; Zang et al., 2019). Although we report an
event detection, we do not expect significant shaking from radiated energy from the
landslide. It is more plausible that this event caused slight stress perturbations that
reactivated local basement fractures (cite authors). We explore this hypothesis next.

Hypothesis II: Local Amplification of Earthquakes from Regional Tectonics
Previous studies have documented the occurrence of earthquakes in the Western African

continental region and especially within continental Nigeria (Ajakaiye et al., 1987; Blundell,
1976; Scheidegger & Ajakaiye, 1985; Williams & Williams, 1977; Wright, 1976). These
earthquakes have been attributed to (1) the inland continuation of oceanic fracture zones
(Blundell, 1976; Wright, 1976) or (2) seismicity associated with faulting along the Cameroon
volcanic line (Nfomou et al., 2004; Tabod et al., 1992). The apparent extension of the
oceanic fracture zones across the continent-ocean boundary towards the shoreline in the
Gulf of Guinea (Figure la; (Granot & Dyment, 2015)) may explain the clustering of
historical seismicity close to the shorelines (Figure 1a), but may not explain the events
reported from areas further inland. We note that historical tremors that were felt in the
inland areas (north-central part of Nigeria) are distributed across both the failed rifts and
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areas of the exposed basement on the rift flanks (figure 1a).

We consider an alternative hypothesis that the series of shakings felt in the study area (Abuja
area, north-central Nigeria) may be related to the local amplification of possible earthquakes
associated with the active tectonics along the offshore oceanic fracture zones (transforms),
or along the active Cameroon Volcanic Line in the east. The Abuja area is located within the
broad basement complex terrain of Nigeria (i.e., outboard of the Mesozoic failed rifts),
where the basement rocks are dominated by Precambrian migmatite gneiss and granitic
intrusions (Oyawoye, 1964). The granitic intrusions occur as prominent topographic-highs in
the landscape, and the gneissic host rocks occur as topographic-lows where small basins of
unconsolidated sediments commonly accumulate. Our estimation of basement undulations
in the Abuja area shows that the locations where the tremor was felt are located within a
small sedimentary basin (Figure 6g), indicating a vulnerability of the local geology of the
Abuja area to seismic amplification. Although both the oceanic transforms and areas near
the Cameroon Volcanic Line show seismic activity (Figure 1a), our catalog search did not
identify any event along the offshore oceanic transforms or the Cameroon volcanic Line that
coincides with the timing of the shaking;

Hypothesis III: Reactivation of Local Basement Fractures and Fault Systems by
Post-Rift Crustal Relaxation or Far-field Tectonic Stresses

Although we report inconclusive evidence for an earthquake in Nigeria, we emphasize that
the absence of evidence is not the evidence of absence, considering the poor data quality
from the closest station (TORO). As mentioned eatlier, the historical earthquakes in Nigeria
have been attributed to the inland continuation of oceanic fracture zones through the
Precambrian basement shear zones (Anifowose et al., 2006; Blundell, 1976; Odeyemi, 1989,
20006; Wright, 1976). However, these Precambrian basement shear zones (cyan dotted lines in
Figure 1a) show a NNE trend that is markedly distinct from the ENE-to-NE trends of the
oceanic fracture zones. Rather, the oceanic fracture zones show better spatial and azimuthal
correlation with the NE-trending Benue Trough (failed Mesozoic rift) than the onshore
basement shear zones (Figure 1a). In addition, there exists no surficial evidence of recent
fault scarps or collocated active brittle exploitation along the trend of the basement shear
zones. Therefore, we examine the brittle structures in the basement of the Abuja area which
is located on the flank of the Benue Trough, with a view of possible local seismic
reactivation of pre-existing basement fracture systems.

Our analysis of the exposed basement fracture systems (Figures 6a-c) and deeper structures
of the aeromagnetic lineaments (Figures 6d-e) show common prominent sets of conjugate
NE-SW and NW-SE trends. Thus, we interpret these structural trends to be the dominant
patterns of the basement fracture systems and faults in the Abuja area. We note that the
Abuja area is located near the nexus of two Mesozoic rift basins (failed rifts), the
NW-trending Bida Basin and NE-trending Benue Trough (Figures 1a and 6¢). The basins are
composed of basement-rooting structures that are associated with the opening
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(Mid-Cretaceous) and closing (Late Cretaceous) of the West and Central African Rift System.
We find that the axial trends of these two rift structures are parallel to the most prominent
structural trends in the Abuja area (Figure 6c). This suggests that the pre-existing
discontinuities in the Abuja area are most-likely inherited from the Mesozoic extensional
tectonic deformation. We propose that these basement structures may be reactivated either
by far-field tectonic stresses or post-rift relaxation of the crust.

Unfortunately, there exists no published stress field data in the interior of Nigeria (Heidbach
et al., 2018). Nevertheless, to provide a first-order assessment, we consider the closest
available measurement of the in-situ azimuth of 176° for the maximum hotizontal
compressional stress (SHmax from borehole breakout) at a location in SW Nigeria (Figure
6c¢ inset; (Heidbach et al., 2018)). If this available stress data is representative of the current
01 magnitude and orientation in the Abuja area, the NW-trending fractures are more
critically oriented for reactivation (in strike-slip mode) than those in the NE and E-W trends.
We recommend future studies to explore the in-situ stress field across the region in order to
better understand the susceptibility of the inherited structures to seismic reactivation.

Based on the geological considerations presented above, we infer that in the Abuja area,
there exist basement discontinuities that could be optimally-oriented for seismic reactivation
by stress perturbation of the assumed current stress field. On a regional scale of the Western
Africa sub-continent, we highlight the occurrence of earthquakes in the Mesozoic rift
structures and the Precambrian basement domains (earthquakes in Termit Basin, Benue
Trough, Yola-Doba Basin, Ahaggar Massif, and West African Craton in Figure 6a);
suggesting that inherited brittle structures in the basement pose important seismic hazards
across the region. Overall, we emphasize that the faults and fracture systems of the failed
Mesozoic rift basins in the Westen Africa region (West African Rift System, Figure 1a)
represent critical seismic hazards in the region that may be capable of hosting damaging
earthquakes.

Hypothesis IV: Induced Earthquake Triggering by Groundwater Extraction

The widespread subsidence observed in the study area is consistent with those measured in
other metro areas around the world and likely to be associated with fluid (primarily
groundwater) extraction (Chaussard et al.,, 2014; Herrera-Garcia et al., 2021; Megan Marie
Miller et al., 2017; Megan M. Miller & Shirzaei, 2019; M. M. Miller & Shirzaei, 2015). A
change in near-surface hydrologic loading has the potential to alter the local and regional
stress field (Amos et al,, 2014; Johnson et al.,, 2017a, 2017b, 2020), which can encourage
earthquake nucleation and may weakly modulate seismicity (Heki, 2003; Johnson et al.,
2017a). In regions where elastic loading maintains a strong periodic signal, the same cyclic
pattern is observed in seismic catalogs (Ader & Avouac, 2013; Heki, 2003). Furthermore,
stress and pressure in the crust can be altered due to fluid injection and extraction, triggering
earthquakes (Ellsworth, 2013; Keranen & Weingarten, 2018; Kwiatek et al., 2019; Paul Segall,
2010; P. Segall & Lu, 2015; Manoochehr Shirzaei et al., 2016; H. F. Wang, 2001; R. Wang &
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Kimpel, 2003; Zhai et al., 2019, 2021). The stress and pressure gain is a function of
pumping and injection location, flux, and accumulated volume, while the rate of radial fluid
migration is mainly controlled by crustal permeability (P. Segall & Lu, 2015; H. F. Wang,
2001).

Fault failure may occur when shear stress exceeds the fault shear strength for a given
effective normal stress. Shear stress can be altered due to non-zero differential stress changes
caused by the imparted stress. Also, effective normal stress depends on the magnitude of the
stresses and the orientation of the fault in the tectonic stress field. The magnitude of
fault-normal stresses can be reduced due to increased pore fluid pressure. However,
establishing a threshold for stress and pressure change to trigger an earthquake is not trivial
(e.g,, (Talwani & Acree, 1985)). It is often assumed that faults are near critically stressed if
they have not ruptured recently (Townend & Zoback, 2000). Therefore, a small perturbation
of the stress field due to the loading effect and fluid diffusion may trigger some earthquakes.
Some examples include seasonal modulation of seismicity due to hydrological loading cycles
(Carlson et al., 2020; Christiansen et al., 2007; Johnson et al., 2017a), triggering earthquakes
due to tides (Tanaka et al., 2002; Wilcock, 2001), and induced seismicity due to pore pressure
change by seasonal precipitation or snowmelt (Hainzl et al., 2006; Montgomery—Brown et
al., 2019; Saar & Manga, 2003) .

Despite scientific evidence from elsewhere, in the Abuja case study, investigating the
hypothesis that the events similar to that of September 2018 are of hydrological origin is not
straightforward due to the lack of dense hydrological observations (e.g., groundwater levels,
stream discharge) and a complete seismic catalog. Therefore, we call for future efforts to
generate new observations and develop models that constrain spatiotemporal variations in
components of total water storage and establish a link to the local and regional tectonics and
seismicity. Such data and models will further enhance the knowledge of water availability and
improve the local communities' resilience to drought in the era of climate change.

Summary: Preferred Hypotheses and Strategies for Further Tests

Our exploration of the limited, yet very important geological and geophysical datasets have
shed light on the most plausible cause of the shaking experienced in Abuja between Sept 5-7,
2018. Based on the available InSAR analysis, we find the strongest support for the
hypotheses that these events were triggered by groundwater extraction (H-IV). Similarly,
some recently published strain rate modelling from country-wide GNSS network covering
the period of 2012 to 2015 (i.e. prior to the 2018 tremors; (Bawa et al., 2020)) shows a
localized subsidence zone (negative dilation) that is collocated with a prominent subsidence
zone in our analyses (see location b of Fig. 7a). This subsidence anomaly is located directly
over the Jere Irrigation Project, which was reportedly active at the time of the reported
tremors. Following closely, is the hypothesis that at least one of the felt events could have
been triggered by the remote teleseismic event in Japan (H-I). While this idea is plausible, we

have no actual data to confirm this hypothesis, because the closest seismic station did not
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record good enough data to investigate this hypothesis any further (see examples (Han et al.,
2017)). This again underscores the need for a high-quality geodetic and seismic network in
the region. Similarly, a thorough examination of both hypotheses related to local fault
reactivation by regional tectonics would require a high quality seismic and geodetic network
to evaluate its plausibility for future events (H-II and III). All the evidence taken together,
we point out that, although the Abuja area is located on a stable intraplate region within the
continent, transient strain rates, e.g. recharge and discharge of aquifers, may be more
important than the background tectonic strain rates when it comes to triggering an
earthquake swarm (Calais et al., 2016; Gardonio et al., 2018; Sykes, 1978; Wolin et al., 2012).
The Western African crystalline basement is dominated by inherited crustal weaknesses that
may then fail due to this large transient stress release. Should such events reoccur in the
future, further evaluation of our proposed hypotheses would definitely benefit from a
renewed geophysical investigation of the Western African region, which is currently grossly
understudied and pootly instrumented.

Conclusions

We investigated the source of ground shaking reported during Sept 5-7, 2018 in the Abuja
area, central Nigeria. We reviewed previous seismic activity in the region, speculated on how
the shaking is related to unique teleseismic events, or may be connected to other alternative
explanations, i.e., anthropogenically triggered, or whether regional tectonics and local
geology could have made the region more susceptible to triggered fault rupture and
amplification of seismic shaking. We explored the spatial and temporal origins of the shaking
using seismology, and studied the basement structure and surface deformation using
aeromagnetic and SAR data. We found the strongest support for seismicity related to
anthropogenic ground-water extraction. While other hypotheses cannot be ruled out
completely for the case-study presented here, we point out that more work is needed to
establish a better understanding of the potential connections between inherited basement

structure, active regional tectonics, and anthropogenic stress perturbations.

Data and Resources

All the seismic data used in this study are publicly available through USGS and IRIS. The
MATLAB code for polarization was originally developed by Matt Haney based on the
covariance method and coherency method discussed by Vidale (1986). M_idist (T. Vincenty,
1975) is used to calculate the distance between the station and source location and the
corresponding azimuth, and Matlab_TauP based on (Crotwell et al., 1999) is used to
calculate the travel time of seismic phases given a list of event parameters (such as origins
and magnitude). We use the irisFetch FDSN event web service method (irisFetch.Events) to
retrieve seismic data.
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Appendix

Single-station earth-quake location
The primary goal of a single-station location using polarization analysis is to determine the

epicenter of an earthquake source. We use a three-channel single-station recording to

estimate the arrival azimuth, and station-earthquake epicentral distance (¢5—6, As_e). This
starts with phase identification, estimation of relative travel-time separation of the identified
phases, and finally the estimation of the azimuth using either the compressional or the
Rayleigh wave. Each phase can be detected using its polarization signature. We apply both
the time and frequency-domain algorithms that have been developed for estimating the
time-varying polarization properties of a signal. We form a L X 3 matrix using the
three-channel seismogram with the number of samples L:

X(t) = [Xz(t), Xn(t), Xp(t)]

we then compute the covariance matrix, S(t), which is used to obtain the direction of

b

polarization, U; , through singular value decomposition (SVD) (Jurkevics, 1988):

L

S(t) = % S X (6)X(t)

(S(t) = ADU;(t) =0

We apply a moving-window smoothing filter of length 1 = 1./10 to the matrix X before SVD.

It is customary to sort the corresponding eigenvalues ()‘j) and their corresponding
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cigenvectors from largest to smallest so that Ao > A1 > A2, In this ordering, the

contribution of the dominant principal axes (eigenvector) of the estimated signal’s particle

motion, Uy is then utilized to determine the azimuth, ¢, and dip, Zb, of the incoming phase
(see supplementary figure 1):

() = [Uz(t), Un(t), Up(t)]

R

N

Uz

VU + Uz

The detection of distinct phases: P, ST/, Love or Rayleigh wave phases follow the

Y (t) = arctan

identification of the appropriate combination of polarization parameters in the appropriate
time window. The most important polarization parameter for robust body-wave phase

detection is the strength of rectilinearityf (A5) (Reading et al., 2001; Weber et al., 2011)
which we obtain using the coherence technique (Vidale, 19806), after a slight modification to

the covariance approach. The real signal X(t) is used to construct the complex analytical

signal,f((t) :
X(t) = X, (t) + i H (X (1))

where H is the Hilbert transform and ¢ is the complex number V —1. In this form, the
complex covariance matrix, and polarization directions are obtained from complex

conjugation, C(t) = X()X*(?) and replace the S(t) matrix. The complex polarization

~

direction is then Uj (t) from which we can determine the strength of linear polarization:

f(\;,Ug,) = Ps — Pg

A1+ Ao
Pi=1——-=
S »
1-102,
Pp=1-— -
UOT

531 Where Ps and PE are the strength of linear and elliptical polarization respectively. Since we

532

use both the eigenvalues and the complex eigenvectors to determine the strength of linear
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~
A

polarization, we need to maximize the real component of the largest eigenvectors in Uo(t)

derived from C(t).

The polarization time series is used to determine the arrival time of candidate P and ST”

phases, by combining into characteristic functions and defining empirical threshold values
(Allen, 1982) which are resistant to false triggers (Bai & Kennett, 2000, 2001):

IPt)=If @ Ig ® I}
Vi) =V olyy o LY

for surface waves (SW = Love or Rayleigh), detection is triggered by requiring linearity for
Love waves, ellipticity for Rayleigh waves, and a stable azimuth/dip critetion (minimum

Y = 3¢/5t):

The logical operations @@ © represent AND (intersection), OR(union), and NOT
respectively, and each characteristic function is obtained from combining binary thresholding

I

functions *x applied to each polarization parameter: X. The inclusion of an energy analysis

(X = E) incorporates the well-known short-term/long-term average of raw ground

displacement before (Ex) and after SVD (EU), which ensures that phase detection is

triggered when the amplitude of the incoming phase is large relative to background noise
(Allen, 1982; Astiz et al., 1996).

P
For example, for the P phase dip angle, X = ¢, and Ii/’ is the characteristic function of the
dip-angle using a (de-)trigger threshold that correctly identifies the arrival time of the
P-phase (see supplementary Figure 2) (Eatle, 1999) .

0 ¢§wp+
D)= 1 ¢¥>v,
0 v<t¢p-®I =1

For the definition of the other threshold functions, IX, and details of how the appropriate
(de-) trigger thresholds are set, see supplementary table 2. Consult the supplementary
information for a benchmark of the algorithm.
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554 Tables

555
556
557
558
559
560

Table 1:

(a) Stations used to discriminate local and teleseismic events originating from

West-Africa. Stations G.TAM has only one horizontal channel, station II.LASCN is an island
station and station PM.PFVI is located in Portugal, but with very little propagation in the
Atlantic ocean. We include ILRAYN, which is a very quiet station, to broaden the
back-azimuth coverage, even though it is technically in the Middle east. (b) Distance and
azimuth estimation result from hypothesis-based statistics.

No. Code Country Coordinates Xy Location
(Lat, Lon) anole code
1 II-RAYN  Saudi Arabia  23.5224, 45.5032 0° 00
2 MN-WDD Malta 35.8373, 14.5242 -3° --
3 IU-FURI Ethiopia 8.8952, 38.6798 -1° 00
4 PM-PFVI Portugal 37.1328, -8.8268 6° --
5 G-TAM Algeria 22.7915, 5.5284 2° 00
6 II-MBAR Uganda -0.6019, 30.7382 0° 00
7 NJ-TORO Nigeria 10.055,9.12 6° -
8 G-MBO Senegal 14.392, -16.9555 -8° 10
9 GT-DBIC  Cote d'Ivoire 6.6702, -4.8566 15° 00
10 II-ASCN Ascension -7.9327, -14.3601 -1° 00
Island

561 *Proper orientation for North channel is retrieved from (Ojo et al., 2019).
562 H,: Regional event with epicenter in Nigeria.
563 H;: Teleseismic event with epicenter in Japan.

No. A" AH, AH, ®° ®H, OH, =AH, €AH, eDPH, =OH,
1 85° 38° 79° 226°  63°  292° 123% 8% 258%  22%
2 86° 27° 88° 300°  10°  320° 218% 2% 2771% 6%
3 85 30° 94° 294°  88° 286° 187% 9% 234% 3%
6 101°  24° 106°  272°  112° 284° 320% 5% 141% 5%
9 151° 14° 122° 270°  261° 320° 1007% = 23% 4% 16%
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Figure 1. (a) West African seismicity and tectonics, showing the epicenters (circles) for
earthquakes in the past decade with M3.0 and greater, ocean fracture zones (red lines), and
the seismic network (triangles) available for seismic detection. The 2018 earthquake events
(red circles) are outside the Abuja area (red polygon north-east of TORO). OTFZ =
Oceanic Transform Fault Zone (oceanic fracture zone). Tectonic structures are from
(Pérez-Diaz & Eagles, 2014) . The Mesosoic failed rifts shown in yellow lines define the West
African Rift System. (b) Final selection of five stations (green triangle) used to search for an
earthquake with a hypothetical epicenter (red star) located in Nigeria (NG). Grey stations do
not pass the data quality selection criteria. Note that although TAM (S5) has good quality
data, it is not used for single station detection since it only has one horizontal channel
operating during the time of interest.
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577 Figure 2. Seismograms at stations in or close to Nigeria using an 80-minutes time window.
578 Traces are amplitude normalized. Stations used for further analysis, marked in black, are

579 those that pass the data selection criteria (green triangles in Figure 1b). In each trace, the first
580 P (blue) and S (red) arrivals of the M6.6 Hokkaido event are shown with the station code to
581 the top.
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Figure 3. Phase detection using polarization analysis applied to data recorded at the five
high-quality stations during the Hokkaido event of Sept. 5, 2018. The waveforms are for an
80-minute-long time window, where time 0:00 is 20 minutes before the P arrival at each
station following the event origin. The detected arrival of P, S waves are marked with blue
and red dashed lines, respectively, while the first arriving linearly polarized surface wave is
shaded in grey. The predicted arrival time calculated using the earthquake parameters, and an
earth model are indicated with dots and labels indicating the phase.



Page 21 of 32 Confidential manuscript submitted to Frontiers

*

Japan
MN:WDD
60° A AII-RAYN
' 30° I-MABR
-4 U-FURI o |
GT-DBIC A .. y ' . IU-FURI

H-MABR

180° 180°

589 Figure 4. Station locations relative to two hypothetical epicenters (star). (a) For a local or
590 regional event originating from Nigeria or within Western Africa, all stations are expected to

591 be within 30 degrees of the event location (red star). (b) For the Hokkaido event, distance is
592 60 — 120° and azimuth 270 — 320° (compare Figure 5)

II-RAYN MN-WDD IU-FURI

0

180° 180°

I-MBAR GT-DBIC

180°


https://www.codecogs.com/eqnedit.php?latex=60-120%20%5E%7B%5Ccirc%7D%250
https://www.codecogs.com/eqnedit.php?latex=270%20-%20320%20%5E%7B%5Ccirc%7D%250

Page 22 of 32 Confidential manuscript submitted to Frontiers

993 Figure J: Single-station location of Hokkaido, Japan in the event reference frame (compare
994 with station-event geometry in Figures 1b). All stations identify the correct epicentral
595 distance and azimuth range (except for DBIC and RAYN with an azimuth bias of — 50°).
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596 Figure 6: (a) Satellite topography hillshade map of the Abuja area of the Federal Capital
597 Territory (F.C.T.), Nigeria, showing areas where the tremor was felt (source: BBC Africa
598 Hausa). (b) Google Earth© satellite image of a part of the Abuja area showing an example of
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satellite-scale fractures in the granitic basement outcrops. (c) Rose diagram showing the
azimuth-frequency distribution of the satellite-scale outcrop fractures in the entire Abuja
area shown in Figure 6a. SH=maximum horizontal compressional stress orientation (source:
Heidbach et al., 2016). Inset: Map of Nigeria showing the location and orientation of SH
data (Blue arrows), location of Abuja (red-yellow star), and Mesozoic rift basins (BT =
Benue Trough, BB = Bida Basin). (d) The vertical derivative of the reduced to the equator
(RTE) aecromagnetic map of the Abuja area. White lines represent the trends of basement
magnetic anomaly lineaments. For ‘SH’, see 6c. (e¢) Rose diagram showing the
azimuth-frequency distribution of the aeromagnetic lineaments, which represent the
subsurface structural fabrics. The mean trends of the NW and NE dominant sets coincide
considerably well with those of the satellite-scale outcrop fractures. (f) Depth to basement
map, generated from the Source Parameter Imaging (SPI) transform of the aeromagnetic
data, and the associated (g) cross-section, showing that the areas where the tremor was felt
are located within a small sedimentary basin.
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Figure 7. InSAR deformation map obtained from Sentinel-1A/B ascending orbit (heading
~347° and incidence angle ~38.5°) SAR images for period 2018/01/19-2020/09/05. (a)
LOS linear velocity. Colder colors indicate movement away from satellite or subsidence.
Black polygons show administrative divisions. (b)-(d) time series of LOS displacement at
four locations shown in panel (a). The gray shading indicates a 1-sigma uncertainty range for
the estimated time series.
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620 270 km? extent of coverage of the affected area. (b) A representative satellite image showing
621 the distribution of the individual landslides and the manually digitized axial trends
622 (long-axes) of the landslides (see dataset S1 for digitized data). (c) Azimuth-frequency
623 distribution of the mapped axial trends of the coseismic landslides.
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