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Abstract

Accelerating demand for energy storage has led to increasing development of brine resources in the “Lithium Triangle”, estimated
to hold about 75% of the planet’s Li reserves but persistent and fundamental questions regarding the source and transit time
of groundwater have confounded efforts to manage these resources effectively. The basins containing these brines lie within the
massive Altiplano-Puna Plateau, home to people whose ancestors have inhabited this land for thousands of years and fragile
ecosystems that exist nowhere else on Earth. This region is very dry, bordering Earth’s driest non-polar desert and as such,
groundwater is the predominant and, in many areas the only source of water. Fundamental questions about the spatiotemporal
dimensions of these groundwater systems have only begun to be addressed. In much of this extreme and remote region, there
is a severe lack of quality baseline understanding of the regional hydrological system and connections between surface and
groundwater bodies. To address these questions, we utilize an exhaustive set (72,500 individual analyses) of environmental
tracer data (8180, 82H, 3H, 87Sr/86Sr), and dissolved major and minor elements in waters collected from over a dozen field
campaigns in the Salar de Atacama and Altiplano of Chile and on the Puna Plateau of Argentina. Our integrated analysis
pairs these data with rigorous geochemical modelling and physical hydrological measurements from the field and remote sensing
products. 3H data show much of the groundwater currently discharging into these basins is non-modern (>60 yrs. old), stable
isotope and geochemical data show strong connectivity but also a marked disconnect between some recharge and discharge
areas. We show that “fossil” groundwater, 100-10,000 yrs. or older is widespread and fundamental to the system, sharp
disconnects exist between the modern hydrological system, the water bodies it sustains, and those sustained by paleo-recharge
water. By defining these connections in spatial detail and within a regional integrated framework, we greatly improve the
fundamental mechanistic understanding of this and other groundwater-sustained systems. This will greatly improve the ability

of communities, governments and industry to manage of these water resources in a way that is genuinely sustainable.
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Motivation & Objective

We seek to address the following questions:

1. What 1s the nature of hydrogeologic connectivity within

change and groundwater extractions?

+ work, sample

Water resources on the and high-Andean plateau are critical to sustaining both indigenous
communities and fragile Ramsar World Heritage ecosystems yet accelerating demand for
mineral resources and the effects of climate change have led to concerns about the
sustainability of these resources. Persistent and fundamental questions regarding the source
and movement of groundwaters, which sustain most surface waters here make managing
these resources particularly ditficult.

closed basins and between modem infiltration (<60 yrs.) and the paleo-groundwater system?

2. How connected are surface water bodies (wetlands, lakes, salt lakes and salars) on the Puna to the
eroundwater (aquifers) and what 1s distribution and magnitude of these connections?

3. What are the dynamic response times of surface and groundwaters to perturbations from climate
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Blue arrows indicate modern water transport, green arrows indicate interbasin flow. 6'*O and CI" along transect are plotted above.

Conclusions
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1. An exhaustive set (~350) of environmental tracer data (3'%0, 8°H, *H, *’Sr/*Sr), and dissolved major ions in waters across this integrated system
reveals substantial spatial heterogeneity in both interbasin and modern, shallow flow regimes; controlled by geologic structure and topographic features.
2. Pre-modern “fossil” groundwater 1s fundamental 1n this system, most of the water discharging to large basin floors 1s composed of fossil water. The
modern and fossil flow systems have very distinct transit time distributions and therefore sharp disconnects over short distances exists between them.
3. Our conceptual model of this integrated hydrologic system characterizes spatiotemporal connections. Using this understanding, potential impacts on
crifical and threatened wetland ecosystems and water resources from development or climate change scenarios can be greatly improved
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Discussion
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