
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
23
38
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Continuous Structural Parameterization: A method for

representing different model parameterizations within one structure

demonstrated for atmospheric convection

Francis Hugo Lambert1, Peter Challenor1, Neil T Lewis2, Douglas J. McNeall3, Nathan E
Owen1, Ian Boutle4, Hannah Christensen2, Richard Keane5, Alison Stirling6, Mark J
Webb7, and Nathan J Mayne1

1University of Exeter
2University of Oxford
3Met Office Hadley Centre
4Met Office
5University of Leeds
6UK Met Office
7UK Met Office Hadley Centre

November 24, 2022

Abstract

Continuous Structural Parameterization (CSP) is a method for approximating different numerical model parameterizations of

the same process as functions of the same gridscale variables. This allows systematic comparison of parameterizations with

each other and observations or resolved simulations of the same process. Using the example of two convection schemes running

in the Met Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two schemes,

and differences between the parameterizations and resolved convection simulated by a high resolution simulation. When the

original convection schemes are replaced with their CSP emulators within the UM, basic features of the original model climate

and some features of climate change are reproduced, demonstrating that CSP can capture much of the important behavior of

the schemes. Our results open the possibility that future work will estimate uncertainty in model projections of climate change

from estimates of uncertainty in simulation of the relevant physical processes.
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Abstract18

Continuous Structural Parameterization (CSP) is a method for approximating different19

numerical model parameterizations of the same process as functions of the same grid-20

scale variables. This allows systematic comparison of parameterizations with each other21

and observations or resolved simulations of the same process. Using the example of two22

convection schemes running in the Met Office Unified Model (UM), we show that a CSP23

is able to capture concisely the broad behavior of the two schemes, and differences be-24

tween the parameterizations and resolved convection simulated by a high resolution sim-25

ulation. When the original convection schemes are replaced with their CSP emulators26

within the UM, basic features of the original model climate and some features of climate27

change are reproduced, demonstrating that CSP can capture much of the important be-28

havior of the schemes. Our results open the possibility that future work will estimate29

uncertainty in model projections of climate change from estimates of uncertainty in sim-30

ulation of the relevant physical processes.31

Plain Language Summary32

Numerical models are used to provide estimates of future weather and climate change.33

The models contain “parameterizations”, which are algorithms that simulate the effect34

of processes too small or poorly understood to represent using physical equations. Al-35

though they are based as far as possible on physics, parameterizations are a large source36

of modeling uncertainty because there can be large disagreements on how best to rep-37

resent a given process. The method and even the variables used by two different param-38

eterizations may differ. It is therefore very difficult to know how different parameteri-39

zations cause numerical models to produce different results and whether the parameter-40

izations we have are adequate and span the range of uncertainty concerning our knowl-41

edge of the processes they represent. Using the example of small-scale atmospheric con-42

vection linked to rain and thunderstorms, this paper describes a mathematical method43

for expressing different parameterizations within the same framework. This allows easy44

but formal mathematical comparison of different parameterizations and gives future work45

the potential to understand whether our parameterizations perform as they should in46

conjunction with future observations.47
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1 Introduction48

Numerical models of weather and climate contain “parameterizations”, which are49

physically motivated but approximate algorithms that represent processes that cannot50

be simulated explicitly on the model grid. One example is atmospheric convection, which51

could be represented by the same equations of fluid dynamics and thermodynamics used52

to simulate larger-scale atmospheric dynamics, but which typically occurs below the grid-53

scale of contemporary climate models and some numerical weather prediction models.54

Another example is land surface vegetation, for which we do not even know the govern-55

ing equations. The aim of parameterization is to relate the behavior of interest to resolved56

processes on the model grid. Parameterizations are derived semi-empirically using in-57

sights from process understanding, observations or high-resolution simulations that do58

capture the relevant processes explicitly but that would be too expensive to run inside59

a weather or climate model.60

A body of literature suggests that parameterizations are the chief cause of differ-61

ences between predictions of future climate change taken from different climate models62

(e.g. Mauritsen et al., 2012; Webb et al., 2013; Sherwood et al., 2014; Geoffroy et al.,63

2017). What is not known, however, is exactly how the parameterizations that we have64

are different from each other and whether the differences are representative of our un-65

certainty in the relevant processes. This poses a problem for climate prediction because66

it is unclear how to translate climate model output into probability distributions of pos-67

sible future climate change. The difficulty arises partly because different parameteriza-68

tions of the same process can have different physical bases, meaning that they may be69

written in terms of different equations and even different variables, and partly because70

it is not clear how best to write parameterizations in a way that is directly comparable71

to observations or resolved simulations of the same process.72

Previous work has endeavored to address some of these problems. Perturbed Physics73

Ensembles (PPEs) are groups of general circulation model (GCM) simulations derived74

from one base climate model but with their uncertain parameterization parameters per-75

turbed over the ranges of values considered possible by relevant experts (e.g. Murphy76

et al., 2004; Sanderson, 2011; Sexton et al., 2019). PPEs explore the uncertainty asso-77

ciated with one set of parameterizations systematically because the difference between78

different ensemble members is unambiguously defined by the differences in their param-79
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eters. However the approach is trapped within one model structure and cannot fully ex-80

plore the set of plausible parameterizations. Another set of parameterizations can be in-81

troduced into the ensemble (e.g. Shiogama et al., 2013), but the ability to define sys-82

tematic differences is lost.83

Meanwhile, the impulse-response method of Kuang (2010); Herman and Kuang (2013)84

does allow systematic comparison of parameterizations in a way that is agnostic to their85

structure by testing the effect of idealised perturbations in the model resolved-scale vari-86

ables on parameterization and then encapsulating those responses in a response matrix.87

As Arakawa (2004) and Herman and Kuang (2013) stated, one view is that the impor-88

tant question is “What does each scheme actually do [at the resolved scale]?”. The in-89

ternal machinery of each parameterization is secondary. This is particularly true where90

different parameterizations have different physical motivations, because mechanistic com-91

parison of the internal workings of each parameterization may not then be possible. Fur-92

ther, because the impulse-response method is written as a function of the resolved vari-93

ables only, it is possible in principle to do the same analysis for high-resolution simula-94

tions or observations of the same process, as Herman and Kuang (2013) demonstrated95

for atmospheric convection.96

The derived response matrices must also be put in the GCM in place of the orig-97

inal parameterization, as was done by Kelly et al. (2017) and Mapes et al. (2019) for the98

impulse-response method. This is necessary if we are to demonstrate that the matrix rep-99

resentation captures the essence of the parameterization relevant to modeling. We can100

then test the effects of multiple structurally distinct schemes using one parameteriza-101

tion code and define and explore the unknown parameter space between them in a GCM.102

If the matrix representation was sufficiently accurate, then the extent to which a par-103

ticular parameterized process is responsible for inter-model differences when all other model104

components remain the same could be determined without the expensive overhead of hav-105

ing to port a range of structurally different parameterizations to one GCM. As with PPEs,106

the systematic differences between model versions would be known and it would be pos-107

sible to determine quantitatively how available parameterizations differ from one another108

and how well they sample the possible “structural” parameter space defined by the re-109

sponse matrices compared with observations or high-resolution simulations. If differences110

in GCM simulation of some aspect of climate change were strongly identified with pa-111

rameterization of one or more processes, then over or under-sampling of regions of the112
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relevant parameter space could be taken into account when providing projections of fu-113

ture climate change. This would be an alternative to rewarding each GCM in the en-114

semble with one vote, as is frequently done in ensemble studies of climate change (e.g.115

Collins et al., 2013). The over or under-sampling of regions of the structural parameter116

space could also assist the direction of future model development.117

A variety of studies have shown the potential for “machine learning” techniques118

to represent complex atmospheric processes and replace traditional parameterizations119

running within a GCM. Krasnopolsky (2010) used a neural network to replace the ra-120

diation parameterization within the Community Atmosphere Model (CAM). Errors were121

comparable with the GCM’s natural internal variability for a fully-coupled ocean-atmosphere122

simulation. The speed of simulation was also substantially accelerated compared with123

the case of using the original parameterization. O’Gorman and Dwyer (2018) used a ran-124

dom forest algorithm to parameterize convection in an idealised version of the Geophys-125

ical Fluid Dynamics Laboratory model coupled to a slab ocean and trained on data from126

a conventional convective parameterization. An accurate representation of both the cli-127

matological and climate change features of the original GCM containing the conventional128

parameterization was achieved. Rasp et al. (2018) used a neural network to represent129

all parameterized processes in the model atmosphere of the super-parameterized CAM130

(SPCAM). Super-parameterization means that there is a high-resolution simulation within131

each GCM gridbox and hence Rasp et al. (2018)’s neural network was effectively emu-132

lating a high-resolution explicit representation of sub-GCM gridscale processes (although133

processes are not shared between GCM gridboxes). It was found that the neural network134

parameterization provided an accurate simulation of precipitation, atmospheric heating135

and wave structure when compared to SPCAM and superior to the conventionally pa-136

rameterized CAM. Brenowitz and Bretherton (2018) trained a neural network to emu-137

late all sub-gridscale processes in a high-resolution simulation. It was found that using138

this neural network parameterization in the CAM led to a superior simulation when com-139

pared with the conventionally parameterized CAM. These studies suggest that apply-140

ing machine learning techniques to parameterization will be useful for improving GCM141

accuracy and computational speed. Combined with impulse-response or other statisti-142

cal techniques, they can also be useful for understanding how to parameterize processes143

(O’Gorman & Dwyer, 2018), although direct interpretation of what complex neural net-144

works or random forest techniques are doing remains difficult.145
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In this paper we describe Continuous Structural Parameterization (CSP), which146

is a method for writing parameterizations of the same process at a given model resolu-147

tion in terms of functions of the same gridscale variables, making parameterizations with148

distinct structures formally comparable to one another, but retaining enough skill to re-149

place the original parameterizations in a GCM. We base our discussion around a can-150

didate CSP for atmospheric convection derived using linear algebra. In some ways the151

approach is similar to the forward method of Kuang (2010); Herman and Kuang (2013).152

Where it differs is in the attempt to achieve efficient descriptions of parameterizations153

through a set of orthogonal modes most important to GCM simulation. This allows easy154

analysis of how parameterizations differ from one another or observations or high-resolution155

simulations of the same physical process. Orthogonality also allows fitting of our statis-156

tical model to output from standard GCM simulations. CSP has four broad goals:157

1. Build a statistical emulator that expresses the gridscale outputs of parameteriza-158

tions as simple functions of their gridscale inputs.159

2. Provide low dimensional descriptions of the most important differences between160

parameterizations and high-resolution simulations or observations using a diagram161

or other easily interpretable method.162

3. Replace original parameterizations with CSP statistical emulators in the GCM to163

assess the degree to which relevant processes are captured.164

4. Test the importance of errors introduced by a given parameterization type in en-165

sembles of models used to predict climate change.166

The overall aim is not to replace conventional parameterization nor to improve GCM in-167

tegration speed, but to understand our parameterizations in the context of process knowl-168

edge and provide tools for parameterization development and interpretation of climate169

model projections. Here we approach goals 1–3 for convective parameterization using an170

example CSP, following the earlier work described above and recognising that convec-171

tion is believed to be one of the key processes causing model error in current GCMs (Sherwood172

et al., 2014; Webb et al., 2015). When our CSP emulators are run in a GCM in place173

of the original parameterizations, we find that basic features of climate and some fea-174

tures of climate change are preserved. Our results are less accurate than those achieved175

when machine learning techniques are applied, but we retain the ability to explain dif-176

ferences between parameterizations and a high resolution dataset. The remainder of the177
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paper is organised as follows. Section 2 describes the GCM experiments that we use to178

build and test CSP, Section 3 presents our statistical methodology, Section 4 presents179

our results for both parameterized and high-resolution representations of convection, Sec-180

tion 5 is a discussion of the implications of our results and Section 6 presents our main181

conclusions.182

2 Model experiments183

To train and test our statistical emulators, we take data from both coarse simu-184

lations run with parameterized convection and high-resolution convection permitting sim-185

ulations.186

2.1 UM simulations187

Our coarse simulations with parameterized convection are run using the Global At-188

mosphere 7.0 configuration of the Met Office Unified Model (UM) (Walters et al., 2019).189

The UM solves the fully compressible, deep-atmosphere, non-hydrostatic Navier-Stokes190

equations using a semi-implicit, semi-Lagrangian approach. Parameterizations of atmo-191

spheric radiation, boundary layer turbulence, large-scale and convective cloud and pre-192

cipitation are included. The model resolution is 2.5◦ longitude by 2◦ latitude with 38193

vertical levels and a timestep of 15 minutes. Two convection schemes are used in our study:194

the well-established Gregory-Rowntree (GR) mass-flux scheme of Gregory and Rown-195

tree (1990) with improvements described by Walters et al. (2019), and the Lambert-Lewis196

(LLCS) simple moist adjustment scheme of the authors’ devising described in Appendix197

A. The statistical emulation of these two schemes and their differences is the basis for198

our demonstration of CSP. The model atmosphere is coupled to a 2.5 m deep “slab” ocean199

with thermodynamics but no representation of ocean dynamics (Boutle et al., 2017). The200

model is free to find its own equilibrium state by bringing top of atmosphere radiative201

fluxes into balance.202

A number of simplifications to the simulations were made to ease the process of203

coding the statistical emulators and to simplify the behavior that needs to be predicted.204

The UM was run in aquaplanet mode with no continents or sea ice. The sophisticated205

prognostic cloud scheme (PC2) and the radiative effect of clouds were switched off to sim-206

plify the relationship between GR and gridscale water. The UM’s targeted diffusion pa-207
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rameterization was switched on, as it was found that very occasional gridpoint storms208

occurred when running the LLCS CSP emulator. (Gridpoint storms are large values of209

gridscale precipitation and upward vertical velocity that occur when physically unreal-210

istic resolved convection arises.) Targeted diffusion disperses boundary layer water va-211

por to adjacent gridboxes when gridscale vertical velocity crosses a threshold (0.2 ms−1
212

in our simulations).213

We run 10 year control (0.5941 g kg−1 atmospheric CO2) and 4×CO2 (2.3764 g214

kg−1 atmospheric CO2) simulations for LLCS and GR, and the cases where the origi-215

nal convection schemes are replaced by their CSP statistical emulators between latitudes216

30 ◦N and 30 ◦S and no convection scheme is used poleward of 30 ◦ (GREMU and LLC-217

SEMU). (It would be preferable to run the original parameterizations poleward of 30 ◦,218

but this is technically difficult for GR. A test with LLCS shows that similar results are219

found for the original parameterization and no parameterization poleward of 30 ◦ cases220

(not shown).) For the original parameterization GR and LLCS cases, we also run one221

30 day simulation for January and one 30 day simulation for July for which values of po-222

tential temperature, θ, and specific humidity, q, are output on every model level at ev-223

ery timestep directly before and after convection between 30 ◦N and 30 ◦S allowing us224

to collect cases that we will use to train the statistical emulator in Section 3. These sim-225

ulations are spun off from January 1st and July 1st of year 5 of the relevant 10 year sim-226

ulation. We also run control and 4×CO2 cases for two perturbed physics setups with the227

original LLCS parameterization in which the value of the critical relative humidity for228

initiation of moist convection, rc, is perturbed from its standard value of 0.8 to 0.7 and229

0.9. All the simulations are summarised in Table 1.230

2.2 Cascade high-resolution simulations231

We use data derived from the 4 km convection permitting simulations of the Cas-232

cade experiment (Holloway et al., 2012). As above, the Cascade simulations are run with233

the UM, but the 4 km resolution allows the convective parameterization to be switched234

off and the explicit dynamics of the model dynamical core are used to represent convec-235

tion. The expectation is that a much more faithful simulation of convection should be236

achieved than when a parameterization is used making Cascade a good tool to bench-237

mark parameterizations against (e.g. Guichard et al., 2004). Christensen et al. (2018)238

produced a coarse-grained version of the 4km Cascade data to provide forcing data for239
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Table 1. Met Office Unified Model Simulations

Simulation CO2 [g kg−1] Convection Training output Length

LLCS CON 0.5941 LLCS, rc = 0.8 OFF 10 years

LLCS 4×CO2 2.3764 LLCS, rc = 0.8 OFF 10 years

GR CON 0.5941 GR OFF 10 years

GR 4×CO2 2.3764 GR OFF 10 years

LLCS CON rc = 0.7 0.5941 LLCS, rc = 0.7 OFF 10 years

LLCS 4×CO2 rc = 0.7 2.3764 LLCS, rc = 0.7 OFF 10 years

LLCS CON rc = 0.9 0.5941 LLCS, rc = 0.9 OFF 10 years

LLCS 4×CO2 rc = 0.9 2.3764 LLCS, rc = 0.9 OFF 10 years

LLCSEMU CON 0.5941 LLCS emulator OFF 10 years

LLCSEMU 4×CO2 2.3764 LLCS emulator OFF 10 years

GREMU CON 0.5941 GR emulator OFF 10 years

GREMU 4×CO2 2.3764 GR emulator OFF 10 years

LLCS CON January 0.5941 LLCS, rc = 0.8 ON 30 days

LLCS CON July 0.5941 LLCS, rc = 0.8 ON 30 days

LLCS 4×CO2 January 2.3764 LLCS, rc = 0.8 ON 30 days

LLCS 4×CO2 July 2.3764 LLCS, rc = 0.8 ON 30 days

LLCS CON rc = 0.7 January 0.5941 LLCS, rc = 0.7 ON 30 days

LLCS CON rc = 0.7 July 0.5941 LLCS, rc = 0.7 ON 30 days

LLCS 4×CO2 rc = 0.7 January 2.3764 LLCS, rc = 0.7 ON 30 days

LLCS 4×CO2 rc = 0.7 July 2.3764 LLCS, rc = 0.7 ON 30 days

LLCS CON rc = 0.9 January 0.5941 LLCS, rc = 0.9 ON 30 days

LLCS CON rc = 0.9 July 0.5941 LLCS, rc = 0.9 ON 30 days

LLCS 4×CO2 rc = 0.9 January 2.3764 LLCS, rc = 0.9 ON 30 days

LLCS 4×CO2 rc = 0.9 July 2.3764 LLCS, rc = 0.9 ON 30 days

GR CON January 0.5941 GR ON 30 days

GR CON July 0.5941 GR ON 30 days

GR 4×CO2 January 2.3764 GR ON 30 days

GR 4×CO2 July 2.3764 GR ON 30 days
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the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Fore-240

casting System (IFS) single column model (SCM). The SCM was then run forced by the241

coarse-grained Cascade input data. This is very useful for our study because both the242

coarse-grained overall tendency of the Cascade data and the dynamical and parameter-243

ized tendencies of the IFS SCM were archived by Christensen et al. (2018), allowing us244

to construct an emulator of a high-resolution simulation of convection.245

We take the coarse-grained overall tendency of the Cascade data from the last nine246

days of the simulation (avoiding the spin-up) over a region of the Indian Ocean (54 ◦E247

– 90 ◦E longitude and 21 ◦S – 4.5 ◦N latitude), subtract the radiative, boundary layer248

and coarse dynamical tendencies of the SCM obtaining an estimate of the remaining dy-249

namical processes that ought to be represented by a convection scheme. The estimate250

is not likely to be highly accurate since Cascade was created using the Met Office UM251

and the SCM is an ECMWF product. Cascade data are also only archived once per hour,252

in contrast to the 15 minute timesteps of the SCM, meaning that the SCM may drift sub-253

stantially from the Cascade state as it is re-initialised only once every four timesteps.254

We further average the data in the horizontal from its Christensen et al. (2018) resolu-255

tion of 0.3◦ × 0.3◦ to as a close as possible to the UM grid of 2.5◦ longitude by 2◦ lat-256

itude without horizontal interpolation but interpolated in the vertical to the UM grid257

to improve comparability. Given their limitiations, we analyse these data as a demon-258

stration rather than a definitive investigation of treating high-resolution simulation of259

convection with CSP.260

3 Statistical methodology261

3.1 Linear models262

In this section the statistical techniques we use to build convection emulators us-263

ing training data are presented. First, we take vertical columns of potential tempera-264

ture, θ, and specific humidity, q, on model levels and their respective changes across the265

convective timestep, ∆θ and ∆q, from a GCM or the high-resolution simulation. There266

are other variables that are typically inputted into and outputted from convective pa-267

rameterizations, but θ and q are the most important and the data we use for this first268

study. The θ and q values have their mean subtracted on each level and are then con-269

verted to components of moist enthalpy cpθ and Lq, where cp is the specific heat capac-270
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ity of dry air at constant pressure and L is the latent heat of vaporisation. This ensures271

that the dry and moist components of enthalpy are of similar sizes, putting dry and moist272

components on the same footing for statistical modeling. Similar benefits can be achieved273

by normalising each θ and q component by its mean and variance, but using enthalpy274

units has the convenient property that the sum of cp∆θ and L∆q over levels is zero as275

enthalpy is conserved by convection.276

Placing the cpθ and Lq values for each of the m model levels into a single vector277

and combining n input cases, we form the 2m× n matrix X:278

X =


cpθ1,1 · · · cpθm,1 Lq1,1 · · · Lqm,1

...
...

...
...

...
...

cpθ1,n · · · cpθm,n Lq1,n · · · Lqm,n

279

We then find the matrix of eigenvectors, U (2m×2m), and their corresponding weights,280

P (2m × n), so that X = PU, by taking the singular value decomposition of the co-281

variance matrix XTX. Similarly, columns of cp∆θ and L∆q are combined to form the282

output matrix, Y (2m×n), which is written in terms of its eigenvectors, V (2m×2m),283

and their corresponding weights, Q (2m × n), such that Y = QV, by taking the sin-284

gular value decomposition of YTY. The aim then is to predict unknown values of out-285

put Q and hence Y from known values of the inputs P. We predict Q from P rather286

than predicting Y from X because correlations between values of θ and q on different287

vertical levels that could cause large errors in our statistical analysis are avoided. A two-288

step linear statistical emulator is used that first predicts whether convection is occur-289

ring, and then when convection is predicted to occur, predicts ∆θ and ∆q on model lev-290

els. The two-step choice is helpful because convection is a rare event even in the trop-291

ical atmosphere. It is difficult to represent large numbers of cases of no or little convec-292

tion, and small numbers of cases of large convection simultaneously using a linear model.293

Two similar steps are also used by many convection schemes, including the ones anal-294

ysed in this paper.295

Whether or not convection occurs is predicted using logistic regression. For the ith296

case in P, an estimate of the probability that convection will occur is297

Ci =
exp(βPi)

1 + exp(βPi)
, (1)298

where β (2m component vector) are coefficients to be determined, one for each input eigen-299

vector. Nominally, convection is expected when Ci > 0.5 but experience with data can300
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lead us to shift the decision boundary in practice. If it is predicted that convection is301

occurring, then Q and hence ∆θ and ∆q on levels are predicted from a linear model:302

Q = γP + ε, (2)303

where γ (2m × 2m) are the coefficients to be determined for each output eigenvector304

in terms of each input vector, and ε is the error. Both the β and γ coefficients are pre-305

dicted using ridge regression, which is a constrained variant of ordinary least squares re-306

gression that penalises large components of β and γ via a tunable coefficient λ. For ex-307

ample, the best estimate of γ is308

γ̂ = (PTP + λI)−1PTQ.309

Providing λ is positive and non-zero, the analysis is not very sensitive to its precise value.310

We use λ = 10 for logistic regression estimates of convective triggering and λ = 2 for311

linear regression estimates of convective strength throughout. Ridge and related tech-312

niques such as the Bayesian lasso are powerful tools for constraining regression param-313

eters when correlations between components of the input weights permit a large range314

of coefficients. That should not be an issue here because the singular value decomposi-315

tion almost eliminates correlations in the training data. However, experience with con-316

vecting data shows that there is still the possibility that chance correlations between small317

features in the input data and significant features in the output data can lead to very318

large coefficients and large prediction errors when the statisical model is used to predict319

outputs for an unseen input dataset. The ridge models used avoid these problems be-320

cause large coefficients are suppressed. More details of the logistic and ridge regression321

methods are given by, for example, Hastie et al. (2008).322

Finally, the output matrix is estimated via Y ' γPV. The mean of the train-323

ing data removed in the first step is added to Y, yielding estimates of ∆θ and ∆q. Hence,324

the information in the training data is encoded into the eigenvectors U and V and the325

coefficients β and γ. The training data can then be discarded and the statistical mod-326

els tested against unseen data to assess their accuracy.327

3.2 Model training and truncation328

The statistical emulators for the LLCS and GR parameterizations are trained for329

the tropics (30 ◦N – 30 ◦S) using output from the 30 day January and July simulations330
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described in Section 2.1. These simulations output several million cases each, of which331

around 2–3 % show appreciable convection. (One case is one horizontal gridpoint at one332

timestep.) We calculate ∆θtrop, which is defined as the mean atmospheric warming be-333

tween 700 and 100 hPa for each case and then choose for training the cases closest to334

30000 equally spaced values of ∆θtrop from its minimum to its maximum value. This at-335

tempts to build an emulator that is equally competent at representing the full range of336

convective events rather than the most common ones. The largest events are rare and337

therefore each is typically represented on multiple occasions in the training data. A fur-338

ther 30000 non-convecting cases (defined as ∆θtrop < 0.05 MJ m−2, although results339

are insensitive to the precise choice) are chosen at random. For each convection scheme,340

we compose control emulators, which take half of their input from control January and341

half from control July. For standard LLCS and GR we also compose combined control342

– 4×CO2 emulators, which take a quarter of their input from each of control January,343

control July, 4×CO2 January, and 4×CO2 July. The combined emulators show only mi-344

nor differences with their control counterparts, but are useful for running emulators on-345

line in the GCM and testing the behaviour of emulated convection under climate change.346

The choice of 60000 cases was made as it is realistic to perform analysis on matrices of347

this size with available computing resources. The effect of smaller sample size is inves-348

tigated in Section 4.1.349

The input and output eigenvectors U and V are calculated via singular value de-350

composition from the 30000 equally-spaced samples and their weights P and Q calcu-351

lated for all 60000 equally-spaced and non-convecting cases for each convection scheme.352

The γ coefficients in equation 2 are estimated from the 30000 equally-spaced cases only.353

Cases from the equally-spaced group deemed non-convecting (∆θtrop < 0.05 MJ m−2)354

are then discarded, as are an equal number of non-convecting cases, leaving us with an355

equal number of convecting and non-convecting cases. The β coefficients in equation 1356

are estimated from the remaining cases. (Optimally, a different set of input eigenvectors357

that also consider the non-convecting sample would be calculated to remove correlations358

between components of P when considering non-convecting data. However, in practice,359

the very slight benefit of doing this is outweighed by the tractability of using one set of360

eigenvectors.) Both β and γ are fitted using the scikit-learn python package (see Acknowl-361

edgements). The fidelity of the emulator is tested using a dataset independent from the362

training data.363
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There is then the option of truncating the matrices to improve interpretability. The364

eigenvectors are ordered by the proportion of variance that they represent in the train-365

ing data, each representing the largest remaining fraction of variance possible after vari-366

ance associated with the previous eigenvectors has been removed. In our aquaplanet sim-367

ulations, it is found that the vast majority of output convective behavior can be described368

with relatively few eigenvectors. We typically retain two or three for discussion in the369

results sections and use ten when the emulators are run online as part of the GCM. Trun-370

cating the input space, on the other hand, is difficult to do because convection is a rare371

event and successfully predicting its occurrence and strength relies on retaining small372

signals in the input data. Hence, instead of truncating, we rotate β and γ back into θ,q373

on levels by forming the 2m component vector βθ,q = βU and the 2m × 2m matrix374

γθ,q = γU to interpret our results. βθ,q is the sensitivity of convective triggering to de-375

partures of θ,q from their mean values on each level. The columns of γθ,q are the sen-376

sitivity of each output mode V to departures of θ,q from their mean values given that377

convection is occurring. Having identified βθ,q and γθ,q, a new low dimensional input space378

that does preserve the input signals necessary to describe convection can be built. We379

demonstrate this in Section 4.2 and show its use for comparing multiple convection schemes.380

For Cascade, after coarse-graining to 2.5◦ longitude by 2◦ latitude, only 35952 cases381

are available over the selected Indian Ocean region, with only 4030 showing apprecia-382

ble convection with ∆θtrop > 0.05 MJ m−2. At 11 %, this is much more frequent than383

the 2–3 % of cases seen to convect in the GCMs. Nevertheless, the small amount of data384

available forces a change in our experimental design. The emulator is trained on 2000385

cases and then evaluated for the entire dataset including the training data. The train-386

ing set contains the majority of deep convecting cases, so our assessment of our ability387

to emulate convection should be considered preliminary as the test dataset lacks sub-388

stantial independence.389

4 Results390

4.1 Emulation of LLCS, GR and Cascade control data391

This section presents results when statistical models are fitted for the first 10 com-392

ponents of the output modes, V, for each representation of convection. The most im-393

portant modes of response for the control CO2 LLCS CON, GR CON and Cascade runs394
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Figure 1. Main modes of convective response for LLCS (left column), GR (middle) and Cas-

cade (right column) control cases. The top row shows the mean responses when convection is

occurring, the middle row shows the first eigenvectors describing variations in convective response

across the training data, V1, and the bottom row shows the second eigenvectors, V2. Red lines are

the effective convective heating rate, Q1, and blue lines are the effective convective drying rate,

Q2. Percentages in the titles of panels d-i are the proportion of output variance accounted for by

each component of V. Both are shown in temperature units of K day−1, where Q2 corresponds

to the latent heat of condensation associated with drying. Note the different horizontal scales in

each panel.
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are depicted in Figure 1. Shown are the mean convective responses when convection is395

occurring (defined as ∆θtrop > 0.05 MJ m−2, equivalent to a temperature change ∆Ttrop '17.4396

K day−1) (Figure 1a-c), and the first and second eigenvectors, V1 and V2, that describe397

how convecting cases vary across the training data (Figure 1d-i). Physically, the mean398

responses and V1 are identified with deep convection. For LLCS, positive V2 is associ-399

ated with stronger convection and more heating higher in the troposphere. For GR and400

Cascade, positive V2 is associated with shallow convection. The first two components of401

V account for 75 % of the variance in the convecting training data for LLCS, 79 % for402

GR and 93 % for Cascade. In units of enthalpy change, it is found that the combined403

sum over vertical levels of dry and moist components of V is near zero for LLCS and GR,404

meaning that enthalpy is conserved by the convection schemes as expected. Agreement405

is less good for Cascade, which is unsurprising given that occurrence of convection is es-406

timated rather than calculated explicitly. Figure 2a-c shows the corresponding mean in-407

put associated with the mean convecting case for each model control run. Figure 2d-i408

shows the rotated γθ,q,1 and γθ,q,2, which are the variations from the mean input nec-409

essary to achieve variations of size V1 and V2 from the mean output. Also shown are the410

range of responses for 1000 subsamples of the training data where 10000 cases are cho-411

sen at random without replacement and γ is recalculated (1000 subsamples of 1000 cases412

for Cascade). Evidently, our calculations are likely to be affected by sampling errors, es-413

pecially near the surface and especially for Cascade. Results for βθ,q, which control con-414

vective triggering, are similar to γθ,q,1 (in other words deep convection) in each case, so415

we omit them for brevity.416

Taking Figures 1 and 2 together we can identify clear differences between the con-417

vection that occurs in the different datasets. Analysing the mean and deep convective418

components, V1, it is plain that LLCS consumes far too much boundary layer moisture419

(Figure 1a,d) compared with GR (Figure 1b,e). LLCS convection occurs when the at-420

mosphere is cooler and drier than GR (Figure 2a-c) and strengthens as the surface layer421

becomes wetter and warmer than those aloft (Figure 2d). This is in contrast to GR, where422

deep convection also relies on a warm atmospheric boundary layer (Figure 2e). It is more423

difficult to make similar arguments using the Cascade dataset perhaps due to the small424

sample size and limitations of the input data, Section 2.2. However, the convection re-425

alised is similar to GR if apparently weaker, although this may be due to the temporal426

and spatial averaging undertaken (Figure 1c,f,i).427
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Figure 2. Inputs associated with convecting cases in the training data. The top row shows

mean atmospheric profiles: (a) Temperature, T , (b-c) q. The middle and bottom rows show how

anomalies from the mean input drive changes in (middle row) V1 and (bottom row) V2. Dry en-

thalpy components are red, moist components are blue. The lighter red and blue shading depicts

the range of γθ,q for the 1000 subsampled training cases. All are shown in temperature units of K

where moist components are expressed in K via the latent heat of vaporisation associated with

q, as in Figure 1. The exception is panel (c) where mean q is shown in g kg−1. Note the different

horizontal scales on each panel and that the vertical scale only shows the region 800-1000 hPa for

panels d-i. (Signals for 100-800 hPa are small on these panels.)

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 2. Results for the LLCS and GR independent datasets and the Cascade complete

dataset, which includes the training cases, for C = 0.6. For LLCS and GR, results are given

for emulators of the control (CON) simulations and for emulators of the combined control and

4×CO2 simulations. The “Convecting” and “Non-convecting” columns are the percentages and

number of cases correctly identified as convecting and not convecting respectively in the simula-

tions. R2 is the coefficient of determination for ∆θtrop for all convecting cases (including those

labelled as non-convecting by the emulator).

Simulation Convecting Non-convecting R2

LLCS CON 77 % (87584/114299) 86 % (4197723/4862341) 0.65

LLCS CON & 4×CO2 76 % (88434/116200) 86 % (4203611/4860440) 0.66

LLCS CON rc = 0.7 72 % (74204/102363) 86 % (4197361/4874277) 0.69

LLCS CON rc = 0.9 70 % (70638/101226) 88 % (4283043/4875414) 0.65

GR CON 81 % (73430/90419) 95 % (2295750/2404466) 0.47

GR CON & 4×CO2 79 % (78395/98843) 95 % (2275794/2396850) 0.50

Cascade 74 % (3035/4092) 91 % (28887/31860) 0.17
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Figure 3. ∆Ttrop for simulated versus emulated cases in the independent datasets for CON

and 4×CO2 (a) LLCS and (b) GR and for the complete dataset for (c) Cascade. Lighter colors

indicate a higher density of cases. The red line is y = x.
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We now test the ability of our statistical models to reproduce convection simulated428

in independent datasets not used for fitting. (Due to the small amount of data available,429

results for Cascade include the training data, so these results should be treated as pre-430

liminary.) Summary statistics for C = 0.6 are shown in Table 2. Overall, prediction431

of whether or not convection should trigger (defined as where ∆θtrop > 0.05 MJ m−2)432

is quite good, especially for GR. It is also the case that predicting both CON and 4×CO2433

cases using one emulator does not substantially degrade performance for either LLCS434

or GR. At first sight, percentage results are particularly encouraging for non-convecting435

cases. However, because non-convecting cases are by far the majority of all cases, the436

number of cases that would be incorrectly predicted to convect is high. This could pose437

problems when using the emulator online in a GCM. The proportion of non-convecting438

cases correctly predicted can be increased by increasing the value of C. However, this439

increases the number of convecting cases that are incorrectly predicted to be non-convecting.440

Experience shows that C = 0.6 provides a balance between the convecting and non-441

convecting prediction errors that gives reasonable results when run online in the GCM442

(Section 4.3). Figure 3 shows the performance of the emulator in predicting ∆Ttrop. Val-443

ues of R2 for convecting cases are given in Table 2. Predictions for LLCS are most ac-444

curate, followed by GR. Predictions for Cascade are weaker and show poor R2.445

4.2 Joint analysis of LLCS, GR and Cascade control data446

This subsection presents LLCS, GR and Cascade emulators built in terms of a com-447

mon set of input, UC, and output, VC, eigenvectors, allowing direct comparison of val-448

ues of β and γ that determine convective response to a given input. We build our joint449

input and output spaces from the combined LLCS CON and GR CON training data. Com-450

mon output eigenvectors, VC, and their corresponding weights, QC, are derived from451

the singular value decomposition of 60000 equally-spaced cases taken from the relevant452

January and July training runs. (We use control data because this is the only data avail-453

able for the LLCS perturbed physics versions we will consider.) This is sufficient to cap-454

ture the dominant behavior of convection in a few modes, as with the individual decom-455

positions in the previous subsection. Because large numbers of input modes are impor-456

tant to convection in each dataset, we derive the common input modes in a slightly dif-457

ferent way in order to obtain a small tractable set. For LLCS CON and GR CON, we458

form γθ,q,1−3X, where γθ,q,1−3 are the first three regression coefficients linking anoma-459
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Figure 4. (a-d) The first four joint input eigenvectors for the LLCS CON and GR CON

datasets. As in Figure 2, dry temperature components are red, moist components are blue in

units of K. (e-f) The first two joint output eigenvectors. As in Figure 1, the red lines are the ef-

fective convective heating rate, Q1, and the blue lines are the effective convective drying rate, Q2,

in units of K day−1. Note the different horizontal and vertical scales on each panel, in particular

the vertical scales for (b) and (c), which show the boundary layer only.

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

lies in θ, q inputs X to anomalies in outputs Y. New θ,q input datasets containing only460

those data determined to be linked to convection are then written γTθ,q,1−3γθ,q,1−3X. Fi-461

nally, concatenating the 30000 LLCS and 30000 GR equally-spaced training cases, we462

apply singular value decomposition one more time and arrive at combined input eigen-463

vectors, UC. The calculation is done with respect to a common mean for the LLCS and464

GR datasets, allowing analysis of the effects of differences between the basic states of465

the two datasets.466

Figure 4 shows the most important first four components of UC, and the first two467

components of VC. Because the analysis is done with respect to a common mean, UC,1468

reflects the warmer, moister atmosphere found when convection is occurring in GR com-469

pared with LLCS. UC,2 is a mode with a warm boundary layer and moist near surface,470

UC,3 is a very moist surface mode and UC,4 is difficult to interpret physically but has strongly471

anticorrelated dry and moist components. The first output, VC,1, is a deep convective472

mode similar to that seen in the individual GR decomposition; the second output, VC,2,473

describes large near surface drying similar to that seen for deep convection in LLCS. VC,1474

accounts for 21 % of the output variance of LLCS, 63 % in GR and 84 % in Cascade;475

VC,2 accounts for 51 % of the output variance of LLCS, 5 % in GR and 1 % in Cascade.476

Statistical models that describe VC in terms of UC are then composed for all con-477

trol training datasets, including the LLCS rc = 0.7 and rc = 0.9 cases. First, we esti-478

mate values of β and γ for the individual datasets as before using their original input479

weights, P, to take advantage of their orthogonality, but using the common LLCS-GR480

outputs, QC. β and γ are then rotated into the UC basis by taking βC = UT
CUβ and481

γC = UT
CUγ. Projecting the statistical models into the truncated rotated basis reduces482

their fidelity. The proportion of convecting and non-convecting cases correctly predicted483

in an independent dataset is altered to 26 % and 53 % respectively for LLCS, 84 % and484

87 % for GR and 40 % and 71 % for Cascade. R2 is reduced to 0.62 for LLCS, 0.46 for485

GR and 0.01 for Cascade. Hence, the rotated basis retains the ability to predict changes486

in convective strength in LLCS and GR presumably because these are the eigenvectors487

it is built from, but most other predictions are damaged, especially for triggering. Note,488

however, that the degradation depends on the truncation chosen. Using a larger set of489

eigenvectors would increase fidelity at the expense of tractability. The choice depends490

on the application.491
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Figure 5. Sensitivity of the first two joint output modes to the first two joint input modes.

(a-b) Components of γC . (c-d) Components of γC multiplied by the standard deviation of the

corresponding UC component, demonstrating the typical sizes of change in each component of

VC caused by each component of UC. The large bullseye circles are for the full training set of

30000 cases for each model. The spreads of smaller points are where 10000 samples have been

taken for the LLCS and GR simulations and 1000 samples have been taken for Cascade.
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Values of γC that link the first two input and output eigenvectors are shown in Fig-492

ure 5a,b. The effect on convection of the “warm, moist atmosphere” mode, UC,1, per unit493

anomaly is weak, but its standard deviation across the training data is large, and so it494

plays an important role in increasing the strength of convection in all simulations through495

VC,1. We judge this through “importance”, which we define as a given component of γC496

multiplied by the standard deviation of the relevant component of UC. For all LLCS model497

variants, increasing UC,1 also reduces VC,2, reducing boundary layer drying and enhanc-498

ing drying aloft. Neither GR nor Cascade show this mode very strongly, and VC,2 is there-499

fore not sensitive to the presence of UC,1 or UC,2 in their input data. Increasing the “warm500

boundary layer” mode, UC,2, increases VC,1 in GR but reduces VC,1 in all LLCS versions.501

The Cascade data are largely insensitive to UC,2. Components of UC beyond UC,2 have502

lower importance and contribute less to convection and intermodel difference. However,503

both LLCS and GR VC,1 respond positively to the “moist surface mode”, UC,3 (not shown).504

The LLCS perturbed physics versions, rc = 0.7 and rc = 0.9 show very similar505

sensitivities to standard LLCS, so we do not discuss them in detail. However, we note506

that zonal mean precipitation produced by LLCS rc = 0.9 is more similar to GR than507

standard LLCS (Figure 7b). Changes in zonal mean precipitation under 4×CO2 warm-508

ing are more like standard LLCS, however (Figure 7c). The model simulations make it509

clear that LLCS can be tuned to reproduce GR zonal mean precipitation satisfactorily.510

However, the rotated basis shows that the fundamental sensitivities of LLCS to input511

are little altered by changing rc, and it is therefore not necessarily a surprise that the512

climate change simulation is not improved.513

Figure 6 is a comparison of the predicted convective triggering probability, β, with514

the actual amount of convection realised for 60000 cases from the independent datasets515

for LLCS CON and GR CON. Using the same method used to choose the original train-516

ing data, we select 30000 convecting cases that represent the range of mean tropospheric517

heating and 30000 non-convecting cases at random. (Using the entire dataset swamps518

the parameter space with non-convecting cases, even where the percentage error in pre-519

dicting the occurrence of convection is small because the number of non-convecting cases520

is so large, Table 2). The two-dimensional slices show which parts of the UC parame-521

ter space defined by the corresponding weights PC are expected to experience convec-522

tion. The black idealised contours are values of β when varying components of PC within523

the relevant plane but holding others at mean values. The blue contours are for the in-524

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

30 20 10 0 10 20
PC, 1 "Warm, moist atmosphere"

1.5

1.0

0.5

0.0

0.5

1.0

1.5

P C
,2

 "W
ar

m
 b

ou
nd

ar
y 

la
ye

r"

0.600

0.900

0.600

17.400

17.400

LLCS CON

30 20 10 0 10 20
PC, 1 "Warm, moist atmosphere"

1.5

1.0

0.5

0.0

0.5

1.0

1.5

P C
,2

 "W
ar

m
 b

ou
nd

ar
y 

la
ye

r"

0.600

0.900

0.60017.400

GR CON

1.5 1.0 0.5 0.0 0.5 1.0
PC, 3 "Moist surface"

3

2

1

0

1

P C
,4

 "A
nt

ico
rre

la
te

d"

0.
60

0
0.

90
00.600

17
.4

00

17.400

1.5 1.0 0.5 0.0 0.5 1.0
PC, 3 "Moist surface"

3

2

1

0

1
P C

,4
 "A

nt
ico

rre
la

te
d"

0.600 0.900

0.60017.400

Figure 6. Convective triggering predictions compared with true simulated tropospheric

warming as a function of PC for 60000 cases (including 30000 convecting) from the independent

datasets. Planes in the PC parameter space for (top) PC,1,2 and (bottom) PC,3,4 for both (left)

LLCS CON and (right) GR CON. Black contours are the predicted probability of triggering

convection, C, when varying components of PC in the plane but holding others at mean values.

C = 0.6 is the threshold used for triggering convection in our UM simulations. The 0.9 contour is

also shown to indicate which side of the 0.6 contour is expected to trigger. The blue 0.6 contours

are predictions of β where all components of PC are allowed to vary. Red contours and accom-

panying shading are values of simulated ∆Ttrop in K day−1. In our analysis the threshold for

convection is ∼17.4 K day−1. For a perfect prediction of convective triggering, the blue contour

would overlay the red contour.
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dependent dataset when all components of PC are allowed to vary. The blue and black525

contours are not coincident because components of PC are correlated, which occurs be-526

cause the relevant singular value decomposition was done for the combined LLCS-GR527

training dataset and not for LLCS or GR individually.528

Results for the triggering and strength of convection are complementary within the529

UC,1,2 plane. PC,1 varies strongly across both the LLCS and GR datasets. More pos-530

itive values of PC,1 are associated with more triggering of convection and stronger con-531

vection in GR. In LLCS stronger convection is associated with more positive PC,1, but532

its effect on triggering is apparently small (black contours) but confounded by correla-533

tions with other components of PC in practice (blue contours). As with the strength of534

convection, the effect of PC,2 is markedly opposite for convective triggering in GR and535

LLCS: more positive values of PC,2 trigger convection in GR but suppress it in LLCS.536

GR responds positively to increases in both PC,3 and PC,4. The response of LLCS is more537

confused. The central region of the PC,3,4 plane is convecting (red contours) but this is538

not expected purely from varying PC,3 and PC,4 (black contours). Correlations with other539

components are required.540

Overall, our joint analysis shows clear differences between the different convection541

schemes that can be understood in simple terms. Compared with GR, LLCS condenses542

too much boundary layer moisture, is relatively insensitive to an important mode of warm-543

moist free atmosphere variation and has the wrong sign of response to boundary layer544

warming. This suggests pathways via which LLCS might be improved: adjustment of545

the scheme’s ability to bring unsaturated parcels from the boundary layer into moist con-546

vection aloft could reduce boundary layer moisture consumption; a simple representa-547

tion of entrainment could improve interaction with the free atmosphere. It is interest-548

ing to note that values of γC for Cascade have some similarity with GR, but this must549

be treated with caution given that the rotated model describes the Cascade data poorly.550

The results of this section are largely clear from the individual analyses of Section 4.1.551

The purpose of our example, however, is to demonstrate a low-dimensional parameter552

space that could express key differences between a large number of representations of con-553

vection concisely.554
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Figure 7. (a) Global and tropical mean of last five years for precipitation and temperature

for control and 4×CO2 conditions. In all cases the 4×CO2 simulation point is above and to the

right of the control simulation point. (b-e) Precipitation where convection is simulated using

the original and emulated parameterizations for LLCS and GR. (b) Last five year zonal mean

precipitation for the control simulations for 40 ◦N – 40 ◦S. (c) Last five year zonal mean 4×CO2 -

control precipitation change. (d) Histogram of gridbox daily precipitation totals for control July,

year 5 for 30 ◦N - 30 ◦S. (Note logarithmic vertical scale on this panel.) (e) Histogram of gridbox

daily precipitation 4×CO2 - control change for July, year 5.
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4.3 UM simulations with emulated convection555

10 year control and 4×CO2 UM simulations with emulated convection were run for556

GR and LLCS rc = 0.8 using the combined control – 4×CO2 emulators (LLCSEMU557

CON and 4×CO2, and GREMU CON and 4×CO2, Table 1). All simulations have a sta-558

ble equilibrium climate and reproduce broad features of the original parameterized runs559

(LLCS CON and 4×CO2, and GR CON and 4×CO2) with reasonable fidelity. Figure560

7a shows values of global and tropical mean precipitation and temperature in the orig-561

inal and emulator parameterization simulations. Control emulator simulations are bi-562

ased with respect to the corresponding original simulations in the global mean by 1.6 K563

and 0.1 mm day−1 for LLCSEMU, and -0.1 K and -0.1 mm day−1 for GREMU. Trop-564

ical mean biases are 1.2 K and 0.4 mm day −1 for LLCSEMU and -0.04 K and 0.1 mm565

day−1 for GREMU. 4×CO2 - control climate change is quite well-simulated in LLCSEMU.566

Climate change is more disappointing for GREMU, particularly in the tropics, where pre-567

cipitation increases at only 0.7 % K−1 tropical mean temperature change compared with568

original GR values of 2.3 % K−1.569

More detailed precipitation statistics are shown in Figure 7b-e. Zonal mean pre-570

cipitation in the LLCSEMU and GREMU control runs is quite reasonable and clearly571

captures the difference between LLCS and GR (Figure 7b). 4×CO2 - control zonal mean572

changes are fair for LLCSEMU, but disappointing for GREMU (Figure 7c). The sharp573

features in panels b and c seen at 30 ◦N – 30 ◦S in LLCSEMU and GREMU occur be-574

cause the convection emulator is switched off poleward of 30◦. Results for convective pre-575

cipitation only are very similar (not shown). Figure 7d and e are histograms of gridbox576

total daily precipitation for July in year 5 of the simulations and 4×CO2 - control changes.577

LLCSEMU totals are satisfactory, while GREMU tends to predict too many heavy pre-578

cipitating events and too few light precipitating events. 4×CO2 - control changes show579

the correct sense of change for both LLCSEMU and GREMU: more lighter events tend580

to occur in LLCS, while heavier events increase at the expense of lighter events in GR.581

The emulated changes tend to be too weak for both LLCSEMU and GREMU, however,582

particularly for lighter events.583

Overall, the online LLCSEMU and GREMU results are encouraging. The model584

is stable and equilibrium climate is close to LLCS and GR, although LLCSEMU rains585

too much in the subtropics and GREMU has too many heavy precipitation days. Cli-586
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mate change simulations are reasonable, although changes in zonal mean precipitation587

in GR are disappointing and changes in daily precipitation totals are too weak in both588

models.589

5 Discussion590

Our analysis achieves each of goals 1–3 set out for CSP in the introduction to at591

least some degree. We have demonstrated that statistical emulators of two GCM con-592

vection schemes and a high-resolution dataset can have skill in predicting the onset and593

magnitude of atmospheric convection. The representation is quite approximate, but could594

surely be improved. To form a CSP, a framework need only provide a structure that rep-595

resents a group of parameterizations and the differences between them smoothly and un-596

ambiguously by providing as much orthogonality between modes as possible. A straight-597

forward improvement to our CSP would be to introduce higher order and cross terms598

into the regression calculations using discrete orthogonal polynomials. We could also in-599

troduce more variables into the analysis, although we note that past work has found θ600

and q to be satisfactory for analysing both model output and observed effects of convec-601

tion (Yanai et al., 1973; Johnson et al., 2016; Mapes et al., 2019). Another framework602

entirely is evolutionary genetic programming, which uses Darwinian evolution to pro-603

duce models from combinations of simple functions (e.g. (Makkeasorn et al., 2008)).604

We also showed that a rotated, reduced input space allows us to describe the most605

important differences between different representations of convection more easily and might606

assist in future model development. Care must be taken in the analysis as the reduced607

input and output spaces lose skill in predicting aspects of convection. In our demonstra-608

tion, representation of triggering was particularly affected perhaps because we built an609

input space based on modes known to control the strength of convection. There is a bal-610

ance between emulator skill and tractability that is set by the degree of truncation of611

our input and output spaces. We may compose as many representations as we like, each612

optimised for a different purpose. A key advantage of our approach over others is that613

it is possible in principle to define eigenvectors that allow estimation of the relationship614

between the most important inputs and outputs without contamination from linear cor-615

relations between variables. A good basis for many applications might be derived from616

observations or high-resolution simulations that explicitly resolve convection. We did not617

attempt this because the Cascade high-resolution dataset was small and our ability to618
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represent it was limited. The inaccuracy of our Cascade emulator may stem from a com-619

bination of having too few cases to fit to and the fact that different parameterization schemes620

were used in the original CASCADE simulations and the SCM experiments. Alterna-621

tively, it may come from fundamental limitations of our technique. Defining the convec-622

tion that should be parameterized and separating it cleanly from other processes is dif-623

ficult in resolved simulations. It is even more challenging for observations as explored624

by Mapes et al. (2019) for the impulse-response method, although their analysis did yield625

useful conclusions regarding the sensitivity of observed versus resolved simulation of con-626

vection to q.627

While one major goal for CSP is to develop metrics for model development, another628

is to develop emulators with sufficient fidelity that they can be run within a GCM. Suc-629

cess in this goal would mean that the emulators reproduce their targets well enough that630

we might explore the parameter space of possible parameterization schemes online within631

a GCM. Our GCM simulations that run the LLCS and GR emulators interactively show632

stable equilibrium climates with broadly similar characteristics to GCMs run with the633

original parameterizations. This is encouraging. Nevertheless, some aspects of the CSP634

emulator performance are disappointing, particularly for climate change where emula-635

tor simulations tend to respond too weakly. Performance is certainly weaker than that636

achieved with the random forest technique of O’Gorman and Dwyer (2018). Random for-637

est or other machine learning representations of a range of convection schemes may them-638

selves be analysed with a linear model, but our complete emulators have an unambigu-639

ous relationship with each other and with the results they achieve when applied within640

a GCM. Hence, further work that improves our emulators would be useful.641

Our emulators are deterministic – a given input always leads to the same output.642

However, a body of recent work suggests that performance can be improved in some cases643

through making parameterizations “stochastic” by adding noise to the parameterization644

output (e.g. Lin & Neelin, 2003; Plant & Craig, 2008). It is trivial to introduce this ex-645

tension to our statistical emulators by perturbing their parameters. When applied to a646

high-resolution model or observed dataset, CSP is also well-adapted to discovering the647

range of outputs that occur for a given set of coarse-grained inputs, potentially provid-648

ing new routes to building stochastic parameterizations.649
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If a future study is to build emulators good enough to probe the effect of the range650

of possible convective parameterization on gross features of future climate change, then651

it needs to engage with clouds and cloud radiative effects. A move to a more realistic652

land and ocean configuration may not be necessary in the first instance, however, as it653

has been demonstrated that global mean temperature sensitivity to increased atmospheric654

CO2 concentration in comprehensive land-ocean-atmosphere GCMs is well-related to that655

in corresponding aquaplanet simulations (Ringer et al., 2014).656

6 Conclusion657

Using the example of convection, we describe Continuous Structural Parameter-658

ization (CSP), which is a method for writing different representations of the same sub-659

gridscale process as functions of the same gridscale variables. It is found that CSP can660

represent two convection schemes implemented within the Met Office Unified Model (UM)661

with reasonable fidelity. When emulated convection is implemented within the UM, the662

GCM produces a stable equilibrium climate with features broadly similar to the case where663

the original convection scheme is used.664

Using our CSP, key differences between parameterization schemes can be expressed665

concisely within a new parameter space that is agnostic to model structure and offers666

the possibility of comparison with high-resolution models of convection or observations.667

Here, a CSP representation of a high-resolution dataset taken from the Cascade exper-668

iment has some success, even though the dataset is small and not optimally designed for669

our purposes. Further CSP development is necessary and a large high-resolution dataset670

designed specifically for emulation is needed to produce cleaner results. Nevertheless, our671

work suggests that CSP can assist parameterization development both by indicating re-672

alistic areas of the relevant parameter space and by providing parameterization proto-673

types directly. Our long term goal is that CSP can assist ensemble prediction of climate674

change by highlighting how the set of model parameterization we have relate to our true675

uncertainty in physical processes.676

Appendix A Lambert-Lewis Convection Scheme677

The Lambert-Lewis Convection Scheme (LLCS) is a simple but flexible adjustment678

scheme that has been used for simulating the atmospheres of terrestrial planets and for679

testing new GCM versions at the Met Office. LLCS has similarities to the simplified Betts-680
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Miller scheme (Betts, 1986; Frierson, 2007), but also some significant differences. In con-681

trast to Betts-Miller, triggering of convection is based on dry and moist stability argu-682

ments, and purely dry convection with no condensation is possible. The scheme first eval-683

uates whether or not convection should be triggered in a given model vertical column,684

then constructs new preliminary “plume” vertical profiles of θ and q in which convec-685

tive instability is removed, before applying an adjustment timescale that relaxes the en-686

tire vertical column towards the new state while conserving enthalpy and moisture.687

A1 Triggering688

Starting from the surface, LLCS searches for the lowest unstable model level, k.689

Dry triggering occurs if θk+1 < θk, meaning that a test parcel from level k perturbed690

upwards to level k + 1 would find itself to be less dense than its surroundings and be691

expected to rise. Moist triggering occurs if rcqsat,k < qk, where rc is the critical rela-692

tive humidity parameter, and qsat is the saturation specific humidity. In this case, a test693

parcel on level k is expected to saturate in-situ, leading to condensation and convective694

heating. Normally, rc < 1 meaning that the criterion is satisfied when the atmosphere695

is unsaturated at gridscale. The rationale is that a model column whose mean specific696

humidity is rcqsat,k will contain some supersaturated regions able to trigger convection.697

rc = 0.8 is the default value. If the dry trigger is satisfied but the moist trigger is not,698

then moist convection can still be triggered on a higher level, l, if rcqsat,l < qk. This699

occurs if the triggered dry convective event reaches level l. The value of qsat,l used is that700

before any dry convective adjustments have taken place.701

A2 Convective adjustment702

Once convection is triggered, a preliminary profile is established through convec-703

tive adjustment. Where dry convection is triggered, θk+1 is adjusted so that the prelim-704

inary value of θk+1, θk+1,p = θk. Dry convection continues upwards providing that the705

new value of θk+1,p satisfies θk+2 < θk+1,p. Moisture is mixed upwards by setting qk+i,p =706

qk, where i is the ith level above k.707
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If moist convection is triggered on level k, then levels above k involved in the con-708

vective event are adjusted to the moist pseudoadiabat:709

Γps =
g(1 + rv)

(
1 + Lrv

RdT

)
cp + rvcpv +

L2
vrv(η+rv)
RdT 2

,710

where rv is the mass-mixing ratio of water vapor, L is the latent heat of vaporisation of711

water vapor, Rd is the gas constant for dry air and η ' 0.622 is the ratio of the dry air712

and water vapor gas constants. Preliminary q is set to its saturation value, qk = qsat,k,713

on each level that moist convection is occurring including the bottom level unless qk+i,p >714

qsat,k+i,p . Similar to dry convection, moist convection continues upwards if the new value715

of θk+1,p derived from the pseudoadiabat satisfies θk+i+1 < θk+i,p.716

If the dry or moist convective event terminates below the highest model level, then717

subsequent levels are tested to determine whether another event can trigger in the same718

vertical column. Note that LLCS does not consider the freezing level and assumes that719

all condensation and precipitation is liquid.720

A3 Relaxation timescale and conservation721

Recognising that evolution to a new stable profile is not instantaneous, the orig-722

inal input θ and q are relaxed towards the preliminary values, θp and qp via723

∆ξr = (ξp − ξ)
[
1− exp

(
− tstep

τ

)]
,724

where ξr represents either θr or qr, subscript r corresponds to values after the relaxation725

timescale has been applied, tstep is the GCM timestep (1200 seconds in our experiments)726

and τ is a relaxation timescale, a free parameter of the scheme. The standard value used727

in our simulations is the “pure mixing timescale” of 3600 seconds of Tompkins and Craig728

(1998).729

Moisture and enthalpy are then conserved within each separate convective event730

in the column. First, moisture is adjusted so that the total mass of water vapor within731

each convective event, Mq,r, is the same as in the input, Mq, less the amount of water732

condensed to produce latent heating, ML, by adjusting specific humidity via733

qf,k =

(
Mq −ML

Mq,r

)
qr,k,734

where subscript f refers to final calculated values. ML is outputted by the scheme as735

precipitation at the surface, thus conserving the moist component of enthalpy. This is736
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done on all convecting levels of a given event including dry convection below the level737

at which condensation first occurs. Hence the scheme has the tendency to eliminate large738

amounts of boundary layer moisture, producing behavior that arguably should be sim-739

ulated via the UM boundary layer scheme. This feature may be revised in future ver-740

sions, but is probably useful for suppressing the occurrence of gridpoint storms.741

Dry enthalpy must be conserved to take account of heat added to the column dur-742

ing dry adjustment. As for moist enthalpy, this includes all levels of convective events743

that begin as dry adjustments that then trigger moist events above the bottom level. For744

each level, implied dry heating is written ∆Qd = Mkcp(Td,k − Tk), where Mk is the745

total mass of the level, Tk the initial temperature and Td,k is the implied temperature746

change if latent heating is neglected (equal to the entire convective adjustment for events747

with no moist component). The final temperature change ∆Tf is calculated by subtract-748

ing ∆Qd from the relaxation value ∆Tr uniformly per unit mass:749

∆Tf = ∆Tr −
cpΣk∆Qd

ΣkMk
.750

Final output θf is calculated via751

θf = θk + ∆Tf

(
p0
p

)κ
,752

where p0 = 1000 hPa and κ = Rd

cp
.753
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