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Abstract

Change in global mean surface temperature (?GMST), based on a blend of land air and ocean water temperatures, is a widely

cited climate change indicator that informs the Paris Agreement goal to limit global warming since preindustrial to “well below”

2°C. Assessment of current ?GMST enables determination of remaining target-consistent warming and therefore a relevant

remaining carbon budget. In recent IPCC reports, ?GMST was estimated via linear regression or differences between decade-

plus period means. We propose non-linear continuous local regression (LOESS) using +-20 year windows to derive ?GMST

across all periods of interest. Using the three observational GMST datasets with almost complete interpolated spatial coverage

since the 1950s, we evaluate 1850—1900 to 2019 ?GMST as 1.14degC with a likely (17—83 %) range of 1.05—1.25degC, based on

combined statistical and observational uncertainty, compared with linear regression of 1.05degC over 1880—2019. Performance

tests in observational datasets and two model large ensembles demonstrate that LOESS, like period mean differences, is unbiased.

However, LOESS also provides a statistical uncertainty estimate and gives warming through 2019, rather than the 1850—1900 to

2010—2019 period mean difference centered at the end of 2014. We derive historical global near-surface air temperature change

(?GSAT), using a subset of CMIP6 climate models to estimate the adjustment required to account for the difference between

ocean water and ocean air temperatures. We find ?GSAT of 1.21degC (1.11—1.32degC) and calculate remaining carbon budgets.

We argue that continuous non-linear trend estimation offers substantial advantages for assessment of long-term observational

?GMST.
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Key Points: 10 

 Continuous local regression is an alternative to traditional IPCC temperature 11 

change estimation methods. 12 

 Global warming, estimated from combined land and sea-surface temperature 13 

observational series with enhanced surface coverage, reached 1.14°C in 2019 14 

relative to 1850—1900 (likely range 1.05—1.25°C). 15 

 Global surface air temperature anomalies reached 1.21°C in 2019 relative to 16 

1850—1900 (1.11—1.32°C), implying a remaining carbon budget of ~220 GtCO2 17 

to limit warming to 1.5°C.  18 
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Abstract 19 

Change in global mean surface temperature (GMST), based on a blend of land air and ocean 20 

water temperatures, is a widely cited climate change indicator that informs the Paris Agreement 21 

goal to limit global warming since preindustrial to “well below” 2°C. Assessment of current 22 

GMST enables determination of remaining target-consistent warming and therefore a relevant 23 

remaining carbon budget. In recent IPCC reports, GMST was estimated via linear regression or 24 

differences between decade-plus period means. We propose non-linear continuous local 25 

regression (LOESS) using ±20 year windows to derive GMST across all periods of interest. 26 

Using the three observational GMST datasets with almost complete interpolated spatial coverage 27 

since the 1950s, we evaluate 1850—1900 to 2019 GMST as 1.14°C with a likely (17—83 %) 28 

range of 1.05—1.25°C, based on combined statistical and observational uncertainty, compared 29 

with linear regression of 1.05°C over 1880—2019. Performance tests in observational datasets 30 

and two model large ensembles demonstrate that LOESS, like period mean differences, is 31 

unbiased. However, LOESS also provides a statistical uncertainty estimate and gives warming 32 

through 2019, rather than the 1850—1900 to 2010—2019 period mean difference centered at the 33 

end of 2014. We derive historical global near-surface air temperature change (GSAT), using a 34 

subset of CMIP6 climate models to estimate the adjustment required to account for the difference 35 

between ocean water and ocean air temperatures. We find GSAT of 1.21°C (1.11—1.32°C) and 36 

calculate remaining carbon budgets. We argue that continuous non-linear trend estimation offers 37 

substantial advantages for assessment of long-term observational GMST. 38 

1 Introduction 39 

Estimates of global mean surface temperature anomalies (GMST), derived from a combination 40 

of near-surface air temperatures from land stations and sea surface temperatures over oceans, 41 

have long been a staple of climate study. GMST and derived trends or changes, GMST, have 42 

featured prominently in IPCC reports, and are a key component in assessments of climate change 43 

attribution (Bindoff et al., 2013), climate model validation (Flato et al., 2013), global carbon 44 

budgets (Rogelj et al., 2018) and climate impacts (Hoegh-Guldberg et al., 2018). Perhaps most 45 

importantly, the IPCC’s long-term GMST estimate of 0.85°C, based on the 1880—2012 linear 46 

trend, was a key scientific input to the Paris agreement to keep global surface temperature 47 

change well below 2°C (IPCC, 2014; UNFCCC, 2015). 48 

 49 

The IPCC Fifth Assessment Working Group I Report (IPCC WG1 AR5; Hartmann et al., 2013a) 50 

used three GMST datasets: HadCRUT4 (Morice et al., 2012), NASA GISTEMP (Hansen et al., 51 

2010) and NOAA MLOST (Vose et al., 2010). While HadCRUT4 begins in 1850, the NOAA 52 

and NASA datasets only begin in 1880, so the 1880—2012 ordinary least squares (OLS) linear 53 

trend was presented as a “headline” warming estimate along with the HadCRUT4 1850—1900 to 54 

2003—2012 difference in the Summary for Policymakers (IPCC, 2013). OLS trends for all 55 

datasets were also given for 1951—2012 and 1979—2012 with uncertainties adjusted to account 56 

for autocorrelated residuals (Santer et al., 2008; Hartmann et al., 2013b).  57 

 58 

The IPCC Special Report on Global Warming of 1.5°C (IPCC SR1.5; Allen et al., 2018) 59 

included two new GMST datasets that incorporated sophisticated spatial interpolation: Cowtan-60 

Way (Cowtan & Way, 2014a; Cowtan & Way, 2014b; Cowtan et al., 2015) and Berkeley Earth 61 

(Rohde et al., 2013). Reported GMST was 0.87 ±0.12°C based on the average of HadCRUT4, 62 
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NOAA, NASA and Cowtan-Way. An observation based estimate of Global Surface Air 63 

Temperature change (GSAT) was introduced by adjusting HadCRUT4 GMST to account for 64 

incomplete coverage and discrepancy in ocean air and sea-surface temperature anomalies, thus 65 

producing an estimate of air near-surface temperature at 2 m over the entire globe (Rogelj et al., 66 

2018; Cowtan et al., 2015). The GSAT estimate of 0.97°C in 2006—2015 implied lower 67 

remaining carbon budgets compared to preceding studies based on GMST consistent with 68 

AR5’s 0.85°C through 2012 (Millar et al., 2017a, 2017b; Goodwin et al., 2018; Richardson et al., 69 

2018).  70 

 71 

IPCC WG1 AR5 Box 2.2 discusses the following issues with linear trends for estimating 72 

GMST: 1) poor approximation of trend evolution over time; 2) poor fit of residuals unamenable 73 

to correction via autoregressive or moving average models; 3) high sensitivity to selected period; 74 

and 4) divergent or even contradictory sub-period estimates relative to that of a larger 75 

encompassing interval. The latter two issues were particularly relevant in AR5 Section 2.4.3’s 76 

discussion of the “observed reduction in warming trend” over 1998—2012 compared to 1951—77 

2012 (Rahmstorf et al., 2017; Risbey et al., 2018). A smoothing spline non-linear trend fit was 78 

demonstrated to address these factors, and later studies presented alternative estimators for 79 

continuous long-term GMST trends (Cahill et al., 2015; Peng-Fei et al., 2014; Mudelsee, 2019; 80 

Visser et al., 2018).  81 

 82 

An issue of particular concern is that linear trends underestimate long-term (> 100 years) 83 

GMST compared to other estimates. For example, IPCC AR5 Box 2.2 estimated HadCRUT4 84 

1900—2012 trends of 0.075 ± 0.013 °C decade
-1

 and 0.081 ± 0.010 °C decade
-1 

for linear OLS 85 

and smoothing spline trends respectively. Generally, long-term linear fit GMST from 1880 to 86 

present is 0.05—0.10°C below nonlinear estimates (SR15 table 1.2; Visser et al., 2018) although 87 

the spread in GMST estimates between different datasets is commonly as wide as differences 88 

engendered by GMST methodology. Ultimately, IPCC AR5 Box 2.2 recommended linear 89 

trends over non-linear estimates, noting that HadCRUT4 OLS-based long-term GMST lay 90 

within the 5-95% uncertainty range from the smoothing spline. Nevertheless, as the IPCC enters 91 

the Sixth Assessment Report (AR6), a new method that supplements or supplants the traditional 92 

approaches could reduce known biases and address these shortcomings.  93 

 94 

This work proposes a local regression technique (LOESS, Cleveland et al., 1992; Cleveland, 95 

1979) with a ±20 year smoothing window for multi-decadal analysis. We also provide statistical 96 

uncertainty and show that the fit residuals follow the assumed ARMA(1, 1) autocorrelation 97 

structure. The framework can be extended to give self-consistent GMST estimates with 98 

uncertainty over as little as 15 years, providing a potential alternative to linear fits over all 99 

intervals of interest.  100 

 101 

However, here we focus on long-term GMST and associated carbon budgets, directly relating 102 

our estimates to approaches discussed in AR5 and SR1.5. We compare against the IPCC 103 

approaches of OLS (1880—latest year) and period mean differences (from “preindustrial” 104 

reference period 1850—1900 to the latest decade), as well as a global warming index which 105 

SR1.5 used as the main estimate of “human-induced warming” (Haustein et al., 2017). We also 106 

test the performance of our LOESS estimates using output from the two model large ensembles 107 

with simulations that begin in 1850. Our final comparison is with the new CMIP6 model 108 
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ensemble, and using a subset of this ensemble we derive a modest conversion factor to update 109 

our observation-based GMST to GSAT for carbon budget calculations. 110 

 111 

The paper is structured as follows. Section 2.1 describes source data from observations and 112 

associated estimated radiative forcings (2.1.1), two large model ensembles (2.1.2) and CMIP6 113 

models (2.1.3). Section 2.2 describes trend estimation (2.2.1), evaluation of GMST methods 114 

and performance (2.2.2), large model ensemble evaluation (2.2.3) and GSAT and carbon 115 

budget calculation (2.2.4). We present our results in Section 3, covering long-term GMST 116 

analysis (3.1), large model ensemble analysis (3.2) and GSAT and associated remaining carbon 117 

budgets (3.3). Finally in Section 4 we discuss our results and issue recommendations for the use 118 

of GMST and GSAT in future IPCC assessments. 119 

 120 

2 Source Data and Methods 121 

2.1.1 Global surface temperature datasets 122 

Typically, gridded monthly land surface air temperature (LSAT) and sea surface temperature 123 

(SST) anomalies are generated then blended to produce GMST. Table 1 summarizes five blended 124 

LSAT-SST series in widespread use. There is considerable overlap in the underlying datasets. 125 

There are two SST data sets: HadSST3 (Kennedy et al., 2011) and NOAA’s ERSSTv5 (Huang et 126 

al., 2017), and three LSAT datasets: GHCNv4 (Menne et al., 2019), CRUTEM4 (Jones et al., 127 

2010), and Berkeley Earth (Rohde et al., 2013). Even this understates the overlap; for example, 128 

both SST datasets rely primarily on the comprehensive store of maritime observations from the 129 

International Comprehensive Ocean‐Atmosphere Data Set (ICOADS, Freeman et al., 2016), 130 

albeit processed, filtered and supplemented in different ways. It is important to note, however, 131 

that there are important differences between each group’s quality assurance and data 132 

homogenization procedures, and associated uncertainties, in both the land and SST datasets. In 133 

particular, bias adjustments of SST data to account for differences between buoy, engine intake 134 

and bucket measurements, can have a notable effect on long-term trends (Kennedy et al., 2019).   135 
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 136 

Table 1. Five operational observational datasets. 137 

Series 
Land 

(LSAT) 

Ocean  

(SST) 
Interpolation Averaging 

Start 

year 

HadCRUT4 

(Morice et al., 2012) 
CRUTEM4 HadSST3 None 

Simple 

average of 

hemispheric 

area-

weighted 

averages  

1850 

NOAA GlobalTemp v5 

(Zhang et al., 2019; 

Huang et al., 2020) 

GHCNv4 ERSSTv5 

Empircal 

orthogonal 

teleconnections 

(EOTs) 

Area 

weighted  

average 

1880 

NASA GISTEMP v4 
(Lenssen et al., 2019) 

GHCNv4 ERSSTv5 

Distance 

weighting  

(to 1200 km) 

80 zones x 

100 sub-

boxes 

1880 

Cowtan-Way v2 

(Cowtan & Way, 2014a; 

Cowtan & Way, 2014b; 

Cowtan et al., 2015) 

CRUTEM4 

(kriged) 

HadSST3 

(kriged) 

Kriging 

(Complete) 

Area 

weighted 

average 

1850 

Berkeley Earth  

(Rohde & Hausfather, 

2020) 

Berkeley 

Earth 

HadSST3 

(reprocessed 

& kriged) 

Kriging   

(to ~2500 km) 

Area 

weighted 

average  

1850 

Differences in spatial interpolation can affect calculated GMST. HadCRUT4 calculates area-138 

weighted hemispheric means with no interpolation between its 5°5° grid boxes, combined in a 139 

“simple” (equally-weighted) average. In contrast, NASA GISTEMP, Cowtan-Way and Berkeley 140 

Earth use extensive interpolation and, crucially, extrapolate LSAT over sea ice. Cowtan-Way 141 

interpolates HadCRUT4 to produce 100% apparent coverage, while GISTEMP and Berkeley 142 

Earth both interpolate up to 1200 km from observations, resulting in virtual areal coverage two to 143 

three times that of HadCRUT4 in the late 19
th

 century. Nominal coverage in all three datasets is 144 

virtually complete since 1951 (see Figure S1, Supplementary Information). Reducing Cowtan-145 

Way coverage to that of Berkeley Earth results in imperceptible differences in GMST even in the 146 

19
th

 century, indicating that distance-limited and unlimited kriging interpolation can be 147 

considered equivalent (See Figure S14, Supplementary Information). Spatial smoothing via 148 

empirical orthogonal teleconnections (EOTs; van den Dool et al., 2000) in NOAA GlobalTemp 149 

(and ERSSTv5) results in nominal coverage between that of HadCRUT4 and NASA GISTEMP, 150 

but largely misses very high latitudes and has no interpolated coverage over Arctic sea ice.  151 

Comparisons with temperature reanalyses, independent surface data and satellite retrievals show 152 

that interpolation significantly mitigates coverage bias (and associated underestimation of 153 

warming) arising from poor sampling of the fastest warming areas, especially the Arctic, since 154 
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the mid-twentieth century (Dodd et al., 2015; Cowtan et al., 2018a; Susskind et al., 2019; 155 

Lennsen et al., 2019). Evidence is mixed for earlier periods where reduced coverage leads to 156 

larger interpolation uncertainty (Cowtan et al., 2018a) and differences between underlying SST 157 

datasets are the largest source of discrepancies. Cowtan et al. (2018a) showed that both 158 

generalized least squares averaging and kriging interpolation mitigated errors engendered by 159 

“naïve” global or hemispheric averaging methods, such as those used in HadCRUT4, which 160 

implicitly set “missing” areas to the global average of sampled areas (Hansen et al., 2006). Thus, 161 

the three interpolated datasets are demonstrably more representative of global climate change. 162 

We use the published monthly anomaly series, except for Berkeley Earth where we use the area-163 

weighted average of the gridded series, which diverges from the published series over 1850—164 

1950 (Supplementary Information, Figures S2, S3). For series starting in 1850 anomalies are 165 

relative to 1850—1900 while NASA GISTEMP and NOAA GlobalTemp are baselined such that 166 

their 1880—1900 mean matches that of the three longer-running datasets. These rebaselined 167 

NASA and NOAA series are used for all GMST estimates calculated relative to 1850—1900 as 168 

outlined in Section 2.2.1. This streamlined and consistent scheme replaces  multiple IPCC SR1.5 169 

approaches based on scaling their 1880—2015 trends or matching to HadCRUT4 over 1880—170 

1990. We also report the mean GMST for all five operational datasets (OpAll group) and the 171 

subset of three datasets with near-global interpolated coverage post-1950 (Global_3 group), with 172 

the latter used as the basis for our main estimates. Group GMST estimates are the mean of the 173 

individual estimates as in IPCC AR5. 174 

We augment temperature data with summarized anthropogenic and natural radiative forcing data 175 

required to derive the “global warming index” referenced in SR1.5 as a potential alternative to 176 

GMST for tracking anthropogenic warming (Haustein et al., 2017; Allen et al., 2018). These 177 

are used to estimate anthropogenic and natural forced changes, GMSTF,anthro and GMSTF,nat , 178 

using a two-box impulse-response model with parameters derived from a least-squares-fit 179 

between observed temperatures and the modelled response (Otto et al., 2015; Haustein et al., 180 

2017). These estimates are used to assess the characteristics of a particular LOESS window 181 

choice (Section 2.2.1) and as an additional comparator to long-term GMST. 182 

 2.1.2 Model Large Ensembles  183 

We perform tests using output from the large ensembles whose simulations begin in 1850:  the 184 

Max Planck Institute for Meteorology Grand Ensemble (MPI-GE, N=100, Maher et al., 2019) 185 

and Commonwealth Scientific and Industrial Research Organisation  Mk3.6.0 (CSIRO Mk3.6.0, 186 

N=30, Rotstayn et al., 2012; Jeffrey et al., 2013), taking their GSAT over historical-RCP8.5 187 

simulations for 1850—2019 and baselining each to 1850—1900. We exclude five other large 188 

ensembles that start after 1850 (Deser et al, 2020), and our approach is conceptually similar to 189 

that in Dessler et al. (2018)’s estimation of how internal variability affects derived climate 190 

sensitivity in MPI-GE. The use of GSAT simplifies the calculations and since the year-to-year 191 

variability in GSAT-GMST difference is of order 0.01 °C in CMIP5 models (e.g. Figure 2 of 192 

Cowtan et al. 2015), we expect little effect of blending or masking on this particular analysis. 193 

 194 

Conceptually, we first decompose GSAT as: 195 

Δ𝐺𝑆𝐴𝑇𝑡𝑜𝑡𝑎𝑙 = Δ𝐺𝑆𝐴𝑇𝐹 + Δ𝐺𝑆𝐴𝑇𝑣𝑎𝑟         (1) 196 
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where GSATvar represents internal variability and GSATF the forced response. The same 197 

decomposition would apply for GMST. We adopt the IPCC SR1.5 argument that “[s]ince 2000, 198 

the estimated level of human-induced warming has been equal to the level of observed warming 199 

with a likely range of ±20%”. From this it follows that a reliable estimate of GMSTF through 200 

2019 would be an appropriate estimate of human-induced warming, GMSTF,anthro, with 201 

relevance for temperature targets and carbon budgets. With just one realization of real-world 202 

internal variability we cannot perform this decomposition, but a large ensemble mean should 203 

approach that model’s GMSTF. We test whether our derived GMSTLOESS approximates 204 

GMSTF, and consider the decomposition in an individual run to be:  205 

   Δ𝐺𝑀𝑆𝑇𝑡𝑜𝑡𝑎𝑙 = Δ𝐺𝑀𝑆𝑇𝐿𝑂𝐸𝑆𝑆 + Δ𝐺𝑀𝑆𝑇𝑟𝑒𝑠𝑖𝑑     (2) 206 

With a ±20-year window this effectively decomposes between short- and long-term GMST. If 207 

periods are selected to minimize volcanism (which induces short-term GMSTF), and the 208 

magnitude of GMSTvar is small at 40-year timescales, then resultant Δ𝐺𝑀𝑆𝑇𝐿𝑂𝐸𝑆𝑆 ≈209 

Δ𝐺𝑀𝑆𝑇𝐹,𝑎𝑛𝑡ℎ𝑟𝑜 over the long-term intervals of interest. 210 

 2.1.3 Coupled Model Intercomparison Project, phase 6 (CMIP6) output 211 

We include historical simulations over 1850—2014 from CMIP6 models which have the 212 

required fields for blending surface air temperatures (SAT) over land or sea ice and SST over 213 

ocean (Eyring et al, 2016), permitting “apples-to-apples” comparisons with land-ocean 214 

observational datasets and derivation of a GMSTLOESS to GSATLOESS adjustment. These 215 

include near-surface air temperature (“tas”), sea surface temperature (“tos”) and sea ice 216 

concentration (“sciconc” or “sciconca”, N=24 simulations listed in Table S1). 217 

Following Cowtan et al (2015) and Richardson et al (2018), each simulation is processed to 218 

produce two area-weighted average series: 1) global SAT (i.e. GSAT) and 2) global blended 219 

SAT-SST (i.e. GMST). At each grid cell i, j, the blended monthly temperature Tblend,i,j is:   220 

Tblend,i,j = wSAT,i,j TSAT,i,j + (1 − wSAT,i,j) TSST,i,j    (3)   221 

where wSAT,i,j is the land plus sea ice grid cell fraction, and TSAT,i,j and TSST,i,j are the local 222 

anomalies relative to 1850—1900. For GSAT wSAT,i,j = 1 everywhere, and for the blended GMST 223 

series wSAT,i,j = 1 in ocean cells for a calendar month if any those months during 1961-2014 has 224 

siconc > 1%. This is similar to the Cowtan-Way blending algorithm and the “xaf” simulations in 225 

Cowtan et al. (2015). 226 

 2.2 Methods 227 

Next we describe our approach to obtain GMST, our uncertainty estimation, and the remaining 228 

carbon budget calculation. Section 2.2.1 explains the trend fits and errors; Section 2.2.2 explains 229 

the GMST calculations, observational error and methods by which the fit quality are judged 230 

using observational data. Section 2.2.3 discusses the large ensemble methodology, and Section 231 

2.2.4 the CMIP6 comparison and carbon budget calculation. We use GMST and GSAT to 232 

refer to a general change in global temperature, and use qualifiers or subscripts when referring to 233 

statistical estimation methods or its components. For example, LOESSbsln GMST (or 234 
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GMSTLOESS) refers to an estimate made with LOESS, while GMSTF refers to the forced 235 

component. 236 

2.2.1 Trend calculations and their statistical uncertainty  237 

For a series of n temperature observations xi at time ti, a linear trend is: 238 

xi = a + bti + ei, i = 1, …, n       (4) 239 

where a and b are intercept and slope parameters to be fitted and ei are residual errors. The slope 240 

estimate b̂ is used to obtain GMST as b̂ (tn – ti), with the uncertainty of b̂  (and thus GMST) 241 

determined as explained below. 242 

Our multi-decadal LOESS point-to-point (LOESSmd) GMST is based on the LOESS fit from 243 

1880—2019; for any starting point, GMST to 2019 is the LOESSmd fit evaluated in 2019 minus 244 

the start value. We also introduce “baseline” LOESS (LOESSbsln) as our main GMST estimate. 245 

LOESSbsln is simply the same fit evaluated at the end year, yielding an estimate relative to 246 

1850—1900 baseline, rather than to a given start year such as 1880. Although the central 247 

estimated fit is the same, the associated statistical fit uncertainties are quite different, as 248 

explained below.  249 

Our LOESSmd uses a fixed span αmd of ± 20 years, tricube weighting (the default) and a degree 1 250 

smoothing parameter (i.e. locally weighted linear trend, which yields more stable end points). 251 

Tests with the Cowtan-Way series show that α of ±10 years captures internal decadal variability 252 

and has marked sensitivity to volcanic episodes early in the record and to a lesser extent over 253 

1980—2019 (Figure S4). On the other hand, α of ±20 or ±30 years smooth out short-term 254 

variability and show similar warming from 1850—1900 to present: 1.12°C (±20 years) or 1.11°C 255 

(±30 years). Analysis of first differences for each LOESS window (Figures S5) shows large 256 

variance with α of ±5 years, which stabilises with α of ±20, ±25 or ±30 years. Large ensemble 257 

tests support this choice: αmd substantially smaller than ±20 years increases GMSTF 258 

discrepancy, while substantially longer than ±20 years introduces a low bias in 1850—2019 259 

GMST (Figures S6, S7). We therefore choose αmd = ±20 years to evaluate trends of  length 30 260 

years; LOESSpent (α = ±5 years) is reserved for future extension of our framework to cover very 261 

short-term trends of 15 years (see Figure S4, panel d).  262 

Default methods assume statistically independent noise, necessitating an uncertainty correction if 263 

the fit residuals are autocorrelated. Santer et al (2000) presented a procedure for assessing an 264 

effective sample size (and associated reduction in degrees of freedom) from the general formula 265 

1

1
2 )(1

e n

jj

tn
n







 

  (5)                                                             266 

   267 

where 𝜌𝒋 is the autocorrelation function of a noise model estimated from the fit residuals. If the 268 

noise follows an autoregressive(1) (AR(1)) process, then with 𝜌𝑗 =  𝜙𝑗   269 
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      (6) 270 

where 𝜙 is estimated from the lag-one autocorrelation coefficient (Mitchell et al, 1966). 271 

However, Foster and Rahmstorf (2011) demonstrated that 1979-2010 GMST trend residuals 272 

were more consistent with an autoregressive moving average, ARMA(1, 1) model in the form  273 

𝜌1 =
(𝜙 +  𝜃)(1 + 𝜙𝜃)

1 + 2𝜙𝜃 +  𝜃2
     

                                                                                     (7) 274 

 𝜌𝑗 =  𝜌1𝜙𝑗−1            𝑗 ≥ 2 

Substituting (6) into (5) yields 275 

 

1
1

1

2
1 2 1

1

n

jj









  


       (8) 276 

Foster and Rahmstorf used the Yule-Walker “method of moments” with �̂� = �̂�1 / �̂�2. Hausfather 277 

et al. (2017) instead used Maximum Likelihood Estimation (MLE) to obtain �̂� and 𝜃 and then �̂�1 278 

via Eq. (6). Monte Carlo simulations show that MLE gives a more robust and efficient estimator 279 

�̂�, suitable for series as short as 8 years (see Figure S8). Hausfather et al. also introduced a bias 280 

correction to account for underestimated autocorrelation in shorter series, derived from AR(1) in 281 

Tjøstheim and Paulsen (1996) and extended to account for the positive difference between �̂� and 282 

�̂�1. 283 

  
  

  
1

1 1 1

ˆ ˆ ˆ  1  4 2   /

    = 1     /ˆ4 2

BC t

tBC

n

n

   

   

   

  
     (9) 284 

Although this bias correction is most pertinent for very short series, Monte Carlo simulations 285 

have demonstrated its relevance for highly autocorrelated series up to 720 months in length. We 286 

selected this bias correction after comparison with alternatives (e.g. Nychka et al., 2000; see 287 

Figure S9). 288 

Substituting the bias corrected parameters and simplifying the correction term as in (5) yields the 289 

final effective length correction. 290 

1

11
1 2 / (1 )ˆ1 2

e n

BCjj

t tn n
n

 




 
  

     (10) 291 

We estimate corrections from the residuals of both LOESS and OLS. To apply this correction, 292 

we define nominal degrees of freedom v = nt – p and effective degrees of freedom ve = ne – p, 293 

where p is the number of actual or equivalent parameters of the trend fitting methodology.  294 
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In the linear case, the correction is applied directly to sb, the standard error of b in (1), with p = 2. 295 

  
' 2

2

t
b b b

e e
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      (11) 296 

For non-parametric trend estimation like LOESS, Monte Carlo simulations can establish 297 

uncertainties, as in Visser et al (2016) for smoothing spline trends. Here we propose a plausible 298 

heuristic method. First the above correction is applied to se, the standard errors of the residual fit, 299 

with p set to the equivalent number of parameters of the LOESS trend, derived from the trace of 300 

the LOESS projection matrix (Cleveland and Grosse, 1991); generally p ≈ 2/α + 0.5 for GMST 301 

datasets. For an equally spaced time series, se is maximum at the start and end of the LOESS fit. 302 

If statistical errors at these two points are independent, they may be combined in quadrature, by 303 

taking the square root of the sum of the squared standard errors, i.e. the square root of the sum of 304 

variances (see also Eq S4 in Karl et al., 2015). Then the corrected standard error '

Tn

s


for 305 

GMSTn becomes  306 
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    (12) 307 

For both OLS and LOESSmd we evaluate the sample autocorrelation function (ACF) of the fit 308 

residuals as well as the ACFs of the ARMA(1, 1) and AR(1) noise models fit to those residuals.  309 

Finally, for LOESSbsln we assume that the mean error during the 1850—1900 baseline is small 310 

relative to the end point error. We are not aware of any formal method for calculating the 311 

required adjustment, so we generate an ad hoc correction tuned to perform well in Monte Carlo 312 

tests. To approximate the baseline uncertainty, we take the LOESSmd start point uncertainty, 313 

max(
'

es ), and reduce it according to the relative length of the baseline by applying an appropriate 314 

factor badj . This is similar in principle to the reduction of sample mean uncertainty with 315 

increasing sample size; in this case, badj is tuned to reproduce the results of Monte Carlo tests 316 

with Cowtan-Way data. For a baseline t1 to tb, with b  n/2, where n is the length of the full 317 

series we take (while also imposing a lower limit on badj): 318 

badj = (tn/2 – tb)/ (tn/2 – t1)  ;  0.5  badj  1    (13) 319 

Following quadrature the combined LOESSbsln error is then:  320 

 
' 2 2'( 1) max( ) ( 1) max( )
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e e
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n p
s s




   


  (14) 321 

and (12) is a special case of (14) with a baseline of length 0 and badj = 1. Monte Carlo 322 

simulations of LOESS fits plus ARMA(1, 1) noise produce a probability distribution function 323 

nearly identical to that engendered in Cowtan-Way by (12) over 1880—2019 and by (14) from 324 

1850—1900 and 1880—1900 to 2019 (Figures S10 and S11). 325 
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 2.2.2 Estimates of observational GMST, error components and performance tests 326 

The main analysis focuses on long-term GMST (results for other IPCC AR5 periods are in the 327 

Supplementary Information Table S2). In addition to OLS and LOESSmd GMST over 1880—328 

2019, and LOESSbsln from 1850—1900 to 2019, we also calculate period difference GMST 329 

estimates by subtracting mean GMST over 1850—1900 from the most recent decade, 2010—330 

2019. The above are also compared to GMST-derived estimates of anthropogenic warming 331 

(Haustein et al., 2017; section 2.1.2) and to a CMIP6 ensemble (Section 2.2.4). Global_3 and 332 

OpAll group GMST are the mean of individual dataset GMST. 333 

Following standard IPCC practice, we report the 5—95% statistical uncertainty range for LOESS 334 

and OLS GMST estimates, as outlined in Section 2.2.1. Group uncertainties are reported 335 

conservatively and go from the smallest 5% to the largest 95% reported for any of their 336 

constituent datasets. We also report observational parametric uncertainty as the 5—95 % range 337 

of GMST values derived from each of the 100-member HadCRUT4 and Cowtan-Way 338 

ensembles. These ensembles use a Monte-Carlo method to assess the fully correlated errors 339 

engendered by parametric uncertainty related to bias adjustments to individual temperature 340 

readings (Kennedy et al., 2011). 341 

Figure S12 depicts these estimates and derived autocorrelation functions (ACF) for the Cowtan-342 

Way monthly series with ARMA(1, 1) correction and for Cowtan-Way annual series with AR(1) 343 

correction (similar to IPCC AR5). 344 

Finally we assess LOESSbsln GMST against period mean differences for the Global_3 group by 345 

evaluating at the mid-point of the corresponding end decade; for example, LOESSbsln at the end 346 

of 2014 is comparable to the 1850—1900 to 2010—2019 period GMST. IPCC SR1.5 explicitly 347 

considered their 1850—1900 to 2006—2015 GMST estimate to be a proxy of the eventual 348 

1996-2025 mean. We therefore compare the GMST estimates for every year from 1995 against 349 

centered 20-year and 30-year means. We also compare to “extended” running 30-year periods, 350 

generated by assuming a continuation of the 1990—2019 linear trend through 2029. We argue 351 

that a smaller bias and root mean square error (RMSE) relative to the 20- and 30-year means 352 

represents better performance according to the IPCC’s own criterion.  353 

 2.2.3 Large Ensemble Analysis for Method Validation and Uncertainty Calculation 354 

LOESSbsln is fit to the 1850—2019 annual output for each simulation, then the GMSTLOESS 355 

through 2019 is evaluated from all start years 1850—1980. Separate linear OLS fits ending in 356 

2019 are also obtained for those start years. We also evaluate LOESSbsln at the end of 2014 and 357 

compare with the 1850—1900 to 2010—2019 period GMST (which we henceforth refer to as 358 

GMSTperiod). Finally, LOESSmd is calculated over 1880—2019 for each simulation. The 359 

distribution of ensemble member GMST-GMSTF provides an estimate of the bias and 360 

uncertainties for each estimator and each period, as argued in Section 3.2. If 361 

GMSTLOESSGMSTF then the LOESS residuals will be dominated by internal variability and 362 

our statistical uncertainty is related to error due to internal variability (we confirmed that the 363 

model residuals generally follow our assumed ARMA(1,1), Figure S13). The LOESS 364 

decomposition filters in time: GMSTF excursions shorter than our window will inflate 365 
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statistical uncertainty, while multi-decadal GMSTvar changes will be included in GMSTLOESS 366 

and result in too small errors. We compare each run’s statistical uncertainties with the ensemble 367 

17—83 % and 5—95 % ranges to check for evidence that the observation-derived statistical 368 

uncertainties could represent internal variability in the 1850—1900 to 2019 GMSTLOESS used 369 

for carbon budget calculations (see Section 2.2.4). 370 

2.2.4 CMIP6 comparisons, GSAT adjustment and remaining carbon budget 371 

IPCC SR15 reported remaining carbon budgets accounting for warming to date, but did not 372 

directly use the reported GMSTperiod 5—95 % observational uncertainty from individual 373 

datasets. Instead AR5 5—95 % observational uncertainty through 1986-2005 was combined with 374 

additional uncertainties to produce a “likely” 17—83 % GMST total uncertainty, and 375 

GMSTperiod was then converted to GSATperiod using a CMIP5-derived scaling. This Section 376 

describes the comparison with CMIP6 GMSTperiod and conversion of observed LOESSbsln 377 

GMST to GSAT, and then details the carbon budget calculation, which largely follows the 378 

IPCC SR1.5 methodology, as elaborated by Rogelj et al. (2019). 379 

LOESSbsln series are generated for each of the 24 individual full-coverage CMIP6 air-only 380 

(GSAT) and blended (GMST) series described in Section 2.1.3, with the blended series being 381 

comparable to quasi-global GMST observations. We consider the full ensemble and also a sub 382 

ensemble of “likely ECS” models, excluding those with effective climate sensitivity (ECS) 383 

outside the CMIP5 1.9-4.5°C 90% ensemble range (Flato et al., 2013; Forster et al., 2019).  384 

For each ensemble member’s LOESSbsln changes we derive a “blending” factor Ablend = 385 

ΔGSATLOESS / ΔGMSTLOESS, which represents the required adjustment to convert ΔGMSTLOESS 386 

to ΔGSATLOESS, accounting for the difference between GSAT air temperatures and GMST 387 

“blending” of air and water temperatures. The median and ensemble distribution of Ablend scaling 388 

factors is applied to observed GMSTLOESS to obtain historical observed GSATLOESS with 389 

combined uncertainty for calculating the remaining carbon budget, as detailed below. The carbon 390 

budget calculation largely follows the framework established in IPCC SR1.5 (Rogelj et al., 391 

2017), elaborated by Rogelj et al (2019) and implemented by Nauel et al (2019). We simplify the 392 

Rogelj et al (2019) remaining carbon budget equation to: 393 

 
2 ,, – /  lim lim nonCO fut EsfbF anthroB GSAT GSAT GSAT TCRE E       (15) 394 

where Blim is the remaining carbon budget associated with a temperature limit ΔGSATlim (1.5 or 395 

2°C), with ΔGSATF,anthro (also referred to as ΔGSAThist) the historical human-induced warming to 396 

date and 
2 ,nonCO futGSAT the expected future warming from non-CO2 anthropogenic forcing. 397 

TCRE is the transient climate response to cumulative CO2 emissions, while EEsfb is an 398 

adjustment for Earth system feedbacks from permafrost thaw and warming wetlands. This is 399 

essentially the same framework as SR1.5, except that in SR1.5 non-CO2 warming was not 400 

separate, but rather included in TCRE, and the earth-system feedback adjustment was 401 

incorporated in the results of SR1.5 Table 2.2, but not included in “headline” estimates in its 402 

Summary for Policymakers (IPCC, 2018).  403 
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In practice, observations based ΔGSATobs (whether ΔGSATperiod, ΔGSATLOESS or using another 404 

statistical technique) is used as an approximation of ΔGSATF,anthro, following from the finding 405 

that observed and “human-induced” warming to date are approximately equivalent (Allen et al., 406 

2018; Haustein et al., 2017). Thus, SR15 assessed ΔGSATF,anthro as 0.97°C in 2006-2015 relative 407 

to 1850—1900, based on the HadCRUT4 average for that decade (0.84°C) adjusted by the ratio 408 

between the equivalent CMIP5 blended-masked estimate (0.86°C) and CMIP 5 ΔGSAT 409 

(0.99°C), as stated in Box 2 of Rogelj et al. (2019).  410 

Here we select the Global_3 GMST group and so do not need to rely on a model correction for 411 

the additional bias introduced by HadCRUT4’s incomplete and changing geographic coverage, 412 

which necessitates a correction substantially larger than Ablend. Our central estimate for 413 

GSATF,anthro is: 414 

Δ𝐺𝑆𝐴𝑇𝐹,𝑎𝑛𝑡ℎ𝑟𝑜 = 𝐴𝑏𝑙𝑒𝑛𝑑_𝑚𝑒𝑑Δ𝐺𝑀𝑆𝑇𝐺𝑙𝑜𝑏𝑎𝑙_3     (16) 415 

where Ablend_med is the median value from CMIP6 Ablend ensemble and GMSTGlobal_3 is the 416 

LOESSbsln GMST of the Global_3 group (based on the mean of LOESSbsln applied to each of 417 

the three series). It should be noted this is a very conservative adjustment, as it may not fully 418 

account for coverage bias in the early part of the instrumental record, and ignores the “ice edge 419 

effect” cooling bias introduced by the variable sea ice mask in NASA GISTEMP and Berkeley 420 

Earth, which would add an additional ~3% (Cowtan et al., 2015; Richardson et al., 2018).   421 

SR1.5’s likely total uncertainty in GMSTobs (and derived GSAT) was ±0.12°C. Here we 422 

derive likely observation-based GSATLOESS using Gaussian approximations to the 423 

observational, dataset spread and statistical fit uncertainties in the following steps (tests and 424 

details in Supplementary Table S3):  425 

1. The Cowtan-Way ensemble spread is our best estimate of observational parametric 426 

GMST uncertainty, so for each dataset its standard deviation is combined in quadrature 427 

separately with (i) the dataset-specific statistical 1 uncertainty and (ii) the CSIRO 428 

Mk3.6.0 large ensemble standard deviation.  429 

2. For GSAT, the CMIP6 Ablend ensemble standard deviation is taken as the uncertainty 430 

value, and combined in quadrature with the results of 1. 431 

3. We estimate a 17—83 % range by calculating those percentiles for each dataset following 432 

a Gaussian assumption, i.e. ±0.954 from the mean, and then selecting the lowest 17 % 433 

and higher 83 % value from across the datasets. 434 

There is no universally accepted method of accounting for dataset spread. We adopt step 3 as a 435 

conservative approach, however, by reporting the separate dataset uncertainties as described in 436 

Section 2.2.2 other groups can replicate or develop alternative uncertainty estimates. 437 

We take Rogelj et al. (2019)’s,
2nonCOT of 0.1°C (0.2°C) for Tlim of 1.5°C (2°C), and EEsfb of 100 438 

Gt CO2 through 2100. TCRE percentiles are based on AR5’s likely range of 0.2–0.7°C per 1,000 439 

Gt CO2 (Collins et al., 2013), as in Nauels et al (2019). SR1.5 included alternative carbon 440 

budgets using a lower Thist from the average of the blended GMST datasets with no GSAT 441 
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adjustment. Our alternative uses the Global_3 average without the GSAT adjustment. To 442 

contextualize the remaining budget against cumulative emissions to date we include data and 443 

uncertainties from the 2019 Global Carbon Budget (Friedlingstein et al., 2019). 444 

3 Results 445 

3.1 Long term GMST analysis 446 

Figure 1 compares LOESSmd and OLS GMST from 1880—2019 with associated 5—95% 447 

uncertainties (Fig. 1a). Figure 1b shows that the LOESS fit residuals follow our assumed 448 

ARMA(1, 1), which is necessary to justify our error correction and is not true for OLS (Figure 449 

1c). Our full set of observational long-term GMST estimates are given in Table 2. 450 

GMSTOLS is always lower than GMSTLOESS, with some central OLS GMST estimates lying 451 

below the LOESS uncertainty range or nearly so (Cowtan-Way, Berkeley Earth). Datasets are 452 

similarly ranked for both OLS and LOESSmd over 1880—2019, from HadCRUT4 (0.96, 0.99) to 453 

Berkeley Earth (1.05, 1.14). The Global_3 interpolated series exhibit a greater relative difference 454 

than the non-global series; the Berkeley Earth and HadCRUT4 LOESSmd difference is 0.21°C, 455 

but only 0.13°C for OLS. Thus OLS not only renders lower GMST, but also de-emphasizes the 456 

differences between the datasets.  457 

 458 

 459 

 460 

 461 

 462 

 463 
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 464 
Figure 1: 1880-2019 warming estimates from five GMST series. (a) LOESS (span ± 20 years) and OLS trends 465 
with 5-95% statistical fit uncertainty are shown for Cowtan -Way (purple), NASA GISTEMP (blue), Berkeley Earth 466 
(orange), NOAA GlobalTemp (light blue) and HadCRUT4 (red) over 1880-2019. (b) The autocorrelation function 467 
(ACF) of the LOESS fit residuals are shown for each series (solid lines), along with the ACF of the estimated  468 
ARMA(1, 1) model used to correct for autocorrelation. (c) As in (b) except for OLS linear trend. 469 
 470 

 471 

 472 

  473 
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Table 2: Observed increase in GMST (°C) in datasets and dataset groupings. Numbers in square 474 
brackets correspond to 5–95% statistical fit uncertainty ranges, accounting for autocorrelation in fit 475 
residuals. Round brackets denote observational parametric uncertainty where available (HadCRUT4, 476 

Cowtan-Way). NOAA and NASA are each aligned to match 1880—1900 mean of the other three 477 
datasets. Best estimates from three full global series are denoted by *. Group mean estimates (in bold) are 478 
given with uncertainties encompassing the spread from lowest 5% to highest 95%. For the Global_3 479 
group, the observational uncertainty is from Cowtan-Way, expanded by the spread of the three central 480 
estimates. 481 
 482 

 483 

 484 

Period:  

 

Series: 

1850-1900 

 to 2019 

1850-1900  

to 2010-2019 
1880 - 2019 

LOESSbsln Latest decade LOESSmd Linear 

HadCRUT4 

1.02 
[0.93 - 1.11] 
 (0.97 – 1.07) 

0.93 

(0.88 - 0.98) 
 

0.99 

[0.88 - 1.11] 

(0.94 – 1.04) 

0.96 

[0.82 - 1.10] 

(0.92 – 1.03) 

NOAA 

GlobalTemp 

1.09 
[0.98 - 1.19] 

0.99 

 

1.06 

[0.93 - 1.18] 

1.04 

[0.89 - 1.19] 

NASA 

GISTEMP 

1.12 
[1.02 - 1.22] 

1.01 

 

1.09 

[0.98 - 1.21] 

1.04 

[0.88 - 1.20] 

Cowtan & Way 

1.12 

[1.04 - 1.21] 
(1.05 – 1.19) 

1.01 
(0.95 - 1.09) 

 

1.14 

[1.03 - 1.25] 

(1.08 – 1.21) 

1.02 

[0.88 - 1.15] 

(0.94 – 1.09) 

Berkeley Earth 
1.19 

[1.10 - 1.27] 
1.08 

1.20 

[1.09 - 1.31] 

1.09 

[0.96 - 1.22] 

All Operational 

(OpAll) 

1.11 
[0.93 - 1.27] 

1.00 
 

1.10 

[0.88 - 1.31] 

1.03 
[0.82 - 1.22] 

Full Global   

(Global_3) * 

1.14 * 

[1.02 – 1.27] 

(1.05 – 1.26) 

1.03 
 

1.14 

[0.98 - 1.31] 

1.05 
[0.88 - 1.22] 
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For LOESSbsln to 2019, there are minor differences in assessed values but no changes in dataset 485 

rankings versus LOESSmd 1880—2019. LOESSbsln is generally ~0.1 °C higher than 1850—1900 486 

to 2010—2019 GMST, reflecting the five-year offset and ~0.2 °C/decade recent warming 487 

(2010—2019 is centered at the end of 2014). At 1.14°C, Global_3 LOESSbsln GMST to 2019 is 488 

0.03°C higher than OpAll average, reflecting a 0.09°C difference with the mean of the two 489 

reduced coverage series from HadCRUT4 and NOAA GlobalTemp. The 1880—2019 LOESSmd 490 

discrepancy is even wider: 0.09°C for NOAA and 0.15°C for HadCRUT4. LOESSbsln statistical 491 

fit uncertainties are smaller than LOESSmd or OLS, reflecting the smaller uncertainty of 492 

departure from the 1850—1900 mean rather than a single point (as noted in Section 2.2.2).  493 

 494 

Figure 2: GMST series and group surface warming estimates. (a) Monthly series and multi-decadal LOESSbsln 495 
GMST (span ± 20 years) are shown for HadCRUT4 (red), NOAA GlobalTemp (light blue), NASA GISTEMP 496 
(blue), Cowtan-Way (purple) and Berkeley Earth (orange), together with OLS and period estimates from IPCC AR5 497 
and SR15. NOAA GlobalTemp and NASA GISTEMP have been matched to the longer datasets over the 498 
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overlapping 1880—1900 period. Also shown are 24 CMIP6 SAT-SST model runs, blended following Cowtan et al 499 
(2015) and Richardson et al (2018). (b) LOESSbsln (solid line with filled circle) is shown for two GMST groupings: 500 
Global_3 (purple) and OpAll (dark red).Also shown are selected additional warming estimates: anthropogenic 501 
following Haustein et al (2017) (diamonds), decadal average (crosses) and OLS linear trend from 1880 (x-crosses). 502 
Recent IPCC GMST estimates are highlighted by large squares: AR5 OLS to 2012 (light blue) and SR1.5 2006-503 
2015 mean extended to 2017 (blue), together with corresponding Global_3 LOESSbsln GMST (purple). 504 

The observation-based and CMIP6 blended ensemble LOESSbsln (Figure 2a) show broadly 505 

similar changes: a rise to 1950, a 1950—1975 flattening, and strong post-1975 warming. The 506 

observations show stronger 1920—1950 warming, especially in the three HadSST-based series, 507 

and weaker post-1975 warming.  508 

Separate tests showed that derived GMSTLOESS was similar when restricting CMIP6 spatial 509 

coverage to that of Berkeley Earth, so we take the CMIP6 blended ensemble as directly 510 

comparable to the Global_3 series (Figure S14). The Global_3 rise of 1.14°C is just above the 511 

median CMIP6 estimate extended linearly to 2019, 1.12°C [0.91 – 1.41]. However, the Global_3 512 

current trend of 0.20°C/decade (as estimated by the LOESSbsln slope at the 2019 end point) is 513 

lower than CMIP6’s 0.26°C/decade [0.18 – 0.38] or the likely ECS sub-ensemble’s 514 

0.25°C/decade [0.18 – 0.29]. 515 

In general, Figure 2(a) shows LOESSbsln GMST from the five updated observational datasets 516 

(coloured lines) are at or above recent IPCC long-term observational GMST estimates 517 

(represented by crosses and x-crosses). Figure 2(b) affords a closer view of recent GMST 518 

estimates, including group LOESSbsln calculated to 2012 and 2017 for direct comparison to IPCC 519 

AR5 and SR1.5. As previously stated, AR5’s main estimate of 0.85°C was from linear OLS on 520 

the datasets available then. Since the mean 1880—2012 OLS trend for OpAll is 0.89°C and 521 

LOESSbsln is 0.93°C, GMST methodology accounts for half of the discrepancy between AR5’s 522 

1880—2012 estimate and our OpAll based estimate. The 2012 gap is even wider for the 523 

Global_3 group. OLS to 2012 is 0.90°C and LOESSbsln is 0.96°C; that gap continues to grow, 524 

reaching 0.09°C in 2019.   525 

The SR1.5 2006-2015 mean GMSTperiod of 0.87°C, centered at the end of 2010, was extended 526 

to the most recent year (2017) to provide a then current estimate of 1.0°C (Section 1.2.1.3 in 527 

Allen et al., 2018). The same extension to 2017 applied to the updated series shows a 0.03°C gap 528 

with LOESSbsln evaluated in 2017. This discrepancy may be related to internal variability 529 

suppressing early 2000s warming; the period difference estimate based on the most recent 530 

decade then available (2008-2017) shows no such discrepancy with LOESSbsln. Both LOESSbsln 531 

and period estimates are in good agreement with the slightly higher Haustein human-induced 532 

warming GMSTF,anthro estimates.  533 

Figure 3 compares Global_3 LOESSbsln and period GMST in more detail. Since IPCC SR1.5 534 

explicitly considered the 2006-2015 mean as a proxy for the 1996-2025 average (relative to 535 

1850—1900), we consider the centered 20-year average and a 30-year “extended” average 536 

assuming the current linear 30-year trend continues over the next 15 years. We estimate that the 537 

1979—2019 warming has been approximately linear (see Table S2 showing OLS-LOESS 538 

agreement over this period), and the large ensembles also imply minor errors from assuming 539 

linearity through 2025. Figure 3a shows that in general LOESSbsln departs less from the eventual 540 

20 and 30 year average than the decade mean and confirms that 2006-2015 was affected by an 541 
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early 2000s slowdown. LOESSbsln has more stability relative to anthropogenic warming 542 

estimates (Figure 3b) with near-identical concordance with GMSTF,anthro since 2003, and has 543 

lower RMSE relative to the longer period averages since the late 1990s (Figure 3c, 3d). 544 

 545 

Figure 3: GMST estimation method validation based on average of 3 global series. (a) LOESSbsln to 2019 546 
(blue) is shown with 5-year lagged LOESS (light blue), decadal average (red), 20-year average (light gray) and 30-547 
year average (black). LOESS (light blue) versus decadal (red) differences are shown with (b) forced warming 548 
estimates following Haustein et al. (2017) and (c) validation targets (30-year average, 30-year average extended with 549 
linear trend and 20-year average). (d) RMSE is calculated from errors shown in (c). 550 

The equivalent performance evaluation of long-term Global_3 LOESSbsln versus OLS GMST in 551 

Figure S15 shows a growing cool bias in OLS relative to the 20 and 30-year average from 1995 552 

on (Figure S15a) and thus much higher RMSE than LOESSbsln relative to the longer period 553 

averages (Figure S15d). 554 

Global_3 LOESSbsln GMST to 2019 is our main input for subsequent analysis such as 555 

remaining carbon budget, for which combined 17—83 % uncertainty is required; the combined 556 

statistical and observational uncertainty calculated following the method outlined in Section 557 

2.2.4 yields Global_3 GMST of 1.14°C [1.05 – 1.25]. 558 

3.2 Large Ensemble Validation  559 

 560 

Figure 4(a,d) shows the MPI-GE and CSIRO Mk3.6.0 annual SAT range, individual LOESSmd 561 

fits and GSATF estimate, Figure 4(b,e) contains example LOESS and OLS fits to a single 562 
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simulation and Figure 4(c,f) shows the forced, LOESS and OLS GSAT estimates through 2019 563 

for each start year from 1850—1980.  564 

The GSATF and LOESS GSAT agree well outside of periodic GSATF spikes from volcanic 565 

eruptions, i.e. when the forced change is smooth over our ±20 year window, such that 566 

GSATLOESSGSATF. For changes from the 19th century to recently, the IPCC AR5 estimates 567 

of solar forcing change are negligible compared with anthropogenic forcing so longer-term 568 

GSATF should approximate the GSATF,anthro used in our later carbon budget calculation. 569 

Meanwhile, OLS is biased relative to GSATF in the long term, and is more sensitive to internal 570 

variability in the short term, e.g. for 1990—2019 OLS ensemble spread is 62 % (MPI-ESM) or 571 

26 % (CSIRO Mk3.6.0.) larger than LOESS ensemble spread.  572 

 573 

 574 

 575 
Figure 4. (a) MPI-GE SAT outputs, full ensemble range is shaded, each simulation’s LOESS fit is in grey and the 576 
ensemble mean (our estimate of GSATF) is in red. (b) example of fits applied to a single simulation (black) 577 
including LOESS (dark blue) and OLS over three different periods (straight lines) with GSATF in red. OLS lines are 578 
shifted up so that their end points correspond to the relevant GMST for ease of comparison. (c) calculated GSAT 579 
for GSATF (red), based on the LOESS fit (dark blue) and based on OLS (cyan). For the fits, the lines are the 580 
ensemble median and the shaded regions the 5—95 % range.( d—f) as (a—c) but for the CSIRO Mk 3.6.0 ensemble. 581 

 582 

Table 3 contains the large ensemble GSAT estimates. For periods like 1850—1900 to 2010—583 

2019, we use Section 2.2.2’s LOESSbsln approach while OLS is fit between the middle of each 584 

period. In both ensembles LOESS performs similarly to the period difference with the 5
th

, 50
th

 585 

and 95
th

 percentiles of the ensemble LOESS and period difference calculations all agreeing to 586 

within 0.02 °C. LOESS slightly outperforms centered period differences evaluated from 587 

1850—1900 to end periods ranging from 1986—1995 through 2010—2019 when validated 588 

against 30-year average (see Figure S16). This validates LOESS performance, and Table 3 589 
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shows an advantage over period means since its calculation can be extended to the latest 590 

available year without greatly inflated uncertainty. The 0.06—0.10 °C discrepancies in the third 591 

column of Table 3 for 1880—2019 LOESS-GSATF are likely because the LOESS window 592 

centred at 1880 captures Krakatoa’s large post-1883 cooling, thereby reducing the 1880 LOESS 593 

estimate and increasing its 1880—2019 GMST. These results show that such biases are period-594 

dependent, are indeed negligible for 1850—1900 to 2019 in these models, and support our 595 

choice of time periods in the analysis using observational datasets. 596 

 597 

As our carbon budget calculations include an internal variability error component, we consider 598 

ensemble spread and statistical fit uncertainties as candidates and compare the LOESSbsln 599 

ensemble 83
rd

 minus 17
th

 percentile and the statistical 17—83 % ranges for each run over 1850—600 

1900 to 2019. The CSIRO Mk3.6.0 17—83 % ensemble spread in GSAT LOESSbsln is 0.22 °C. 601 

This is larger than the median ensemble member’s statistical range (0.18 °C) and similar to the 602 

largest individual ensemble member range (0.22 °C). For MPI-ESM the ensemble spread (0.11 603 

°C) is smaller than the median statistical uncertainty (0.16 °C) and is marginally lower than the 604 

smallest member value (0.12 °C). For the internal variability component of GSAT uncertainty 605 

in our carbon budgets we present results both using statistical uncertainty (derived only from 606 

observational data) and a more conservative estimate using the ±0.11 °C CSIRO Mk3.6.0 607 

ensemble spread. 608 

 609 

This large ensemble analysis has: 610 

(i) provided limited support for our LOESS-based statistical uncertainty estimates 611 

being similar to model variability,  612 

(ii) shown that LOESS matches or exceeds period difference performance while 613 

having lower long-term bias and short-term uncertainty than OLS,  614 

(iii) verified that LOESS reliably reproduces GSATF outside of years immediately 615 

following large volcanic eruptions, particularly supporting our LOESSbsln results 616 

as an estimate of GSATF,anthro.  617 

 618 

 619 
Table 3. Long-term GSAT estimated for various periods for the ensemble mean TF, plus the ensemble 620 
medians and 5—95 % ranges for estimates based on LOESS, OLS or taking the mean of the raw SAT 621 
outputs. Uncertainties in TF differences are derived by treating TF as a sample mean and assuming the 622 
ensemble members follow a Gaussian distribution in any given year. The period errors are then combined in 623 
quadrature. 624 

 
MPI-ESM GSAT[°C] median [5—95 %] [17—83 %] 

Method 1850-1900 to 2010-2019 1850-1900 to 2019 1880 to 2019 

TF 1.15 [1.15-1.16] [1.15-1.16] 1.25 [1.23-1.28] [1.24-1.27] 1.20 [1.17-1.23] [1.18-1.22] 

LOESS 1.16 [1.07-1.24] [1.11-1.21] 1.25 [1.15-1.36] [1.21-1.32] 1.26 [1.15-1.36] [1.20-1.31] 

OLS 1.02 [0.93-1.12] [0.97-1.07] 1.13 [1.04-1.23] [1.08-1.18] 1.15 [1.06-1.23] [1.10-1.20] 
Individual 

runs 1.15 [1.07-1.24] [1.11-1.20] 1.24 [1.04-1.48] [1.12-1.40] 1.20 [0.92-1.50] [1.04-1.39] 

 

CSIRO Mk3.6.0 GMST[°C] 

TF 0.92 [0.90-0.93] [0.91-0.92] 1.03 [0.99-1.07] [1.00-1.05] 0.93 [0.88-0.98] [0.90-0.96] 

LOESS 0.93 [0.79-1.04] [0.82-1.01] 1.05 [0.89-1.18] [0.90-1.12] 1.03 [0.84-1.16] [0.91-1.10] 
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OLS 0.63 [0.46-0.72] [0.52-0.70] 0.73 [0.56-0.85] [0.61-0.82] 0.75 [0.58-0.87] [0.64-0.83] 
Individual 

runs 0.91 [0.78-1.04] [0.83-1.00] 1.03 [0.81-1.22] [0.86-1.12] 0.94 [0.66-1.15] [0.76-1.05] 
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 625 

3.3 Global SAT Estimate and Remaining Carbon Budget 626 

We now convert our best estimate GMSTLOESS of 1.14°C [1.05 – 1.25] (17—83% uncertainty) 627 

to an equivalent GSATLOESS as outlined in Section 2.2.4. Our CMIP6 ensemble LOESSbsln 628 

Ablend ratio GSATLOESS/GMSTLOESS reflects an increase of GSATLOESS over full-coverage 629 

GMSTLOESS of 5.8% [4.4, 7.2 ] in 2014, i.e. long-term near-surface air temperature warming is 630 

5.8% greater than our blended estimate. This Ablend estimate is very similar to equivalent CMIP5-631 

based estimates, but much lower than the 24% derived in CMIP5 for 1861—1880 to 2006—2015 632 

using a HadCRUT4-like masking and blending algorithm (Richardson et al., 2016). This is due 633 

to the different handling of sea ice and the incorporation of complete (unadjusted) spatial 634 

coverage in the Ablend calculation. 635 

Combining this ratio and its uncertainty with our Global_3 GMSTLOESS, as outlined in Section 636 

2.2.4, we obtain GSATLOESS of 1.21°C [1.11—1.32] from 1850—1900 to 2019, a lower 637 

uncertainty than the equivalent SR1.5 estimate of ±0.12°C (Section 1.2.1.2 in Allen et al., 2018). 638 

The conservative CSIRO-based internal variability yields a wider GSATLOESS range of 1.07—639 

1.37 °C. These estimates all represent uncertainty in total forced warming; however, uncertainty 640 

in anthropogenic warming was estimated to be still higher at ±0.2°C (Section 1.2.1.3 in Allen et 641 

al., 2018). The equivalent LOESSbsln HadCRUT4 estimate using the SR1.5 correction of ~15% 642 

yields slightly lower GSATobs of 1.17°C, and the updated SR1.5 2006—2015 estimate extended 643 

to end of 2019 is 1.15°C. Finally, Ablend corrected LOESSbsln HadCRUT4 yields 1.08°C; the 644 

difference of 0.13°C with our main GSATLOESS primarily reflects HadCRUT4 coverage bias, as 645 

well as a small sea ice edge effect. The other carbon budget calculation components also have 646 

large uncertainties. Cumulative emissions to end of 2019 are 2320 ±230 GtCO2 (Friedlengstein 647 

et al., 2019), while non-CO2 uncertainties are even higher (see Table 2.2 in Rogelj et al., 2018). 648 

Although no formal methods exist to combine these uncertainties, Rogelj et al (2018) estimated 649 

overall uncertainty of ±50% in SR1.5 remaining carbon budgets. 650 

Figure 5 shows the calculation for the remaining carbon budget with a 66% chance to stay below 651 

1.5°C, along with the historical cumulative CO2 emissions and temperature change.  652 
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 653 

 654 

Figure 5: Global temperature change from 1850–1900 versus cumulative CO2 emissions. The smoothed 655 
temperature response from the Global3 blended GMST group as decadal average (blue) and LOESSbsln trend 656 
(purple) are shown relative to cumulative CO2 emissions from Friedlingsten et al (2019). The thick black line shows 657 
the Global3 GSAT LOESSbsln trend, obtained by adjusting GMST by the ratio of GSAT and blended GMST 658 
historical runs from an ensemble of 24 CMIP5 models. The pink shaded plume and dark red line are estimated 659 
temperature response to cumulative CO2 emissions (TCRE) from the beginning of 2020 on. Also shown are other 660 

remaining carbon budget factors, 
2nonCOT and EEsfb (gray arrows). The thick black double arrow represents the 661 

remaining carbon budget for 66% chance of remaining below 1.5°C. Vertical error bars show GSAT combined 662 
observational and statistical uncertainty (dark blue), combined observational and internal variability derived from 663 
CSIRO ensemble (medium blue) and estimated uncertainty in anthropogenic warming (light blue). 664 

Our remaining carbon budgets incorporate the SR1.5 Table 2.2 100 GtCO2 adjustment for earth- 665 

system feedbacks (CO2 and CH4 release from warming wetland and permafrost thaw), following 666 

recent practice established in Rogelj et al. (2019) and Nauels et al. (2019). Carbon budgets 667 

excluding this term are therefore 100 GtCO2 higher, as in the SR1.5 “headline” remaining carbon 668 

budget of 420 GtCO2 (IPCC, 2018) to remain under 1.5°C (with 66% chance). 669 

The remaining carbon budgets from the start of 2020 for a 66% (50%) chance to stay below 670 

1.5°C and 2.0°C are 220 (350) GtCO2 and 880 (1270) GtCO2 respectively (rounded to nearest 5 671 

GtCO2). Given current annual emissions of just over 40 GtCO2, the 66% 1.5°C remaining carbon 672 

budget is only ~15 GtCO2 lower than the equivalent carbon budgets including earth-system 673 

feedbacks in SR1.5 Table 2.2 (320 GtCO2 from 2018) and Nauels et al (235 GtCO2 from 2020). 674 
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However, our 50% 1.5°C carbon budget is ~45 GtCO2 below those two studies. This follows 675 

from the slightly higher ΔGSATobs found in this study, combined with an identical TCRE spread 676 

starting in 2020 rather than the SR1.5 reference period centered at the start of 2011. In effect, the 677 

up-to-date LOESSbsln estimate of ΔGSATobs reduces the contribution of TCRE uncertainty, as 678 

there is less ΔT “to go”. 679 

SR1.5’s secondary carbon budgets used the average GMST through 2006—2015 to obtain a 66 680 

% chance of staying below 1.5 °C resulting in an equivalent budget of 470 GtCO2 from 2018 681 

(i.e. 385 GtCO2 from 2020). Our alternative budget using Global_3 GMSTLOESS instead of 682 

GSATLOESS is 305 GtCO2 from 2020. This large difference relative to SR1.5 is unsurprising as 683 

the Global_3 series show more historical warming whereas the SR1.5 GMSTperiod average 684 

included HadCRUT4 and its more substantial coverage bias. We also note that an OLS 1880—685 

2019 GMST basis would imply even higher 1.5 °C 66% remaining carbon budgets of 455 686 

GtCO2 (Global_3) or 485 (GtCO2 (OpAll).   687 

4 Discussion and Conclusions 688 

We have explored the range of warming estimates since the late 19
th

 century across different 689 

observational series using multiple estimation methodologies, focusing on the Global_3 subset of 690 

extensively interpolated datasets (NASA GISTEMP, Cowtan-Way and Berkeley Earth). Our 691 

main LOESSbsln Global_3 GMST since 1850—1900 is, to our knowledge, the first such 692 

estimator that (i) integrates robust statistical uncertainties, with fit residuals following the 693 

assumed noise process, (ii) has been extended to provide a corresponding GSATLOESS since 694 

1850—1900, including combined observational and internal variability uncertainties, and (iii) 695 

has been validated against output from model large ensembles. 696 

IPCC SR1.5 reported GMSTperiod of 0.87°C to 2006—2015 using four datasets (1.0°C when 697 

extended to 2017) and estimated GSATperiod of 0.97°C by adjusting one dataset (HadCRUT4) 698 

for biases related to incomplete coverage and sea-air temperature differences, effectively 699 

discarding the other three. The ensuing carbon budget calculation included cumulative emissions 700 

up to 2017, necessitating an implicit extension of GSATperiod to that date. The simplicity and 701 

coherence of our “up-to-date” GMSTLOESS and GSATLOESS estimates represent a clear 702 

advance over the IPCC GMST period difference and GSAT derivation methods. Not only is 703 

LOESSbsln generally an unbiased GMSTF estimator outside periods of volcanism, but the 704 

method includes a more consistent and intuitive baseline alignment of datasets beginning in 1880 705 

and maintains the previously stated advantage of including statistical uncertainty derived using a 706 

noise model consistent with the data. Moreover, validation tests with observations and the large 707 

ensembles confirm LOESSbsln results in lower biases relative to GSATF and lower 708 

susceptibility to natural variation. None of this is surprising considering that the IPCC period 709 

difference method is essentially a 10-year moving average. 710 

Another key difference with IPCC SR1.5 is our consistent use of the Global_3 datasets with 711 

extensive spatial interpolation. As previously noted in section 2.1.1, these datasets are 712 

demonstrably more representative of global climate change and require smaller and less 713 

uncertain adjustments (~6%) to obtain GSATLOESS from GMSTLOESS, in contrast to the 15% 714 

adjustment applied to HadCRUT4 GMSTperiod in IPCC SR1.5. The Global_3 datasets give 0.12 715 
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°C more warming than HadCRUT4 from 1850—1900 and the divergence related to unmitigated 716 

bias coverage may well grow, as the Global_3 LOESSmd trend is now 0.03°C/decade higher than 717 

HadCRUT4’s 0.17 °C/decade. Focusing on the three Global_3 datasets and our robust LOESSbsln 718 

estimator dramatically reduces the spread between GMST estimates: the inter-dataset spread in 719 

Global_3 LOESSbsln 1850—1900 to 2019 GMST is only 0.07°C. Including the non-global 720 

datasets increases the LOESSbsln spread to 0.17 °C, and including OLS and LOESSmd trend 721 

methodologies increases the spread to 0.27 °C: from 0.93°C (OLS for HadCRUT4) to  1.20°C 722 

(Berkeley Earth LOESSmd). 723 

SR1.5 also reported 1880—2012 and 1880—2015 linear trend GMST, but mainly to provide 724 

“traceability” to the IPCC AR5. In contrast, AR5’s main estimate of 0.85°C was based on the 725 

mean linear trend of available datasets, while HadCRUT4 2003—2012 period difference from 726 

1850—1900 GMST estimate was a primary input for further analyses such as future projections 727 

(Collins et al., 2013) and attribution (Bindoff et al., 2013).   728 

If IPCC AR6 follows AR5 and provides both period difference and point-to-point trends for 729 

datasets beginning in 1850, that would imply the three post-1850 datasets would form the basis 730 

for 2010—2019 period GMSTobs relative to 1850—1900. As noted above though, LOESSbsln to 731 

2019 offers a superior alternative. Since HadCRUT4 clearly does not meet our “quasi-global” 732 

criterion, we omit it as a direct component of GMSTLOESS. Nevertheless, HadCRUT4 and its 733 

underlying land and ocean datasets (CRUTEM4 and HadSST3) form the essential basis of 734 

Cowtan-Way, and HadSST3 is also a key component of Berkeley Earth. Following the precedent 735 

set in IPCC SR1.5, the ERSSTv5 based datasets starting 1880 should also be considered, using 736 

baseline matching over 1880—1900. Our Global_3 group member, NASA GISTEMP is an 737 

obvious choice for inclusion, while NOAA GlobalTemp could be omitted according to our 738 

global coverage criterion. However, that case is less clear cut than HadCRUT4 due to NOAA’s 739 

complicated spatial coverage. Once again, though, NOAA’s GHCNv4 and ERSSTv5 datasets 740 

would still be present as they form the essential basis of NASA GISTEMP.  741 

The recent release of HadCRUT5 (Morice et al., 2020) will certainly inform future regular 742 

updates of our main GMSTLOESS and GSATLOESS estimates. HadCRUT5 features sophisticated 743 

kriging interpolation, resulting in virtual coverage similar to Berkeley Earth, and incorporates 744 

updated datasets for land (CRUTEM5; Osborn et al., 2020) and ocean (HadSST4; Kennedy et 745 

al., 2019). We give a preliminary evaluation of the eventual effect of HadCRUT5 (and 746 

HadSST4) in Table S4. The incorporation of HadSST4 (instead of HadSST3) into Cowtan-Way 747 

and Berkeley Earth results in a noticeable increase in ΔGMSTLOESS, while results for 748 

HadCRUT5 are nearly identical to Cowtan-Way/HadSST4. 749 

Since observational datasets beginning in 1880, such as NASA GISTEMP, potentially could be 750 

included alongside the three datasets starting in 1850, LOESSbsln GMST arguably renders 751 

1880—2019 GMSTOLS redundant in IPCC AR6. However, AR5 also compared long-term 752 

GMSTOLS trends starting from 1880 to short-term trends starting from mid-century or later. Our 753 

results reinforce that 1880—2019 linear trend is inconsistent with LOESSmd 1880—2019 754 

GMST. The bias of long-term OLS GMST was confirmed in analysis of two large ensembles, 755 

which also showed that it has 26—62 % larger uncertainty than LOESSmd for recent 30-year 756 

trends. As seen in Table S2, observed OLS trends from 1951 have wider uncertainty than the 757 
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corresponding LOESSmd estimates and show evidence of warm bias as well (for example the 758 

NASA GISTEMP 1951—2019 OLS is almost identical to 1880—2019). We therefore 759 

recommend LOESSmd over linear trend for both long-term (> 120 years) and short-term (30-70 760 

years) intervals.  761 

LOESSbsln statistical uncertainties represent another opportunity for AR6. If GMSTLOESS is 762 

close enough to GMSTF then with an appropriate noise model the GMSTLOESS uncertainty due 763 

to internal variability could be derived from the LOESS residuals. We combined this with 764 

observational uncertainty and carried it forward directly to GSATLOESS for carbon budget 765 

calculations, but it could also be used for other follow-on analyses. The median statistical 766 

uncertainties from the large ensemble runs are within 25% of the ensemble spreads, and the 767 

residual autocorrelation structure implies potential for this approach.  768 

However, global climate models may not capture long-term internal variability (Brown et al., 769 

2015). For example, recent Pacific changes may indicate stronger real-world multi-decadal 770 

variability (e.g. England et al., 2014), although consensus is lacking (Seager et al., 2019). We 771 

take no position on the ability of models to generate this variability, only note that it has been 772 

studied in CMIP5 (e.g. Brown et al., 2015) and CMIP6 (e.g. Parsons et al., 2020) and report on 773 

how errors would affect our conclusions. Substantial internal variability on ±20 year timescales 774 

or longer would result in underestimated LOESS uncertainties. By contrast, large forced changes 775 

on shorter timescales, such as due to volcanism, would increase the uncertainties. Nevertheless, 776 

our method derives uncertainties directly from observations and so may have advantages over 777 

approaches that rely on model outputs or estimated forcings (Otto et al 2015; Haustein et al., 778 

2017). 779 

Given the above caveats we provided a more conservative GSAT uncertainty incorporating the 780 

CSIRO model large ensemble spread and its pronounced internal variability. Since our 781 

GMSTLOESS and GSATLOESS estimates are close to observation-based anthropogenic warming, 782 

confirming a basic finding of IPCC SR1.5, we treat our GSATLOESS as an estimate of 783 

GSATF,anthro, albeit with appropriately wider uncertainties. In general, our approach yields 784 

straightforward and up-to-date estimates of GMST and GSAT to inform remaining carbon 785 

budget calculations that incorporate appropriate GSAT uncertainties .   786 

To summarize, we argue strongly in favor of LOESSbsln GMST using series with near-global 787 

coverage. Combining our statistical estimate of internal variability with dataset spread and 788 

dataset parametric uncertainty results in a best estimate of warming from 1850—1900 to 2019 of 789 

1.14 °C [1.05 – 1.25] (17-83% uncertainty). Not only is this updated through 2019, rather than 790 

the prior-decade value of the IPCC’s period mean difference, but it includes a potentially useful 791 

statistical fit uncertainty that is not readily or typically derived for period mean differences. 792 

Our CMIP6-derived GSAT adjustment yields corresponding GSATLOESS of 1.21°C [1.11–1.32] 793 

(17—83% uncertainty), implying a remaining carbon budget of ~220 GtCO2 for a 66% chance 794 

that GSAT since 1850—1900 remains below 1.5°C. This carbon budget is ~5.5 years of current 795 

emissions and is less than half the 455–485 GtCO2 carbon budget implied by an OLS GMST 796 

basis. Our GSAT estimate uncertainty can be adapted to a desired interpretation of GSAT, for 797 

example, as total or anthropogenic warming. All GSATLOESS and GMSTLOESS indices can be 798 
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updated annually and are only dependent on the temperature datasets, yielding a set of 799 

transparent and easily communicated metrics to measure progress towards climate goals.  800 

 801 
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Institution Model Variant ECS ECSlk SSP ext 

CAMS CAMS-CSM1-0 r1i1p1f1 2.3 Y 245, 370 

CAS FGOALS-F3-L r1i1p1f1 4.7 Y 245, 370 

CCCma CanESM5 r1i1p1f1 5.6 N 245, 370 

CNRM-CERFACS CNRM-CM6-1 r1i1p1f2 4.8 N 245, 370 

CNRM-CERFACS CNRM-ESM2-1 r1i1p1f2 4.7 N 245, 370 

CISRO ACCESS-ESM1-5 r1i1p1f1 3.5 Y 245, 370 

IPSL IPSL-CM6A-LR r1i1p1f1 4.8 N 245, 370 

MIROC MIROC6 r1i1p1f1 2.6 Y 245, 370 

MIROC MIROC-ES2L r1i1p1f2 2.7 Y 245, 370 

MOHC HadGEM3-GC31-LL r1i1p1f3 5.5 N 245, 370 

MOHC UKESM1-0-LL r1i1p1f2 5.4 N 245, 370 

MPI-M MPI-ESM1-2-LR r1i1p1f1 2.8 Y 245, 370 

MRI MRI-ESM2-0 r1i1p1f1 3.1 Y 245, 370 

NASA-GISS GISS-E2-1-G r1i1p1f1 2.7 Y  

NASA-GISS GISS-E2-1-G-CC r1i1p1f1 3.2 Y  

NASA-GISS GISS-E2-1-H r1i1p1f1 3 Y  

NCAR CESM2 r1i1p1f1 5.2 N 245, 370 

NCAR CESM2-WACCM r1i1p1f1 4.7 N 245, 370 

NCC NORCPM1 r1i1p1f1 3 Y  

NCC NorESM2-LM r1i1p1f1 2.9 Y  

NOAA-GFDL GFDL-CM4 r1i1p1f1 3.9 Y 245 

NOAA-GFDL GFDL-ESM4 r1i1p1f1 3.2 Y 245 

NUIST NESM3 r1i1p1f1 4.7 N 245 

SNU SAM0-UNICON r1i1p1f1 3.8 Y  

Table S1: CMIP6 model ensemble. CMIP6 model runs employed in this study are listed, 

along with a preliminary evaluation of ECS assessed by 4xCO2 abrupt experiments, with the 

resulting ECSlk flag (set to “Y” if ECS is within the CMIP5 5-95% range of 1.9-4.5°C). The 

SSP ext column lists Shared Scenario Pathway continuations of interest that were available in 

February, 2020.    

Figure S12: Cowtan-Way ΔGMST to 2019.  Top (a - b) Cowtan-Way monthly series (light gray) is 

shown with LOESSbsln (blue) and 2010-2019 average (black square) relative to 1850-1900, along with OLS 

linear trend over 1880-2019 (red).  The OLS linear trend central estimates and uncertainty have been 

shifted upward to provide direct comparison to the other two estimates.  (a) Trends are given with 

ARMA(1,1) corrected 5%-95% confidence interval  (dotted lines).  (b) LOESSmd (thin light blue lines) and  

OLS (thin pink lines) trends are derived from Cowtan and Way 100-member ensemble. Middle (c) 

Autocorrelation function (ACF) of LOESSmd statistical fit residuals (black), compared to that estimated 

with ARMA(1, 1) model (blue) and AR(1) model (red) for LOESS trend. (d) As in (c), except for OLS 

linear trend. Bottom (e) ACF for LOESSmd fit residuals for Cowtan-Way annual series, compared to AR(1) 

model (red) for LOESS trend.   (f)  As in e), except for OLS linear trend. 
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Period:  

 

Series: 

1880 - 2019 1951 - 2019 1979 - 2019 

LOESSmd Linear LOESSmd Linear LOESSmd Linear 

HadCRUT4 

0.99 

[0.88 - 1.11] 

(0.94 – 1.04) 

0.96 

[0.82 - 1.10] 

(0.92 – 1.03) 

0.75 

[0.63 - 0.87] 

(0.67 – 0.76) 

0.84 

[0.69 - 1.00] 

(0.76 – 0.88) 

0.70 

[0.58 - 0.81] 

(0.64 – 0.71) 

0.70 

[0.59 - 0.82] 

(0.65 – 0.72) 

NOAA 

GlobalTemp 

1.06 

[0.93 - 1.18] 

1.04 

[0.89 - 1.19] 

0.87 

[0.75 - 0.99] 

0.97 

[0.83 - 1.10] 

0.74 

[0.62 - 0.85] 

0.71 

[0.58 - 0.84] 

NASA 

GISTEMP 

1.09 

[0.98 - 1.21] 

1.04 

[0.88 - 1.20] 

0.94 

[0.83 - 1.04] 

1.03 

[0.90 - 1.15] 

0.79 

[0.69 - 0.89] 

0.77 

[0.65 - 0.88] 

Cowtan & 

Way 

1.14 

[1.03 - 1.25] 

(1.08 – 1.21) 

1.02 

[0.88 - 1.15] 

(0.94 – 1.09) 

0.81 

[0.70 - 0.91] 

(0.75 – 0.87) 

0.88 

[0.73 - 1.04] 

(0.83 – 0.94) 

0.75 

[0.65 - 0.86] 

(0.70 – 0.79) 

0.77 

[0.66 - 0.88] 

(0.74– 0.81) 

Berkeley 

Earth 

1.20 

[1.09 - 1.31] 

1.09 

[0.96 - 1.22] 

0.85 

[0.74 - 0.95] 

0.92 

[0.78 - 1.06] 

0.77 

[0.67 - 0.86] 

0.78 

[0.67 - 0.88] 

All 

Operational  

1.10 

[0.88 - 1.31] 

1.03 

[0.82 - 1.22] 

0.84 

[0.63 – 1.04] 

0.93 

[0.69 - 1.15] 

0.75 

[0.58 - 0.89] 

0.75 

[0.58 - 0.88] 

Near Global  

(3 series) * 

1.14 * 

[0.98 - 1.31] 

1.05 

[0.88 - 1.22] 

0.83 * 

[0.70 – 1.04] 

0.91 

[0.70- 1.12] 

0.74 * 

[0.65 - 0.89] 

0.74 

[0.65 - 0.88] 

Table S2: Observed increase in GMST (°C) in datasets and dataset groupings. Numbers 

in square brackets correspond to 5–95% statistical trend fit uncertainty ranges, accounting for 

autocorrelation in fit residuals. Round brackets denote 5–95% observational parametric 

uncertainty where available (HadCRUT4, Cowtan-Way). Best estimates from 3 full global 

(NASA GISTEMP, Cowtan-Way and Berkeley Earth series are denoted by *. 
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Table S3: Combined GMST and GSAT changes and uncertainty ranges for each dataset, group and 

combination of uncertainties. As described in main manuscript: individual dataset GMST combine in 

quadrature Cowtan & Way ensemble uncertainty and either statistical error (“stat”) or CSIRO ensemble 

standard deviation (“CSIRO”). GSAT combines fractional GMST and Ablend uncertainties in 

quadrature. We justify quadrature combinations as the Shapiro-Wilks test does not reject normality in any 

case: for Cowtan & Way ensemble (p 0.27), the CSIRO ensemble (p=0.48) or CMIP6 ensemble Ablend 

(p=0.17). Group_3 uncertainty ranges are lowest minimum percentile to highest maximum percentile 

from across the datasets. This means that the 5—95 % and 17—83 % are not consistent according to any 

standard formal PDF distribution. 

 
  

Statistical 𝜎 CSIRO ensemble 𝜎 

  
Mean 17—83 % 5—95 % 17—83 % 5—95 % 


G

M
S

T
 [

°C
] 

CowtanWay 1.12 1.06—1.18 1.02—1.23 1.02—1.22 0.95—1.30 

GISTEMP 1.12 1.05—1.18 1.01—1.22 1.01—1.22 0.94—1.29 

Berkeley 1.19 1.12—1.25 1.08—1.29 1.08—1.29 1.01—1.36 

Group_3 1.14 1.05—1.25 1.01—1.29 1.01—1.29 0.94—1.36 


G

S
A

T
 [

°C
] 

CowtanWay 1.19 1.12—1.25 1.07—1.30 1.08—1.30 1.00—1.38 

GISTEMP 1.18 1.11—1.25 1.07—1.30 1.07—1.29 0.99—1.37 

Berkeley 1.25 1.19—1.32 1.14—1.37 1.14—1.36 1.06—1.44 

 
1.21 1.11—1.32   1.07—1.37 1.07—1.36 0.99—1.44 
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              Period/metric:  

                  

 Series: 

LOESSbsln w/HadSST3 (*) 

1850-1900 to 2019 

LOESSbsln w/HadSST4 (**) 

1850-1900 to 2019 

ΔGMST ΔGSAT ΔGMST ΔGSAT 

NASA GISTEMP 
1.12 

[1.02 - 1.22] 

1.18 

  

1.12 

[1.02 - 1.22] 

1.18 

  

Cowtan-Way 
  1.12 * 

[1.04 - 1.21] 

   1.19 * 

  

    1.19 ** 

[1.08 - 1.30] 

    1.26 ** 

  

Berkeley Earth 
  1.19 * 

[1.10 - 1.27] 
   1.26 * 

    1.26 ** 

[1.17 - 1.34] 
    1.33 ** 

Full Global   (3 series)  
  1.14 * 

[1.02 – 1.27] 
   1.21 * 

    1.19 ** 

[1.02 – 1.34] 
    1.26 ** 

HadCRUT5 N/A N/A 
    1.20 ** 

[1.09 - 1.32] 
    1.27 ** 

Full Global   (4 series)  N/A    N/A 
    1.19 ** 

[1.02 – 1.34] 
    1.26 ** 

Table S4: Impact of HadSST4 and HadCRUT5 on observational ΔGMST and ΔGSAT in °C. 

The Cowtan-Way/HadSST4 and HadCRUT5 datasets have been extended to the end of 2019, by 

assuming the same monthly temperature innovations as observed over 2019 as in the published 

Cowtan-Way (with HadSST3) dataset. Berkeley Earth/HadSST4 LOESSbsln  ΔGMSTLOESS is 

estimated by applying the difference between Cowtan-Way/HadSST4 and Cowtan-Way/HadSST3 

ΔGMSTLOESS to BerkeleyEarth/HadSST3 ΔGMSTLOESS. Numbers in square brackets correspond to 

5–95% statistical trend fit uncertainty ranges, accounting for autocorrelation in fit residuals.  
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  Figure S12: Cowtan-Way ΔGMST to 2019.  Top (a - b) Cowtan-Way monthly series (light gray) is 

shown with LOESSbsln (blue) and 2010-2019 average (black square) relative to 1850-1900, along with OLS 

linear trend over 1880-2019 (red).  The OLS linear trend central estimates and uncertainty have been 

shifted upward to provide direct comparison to the other two estimates.  (a) Trends are given with 

ARMA(1,1) corrected 5%-95% confidence interval  (dotted lines).  (b) LOESSmd (thin light blue lines) and  

OLS (thin pink lines) trends are derived from Cowtan and Way 100-member ensemble. Middle (c) 

Autocorrelation function (ACF) of LOESSmd statistical fit residuals (black), compared to that estimated 

with ARMA(1, 1) model (blue) and AR(1) model (red) for LOESS trend. (d) As in (c), except for OLS 

linear trend. Bottom (e) ACF for LOESSmd fit residuals for Cowtan-Way annual series, compared to AR(1) 

model (red) for LOESS trend.   (f)  As in e), except for OLS linear trend. 
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Figure S13: MPI and CSIRO Large Ensemble ΔGMST to 2019.  (a) MPI ensemble median 

monthly series (light gray) is shown with LOESSbsln (blue) and 2010-2019 average (black square) 

relative to 1850-1900, along with OLS linear trend over 1880-2019 (red).  The OLS linear trend 

central estimates and uncertainty have been shifted upward to provide direct comparison to the 

other two estimates.  LOESSbsln (thin light blue lines) and  OLS trends (thin pink lines) are derived 

from each ensemble member. (b) As in (a), except for CSIRO ensemble. (c) Autocorrelation 

function (ACF) of LOESS statistical fit residuals (black), compared to that estimated with 

ARMA(1, 1) model (blue) for LOESS trend. (d) As in (c), except for CSIRO ensemble..  
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Figure S14: Evaluation of distance-limited interpolation. (a) Shown over 1850-2019 are 

monthly anomalies (small diamonds) and multi-decadal LOESS trends (full as  solid lines, masked 

as dotted lines)  for Cowtan-Way (light blue), Cowtan-Way masked to Berkeley Earth coverage 

(blue), CMIP6 blended ensemble median (pink) and CMIP6 masked to Berkeley Earth coverage 

(red). (b) As (a), but over 1860-1869. 
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Figure S15: GMST estimation method validation based on average of 3 global series.  (a) 

LOESSbsln to 2019 (blue) is shown with LOESS (light blue), OLS from 1880 (orange),  20-year average 

(light gray) and 30-year average (black).  LOESS (light blue) versus OLS (orange) differences are shown 

with (b) forced warming estimates following Haustein et al. (2017) and (c) validation targets (30-year 

average, 30-year average extended with linear trend and 20-year average). (d) RMSE is calculated from 

errors shown in (c). 
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Figure S16: GMST method validation based on large MPI and CSIRO ensembles.  (a) 5-year lagged 

LOESSbsln (blue), centered 10-year average (red), and centered 30-year averages (dark gray) are shown from 

1850-1900 baseline to indicated end year for each MPI ensemble member (thin lines) and averaged over 

ensemble (thick lines). The 30-year average is extended from 2004 to 2014, by extending each ensemble 

member over 2020-2030 with the continuation of its 1990-2019 linear trend.  (b) As in (a), but for CSIRO 

ensemble. (c)  MPI ensemble RMSE is calculated against 30-year average validation target for LOESSbsln 

(blue) and 10-year average (red). (d) As in (c), but for CSIRO ensemble. 
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Figure S4: LOESS window selection and trend methodology. (a)  Cowtan-Way monthly global 

average temperature series over 1850-2019 (light gray line) is shown with LOESS smooth (blue 

lines), with windows ranging from ±30 years down to ±5 years. Also shown are total and 

anthropogenic forced temperature  (red and dark orange lines respectively), estimated from two-box 

model forced response regressed against Cowtan-Way series following Otto et al. (2015) and 

Haustein et al. (2017). (b) Same as (a), except over 1990-2019. (c) Overlapping LOESS trends (blue 

lines) and OLS trends (orange lines) to 2019 are shown, with trend start points of 1850 to 1995. (d) 

Overlapping fixed length LOESS trends ending in years 1990-2019 are shown.  
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Figure S5: LOESS window smoothing characteristics. (a)  Monthly first differences over 1850-

2019 (light gray line) are shown for LOESS smooths applied to Cowtan-Way temperature series, 

with windows ranging from ±5 years (light blue) to ±30 years (dark blue). (b) Same as (a), except 

over 1990-2019.  
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Figure S6. Large ensemble statistics for non-volcanic year LOESS with different window lengths 

relative to forced temperature change TF  (as assessed by ensemble mean at each time step) or their 

respective residuals (a) RMSE for TF versus LOESS, (b) Pearson’s r for LOESS versus TF, (c) 

Pearson’s r for LOESS residuals versus TF residuals. 

  



 

 

5 

 

 

Figure S7. Ensemble performance statistics for the derived temperature change from 1850—1900 

to 2010—2019. The RMSE and bias are calculated relative to the same value calculated from the 

ensemble mean TF estimates. Solid lines with points are from LOESS fits with different window 

sizes (where a size of 10 is ±5 years) and dashed lines are those derived from taking the individual 

run period mean differences.  
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          (a)                                                                     (b)    

Figure S8: Yule-Walker (Y-W) vs Maximum Likelihood Estimation (MLE). (a) PDF of  

�̂� in simulated  ARMA(1, 1) 8-year  (96-month) series with seed 𝜙 = 0.9. (b) �̂� estimates 

derived from residuals of 8-year linear trends in Cowtan & Way over 1998-2012. (c) 

Percentage of simulated series with Y-W �̂�  > 1 by seed and length. (d) Efficiency of MLE 

relative to Y-W by seed and length . 

(c)                                                                      (d)   



 

 

7 

 

 

 

 

 

 

 

 

  

Figure S9: ARMA (1, 1) bias correction. Simulated 15-year (solid lines and circles) and 

30-year (dashed lines and open circles) trends were generated assuming positively-correlated 

ARMA(1, 1) noise for three different levels of φ (phi) and three different bias correction 

schemes: No bias correction (red), bias correction derived from Tjøstheim and Paulsen 

(1996) as used in this study (TP, green), and an alternative bias correction derived from 

Nychka et al (2001) (NCAR, blue). See section 2.2.2 for details of the bias correction 

methodology. 
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Figure S10: Uncertainty of LOESSmd trends.  GMST trends over 1880-2019, expressed 

as change in °C per decade, were simulated by generating a Monte Carlo ensemble of 200K 

simulations from the Cowtan-Way observational series. Each realization is composed of a 

central estimate of the trend from Cowtan-Way with added ARMA(1, 1) noise according to 

the noise model assessed from the fit residuals, as detailed in section 2.2.2. The PDF of the 

simulated ensemble trend (solid line) is compared to the calculated trend uncertainty (dotted 

line). 
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Figure S11: Uncertainty of LOESSbssln GMST.  LOESSbssln GMST from various 

baselines to 2019, expressed as change in °C, were simulated by generating a Monte Carlo 

ensemble of 350K simulations from the Cowtan-Way observational series. Each realization 

is composed of a central estimate of the temperature rise from Cowtan-Way with added 

ARMA(1, 1) noise according to the noise model assessed from the fit residuals, as detailed in 

section 2.2.2. The PDF of the simulated ensemble trend (solid line) is compared to the 

calculated uncertainty (dotted line). 
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Figure S1: GMST spatial coverage 1850 – 2019. Monthly spatial coverage is shown for 

the five data series assessed in this study: HadCRUT4 (red), NOAA GlobalTemp (light 

blue), NASA GISTEMP (dark blue), Cowtan-Way (purple) and Berkeley Earth (orange). 
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Figure S2: Berkeley Earth GMST 5-yr average and baseline annual cycle. (a)  Shown are 

the published 5-year centred running average (red) and that calculated from area-weighted 

gridded average (blue). The difference series (gray) is 0 under full coverage after ~1955, but 

shows noticeable differences before then, especially over 1850-1900 (mean difference of ~0.04 

°C). (b) Shown are the annual cycle in published baseline monthly averages (red squares) and 

that calculated from gridded data (blue diamonds). 

 

(a) 

(b) 
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Figure S3: Berkeley Earth land-ocean 1884-04. (a) 1x1 gridded land-ocean anomaly data with area-

weighted average. (b) Same as (a), except infilled so that resulting average matches Berkeley Earth 

published average. (c) Same as (a), except infilled so that resulting average matches Berkeley Earth 

rebaselined published average (i.e. April 1951-1980 average = 0).     (d) The difference between (a) 

and (c), demonstrating that missing areas must average ~-2.7°C in order for the overall weighted 

average to match the rebaselined published average. 

 

 

 

 

 

 

 

 

 

 

 

 


