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Abstract

Change in global mean surface temperature (ΔGMST) is a widely cited climate change indicator that figures prominently in

IPCC reports, in which it was estimated via linear regression or differences between decade-plus period means. The Paris

Agreement aims to limit warming since preindustrial (here approximated as 1850—1900) to “well below” 2 °C, and by knowing

current ΔGMST it is possible to determine the remaining target-consistent warming and therefore a relevant remaining carbon

budget. We propose non-linear continuous local regression (LOESS) using 40-year windows as a single method to derive

ΔGMST with statistical uncertainty across all periods of interest. Using the three datasets with almost complete spatial

coverage since the 1950s, we evaluate 1850—1900 to 2019 ΔGMST as 1.14 °C with likely (17—83 %) range of 1.05—1.25

°C, based on combined statistical and observational uncertainty, compared with 1880—2019 linear regression of 1.03 °C using

all five operational datasets. In two model large ensembles LOESS, like period mean differences, is unbiased but provides a

statistical error and gives warming through 2019, rather than a 2010—2019 average centred at the end of 2014. We compare

observational and CMIP6 ΔGMST and estimate historical global surface air temperature change (ΔGSAT) using the CMIP6

ΔGSAT/ΔGMST ratio and its ensemble spread. Finally, we calculate remaining carbon budgets given our ΔGSAT of 1.21

°C with likely range of 1.11—1.32 °C. We argue that continuous non-linear trend estimation offers substantial advantages for

assessment of long-term observational ΔGMST.
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Key Points: 10 

 Continuous local regression is an alternative to traditional IPCC temperature 11 

change estimation methods. 12 

 Global warming from near-global land-ocean observational series reached 1.14°C 13 

(likely range 1.05—1.25°C) in 2019 relative to 1850-1900. 14 

 Global surface air temperature reached 1.21°C (likely range 1.11—1.32°C), for a 15 

remaining 1.5°C carbon budget of ~220 GtCO2 from 2020 on.  16 
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Abstract 17 
 18 

Change in global mean surface temperature (GMST) is a widely cited climate change indicator 19 

that figures prominently in IPCC reports, in which it was estimated via linear regression or 20 

differences between decade-plus period means. The Paris Agreement aims to limit warming 21 

since preindustrial (here approximated as 1850—1900) to “well below” 2 °C, and by knowing 22 

current GMST it is possible to determine the remaining target-consistent warming and therefore 23 

a relevant remaining carbon budget. We propose non-linear continuous local regression (LOESS) 24 

using 40-year windows as a single method to derive GMST with statistical uncertainty across 25 

all periods of interest. Using the three datasets with almost complete spatial coverage since the 26 

1950s, we evaluate 1850—1900 to 2019 GMST as 1.14 °C with likely (17—83 %)  range of 27 

1.05—1.25 °C, based on combined statistical and observational uncertainty, compared with 28 

1880—2019 linear regression of 1.03 °C  using all five operational datasets. In two model large 29 

ensembles LOESS, like period mean differences, is unbiased but provides a statistical error and 30 

gives warming through 2019, rather than a 2010—2019 average centred at the end of 2014. We 31 

compare observational and CMIP6 GMST and estimate historical global surface air 32 

temperature change (GSAT) using the CMIP6 GSAT/GMST ratio and its ensemble spread. 33 

Finally, we calculate remaining carbon budgets given our GSAT of 1.21 °C with likely range of 34 

1.11—1.32 °C. We argue that continuous non-linear trend estimation offers substantial 35 

advantages for assessment of long-term observational GMST. 36 

1 Introduction 37 

Estimates of global mean surface temperature anomalies (GMST) and derived trends or changes, 38 

GMST, have featured prominently in IPCC reports, and are a key component in assessments of 39 

climate change attribution (Bindoff et al., 2013), climate model validation (Flato et al., 2013), 40 

global carbon budgets (Rogelj et al., 2018) and climate impacts (Hoegh-Guldberg et al., 2018). 41 

Perhaps most importantly, the IPCC’s long-term GMST estimate of 0.85°C, based on the 1880-42 

2012 linear trend, was a key scientific input to the Paris agreement to keep global surface 43 

temperature change well below 2°C (IPCC, 2014; UNFCCC, 2015). 44 

 45 

The IPCC Fifth Assessment Report (IPCC AR5; Hartmann et al., 2013a) used three GMST 46 

datasets: HadCRUT4 (Morice et al., 2012), NASA GISTEMP (Hansen et al., 2010) and NOAA 47 

MLOST (Vose et al., 2010). While HadCRUT4 begins in 1850, the NOAA and NASA datasets 48 

began in 1880 and the 1880—2012 ordinary least squares (OLS) linear trend was a “headline” 49 

warming estimate along with the HadCRUT4 1850—1900 to 2003—2012 difference. OLS 50 

trends for all datasets were also given for 1951-2012 and 1979-2012 with uncertainties adjusted 51 

to account for autocorrelated residuals (Santer et al., 2008; Hartmann et al., 2013b).  52 

 53 

The IPCC Special Report on Global Warming of 1.5°C (IPCC SR1.5; Allen et al., 2018) 54 

included two new GMST datasets that incorporated sophisticated spatial interpolation: Cowtan-55 

Way (Cowtan and Way, 2014a; Cowtan and Way, 2014b; Cowtan et al., 2015) and Berkeley 56 

Earth (Rohde et al., 2011).  Reported GMST was 0.87 ±0.12°C based on the average of 57 

HadCRUT4, NOAA, NASA and Cowtan-Way. An observation based estimate of Global Surface 58 

Air Temperature change (GSAT) was introduced by adjusting HadCRUT4 GMST to account 59 

for incomplete coverage and discrepancy in measured air and ocean water temperature anomalies 60 
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(Rogelj et al., 2018; Cowtan et al., 2015). The GSAT estimate of 0.97°C in 2006-2015 implied 61 

lower remaining carbon budgets compared to preceding studies based on GMST consistent 62 

with AR5’s 0.85°C through 2012 (Millar et al., 2017a, 2017b; Goodwin et al., 2018; Richardson 63 

et al., 2018).  64 

 65 

IPCC AR5 Box 2.2 discusses issues with linear trends for estimating GMST: 1) poor 66 

approximation of trend evolution over time; 2) poor fit of residuals unamenable to correction via 67 

autoregressive or moving average models; 3) high sensitivity to selected period; and 4) divergent 68 

or even contradictory sub-period estimates relative to that of a larger encompassing interval. The 69 

latter two issues were particularly relevant in AR5 Section 2.4.3’s discussion of the “observed 70 

reduction in warming trend” over 1998-2012 compared to 1951-2012 (Rahmstorf et al., 2017; 71 

Risbey et al., 2018).  A smoothing spline non-linear trend fit was demonstrated to address these 72 

factors, and later studies presented alternative estimators for continuous long-term GMST 73 

trends (Cahill et al., 2015; Peng-Fei et al., 2014; Mudelsee, 2019; Visser et al., 2018).  74 

 75 

An issue of particular concern is that linear trends underestimate long-term GMST compared to 76 

other estimates. For example, IPCC AR5 Box 2.2 estimated HadCRUT4 1900-2012 trends of 77 

0.075 ± 0.013 °C decade
-1

 and 0.081 ± 0.010 °C decade
-1 

for linear OLS and smoothing spline 78 

trends respectively. Generally, long-term linear fit GMST is 0.05 – 0.10°C below nonlinear 79 

estimates (SR15 table 1.2; Visser et al., 2018) although the spread in GMST estimates between 80 

different datasets is commonly as wide as differences engendered by GMST methodology. 81 

Ultimately, IPCC AR5 Box 2.2 recommended linear trends over non-linear estimates, noting that 82 

HadCRUT4’ OLS-based long-term GMST lay within the 5-95% uncertainty range of 83 

smoothing spline. Nevertheless, as the IPCC enters the AR6 assessment, a new method that 84 

supplements or supplants the traditional approaches could reduce known biases and address these 85 

shortcomings.  86 

 87 

This work proposes a local regression technique (LOESS, Cleveland et al., 1992; Cleveland, 88 

1979) with a ±20 year smoothing window for multi-decadal analysis. We also provide a 89 

statistical error and show that the fit residuals follow the assumed autocorrelation structure. The 90 

framework can be extended to give self-consistent GMST estimates with uncertainty over as 91 

little as 15 years, providing a potential alternative to linear fits over all intervals of interest.  92 

 93 

However, here we focus on long-term GMST and associated carbon budgets, and directly relate 94 

our estimates to approaches discussed in AR5 and SR1.5. We compare against the IPCC 95 

approaches of OLS (1880—latest year) and period mean differences (between 1850—1900 and 96 

latest decade), plus a global warming index which SR1.5 used as the main example of “more 97 

formal methods of quantifying externally driven warming” (Haustein et al., 2017). We also test 98 

the performance of our LOESS estimates using output from the two model large ensembles that 99 

begin in 1850. A final comparison is with the new CMIP6 model ensemble, and using a subset of 100 

this ensemble we derive a modest conversion factor to update our observation-based GMST to 101 

GSAT for carbon budget calculations. 102 

 103 

The paper is structured as follows. Section 2.1 describes source data from observations (2.1.1), 104 

CMIP6 models (2.1.2), two large model ensembles (2.1.3). Section 2.2 describes trend 105 

estimation (2.2.1), evaluation of GMST methods and performance (2.2.2), large model 106 
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ensemble evaluation (2.2.3) and GSAT and carbon budget calculation (2.2.4). We present our 107 

results in Section 3, covering long-term GMST analysis (3.1), large model ensemble analysis 108 

(3.2) and GSAT and associated remaining carbon budgets (3.3). Finally we discuss our results 109 

and issue recommendations in Section 4. 110 

 111 

2 Source Data and Methods 112 

 2.1 Source Data  113 

IPCC discussions of temperature change and carbon budgets include multiple sources and 114 

approaches. We now remind the reader of our approach and justify each component. This 115 

Section lists data sources, including temperature datasets and the forcing datasets required to 116 

derive a global warming index referenced in SR1.5 as a potential alternative to GMST for 117 

tracking anthropogenic warming. Two large ensembles are included to allow performance tests 118 

of each GMST calculation method and CMIP6 data are added for updated model-observation 119 

GMST comparisons and to derive an adjustment from GMST to GSAT. 120 

2.1.1 Global surface temperature datasetsTypically, gridded monthly land surface air temperature 121 

(LSAT) and sea surface temperature (SST) anomalies are generated then blended to produce 122 

GMST. Table 1 summarizes five blended LSAT-SST series in widespread use. There is 123 

considerable overlap in the underlying datasets. There are two SST data sets: HadSST3 124 

(Kennedy et al., 2011) and NOAA’s ERSSTv5 (Huang et al., 2017), and three LSAT datasets: 125 

GHCNv4 (Menne et al., 2019), CRUTEM4 (Jones et al., 2010), and BerkeleyEarth (Rohde et al., 126 

2011). Even this understates the overlap; for example, both SST datasets rely primarily on the 127 

comprehensive store of maritime observations from the International Comprehensive Ocean‐128 

Atmosphere Data Set (ICOADS, Freeman et al., 2016), albeit processed, filtered and 129 

supplemented in different ways.    130 
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 131 

Table 1. Five operational observational datasets. 132 

Series 
Land 

(LSAT) 
Ocean  (SST) Interpolation Averaging 

Start 

year 

HadCRUT4 

(Morice et al., 2012) 
CRUTEM4 HadSST3 None 

Hemisphere 

average of 

gridboxes 

1850 

NOAA GlobalTemp 

v5 

(Zhang et al., 2019) 

GHCNv4 ERSSTv5 EOTs 

Area 

weighted  

average 

1880 

NASA GISTEMP v4 
(Lenssen et al., 2019) 

GHCNv4 ERSSTv5 

Distance 

weighting  

(to 1200  km) 

80 zones x 

100 sub-

boxes 

1880 

Cowtan-Way v2 

(Cowtan & Way, 

2014a; Cowtan & 

Way, 2014b; Cowtan 

et al., 2015) 

CRUTEM4 

(kriged) 

HadSST3 

(kriged) 

Kriging 

(Complete) 

Area 

weighted 

average 

1850 

Berkeley Earth  

(Rohde et al., 2013) 

Berkeley 

Earth 

HadSST3 

(reprocessed 

& kriged) 

Kriging   

(to 1200 km) 

Area 

weighted 

average  

1850 

Differences in spatial interpolation can affect calculated GMST. HadCRUT4 calculates area-133 

weighted hemispheric means with no interpolation between its 5°5° grid boxes. In contrast, 134 

NASA GISTEMP, Cowtan-Way and Berkeley Earth use extensive interpolation and, crucially, 135 

extrapolate LSAT over sea ice. Comparisons with temperature reanalyses, independent surface 136 

data and satellite retrievals show that this significantly reduces coverage bias arising from poor 137 

sampling of the fastest warming areas, especially the Arctic, since the mid-twentieth century 138 

(Dodd et al., 2015; Cowtan et al., 2018a; Susskind et al., 2019). Evidence is mixed for earlier 139 

periods where reduced coverage leads to larger interpolation uncertainty (Cowtan et al., 2018) 140 

and differences between underlying SST datasets are the largest source of discrepancies. 141 

GISTEMP and Berkeley Earth’s interpolated areal coverage is two to three times that of 142 

HadCRUT4 in the late 19
th

 century, and is virtually complete since 1951 (See Figure S1, 143 

Supplementary Information). NOAA GlobalTemp’s interpolation results in coverage between 144 

that of HadCRUT4 and NASA GISTEMP, but largely misses very high latitudes and has no 145 

coverage over Arctic sea ice. 146 

We use the published monthly anomaly series, except for Berkeley Earth where we use the area-147 

weighted average of the gridded series, which diverges from the published series over 1850—148 

1950 (Supplementary Information, Figure S2, S3). For series starting in 1850 anomalies are 149 

relative to 1850-1900 while NASA GISTEMP and NOAA GlobalTemp are baselined such that 150 

their 1880-1900 mean matches that of the three longer-running datasets. This allows NASA and 151 

NOAA GMST estimates from 1850-1900 in a consistent manner, replacing the IPCC SR1.5 152 
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approaches based on scaling their 1880—2015 trends or matching to HadCRUT4 over 1880-153 

1990. We also report the mean GMST for all five datasets (OpAll group) and the subset of 154 

three datasets with near-global post-1950 coverage (Global_3 group). Group GMST estimates 155 

are the mean of the individual estimates as in IPCC AR5. 156 

We augment temperature data with summarized anthropogenic and natural radiative forcing data 157 

from Haustein et al (2017). These are used to estimate anthropogenic and natural forced changes, 158 

GMSTF,anthro and GMSTF,nat , using a two-box impulse-response model with parameters 159 

derived from a least-squares-fit between observed temperatures and the modelled response (Otto 160 

et al., 2015; Haustein et al., 2017).  These estimates are used to assess the characteristics of a 161 

particular LOESS window choice (section 2.2.1) and as an additional comparator to long-term 162 

GMST.  163 

 2.1.2 Model Large Ensembles  164 

Conceptually, we first decompose GMST as: 165 

Δ𝐺𝑀𝑆𝑇 = Δ𝐺𝑀𝑆𝑇𝐹 + Δ𝐺𝑀𝑆𝑇𝑣𝑎𝑟         (1) 166 

where GMSTvar represents internal variability and GMSTF the forced response. We adopt the 167 

IPCC SR1.5 argument that “[s]ince 2000, the estimated level of human-induced warming has 168 

been equal to the level of observed warming with a likely range of ±20%”. From this it follows 169 

that a reliable estimate of GMSTF through 2019 would be an appropriate estimate of human-170 

induced warming, GMSTF,anthro, with relevance for temperature targets and carbon budgets. 171 

With just one realization of real-world internal variability we cannot perform this decomposition, 172 

but a large ensemble mean should approach that model’s GMSTF.  We test whether our derived 173 

GMSTLOESS approximates GMSTF, and consider the decomposition in an individual run to be:    174 

   Δ𝐺𝑀𝑆𝑇 = Δ𝐺𝑀𝑆𝑇𝐿𝑂𝐸𝑆𝑆 + Δ𝐺𝑀𝑆𝑇𝑟𝑒𝑠𝑖𝑑     (2) 175 

With a ±20-year window this effectively decomposes between short- and long-term GMST. If 176 

periods are selected to minimize volcanism (which induces short-term GMSTF), and the 177 

magnitude of GMSTvar is small at 40-year timescales, then resultant Δ𝐺𝑀𝑆𝑇𝐿𝑂𝐸𝑆𝑆 ≈178 

Δ𝐺𝑀𝑆𝑇𝐹,𝑎𝑛𝑡ℎ𝑟𝑜. 179 

These tests use output from the large ensembles whose simulations begin in 1850:  the Max 180 

Planck Institute for Meteorology Grand Ensemble (MPI-GE, N=100, Maher et al., 2019) and 181 

Commonwealth Scientific and Industrial Research Organisation  Mk3.6.0 (CSIRO Mk3.6.0, 182 

N=30, Rotstayn et al.,  2012; Jeffrey et al. 2013), taking their GSAT over historical-RCP8.5 183 

simulations for 1850—2019 and baselining each to 1850—1900. We exclude five other large 184 

ensembles that start after 1850 (Deser et al, 2020), and our approach is conceptually similar to 185 

that in Dessler et al. (2018)’s estimation of how internal variability affects derived climate 186 

sensitivity in MPI-GE. The use of GSAT simplifies the calculations and since the year-to-year 187 

variability in GSAT-GMST difference is of order 0.01 °C in CMIP5 models (e.g. Figure 2 of 188 

Cowtan et al. 2015), we expect little effect of blending or masking on this particular analysis. 189 
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 2.1.3 Climate Model Intercomparison Project, phase 6 (CMIP6) output 190 

We include historical simulations over 1850-2014 from CMIP6 models which have the required 191 

fields for blending surface air temperatures (SAT) over land or sea ice and SST over ocean 192 

(Eyring et al, 2016), permitting “apples-to-apples” comparisons with land-ocean observational 193 

datasets. These include near-surface air temperature (“tas”), sea surface temperature (“tos”) and 194 

sea ice concentration (“sciconc” or “sciconca”, N=24 simulations listed in Table S1). 195 

Following Cowtan et al (2015) and Richardson et al (2018), each simulation is processed to 196 

produce two series: 1) global SAT and 2) global blended SAT-SST.  At each grid cell i, j, the 197 

blended monthly temperature Tblend,i,j is:   198 

Tblend,i,j = wSAT,i,j TSAT,i,j + (1 − wSAT,i,j) TSST,i,j    (3)   199 

where wSAT,i,j  is the land plus sea ice grid cell fraction, and TSAT,i,j  and TSST,i,j are the local 200 

anomalies relative to 1850-1900. For global SAT wSAT,i,j = 1 everywhere, and for the blended 201 

series wSAT,i,j = 1 in ocean cells for a calendar month if any those months during 1961-2014 has 202 

siconc > 1%.  This is similar to the Cowtan-Way blending algorithm and the “xaf” simulations in 203 

Cowtan et al. (2015). 204 

 2.2 Methods 205 

Next we describe our approach to obtain GMST, our uncertainty estimation, and the remaining 206 

carbon budget calculation. Section 2.2.1 explains the trend fits and errors, Section 2.2.2 explains 207 

the GMST calculations, observational error and methods by which the fit quality are judged 208 

using observational data. Section 2.2.3 discusses the large ensemble methodology, Section 2.2.4 209 

the CMIP6 comparison and carbon budget calculation. 210 

2.2.1 Trend calculations and their statistical uncertainty  211 

For a series of n temperature observations xi at time ti, a linear trend is: 212 

xi =  a + bti + ei,   i = 1, …, n       (4) 213 

where a and b are intercept and slope parameters to be fitted and ei are residual errors. The slope 214 

estimate b̂ is used to obtain GMST as b̂ (tn – ti), with the uncertainty of b̂  (and thus GMST) 215 

determined as explained below. 216 

Our multidecadal LOESS point-to-point (LOESSmd) GMST is based on the LOESS fit from 217 

1880—2019; for any starting point, GMST to 2019 is the LOESSmd fit evaluated in 2019 minus 218 

the start value. We also introduce “baseline” LOESS (LOESSbsln) as our main GMST estimate. 219 

LOESSbsln is simply the same fit evaluated at the end year, yielding an estimate relative to 220 

1850—1900 baseline, rather than to a given start year such as 1880. 221 

Our LOESSmd uses a fixed span αmd  of ± 20 years, tricube weighting (the default) and a degree 1 222 

smoothing parameter (i.e. locally weighted linear trend, which yields more stable end points). 223 

Tests with the Cowtan-Way series show that α of ±10 years captures internal decadal variability 224 

and has marked sensitivity to volcanic episodes early in the record and to a lesser extent over 225 
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1980-2019 (Figure S4). On the other hand, α of ±20 or ±30 years smooth out short-term 226 

variability and show similar warming from 1850-1900 to present: 1.12°C (±20 years) or 1.11°C 227 

(±30 years). Analysis of first differences for each LOESS window (Figures S6, S7) show large 228 

variance with α of ±5 years, which stabilises with α of ±20, ±25 or ±30 years. Large ensemble 229 

tests support this choice: αmd substantially smaller than ±20 years increases GMSTF 230 

discrepancy, while substantially longer than ±20 years introduces a low bias in 1850—2019 231 

GMST (Figures S6, S7). We therefore choose αmd  = ±20 years to evaluate trends of  length 30 232 

years; LOESSpent (α  = ±5 years) is reserved for future extension of our framework to cover very 233 

short-term trends of 15 years (see Figure S4, panel d).    234 

Default methods assume statistically independent noise, necessitating an uncertainty correction if 235 

the fit residuals are autocorrelated. Santer et al (2000) presented a procedure for assessing an 236 

effective sample size (and associated reduction in degrees of freedom) from the general formula 237 

1

1
2 )(1

e n

jj

tn
n







 

     (5)                                                             238 

   239 

where 𝝆𝒋 is the autocorrelation function of a noise model estimated from the fit residuals. If the 240 

noise follows an autoregressive(1) (AR(1)) process,  then with 𝜌𝑗 =  𝜙𝑗    241 

 

 

 

1

1

12
1 2 1

1 1

n

jj




 






   

 
      (6) 242 

where 𝜙 is estimated from the lag-one autocorrelation coefficient (Mitchell et al, 1966). 243 

However, Foster and Rahmstorf (2011) demonstrated that 1979-2010 GMST trend residuals 244 

were more consistent with an autoregressive moving average, ARMA(1, 1) model in the form  245 

𝜌1 =
(𝜙 +  𝜃)(1 + 𝜙𝜃)

1 + 2𝜙𝜃 +  𝜃2
     

                                                                                     (7) 246 

 𝜌𝑗 =  𝜌1𝜙𝑗−1            𝑗 ≥ 2 

Substituting (6) into (5) yields 247 

 

1
1

1

2
1 2 1

1

n

jj









  


       (8) 248 

Foster and Rahmstorf used the Yule-Walker “method of moments” with   𝜙̂ = 𝜌̂1 / 𝜌̂2. Hausfather 249 

et al. (2017) instead used Maximum Likelihood Estimation (MLE) to obtain 𝜙̂ and 𝜃 and then 𝜌̂1 250 

via Eq. (6). Monte Carlo simulations show that MLE gives a more robust and efficient estimator 251 

𝜙̂, suitable for series as short as 8 years (see Figure S8). Hausfather et al. also introduced a bias 252 

correction to account for underestimated autocorrelation in shorter series, derived from AR(1) in 253 

Tjøstheim and Paulsen (1996) and extended to account for the positive difference between 𝜙̂ and 254 

𝜌̂1.    255 
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Although this bias correction is most pertinent for very short series, Monte Carlo simulations 257 

have demonstrated its relevance for highly autocorrelated series up to 720 months in length. We 258 

selected this bias correction after comparison with alternatives (e.g. Nychka et al., 2000; see 259 

Figure S9). 260 

Substituting the bias corrected parameters and simplifying the correction term as in (5) yields the 261 

final effective length correction. 262 

1
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     (10) 263 

We estimate corrections from the residuals of both LOESS and OLS. To apply this correction, 264 

we define nominal degrees of freedom v = nt – p and effective degrees of freedom ve = ne – p, 265 

where p is the number of actual or equivalent parameters of the trend fitting methodology.  266 

In the linear case, the correction is applied directly to sb, the standard error of b in (1), with p = 2. 267 

  
' 2

2

t
b b b

e e

v n
s s s

v n


 


       (11) 268 

For non-parametric trend estimation like LOESS, Monte Carlo simulations can establish 269 

uncertainties, as in Visser et al (2016) for smoothing spline trends. Here we propose a plausible 270 

heuristic method. First the above correction is applied to se, the standard errors of the residual fit, 271 

with p set to the equivalent number of parameters of the LOESS trend, derived from the trace of 272 

the LOESS projection matrix (Cleveland and Grosse, 1991); generally p ≈ 2/α + 0.5 for GMST 273 

datasets. For an equally spaced time series, se  is maximum at the start and end of the LOESS fit. 274 

If errors at these two points are independent, the corrected standard error 
'

Tn

s


for GMSTn 275 

becomes  276 
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    (12) 277 

For both OLS and LOESSmd we evaluate the sample autocorrelation function (ACF) of the fit 278 

residuals as well as the ACFs of the ARMA(1, 1) and AR(1) noise models fit to those residuals. 279 

Finally, for LOESSbsln we assume that the mean error during 1850—1900 is very small relative 280 

to the end point error and so its error is taken to be:  281 
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     (13) 282 
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Monte Carlo simulations of LOESS fits plus ARMA(1, 1) noise produce a probability 283 

distribution function nearly identical to that engendered in Cowtan-Way by (11) over 1880-2019 284 

and by (12) from 1850—1900 to 2019 (Figures S10 and S11). 285 

 2.2.2 Estimates of observational GMST, error components and performance tests 286 

The main analysis focuses on long-term GMST (results for other IPCC AR5 periods are in the 287 

Supplementary Information Table S2). In addition to OLS and LOESSmd GMST over 1880-288 

2019, and LOESSbsln from 1850-1900 to 2019,  we also calculate period difference GMST 289 

estimates by subtracting mean GMST over 1850—1900 from the most recent decade, 2010-290 

2019. The above are also compared to GMST-derived estimates of anthropogenic warming 291 

(Haustein et al., 2017; section 2.1.2) and to a CMIP6 ensemble (Section 2.2.4).  Global_3 and 292 

OpAll group GMST are the mean of individual dataset GMST. 293 

Following standard IPCC practice, we report the 5-95% statistical uncertainty range for LOESS 294 

and OLS GMST estimates, as outlined in Section 2.2.1. Group uncertainties are reported 295 

conservatively and go from the smallest 5% to the largest 95% reported for any of their 296 

constituent datasets. We also report observational parametric uncertainty as the 5—95 % range 297 

of GMST values derived from each of the 100-member HadCRUT4 and Cowtan-Way 298 

ensembles. These ensembles use a Monte-Carlo method to assess the fully correlated errors 299 

engendered by parametric uncertainty related to bias adjustments to individual temperature 300 

readings (Kennedy et al., 2011). 301 

Figure S13 depicts these estimates and derived autocorrelation functions (ACF) for the Cowtan-302 

Way monthly series with ARMA(1, 1) correction and for Cowtan-Way annual series with AR(1) 303 

correction (similar to IPCC AR5). 304 

Finally we assess LOESSbsln GMST against period mean differences for the Global_3 group by 305 

evaluating at the mid-point of the corresponding end decade; for example, LOESSbsln at the end 306 

of 2014 is comparable to the 1850-1900 to 2010-2019 period GMST. IPCC SR1.5 explicitly 307 

considered their 1850—1900 to 2006-2015 GMST estimate to be a proxy of the eventual 1996-308 

2025 mean. We therefore compare the GMST estimates for every year from 1995 against 309 

centered 20-year and 30-year means. We also compare to “extended” running 30-year periods, 310 

generated by assuming a continuation of the 1990-2019 linear trend through 2029. We argue that 311 

a smaller bias and root mean square error (RMSE) relative to the 20- and 30-year means 312 

represents better performance according to the IPCC’s own criterion.  313 

 2.2.3 Large Ensemble Analysis for Method Validation and Uncertainty Calculation 314 

LOESSbsln is fit to the 1850—2019 annual output for each simulation, then the GMST through 315 

2019 is evaluated from all start years 1850—1980. Separate linear OLS fits ending in 2019 are 316 

also obtained for those start years. We also evaluate LOESSbsln at the end of 2014 and compare 317 

with the 1850—1900 to 2010—2019 period GMST. Finally, LOESSmd is calculated over 318 

1880—2019 for each simulation. The distribution of ensemble member GMST-GMSTF 319 

provides an estimate of the bias and uncertainties for each estimator and each period, as argued 320 

in Section 3.2. If GMSTLOESSGMSTF then the LOESS residuals will be dominated by 321 
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internal variability and our statistical uncertainty is related to error due to internal variability (we 322 

confirmed that the model residuals generally follow our assumed ARMA(1,1), Figure S14). The 323 

LOESS decomposition filters in time: GMSTF excursions shorter than our window will inflate 324 

statistical error, while multidecadal GMSTvar changes will be included in GMSTLOESS and 325 

result in too small errors. We compare each run’s statistical uncertainties with the ensemble 17—326 

83 % and 5—95 % ranges to check for evidence that the observation-derived statistical 327 

uncertainties could represent internal variability in the GMST used for carbon budget 328 

calculations (see Section 2.2.4). 329 

2.2.4 CMIP6 comparisons, GSAT adjustment and remaining carbon budget 330 

IPCC SR15 reported remaining carbon budgets accounting for warming to date, but did not 331 

directly use the reported GMST 5—95 % observational uncertainty from individual datasets. 332 

Instead AR5 5—95 % observational uncertainty through 1986-2005 was combined with 333 

additional uncertainties to produce a “likely” 17—83 % GMST total uncertainty and GMST 334 

was then converted to GSAT using a CMIP5-derived scaling. This Section describes the 335 

comparison with CMIP6 GMST and conversion of observed GMST to GSAT, and then 336 

details the carbon budget calculation, which largely follows the IPCC SR1.5 recipe . 337 

LOESS series are generated for each CMIP6 air-only (GSAT) and blended (GMST) series, with 338 

the blended series being comparable to GMST observations. We consider the full ensemble and 339 

also a sub ensemble of “likely ECS” models, excluding those with effective climate sensitivity 340 

(ECS) outside the CMIP5 1.9-4.5°C 90% ensemble range (Flato et al., 2013; Forster et al., 341 

2019).  342 

For each ensemble member’s LOESSbsln changes we derive a “blending” factor Ablend = ΔGSAT/ 343 

ΔGMST, and the ensemble Ablend is used to scale observed GMST to obtain historical GSAT 344 

for calculating the remaining carbon budget. The carbon budget calculation follows the 345 

framework established in IPCC SR1.5 (Rogelj et al., 2017), elaborated by Rogelj et al (2019) and 346 

implemented by Nauel et al (2019). We simplify the Rogelj et al (2019) remaining carbon budget 347 

equation to: 348 

 
2 , – /  lim lim hist nonCO fut EsfbB GSAT GSAT GSAT TCRE E       (13) 349 

where Blim is the remaining carbon budget associated with a temperature limit ΔGSATlim (1.5 or 350 

2°C), with ΔGSAThist the historical human-induced warming to date and 
2 ,nonCO futGSAT the 351 

expected future warming from non-CO2 anthropogenic forcing. TCRE is the transient climate 352 

response to cumulative CO2 emissions, while EEsfb is an adjustment for Earth system feedbacks 353 

from permafrost thaw and warming wetlands. From the finding that observed and “human-354 

induced” warming to date are approximately equivalent (Allen et al., 2018; Haustein et al., 355 

2017), SR15 assessed ΔGSAThist as 0.97°C in 2006-2015 relative to 1850-1900, based on the 356 

HadCRUT4 average for that decade (0.84°C) adjusted by the ratio between the equivalent 357 

CMIP5 blended-masked estimate (0.86°C) and CMIP 5 GSAT (0.99°C).  358 
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Here we select the Global_3 GMST group and so do not need to rely on a model correction for 359 

the bias introduced by HadCRUT4’s incomplete and changing geographic coverage, which is 360 

substantially larger than Ablend. Our estimate for GSAThist is: 361 

Δ𝐺𝑆𝐴𝑇ℎ𝑖𝑠𝑡 = 𝐴𝑏𝑙𝑒𝑛𝑑Δ𝐺𝑀𝑆𝑇𝐺𝑙𝑜𝑏𝑎𝑙_3     (14) 362 

where Ablend is the median value from CMIP6 ensemble members and GMSTGlobal_3 is the 363 

LOESSbsln GMST of the Global_3 group (based on the mean of LOESSbsln applied to each of 364 

the three series). It should be noted this is a very conservative adjustment, as it may not fully 365 

account for coverage bias in the early part of the instrumental record, and ignores the “ice edge 366 

effect” cooling bias introduced by the variable sea ice mask in NASA GISTEMP and Berkeley 367 

Earth (Cowtan et al., 2015; Richardson et al., 2018).   368 

SR1.5’s likely total uncertainty in GMST and GSAThist was ±0.12°C. Here we derive likely 369 

GSAT using Gaussian approximations to the observational, dataset spread and statistical fit 370 

uncertainties in the following steps (tests and details in Supplementary Table S3):  371 

1. The Cowtan-Way ensemble spread is our best estimate of observational parametric 372 

GMST uncertainty, so for each dataset its standard deviation is combined in quadrature 373 

separately with (i) the dataset-specific statistical 1 uncertainty and (ii) the CSIRO 374 

Mk3.6.0 large ensemble standard deviation.  375 

2. For GSAT, the CMIP6 Ablend ensemble standard deviation is taken as the uncertainty 376 

value, and combined in quadrature with the results of 1. 377 

3. We estimate a 17—83 % range by calculating those percentiles for each dataset following 378 

a Gaussian assumption, i.e. ±0.954 from the mean, and then selecting the lowest 17 % 379 

and higher 83 % value from across the datasets. 380 

 There is no universally accepted method of accounting for dataset spread. We adopt step 3 as a 381 

conservative approach, however, by reporting the separate dataset uncertainties as described in 382 

Section 2.2.2 other groups can replicate or develop alternative uncertainty estimates. 383 

We take Rogelj et al. (2019)’s,
2nonCOT of 0.1°C (0.2°C) for Tlim of 1.5°C (2°C), and EEsfb of 100 384 

Gt CO2 through 2100. TCRE percentiles are based on AR5’s likely range of 0.2–0.7°C per 1,000 385 

Gt CO2 (Collins et al., 2013), as in Nauels et al (2019). SR1.5 included alternative carbon 386 

budgets using a lower Thist from the average of the blended GMST datasets with no GSAT 387 

adjustment. Our alternative uses the Global_3 average without the GSAT adjustment. To 388 

contextualize the remaining budget against cumulative emissions to date we include data and 389 

uncertainties from the 2019 Global Carbon Budget (Friedlingstein et al., 2019). 390 

   391 
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3 Results 392 

3.1 Long term GMST analysis 393 

Figure 1 compares LOESSmd and OLS GMST from 1880—2019 with associated 5—95% 394 

uncertainties (Fig. 1a). Figure 1b shows that the LOESS fit residuals follow our assumed 395 

ARMA(1, 1), which is necessary to justify our error correction and is not true for OLS (Figure 396 

1c). Our full set of observational GMST estimates are given in Table 2. 397 

OLS GMST is always lower than LOESS, with some even lying outside the LOESS 398 

uncertainty range or nearly so (Cowtan-Way, Berkeley Earth).  Datasets are similarly ranked for 399 

both OLS and LOESSmd over 1880-2019, from HadCRUT4 (0.96, 0.99) to Berkeley Earth (1.05, 400 

1.14). The Global_3 series exhibit a greater relative difference than the non-global series; the 401 

Berkeley Earth and HadCRUT4 LOESSmd difference is 0.21°C, but only 0.13°C for OLS. Thus 402 

OLS not only renders lower GMST, but also de-emphasizes the differences between the 403 

datasets.  404 

We identify two factors that appear to contribute to the increased long-term LOESSmd GMST 405 

relative to OLS: improved recent coverage (Global_3 being higher than OpAll), and those using 406 

HadSST relative to ERSSTv5. Improved coverage tends to increase recent trends, while the SST 407 

datasets differ most strongly before and during WWII.  408 

 409 

 410 

 411 

 412 

 413 
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 414 
Figure 1:  GMST series and 1880-2019  warming estimates. (a) LOESS  (span ± 20 years) and OLS trends with 415 
5-95% statistical fit uncertainty are shown for Cowtan and Way (purple),  NASA GISTEMP (blue), Berkeley Earth 416 
(orange), NOAA GlobalTemp (light blue) and HadCRUT4 (red) over 1880-2019. (b) The autocorrelation function 417 
(ACF) of the LOESS fit residuals are shown for each series (solid lines), along with the ACF of the estimated  418 
ARMA(1, 1)  model used to correct for autocorrelation. (c) As in (b) except for OLS linear trend.. 419 
 420 

 421 

 422 

  423 
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Table 2: Observed increase in GMST (°C) in datasets and dataset groupings. Numbers in square 424 
brackets correspond to 5–95% statistical fit uncertainty ranges, accounting for autocorrelation in fit 425 
residuals. Round brackets denote observational parametric uncertainty where available (HadCRUT4, 426 
Cowtan & Way). NOAA and NASA are each aligned to match 1880-1900 mean of the other three 427 
datasets. Best estimates from three full global series are denoted by *. Group mean estimates (in bold) are 428 
given with  uncertainties encompassing the spread from lowest 5% to highest 95%. For the Global_3 429 
group, the observational uncertainty is from Cowtan & Way, expanded by the spread of the three central 430 
estimates. 431 
 432 

 433 

 434 

For LOESSbsln to 2019, there are minor differences in assessed values but no changes in dataset  435 

rankings versus LOESSmd 1880—2019. LOESSbsln is generally ~0.1 °C higher than 1850-1900 to 436 

2010-2019 GMST, reflecting the five-year offset and ~0.2 °C/decade recent warming (2010-437 

2019 is centered at the end of 2014). At 1.14°C, Global_3 LOESSbsln GMST to 2019 is 0.03°C 438 

higher than OpAll average, reflecting a 0.09°C difference with the mean of the two reduced 439 

Period:  

 

Series: 

1850-1900 

 to 2019 

1850-1900  

to 2010-2019 
1880 - 2019 

LOESSbsln Latest decade LOESSmd Linear 

HadCRUT4 

1.02 
[0.94 - 1.10] 
 (0.97 – 1.07) 

0.93 

(0.88 - 0.98) 
 

0.99 

[0.88 - 1.11] 

(0.94 – 1.04) 

0.96 

[0.82 - 1.10] 

(0.92 – 1.03) 

NOAA 

GlobalTemp 

1.09 
[1.00 - 1.18] 

0.99 

 

1.06 

[0.93 - 1.18] 

1.04 

[0.89 - 1.19] 

NASA 

GISTEMP 

1.12 
[1.03 - 1.20] 

1.01 

 

1.09 

[0.98 - 1.21] 

1.04 

[0.88 - 1.20] 

     

Cowtan & 

Way 

1.12 

[1.04 - 1.20] 
(1.05 – 1.19) 

1.01 
(0.95 - 1.09) 

 

1.14 

[1.03 - 1.25] 

(1.08 – 1.21) 

1.02 

[0.88 - 1.15] 

(0.94 – 1.09) 

     

Berkeley 

Earth 

1.19 

[1.11 - 1.26] 
1.08 

1.20 

[1.09 - 1.31] 

1.09 

[0.96 - 1.22] 

All 

Operational  
1.11 

[0.94 - 1.26] 

1.00 
 

1.10 

[0.88 - 1.31] 

1.03 
[0.82 - 1.22] 

Full Global  

(3 series) * 

1.14 * 

[1.04 – 1.26] 

(1.05 – 1.26) 

1.03 
 

1.14 

[0.98 - 1.31] 

1.05 
[0.88 - 1.22] 
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coverage series from HadCRUT4 and NOAA GlobalTemp. The 1880—2019 LOESSmd 440 

discrepancy is even wider: 0.09°C  for NOAA and 0.15°C for HadCRUT4. LOESSbsln statistical 441 

fit uncertainties are smaller than LOESSmd or OLS, reflecting the smaller uncertainty of 442 

departure from the 1850—1900 mean rather than a single point (as noted in Section 2.2.2).  443 

 444 

Figure 2:  GMST series and group surface warming estimates. (a) Monthly series and multi-decadal LOESSbsln  445 
GMST (span ± 20 years) are shown for HadCRUT4 (red), NOAA GlobalTemp (light blue), NASA GISTEMP 446 
(blue), Cowtan and Way (purple) and Berkeley Earth (orange), together with OLS and period estimates from IPCC 447 
AR5 and SR15. NOAA GlobalTemp and NASA GISTEMP have been matched to the longer datasets over the 448 
overlapping 1880-1900 period. Also shown are 21 CMIP6 SAT-SST model runs, blended following Cowtan et al 449 
(2015) and Richardson et al (2018). (b) LOESSbsln (solid line with filled circle) is shown for two GMST groupings: 450 
Global_3 (purple) and OpAll (dark red),.Also shown are selected additional warming estimates: anthropogenic 451 
following Haustein et al (2017) (diamonds), decadal average (crosses) and OLS linear trend from 1880 (x-crosses). 452 
Recent IPCC GMST estimates are highlighted by large squares: AR5 OLS to 2012 (light blue) and SR1.5 2006-453 
2015 mean extended to 2017 (blue), together with corresponding Global_3 LOESSbsln GMST (purple). 454 
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The observation-based and CMIP6 blended ensemble LOESSbsln (Figure 2a) show broadly 455 

similar changes: a rise to 1950, a 1950—1975 flattening, and strong post-1975 warming. The 456 

observations show stronger 1920—1950 warming, especially in the three HadSST-based series, 457 

and weaker post-1975 warming.  458 

Separate tests showed that derived GMST was similar when restricting CMIP6 spatial coverage 459 

to that of Berkeley Earth, so we take the CMIP6 blended ensemble as directly comparable to the 460 

Global_3 series (Figure S14). The Global_3 rise of 1.14°C is above the median CMIP6 estimate 461 

extended linearly to 2019, 1.04°C [0.88 – 1.44]. However, the Global_3 incremental trend of 462 

0.20°C/decade is lower than CMIP6’s 0.26°C/decade [0.18 – 0.38] or the likely ECS sub-463 

ensemble’s 0.25°C/decade [0.18 – 0.29]. 464 

In general, the observations are at or above recent IPCC long-term GMST estimates.  Figure 465 

2(b) affords a closer view of recent GMST estimates, including group LOESSbsln calculated to 466 

2012 and 2017 for direct comparison to IPCC AR5 and SR1.5. As previously stated, AR5’s main 467 

estimate of 0.85°C was from linear OLS on the datasets available then. Since the mean 1880—468 

2012 OLS trend for OpAll is 0.89°C and LOESSbsln is 0.93°C, GMST methodology accounts 469 

for half of the discrepancy between AR5’s 1880—2012 estimate and ours. The 2012 gap is even 470 

wider for the Global_3 group; OLS to 2012 is 0.90°C and LOESSbsln is 0.96°C; that gap 471 

continues to grow, reaching 0.09°C in 2019.   472 

The SR1.5 2006-2015 mean GMST of 0.87°C was extended to 2017 to provide an up-to-date 473 

estimate of 1.0°C (Section 1.2.1.3 in Allen et al., 2018). The same adjustment applied to the 474 

updated series shows a 0.03°C gap with LOESSbsln. This discrepancy may be related to internal 475 

variability suppressing early 2000s warming; taking 2008-2017 or 2010-2019 removes the 476 

LOESS-period discrepancy. Both LOESSbsln and period estimates are in good agreement with the 477 

slightly higher Haustein human-induced warming.  478 

Figure 3 compares Global_3 LOESSbsln and period GMST in more detail. Since IPCC SR1.5 479 

explicitly considered the 2006-2015 mean as a proxy for the 1996-2025 average (relative to 480 

1850-1900), we consider the centered 20-year average and a 30-year “extended” average 481 

assuming  the current linear 30-year trend continues over the next 15 years. Figure 3a shows that 482 

LOESSbsln hews closer to the eventual average than the decade mean and confirms that 2006-483 

2015 was affected by an early 2000s slowdown. LOESSbsln has more stability relative to 484 

anthropogenic warming estimates (Figure 3b) and has lower RMSE relative to the longer period 485 

averages since the late 1990s (Figure 3c, 3d).     486 
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 487 

Figure 3: GMST estimation method validation based on average of 3 global series.  (a) LOESSbsln to 2019 488 
(blue) is shown with 5-year lagged LOESS (light blue), decadal average (red), 20-year average (light gray) 489 
and 30-year average (dark gray).  LOESS (light blue) versus decadal (red)  differences are shown with (b) forced 490 
warming estimates following Haustein et al. (2017) and (c)  validation targets (30-year average, 30-year average 491 
extended with linear trend and 20-year average). (d) RMSE is calculated from errors shown in (c). 492 

Global_3 LOESSbsln GMST to 2019 is our main input for subsequent analysis such as 493 

remaining carbon budget, for which combined 17—83 % uncertainty is required; recalculating 494 

the combined uncertainty following Section 2.2.4 yields 1.14°C [1.05 – 1.25]. 495 

 496 

3.2 Large Ensemble Validation  497 

 498 

Figure 4(a,d) shows the MPI-GE and CSIRO Mk3.6.0 annual SAT range, individual LOESSmd 499 

fits and GMSTF estimate, Figure 4(b,e) contains example LOESS and OLS fits to a single 500 

simulation and Figure 4(c,f) shows the forced, LOESS and OLS GMST estimates through 2019 501 

for each start year from 1850—1980.  502 

The GMSTF and LOESS GMST agree well outside of periodic GMSTF spikes from volcanic 503 

eruptions, i.e. when the forced change is smooth over our ±20 year window, such that 504 

GMSTLOESSGMSTF.  .  OLS is biased relative to GMSTF in the long term, and is more 505 

sensitive to internal variability in the short term, e.g. for 1990—2019 OLS ensemble spread is 62 506 

% (MPI-ESM) or 26 % (CSIRO Mk3.6.0.) larger than LOESS ensemble spread.  507 

 508 

 509 
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 510 
Figure 4. (a) MPI-GE SAT outputs, full ensemble range is shaded, each simulation’s LOESS fit is in grey and the 511 
ensemble mean (our estimate of GMSTF) is in red. (b) example of fits applied to a single simulation (black) 512 
including LOESS (dark blue) and OLS over three different periods (straight lines) with GMSTF in red. OLS lines are 513 
shifted up so that their end points correspond to the relevant GMST for ease of comparison. (c) calculated GMST 514 
for GMSTF (red), based on the LOESS fit (dark blue) and based on OLS (cyan). For the fits, the lines are the 515 
ensemble median and the shaded regions the 5—95 % range.( d—f) as (a—c) but for the CSIRO Mk 3.6.0 ensemble. 516 

 517 

Table 3 contains the large ensemble GMST estimates. For periods like 1850—1900 to 2010—518 

2019, we use Section 2.2.2’s LOESSbsln approach while OLS is fit between the middle of each 519 

period. In both ensembles LOESS performs similarly to the period difference with median bias 520 

magnitude <0.02 °C and an almost matching 5—95 % range. LOESS slightly outperforms 521 

centered period differences evaluated from 1850-1900 to end periods ranging from1986-1995 522 

through 2010-2019 when validated against 30-year average (see Figure S15),This validates 523 

LOESS performance, and Table 3 shows an advantage over period means since its calculation 524 

can be extended to the latest available year without greatly inflated uncertainty. The 0.06—0.10 525 

°C discrepancies for 1880—2019 LOESS-GMSTF are likely because the LOESS window 526 

centred at 1880 captures Krakatoa’s large post-1883 cooling, thereby reducing the 1880 LOESS 527 

estimate and increasing its 1880—2019 GMST. These results show that such biases are period-528 

dependent, are indeed negligible for 1850—1900 to 2019 in these models, and support our 529 

analysis of these periods. 530 

 531 

  532 

As our carbon budget calculations include an internal variability error component, we consider 533 

ensemble spread and statistical errors as candidates and compare the LOESSbsln ensemble 83
rd

 534 

minus 17
th

 percentile and the statistical 17—83 % ranges for each run. The CSIRO Mk3.6.0 535 

ensemble spread is 0.22 °C, equal to the largest individual run uncertainty (ensemble median 536 
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0.17 °C), while for MPI-ESM the ensemble spread (0.11 °C) and median statistical error (0.12 537 

°C) almost match. The statistical errors are a reasonable representation of internal variability 538 

error in MPI, but underestimate that in CSIRO Mk 3.6.0. For the internal variability component 539 

of GSAT uncertainty in our carbon budgets we present results both using statistical error 540 

(derived only from observational data) and a more conservative estimate using the ±0.11 °C 541 

CSIRO Mk3.6.0 ensemble spread. 542 

 543 

This large ensemble analysis has: 544 

(i) provided limited support for our LOESS-based statistical uncertainty estimates 545 

being similar to model variability,  546 

(ii) shown that LOESS matches or exceeds period difference performance while 547 

having lower long-term bias and short-term uncertainty than OLS,  548 

(iii) verified that LOESS reliably reproduces GMSTF outside of years immediately 549 

following large volcanic eruptions, particularly supporting our LOESSbsln results.  550 

 551 

 552 

 553 

 554 
Table 3. Long-term GMST estimated for various periods for the ensemble mean TF, plus the ensemble 555 
medians and 5—95 % ranges for estimates based on LOESS, OLS or taking the mean of the raw SAT 556 
outputs. Uncertainties in TF differences are derived by treating TF as a sample mean and assuming the 557 
ensemble members follow a Gaussian distribution in any given year. The period errors are then combined in 558 
quadrature. 559 

 
MPI-ESM GMST[°C] median [5—95 %] [17—83 %] 

Method 1850-1900 to 2010-2019 1850-1900 to 2019 1880 to 2019 

TF 1.15 [1.15-1.16] [1.15-1.16] 1.25 [1.23-1.28] [1.24-1.27] 1.20 [1.17-1.23] [1.18-1.22] 

LOESS 1.16 [1.07-1.24] [1.11-1.21] 1.25 [1.15-1.36] [1.21-1.32] 1.26 [1.15-1.36] [1.20-1.31] 

OLS 1.02 [0.93-1.12] [0.97-1.07] 1.13 [1.04-1.23] [1.08-1.18] 1.15 [1.06-1.23] [1.10-1.20] 
Individual 

runs 1.15 [1.07-1.24] [1.11-1.20] 1.24 [1.04-1.48] [1.12-1.40] 1.20 [0.92-1.50] [1.04-1.39] 

 

CSIRO Mk3.6.0 GMST[°C] 

TF 0.92 [0.90-0.93] [0.91-0.92] 1.03 [0.99-1.07] [1.00-1.05] 0.93 [0.88-0.98] [0.90-0.96] 

LOESS 0.93 [0.79-1.04] [0.82-1.01] 1.05 [0.89-1.18] [0.90-1.12] 1.03 [0.84-1.16] [0.91-1.10] 

OLS 0.63 [0.46-0.72] [0.52-0.70] 0.73 [0.56-0.85] [0.61-0.82] 0.75 [0.58-0.87] [0.64-0.83] 
Individual 

runs 0.91 [0.78-1.04] [0.83-1.00] 1.03 [0.81-1.22] [0.86-1.12] 0.94 [0.66-1.15] [0.76-1.05] 
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 560 

3.3 Global SAT estimate and Remaining Carbon Budget 561 

We now convert our best estimate GMST of 1.14°C [1.05 – 1.25] (17—83% uncertainty) to an 562 

equivalent GSAT. Our CMIP6 ensemble LOESSbsln Ablend  ratio GSAT/GMST reflects an 563 

increase of GSAT over GMST of  5.8% [4.4, 7.2 ] in 2014.  564 

Combining this ratio and its uncertainty in quadrature with our Global_3 GMST, we obtain 565 

GSAT of 1.21°C [1.11—1.32] from 1850—1900 to 2019, a lower uncertainty than the 566 

equivalent SR1.5 estimate of ±0.12°C (Section 1.2.1.2 in Allen et al., 2018). The conservative 567 

CSIRO-based internal variability yields a wider GSAT range of 1.07—1.37 °C. These 568 

estimates all represent uncertainty in total forced warming; however, uncertainty in 569 

anthropogenic warming was estimated to be still higher at ±0.2°C (Section 1.2.1.3 in Allen et al., 570 

2018).  571 

The other carbon budget calculation components also have large uncertainties. Cumulative 572 

emissions to end of 2019 are 2320 ±230 GtCO2 (Friedlengstein et al., 2019), while non-CO2 573 

uncertainties are even higher (see Table 2.2 in Rogelj et al., 2018). Although no formal methods 574 

exist to combine these uncertainties, Rogelj et al (2018) estimated overall uncertainty of ±50% in 575 

SR1.5 remaining carbon budgets. 576 

Figure 5 shows the calculation for the headline remaining carbon budget with a 66% chance to 577 

stay below 1.5°C, along with the historical cumulative CO2 emissions and temperature change.  578 
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 579 

 580 

Figure 5: Global temperature change from 1850–1900 versus cumulative CO2 emissions. The smoothed 581 
temperature response from the Global3 blended GMST group as decadal average (blue) and LOESSmd trend (purple) 582 
are shown relative to cumulative CO2 emissions from Friedlingsten et al (2019). The thick black line shows the 583 
Global3 GMST LOESSmd trend, adjusted by the median difference between GSAT and blended historical runs from 584 
an ensemble of 21 CMIP5 models, again relative to cumulative CO2 emissions.  The pink shaded plume and dark red 585 
line are estimated temperature response to cumulative CO2 emissions (TCRE) from 2019 on. Also shown are other 586 

remaining carbon budget factors, 
2nonCOT and EEsfb (gray arrows). The thick black double arrow represents the 587 

remaining carbon budget for 66% chance of remaining below 1.5°C.  Vertical error bars show GSAT combined 588 
observational and statistical uncertainty (dark blue), combined observational and internal variability derived from 589 
CSIRO ensemble (medium blue) and estimated uncertainty in anthropogenic warming (light blue). 590 

The remaining carbon budgets from the start of 2020 for a 66% (50%) chance to stay below 591 

1.5°C and 2.0°C are 220 (350) GtCO2 and 880 (1270) GtCO2 respectively (rounded to nearest 5 592 

GtCO2). Given current annual emissions of just over 40 GtCO2, the 66% 1.5°C remaining carbon 593 

budget is only ~15 GtCO2 lower than the equivalent carbon budgets in SR1.5 (320 GtCO2 from 594 

2018) and Nauels et al (235 GtCO2 from 2020).  However, our 50% 1.5°C carbon budget is ~45 595 

GtCO2 below those two studies. This follows from the slightly higher ΔGSAThist found in this 596 

study, combined with an identical TCRE spread starting in 2019 rather than a reference period 597 

centered at the start of 2011. In effect, the up-to-date estimate of ΔGSAThist reduces the 598 

contribution of TCRE uncertainty, as there is less ΔT “to go”. 599 
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SR1.5’s secondary carbon budgets used the average GMST through 2006-2015 to obtain a 66 600 

% chance of staying below 1.5 °C with a budget of 470 GtCO2 from 2018. Our alternative 601 

budget using Global_3 GMST instead of GSAT is 305 GtCO2 from 2020. This large 602 

difference relative to SR1.5 is unsurprising as the Global_3 series show more historical warming 603 

whereas SR1.5 included HadCRUT4 and its more substantial coverage bias. 604 

All estimates above account for Earth system feedbacks (CO2 and CH4 release from warming 605 

wetland and permafrost thaw) as in Rogelj et al. (2019): carbon budgets excluding this term 606 

would be 100 GtCO2 higher.  607 

4 Discussion and Conclusions 608 

We have explored the range of warming estimates since the late 19
th

 century across different 609 

observational series using multiple estimation methodologies.  Our main LOESSbsln Global_3 610 

GMST since 1850-1900 is, to our knowledge, the first such estimator that (i) integrates robust 611 

statistical uncertainties, with fit residuals following the assumed noise process, (ii) has been 612 

extended to provide a corresponding GSAT since 1850-1900, including combined 613 

observational and internal variability uncertainties, and (iii) has been validated against output 614 

from model large ensembles. 615 

IPCC SR1.5 reported GMST of 0.87°C to 2006-2015 using four datasets (1.0°C when extended 616 

to 2017) and estimated GSAT of 0.97°C by adjusting one dataset (HadCRUT4) for biases 617 

related to incomplete coverage and sea-air temperature differences, effectively discarding the 618 

other three. The ensuing carbon budget calculation subsumed cumulative emissions up to 2017, 619 

necessitating an implicit extension of GSAT to that date. The simplicity and coherence of our 620 

“up-to-date” GMST and GSAT estimates represent a clear advance over the IPCC GMST 621 

period difference and GSAT derivation methods. Not only is LOESSbsln generally an unbiased 622 

GMSTF estimator outside periods of volcanism, but the method includes a more consistent and 623 

intuitive baseline alignment of datasets beginning in 1880 and maintains the previously stated 624 

advantage of including statistical error derived using a noise model consistent with the data. 625 

Moreover, validation tests with observations and the large ensembles confirm LOESSbsln exhibits 626 

superior performance and lower susceptibility to natural variation. None of this is surprising 627 

considering that the IPCC period difference method is essentially a 10-year moving average. 628 

Another key difference with IPCC SR1.5 is our consistent use of the Global_3 datasets with 629 

extensive spatial interpolation. These datasets are self-evidently more representative of global 630 

climate change and require smaller and less uncertain adjustments (~6%) to obtain GSAT from 631 

GMST, in contrast to the 17% adjustment applied to HadCRUT4 in IPCC SR1.5. The Global_3 632 

datasets give 0.12 °C more warming than HadCRUT4 from 1850-1900 and the divergence 633 

related to incomplete coverage may well grow, as the Global_3 LOESSmd trend is now 634 

0.03°C/decade higher than HadCRUT4’s 0.17 °C/decade. 635 

SR1.5 also reported 1880—2012 and 1880—2015 linear trend GMST, but mainly to provide 636 

“traceability” to the IPCC AR5. In contrast, AR5’s main  estimate of 0.85°C was based on the 637 

mean linear trend of available datasets, while HadCRUT4 2003-2012  period difference from 638 
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1850-1900 GMST estimate fed further analyses such as future projections (Collins et al., 2013) 639 

and attribution (Bindoff et al., 2013).   640 

If IPCC AR6 follows AR5, that would imply the three post-1850 datasets would form the basis 641 

for 2010-2019 period GMST relative to 1850-1900. As noted above, LOESSbsln to 2019 offers a 642 

superior alternative. The case for excluding HadCRUT4 is compelling, although if the 643 

forthcoming HadCRUT5 represents quasi-global GMST then it should be included. Following 644 

the precedent set in IPCC SR1.5, the ERSSTv5 based datasets starting 1880 should also be 645 

considered, using baseline matching over 1880—1900. Our Global_3 group member, NASA 646 

GISTEMP is an obvious choice for inclusion, while NOAA GlobalTemp could be excluded 647 

according to our global coverage criterion. However, that case is less clear cut than 648 

HadCRUT4due to NOAA’s complicated spatial coverage. 649 

Since all observational datasets could be included, LOESSbsln GMST removes a primary 650 

motivation for 1880-2019 GMST in IPCC AR6. However, AR5 also compared GMST trends 651 

from 1880 to short-term trends from mid-century or later. Our results reinforce that 1880—2019 652 

linear trend is inconsistent with LOESSmd 1880—2019 GMST. The bias of long-term OLS 653 

GMST was confirmed in analysis of two large ensembles, which also showed that it has 26—654 

62 % larger uncertainty than LOESSmd for recent 30-year trends. As seen in Table S2, observed 655 

OLS trends from 1951 have wider uncertainty than the corresponding  LOESSmd estimates and 656 

show evidence of warm bias as well (for example the NASA GISTEMP 1951—2019 OLS is 657 

almost identical to 1880—2019).  We therefore recommend LOESSmd  over linear trend for both 658 

long-term (> 120 years) and short-term (30-70 years) intervals.  659 

LOESSbsln statistical uncertainties represent another opportunity for AR6. If GMSTLOESS is 660 

close enough to GMSTF then with an appropriate noise model the GMST uncertainty due to 661 

internal variability could be derived from the LOESS residuals. We combined this with 662 

observational uncertainty and carried it forward directly to GSAT for carbon budget 663 

calculations, but it could also be used for other follow-on analyses. The median statistical errors 664 

from the large ensemble runs are within 25% of the ensemble spreads, and the residual 665 

autocorrelation structure implies potential for this approach.  666 

However, models may not capture long-term internal variability. For example,  recent Pacific 667 

changes may indicate stronger real-world multidecadal variability (e.g. England et al., 2014), 668 

although consensus is lacking (Seager et al., 2019). Substantial internal variability on ±20 year 669 

timescales or longer would result in underestimated LOESS uncertainties. By contrast, large 670 

forced changes on shorter timescales, such as due to volcanism, would artificially increase the 671 

uncertainties. Nevertheless, our method derives uncertainties directly from observations and so 672 

may have advantages over approaches that rely on model outputs or estimated forcings (Otto et 673 

al 2015; Haustein et al., 2017). 674 

Given the above caveats we provided a more conservative GSAT uncertainty incorporating the 675 

CSIRO model large ensemble spread and its pronounced internal variability. Since our GMST 676 

and GSAT estimates are close to observation-based anthropogenic warming, confirming a basic 677 

finding of IPCC SR1.5, we treat our GSAT as an estimate of GSATF,anthro, albeit with 678 

appropriately wider uncertainties. In general, our approach yields straightforward and up-to-date 679 
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estimates of GMST and GSAT to inform remaining carbon budget calculations that 680 

incorporate appropriate GSAT uncertainties .   681 

To summarize, we argue strongly in favor of LOESSbsln GMST using series with near-global 682 

coverage. Combining our statistical estimate of internal variability with dataset spread and 683 

dataset parametric uncertainty results in a best estimate of warming from 1850—1900 to 2019 of 684 

1.14 °C [1.05 – 1.25] (17-83% uncertainty). Not only is this updated through 2019, rather than 685 

the prior-decade value of the IPCC’s period mean difference, but it includes statistical error that 686 

is not derivable for period mean differences. 687 

Our CMIP6-derived GSAT adjustment yields corresponding GSAT of 1.21°C [1.11–1.32]  (17-688 

83% uncertainty), implying a remaining carbon budget of ~220 GtCO2 for a 67% chance that 689 

GSAT since 1850-1900 remains below 1.5°C. This carbon budget is ~5.5 years of current 690 

emissions. Our GSAT estimate uncertainty can be adapted to a desired interpretation of 691 

GSAT, for example, as total or anthropogenic warming. All indices can be updated annually 692 

and are only dependent on the temperature datasets, yielding a set of transparent and easily 693 

communicated metrics to measure progress towards climate goals.  694 

 695 
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