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Abstract

Diffusion-driven radiation belt models require multiple physics-based inputs to specify the radiation environment through which

spacecraft travel, including diffusion coefficients. Even though event-specific coefficients are necessary for model accuracy, their

routine integration in operational models has not yet been achieved. In fact, one of the key inputs, the radial diffusion coefficient,

is still commonly determined by a Kp-driven parameterization. This work presents a method to determine continuous time

series of time-varying radial diffusion coefficients. A theoretical model is developed in which electromagnetic radial diffusion is

controlled by the magnetopause immediate time history. Specifically, radial diffusion is described as a function of the average,

variance, and autocorrelation time of the geocentric stand-off distance to the subsolar point on the magnetopause. Because the

magnitudes of these three magnetopause parameters vary with time and magnetic activity, so does radial diffusion. To a lesser

extent, radial diffusion is also controlled by the drift frequency of the radiation belt population. Moreover, radial diffusion is

quantified using a standard model in which the magnetopause is controlled by the solar wind. Although the resulting diffusion

coefficients span several orders of magnitude per Kp index, the median magnitudes are remarkably similar to the ones provided

by the standard Kp-driven statistical parameterization.
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Key points 13 

1. A model in which electromagnetic radial diffusion is determined by the immediate time 14 
history of the magnetopause location is presented. 15 

2. With the magnetopause controlled by the solar wind, the diffusion coefficients per 𝐾𝐾𝐾𝐾 16 
index average similarly to the existing standard. 17 

3. A time series of electromagnetic radial diffusion coefficients with a one-minute time 18 
resolution is provided for the year 2013.  19 
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Abstract 20 
 21 
Diffusion-driven radiation belt models require multiple physics-based inputs to specify the 22 
radiation environment through which spacecraft travel, including diffusion coefficients. Even 23 
though event-specific coefficients are necessary for model accuracy, their routine integration in 24 
operational models has not yet been achieved. In fact, one of the key inputs, the radial diffusion 25 
coefficient, is still commonly determined by a 𝐾𝐾𝐾𝐾-driven parameterization. 26 
This work presents a method to determine continuous time series of time-varying radial diffusion 27 
coefficients. A theoretical model is developed in which electromagnetic radial diffusion is 28 
controlled by the magnetopause immediate time history. Specifically, radial diffusion is described 29 
as a function of the average, variance, and autocorrelation time of the geocentric stand-off distance 30 
to the subsolar point on the magnetopause. Because the magnitudes of these three magnetopause 31 
parameters vary with time and magnetic activity, so does radial diffusion. To a lesser extent, radial 32 
diffusion is also controlled by the drift frequency of the radiation belt population. Moreover, radial 33 
diffusion is quantified using a standard model in which the magnetopause is controlled by the solar 34 
wind. Although the resulting diffusion coefficients span several orders of magnitude per 𝐾𝐾𝐾𝐾 index, 35 
the median magnitudes are remarkably similar to the ones provided by the standard 𝐾𝐾𝐾𝐾-driven 36 
statistical parameterization.  37 
 38 
 39 
Plain Language Summary 40 
 41 
An increasing number of spacecraft operate through or within the terrestrial radiation belts, a 42 
region where charged energetic particles are trapped in the Earth’s magnetic field. Computer codes 43 
simulate this dynamic radiative environment, with the objective of improving spacecraft design 44 
and understanding spacecraft anomalies. These codes are physics-based models. That is, they solve 45 
a master diffusion equation using a series of inputs that summarize the effects of different physical 46 
processes on particles. One of the key inputs to these codes is the radial diffusion coefficient. Yet 47 
its formulation is currently limited: It is an average, obtained by interpolating a few experimental 48 
data points, and the time resolution is no better than three hours. By detailing the physics 49 
underlying radial diffusion in a simple scenario, this work provides a new quantification for the 50 
radial diffusion coefficient. The time resolution is improved, and the coefficient variability is 51 
enhanced. The fact that the resulting coefficient varies around the standard values provided by the 52 
current reference adds credibility to the method. As a result, it is expected that this new 53 
quantification will contribute to improving the accuracy of radiation belt simulations.  54 
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1. Introduction 55 
 56 
Diffusion-driven radiation belt models have been developed and operated since the mid-1990s 57 
(Beutier & Boscher, 1995) to specify the structure, intensity and variability of the radiation 58 
environment through which satellites operate (e.g., Horne et al., 2013). They consist of solving a 59 
diffusion equation to describe radiation belt dynamics (e.g, Schulz & Lanzerotti, 1974), based on 60 
the adiabatic theory of magnetically trapped particles (e.g. Northrop, 1963). Operating a physics-61 
based radiation belt model requires quantifying different inputs, including radial diffusion.  62 
 63 
Radial diffusion is a statistical characterization of the violation of the third adiabatic invariant for 64 
a trapped radiation belt population. It plays a key role in determining radiation belt dynamics, not 65 
only at Earth but also at the giant planets (e.g., Lejosne & Kollmann, 2019).  66 
 67 
The most commonly used radial diffusion inputs for terrestrial radiation belt models are the 68 
empirical coefficients for electromagnetic radial diffusion determined by Brautigam and Albert 69 
(2000), and parameterized by the 𝐾𝐾𝐾𝐾 index: 70 
 71 

 𝑙𝑙𝑙𝑙𝑙𝑙10�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵&𝐴𝐴 𝐿𝐿10⁄ � = −9.325 + 0.506 × 𝐾𝐾𝐾𝐾  [𝑙𝑙𝑙𝑙𝑙𝑙10(𝑑𝑑𝑑𝑑𝑑𝑑−1)] (1) 

 72 
where 𝐷𝐷𝐿𝐿𝐿𝐿 is the electromagnetic radial diffusion coefficient of a population of equatorial radiation 73 
belt particles, and the superscript “𝐵𝐵&𝐴𝐴” stands for Brautigam and Albert’s empirical law for radial 74 
diffusion. For non-equatorial particles of the same kinetic energy, the electromagnetic radial 75 
diffusion coefficient is proportional to the one in the equatorial case (Fälthammar, 1968; Schulz & 76 
Lanzerotti, 1974, p.89). Similar parameterization for equatorial electromagnetic radial diffusion 77 
was proposed by Ozeke et al. (2014) (Drozdov et al., 2017), based on the erroneous analytic 78 
expressions for radial diffusion developed by Fei et al. (2006) (Lejosne, 2019).  79 
 80 
Brautigam and Albert’s empirical law for electromagnetic radial diffusion presents advantageous 81 
features for operational models (e.g., Glauert et al., 2018). First, radiation belt simulations yield 82 
plausible results when using such formulation for radial diffusion (e.g., Kim et al., 2011). Second, 83 
the implementation of the formula is straightforward. Moreover, it provides uninterrupted (i.e., 84 
operational) evaluation of radial diffusion. On the other hand, even though the importance of using 85 
event-specific inputs to improve model accuracy is now recognized (e.g., Tu et al., 2009), their 86 
determination is seemingly incompatible with operational models. Indeed, the development of 87 
event-specific coefficients has called for intensive work so far: It requires running potentially 88 
costly numerical simulations (e.g., Li Z. et al., 2017), and/or carrying detailed analysis of specific 89 
data sets when available (e.g., Ali et al., 2016). Even so, uncertainty in the magnitude of these 90 
tailored, “event-specific” radial diffusion coefficients leads to uncertainty in the relative 91 
contribution of other processes to the observed particle distribution (e.g., Mann et al., 2016; Shprits 92 
et al., 2018; Mann et al., 2018). Such features hamper our ability to include event-specific radial 93 
diffusion coefficients in operational radiation belt models. 94 
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 95 
The objective of this work is to provide a method to build operational, event-specific, 96 
electromagnetic diffusion coefficients. It builds on the theoretical framework underlying 97 
Brautigam and Albert (2000)’s empirical formula for electromagnetic radial diffusion. The 98 
theoretical model is detailed in Section 2, together with its reformulation in terms of fluctuations 99 
of the magnetopause location. Applying Shue et al. (1998)’s magnetopause model, the magnitude 100 
and variability of the resulting radial diffusion coefficients are discussed in Section 3. Section 4 101 
presents the results in the case of the year 2013, together with a comparison with the 102 
electromagnetic radial diffusion coefficients estimated according to Brautigam and Albert (2000)’s 103 
formula. The approach is discussed Section 5. 104 
 105 
 106 

2. Theoretical Model Description 107 
 108 

2.1. Theoretical Framework Associated with Brautigam and Albert (2000)’s Formula for 109 
Electromagnetic Radial Diffusion 110 

 111 
Brautigam and Albert (2000)’s empirical formula for electromagnetic radial diffusion is a least 112 
squares interpolation of experimental values obtained at 𝐿𝐿 =  4 by Lanzerotti and Morgan (1973) 113 
and at 𝐿𝐿 =  6.6 by Lanzerotti et al. (1978). In both cases, a time interval of one week to one month 114 
of magnetic field fluctuations was analyzed to quantify an analytic expression for electromagnetic 115 
radial diffusion. The analytic expression, developed by Fälthammar (1965; 1968), and further 116 
detailed by Schulz and Eviatar (1969), is the following: 117 
 118 

 
𝐷𝐷𝐿𝐿𝐿𝐿
𝐿𝐿10

=
𝛺𝛺2

8
�

5
7
�
2 𝑅𝑅𝐸𝐸2

𝐵𝐵𝐸𝐸2
𝑃𝑃𝐴𝐴(𝛺𝛺) 

 
(2) 

 119 
for equatorially mirroring particles, where 𝐵𝐵𝐸𝐸  ≅  0.3 𝐺𝐺 is the magnetic equatorial field at the Earth 120 
surface, 𝑅𝑅𝐸𝐸 ≅  6400 𝑘𝑘𝑘𝑘 is one Earth radius, 𝛺𝛺 2𝜋𝜋⁄  is the trapped population drift frequency, and 121 
𝑃𝑃𝐴𝐴 is the power spectrum of the asymmetric field fluctuations of a simplified electromagnetic field 122 
model.  123 
 124 
The magnetic field model is a magnetic dipole field to which a small perturbation is superimposed 125 
(Mead, 1964). The small perturbation is the sum of two components: a symmetric component, 126 
𝑆𝑆(𝑡𝑡), independent of local time, 𝜑𝜑, and an asymmetric component, 𝐴𝐴(𝑡𝑡)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. An additional 127 
assumption connects both symmetric and asymmetric components of the magnetic field 128 
perturbation to the magnetopause location: 129 
 130 



Manuscript submitted to JGR Space Physics on Feb 6, 2020 
 

5 
 

 𝑆𝑆(𝑡𝑡) =
𝐵𝐵1

𝒷𝒷3(𝑡𝑡)
 (3) 

 131 
and 132 
 133 

 𝐴𝐴(𝑡𝑡) =
−𝐵𝐵2

𝑅𝑅𝐸𝐸𝒷𝒷4(𝑡𝑡)
 (4) 

 134 
where 𝐵𝐵1 ≅ 0.25 𝐺𝐺 and 𝐵𝐵2 ≅ 0.21 𝐺𝐺, and 𝒷𝒷 ~ 10 𝑅𝑅𝐸𝐸 is the geocentric stand-off distance to the 135 
subsolar point on the magnetopause, normalized in units of Earth Radii (e.g., Schulz & Eviatar, 136 
1969). As a result, the power spectrum of the asymmetric field fluctuations is proportional to the 137 
power spectrum of the symmetric field fluctuations, and the equation (2) for electromagnetic 138 
radial diffusion is also: 139 
 140 

 
𝐷𝐷𝐿𝐿𝐿𝐿
𝐿𝐿10

= 2𝛺𝛺2 �
5𝐵𝐵2

21𝐵𝐵1𝐵𝐵𝐸𝐸
�
2 1
𝒷𝒷2 𝑃𝑃𝑆𝑆(𝛺𝛺) (5) 

 141 
Because a fluctuation of the magnetopause location, 𝒷𝒷′, leads to a symmetric fluctuation of the 142 
magnetic field, 𝑆𝑆′, that is about 10 times greater than the asymmetric one, 𝐴𝐴′, (𝐴𝐴′𝑅𝑅𝐸𝐸 =143 
−4𝐵𝐵2𝑆𝑆′/(3𝐵𝐵1𝒷𝒷)~ − 0.1𝑆𝑆′), 𝑃𝑃𝑆𝑆(𝛺𝛺) is more readily measurable than 𝑃𝑃𝐴𝐴(𝛺𝛺). That is why the 144 
equation (5) is usually preferred to the equation (2) when it comes to evaluating radial diffusion 145 
experimentally (Lanzerotti & Morgan, 1973; Lanzerotti et al., 1978).  146 
 147 
Alternatively, one can also reformulate equation (2) in terms of fluctuations in the magnetopause 148 
location since the magnitude of the magnetic field asymmetry is directly related to the 149 
magnetopause location (equation (4)).  150 
 151 
2.2. Theoretical Model for Electromagnetic Radial Diffusion as Determined by the 152 

Magnetopause Location 153 
 154 
Combining equations (2) and (4) yields: 155 
 156 

 
𝐷𝐷𝐿𝐿𝐿𝐿
𝐿𝐿10

=
𝛺𝛺2

2
�

20
7
�
2

�
𝐵𝐵2
𝐵𝐵𝐸𝐸
�
2 1
𝒷𝒷�10

� 𝒷𝒷′(0)𝒷𝒷′(𝑢𝑢)���������������
∞

0
cos(Ω𝑢𝑢)𝑑𝑑𝑑𝑑 (6) 

 157 
where 𝒷𝒷� is the average magnetopause location, 𝒷𝒷′ = 𝒷𝒷 −𝒷𝒷� is the fluctuating part of the 158 
magnetopause location, and �𝑢𝑢 ⟼ 𝒷𝒷′(0)𝒷𝒷′(𝑢𝑢)���������������� is the autocorrelation function of the 159 
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magnetopause location. Further assuming that the autocorrelation function of the magnetopause 160 
location is subject to an exponential decay: 161 
 162 

 𝒷𝒷′(0)𝒷𝒷′(𝑢𝑢)��������������� = 𝒷𝒷′2�����𝑒𝑒−𝑢𝑢/𝜏𝜏 (7) 

 163 
where 𝜏𝜏 is the fluctuation lifetime, and 𝒷𝒷′2����� is the variance of the signal. It results that:  164 
 165 

 
𝐷𝐷𝐿𝐿𝐿𝐿
𝐿𝐿10

=
1
2
�

20
7
�
2

�
𝐵𝐵2
𝐵𝐵𝐸𝐸
�
2 𝒷𝒷′2�����

𝒷𝒷�10
Ω2𝜏𝜏

1 + Ω2𝜏𝜏2
 (8) 

 166 
Because radial diffusion coefficients are usually expressed on a logarithmic scale, let us focus on 167 
𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10) in the remainder of the article:  168 
 169 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10) = −10𝑙𝑙𝑙𝑙𝑙𝑙10�𝒷𝒷�� + 𝑙𝑙𝑙𝑙𝑙𝑙10 �𝒷𝒷′2������ + 𝑙𝑙𝑙𝑙𝑙𝑙10 �
Ω2𝜏𝜏

1 + Ω2𝜏𝜏2
� + 𝐶𝐶 

 
(9) 

 170 
where 171 
 172 

 𝐶𝐶 =  𝑙𝑙𝑙𝑙𝑙𝑙10 �
1
2
�

20
7
�
2

�
𝐵𝐵2
𝐵𝐵𝐸𝐸
�
2

� ≅ 0.3 (10) 

 173 
is a constant. The third term on the right-hand side of equation (9) is the only term that explicitly 174 
depends on the kinetic energy of the trapped population. It reaches a maximum equal to −𝑙𝑙𝑙𝑙𝑙𝑙10𝜏𝜏 175 
at very high energies, when Ω𝜏𝜏 ≫ 1. On the other hand, assuming that the fluctuation lifetime is 176 
very small in comparison with the radiation belt population drift period (Ω𝜏𝜏 ≪ 1), equation (9) 177 
becomes: 178 
 179 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10) = 𝐹𝐹 �𝒷𝒷�;𝒷𝒷′2�����; 𝜏𝜏� + 2𝑙𝑙𝑙𝑙𝑙𝑙10Ω + 𝐶𝐶 (11) 

 180 
where 181 
 182 

 𝐹𝐹 �𝒷𝒷�;𝒷𝒷′2�����; 𝜏𝜏� = −10𝑙𝑙𝑙𝑙𝑙𝑙10�𝒷𝒷�� + 𝑙𝑙𝑙𝑙𝑙𝑙10 �𝒷𝒷′2������ + 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜏𝜏) (12) 

 183 
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is a function controlled by the statistical characteristics of the magnetopause location. 184 
 185 
In any case, one needs to evaluate the average magnetopause location, 𝒷𝒷�, the variance of the 186 
magnetopause location, 𝒷𝒷′2�����, and the lifetime of the magnetopause fluctuations, 𝜏𝜏, in order to 187 
quantify electromagnetic radial diffusion. Shue et al. (1998)’s magnetopause model provides a fast 188 
and accessible way to evaluate of these magnetopause parameters. In this model, the stand-off 189 
distance to the magnetopause is controlled by the dynamic pressure of the solar wind, and the 190 
orientation of the interplanetary magnetic field (IMF): 191 
 192 

 𝒷𝒷 = �10.22 + 1.29 tanh�0.184 × (𝐵𝐵𝑧𝑧 + 8.14)��𝐷𝐷𝑝𝑝
−1/6.6 (13) 

 193 
where the solar wind dynamic pressure, 𝐷𝐷𝑝𝑝, is in nanopascals, and the north-south component of 194 
the IMF, 𝐵𝐵𝑧𝑧, is in nanoteslas (Shue et al., 1998). This model will be used in the following in order 195 
to quantify radial diffusion. 196 
 197 
 198 

3. Quantification 199 

3.1. Origin of Radial Diffusion Time Variability 200 
 201 
In equation (2), and thus in equations (6)-(12), 𝐴𝐴(𝑡𝑡), and thus 𝒷𝒷(𝑡𝑡), are considered to be 202 
realizations of a stationary stochastic process. In other words, it is assumed that the magnetopause 203 
location fluctuates randomly and that its statistical properties are time-independent. In practice, 204 
the signal 𝒷𝒷(𝑡𝑡) does not correspond to realizations of a strictly stationary process, and the 205 
statistical properties of 𝒷𝒷 are time varying. Thus, it is necessary to specify a sample window size 206 
to evaluate the statistical characteristics of the magnetopause location. As a result, equation (11) 207 
becomes: 208 
 209 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10) = 𝐹𝐹𝑇𝑇 + 2𝑙𝑙𝑙𝑙𝑙𝑙10𝛺𝛺 + 𝐶𝐶 (14) 

 210 
where 211 
 212 

 𝐹𝐹𝑇𝑇 = −10𝑙𝑙𝑙𝑙𝑙𝑙10�𝒷𝒷�𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙10 �𝒷𝒷′2�����
𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜏𝜏𝑇𝑇) (15) 

 213 
and the subscript indicates that the quantity depends on the window size chosen, 𝑇𝑇. The moving 214 
average of the magnetopause location is: 215 
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 216 

 𝒷𝒷�𝑇𝑇 =
1
𝑇𝑇
� 𝒷𝒷(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑇𝑇/2

−𝑇𝑇/2
 (16) 

 217 
and the moving variance of the magnetopause location is: 218 
 219 

 𝒷𝒷′2�����
𝑇𝑇 =

1
𝑇𝑇
� �𝒷𝒷(𝑢𝑢) −𝒷𝒷�𝑇𝑇(𝑢𝑢)�

2
𝑑𝑑𝑑𝑑

𝑇𝑇
 (17) 

 220 
Thus, the time variability of the electromagnetic radial diffusion coefficient comes from the time 221 
variability of the statistical characteristics of the magnetopause location (average, variance, and 222 
lifetime). The radial diffusion coefficient increases 1) when the magnetopause average location 223 
decreases, 2) when the magnetopause fluctuations increase, or 3) when the lifetime increases 224 
(equations (14)-(15)). Which of these three possible effects has the most control over radial 225 
diffusion variability? In particular, why does the radial diffusion coefficient increase with 𝐾𝐾𝐾𝐾? To 226 
investigate this question, the three components of 𝐹𝐹𝑇𝑇 were computed for the year 2013 with a one-227 
hour window size (𝑇𝑇 = 1ℎ). To pilot the magnetopause location (equation (13)) solar wind inputs 228 
with a one-min time resolution were extracted from NASA/GSFC's OMNI data set through 229 
OMNIWeb (https://omniweb.gsfc.nasa.gov/). The average and the variance were computed 230 
according to equation (16) and (17), respectively, and the lifetime 𝜏𝜏 was determined by fitting the 231 
autocorrelation function to an exponential decay. The results are summarized by boxplots 232 
parameterized by the 𝐾𝐾𝐾𝐾 index and they are presented Figure 1.   233 
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 234 
Figure 1: Magnitude of the three radial diffusion components that depend on the statistical 235 

characteristics of the magnetopause location, A) −10𝑙𝑙𝑙𝑙𝑙𝑙10�𝒷𝒷��, B) 𝑙𝑙𝑙𝑙𝑙𝑙10 �𝒷𝒷′2������, and C) 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜏𝜏) 236 

(see text for definitions). The ends of the whiskers correspond to the minimum and maximum 237 
values, the bottoms and the tops of the boxes are the lower and upper quartiles, and the bands 238 
inside the boxes are the medians. The sample window size chosen for the computations is one hour 239 
(𝑇𝑇 = 1ℎ). 240 
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 241 
The Figure 1 suggests that the magnitude of radial diffusion increases with the 𝐾𝐾𝐾𝐾 index both 242 
because the average magnetopause location decreases with 𝐾𝐾𝐾𝐾 (Fig. 1A) and because the 243 
fluctuations in magnetopause location increase with 𝐾𝐾𝐾𝐾 (Fig. 1B). On the other hand, the 244 
fluctuation lifetime does not seem to depend much on Kp (Fig. 1C). It is typically of the order of 245 
a few minutes (< 10 min). Thus, for particles with drift periods that are such that 𝛺𝛺 < 5 𝑚𝑚𝑚𝑚𝑚𝑚, i.e., 246 
for radiation belt particles below a few MeV (e.g. Schulz and Lanzerotti, 1974, p.13), the 247 
assumption 𝛺𝛺𝜏𝜏 ≪ 1 is typically valid, and the equation (11) is a good approximation of the 248 
equation (10). 249 
 250 

3.2. Effect of the Sample Window Size on the Quantification of Radial Diffusion 251 
 252 

The statistical characteristics of the magnetopause location presented Figure 1 were determined  253 
using a sample window of one hour (𝑇𝑇 =  1ℎ). To what extent does the choice of a sample window 254 
size affect the statistical characteristics of the magnetopause location, as summarized by 𝐹𝐹𝑇𝑇, thus, 255 
the magnitude of radial diffusion? To investigate this question, the function 𝐹𝐹𝑇𝑇 was computed for 256 
10 different sample window sizes over the year 2013: 𝑇𝑇 =257 
[6 𝑚𝑚𝑚𝑚𝑚𝑚, 12 𝑚𝑚𝑚𝑚𝑚𝑚, 18 𝑚𝑚𝑚𝑚𝑚𝑚, 30 𝑚𝑚𝑚𝑚𝑚𝑚, 1 ℎ, 2 ℎ, 3 ℎ, 5 ℎ, 10 ℎ, 24 ℎ]. The results are summarized by 258 
boxplots, and they are displayed Figure 2.  259 
 260 
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 261 
Figure 2: Magnitude of the parameter, 𝐹𝐹𝑇𝑇, which quantifies the effect of statistical characteristics 262 
of the magnetopause location on radial diffusion, as a function of the sample window size chosen 263 
for the statistical computations, 𝑇𝑇. The ends of the whiskers indicate the minimum and maximum 264 
values, the bottoms and the tops of the boxes are the lower and upper quartiles, and the bands 265 
inside the boxes are the medians. 266 
 267 
The Figure 2 shows that the magnitude of 𝐹𝐹𝑇𝑇 decreases as the window size, 𝑇𝑇, decreases. This is 268 
because the average magnetopause location fits better the instantaneous value of the magnetopause 269 
location as the window size 𝑇𝑇 decreases. Thus, the variance decreases as the window size decreases 270 

(𝒷𝒷′2����� = 0 for the asymptotic case in which 𝑇𝑇=0). A linear interpolation of 𝐹𝐹𝑇𝑇 as a function of 271 
𝑙𝑙𝑙𝑙𝑙𝑙10(𝑇𝑇) yields that, on average: 272 
 273 

 
𝑑𝑑𝐹𝐹𝑇𝑇

𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(𝑇𝑇))
≅ 1.5 (18) 

 274 
with a standard deviation of 0.4.  275 
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 276 
When the objective is to quantify radial diffusion, the selected window size, 𝑇𝑇, must be consistent 277 
with the adiabatic invariant theory of magnetically trapped particles. Indeed, field fluctuations that 278 
evolve on timescales longer than the trapped population drift period conserve the third adiabatic 279 
invariant. On the other hand, asymmetric field fluctuations with characteristic times comprised 280 
between the bounce and the drift period violate the third invariant, driving radial diffusion (e.g., 281 
Northrop, 1963). Thus, the window size, 𝑇𝑇, must be such that all field fluctuations that are on 282 
timescales longer than the drift period are stored in 𝒷𝒷� while field fluctuations that are between the 283 
bounce and the drift period are in 𝒷𝒷′. Given the one-minute time resolution of the input signal, the 284 
characteristic time for the variation of the field is always greater than the bounce period. 285 
Nonetheless, the window size, 𝑇𝑇, needs to be long in comparison with the trapped population drift 286 
period in order to compute the average, 𝒷𝒷�: 287 
 288 

 𝑇𝑇 =
2𝜋𝜋𝜋𝜋
Ω

 (19) 

 289 
where 𝑘𝑘 is a constant greater than one: 𝑘𝑘 > 1. As a result, 𝐹𝐹𝑇𝑇 is in fact dependent on the trapped 290 
population drift frequency. Indeed, combining equations (18) and (19) yields: 291 
 292 

 
𝑑𝑑 𝐹𝐹𝑇𝑇

𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(Ω))
≅ −1.5 (20) 

 293 
As the kinetic energy increases, the drift frequency increases, thus, the magnitude of 𝐹𝐹𝑇𝑇 decreases. 294 
In other words, the particle’s drift motion is less and less sensitive to field fluctuations as the drift 295 
velocity increases (the discrepancies between 𝒷𝒷� and 𝒷𝒷(𝑡𝑡) decrease as the drift period - thus 𝑇𝑇 - 296 
decreases). Therefore, one should ideally tailor the computation of equation (9) according to the 297 
drift frequency. Yet, the expected dependence of radial diffusion on drift frequency is relatively 298 
weak. Indeed, for Ω𝜏𝜏 ≪ 1, combining equation (20) and equation (14) yields 299 
 300 

 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10)) 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(Ω))⁄ ≅ 0.5 (21) 

 301 
Thus, the magnitude of radial diffusion 𝐷𝐷𝐿𝐿𝐿𝐿 increases by about a factor 3 when the drift frequency 302 
increases by a factor 10. In comparison, for Ω𝜏𝜏 ≫ 1, assuming that the drift frequency dependence 303 

of 𝐹𝐹𝑇𝑇 comes primarily from the variance, i.e., 𝑑𝑑𝑑𝑑 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(Ω))⁄ ≈ 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10 �𝒷𝒷′2������)/𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(Ω)): 304 

 305 
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 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10)) 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10(Ω))⁄ ≅ −1.5 < 0 (22) 

 306 
Thus, there is a cutoff in radial diffusion efficiency once the drift period becomes smaller than the 307 
fluctuation lifetime. Assuming that the order of magnitude obtained equation (22) is valid, the 308 
magnitude of radial diffusion 𝐷𝐷𝐿𝐿𝐿𝐿 decreases by about a factor 30 when the drift frequency increases 309 
by a factor 10. 310 
 311 
While the selected window size needs to be consistent with adiabatic invariant theory, it also needs 312 
to be consistent with the mathematical assumptions underlying the model. In particular, field 313 
fluctuations must be regarded as realizations of a stationary process within the time interval 314 
considered. Such conditions are most likely achieved during magnetically quiet times, and/or when 315 
considering a relatively small time interval. Since the latter is not necessarily consistent with 316 
equation (19), this poses a problem to radial diffusion quantification. 317 
 318 
In the following, it is proposed to work with a sample window size of one hour: 𝑇𝑇1ℎ = 1 ℎ. A one-319 
hour window is small enough to render radial diffusion variability with magnetic activity (as 320 
illustrated Figure 1) and to expedite the computations. It is also large enough to maintain sufficient 321 
data points to perform the required statistical analyzes. The average proportional relationship 322 
between the function, 𝐹𝐹𝑇𝑇, and the logarithmic of the drift frequency, 𝑙𝑙𝑙𝑙𝑙𝑙10(𝛺𝛺), is used to evaluate 323 
the appropriate value of 𝐹𝐹𝑇𝑇 from 𝐹𝐹1ℎ. Combining equations (14), (19) and (20) yields: 324 
 325 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10) = 𝐹𝐹1ℎ + 1.5 𝑙𝑙𝑙𝑙𝑙𝑙10(2𝜋𝜋𝜋𝜋 𝑇𝑇1ℎ⁄ ) + 0.5 𝑙𝑙𝑙𝑙𝑙𝑙10(Ω) + 𝐶𝐶 (23) 

 326 
for 𝛺𝛺 < 5 𝑚𝑚𝑚𝑚𝑚𝑚. Given the uncertainty in hands, the choice of the constant 𝑘𝑘 > 1 is unimportant. 327 
It is set to 𝑘𝑘 = 10 in the remainder. The radial diffusion coefficient is usually in [𝑑𝑑𝑑𝑑𝑑𝑑−1] while 328 
the angular drift velocity is usually in [𝑚𝑚𝑚𝑚𝑚𝑚]. As a result, a reformulation of the equation (23) is: 329 
 330 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10) = 𝐹𝐹1ℎ + 0.5 𝑙𝑙𝑙𝑙𝑙𝑙10(𝛺𝛺) + 2.9 (24) 

 331 
where 𝐷𝐷𝐿𝐿𝐿𝐿 is evaluated in [𝑑𝑑𝑑𝑑𝑑𝑑−1], 𝐹𝐹1ℎ is provided in [𝑙𝑙𝑙𝑙𝑙𝑙10(𝑚𝑚𝑚𝑚𝑚𝑚)], and 𝛺𝛺 is in [𝑚𝑚𝑚𝑚𝑚𝑚].  332 
 333 
 334 
4. Results and Comparison with Brautigam and Albert’s Empirical Formula 335 
 336 
The radial diffusion coefficients were computed for the year 2013 for a radiation belt population 337 
of angular drift velocity 𝛺𝛺 = 1 𝑚𝑚𝑚𝑚𝑚𝑚, following equation (24). The time series is represented in 338 
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the Figure 3 and it is compared to Brautigam and Albert’s estimates for electromagnetic radial 339 
diffusion. The comparison highlights a) the overall good agreement between the two times series, 340 
b) the greater variability of the radial diffusion coefficients determined by the solar wind 341 
immediate time history, and c) some limitations of the statistical model. For instance, Brautigam 342 
and Albert’s empirical formula has a lower threshold of 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿/𝐿𝐿10) = −9.325  during quiet 343 
times (𝐾𝐾𝐾𝐾 = 0). The existence of a lower threshold for radial diffusion is not physical, since there 344 
would be no radial diffusion (i.e., 𝐷𝐷𝐿𝐿𝐿𝐿 = 0) if the electromagnetic fields were perfectly stationary. 345 
On the other hand, the radial diffusion coefficients determined by the solar wind immediate time 346 
history can be smaller, in accordance with theoretical expectations. The results were also binned 347 
according to the 𝐾𝐾𝐾𝐾 index, and they are summarized in boxplots displayed Figure 4.  348 
 349 

 350 
Figure 3. Electromagnetic radial diffusion as a function of the day of the year (doy) in 2013. The 351 
radial diffusion coefficients determined as a function of the solar wind immediate time history are 352 
in black. The radial diffusion coefficients determined by Brautigam and Albert (2000)’s empirical 353 
formula (B&A) are in red. 354 
 355 
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356 
Figure 4. Statistical characterization of the electromagnetic radial diffusion magnitude for the year 357 
2013, as a function of the 𝐾𝐾𝐾𝐾 index, for a population of angular drift velocity 𝛺𝛺 = 1 𝑚𝑚𝑚𝑚𝑚𝑚. The 358 
ends of the whiskers indicate the minimum and maximum values, the bottoms and the tops of the 359 
boxes are the lower and upper quartiles, and the bands inside the boxes are the medians. The values 360 
were computed for the year 2013 according to equation (24), with a one-minute time resolution. 361 
 362 
A linear interpolation of the medians per 𝐾𝐾𝐾𝐾 index for the electromagnetic radial diffusion 363 
magnitude yields: 364 
 365 

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿 𝐿𝐿10⁄ ) = −9.309 + 0.377 × 𝐾𝐾𝐾𝐾  [𝑙𝑙𝑙𝑙𝑙𝑙10(𝑑𝑑𝑑𝑑𝑑𝑑−1)] (25) 

 366 
This interpolation is remarkably similar to the one obtained by Brautigam and Albert (2000) 367 
(equation (1)). The difference in the intercepts is < 1% while the slope as a function of Kp is only 368 
25% smaller than the one found by Brautigam and Albert. One reason for such similarity may be 369 
that both estimates rely on the same theoretical toy model for the electromagnetic fields. Yet, the 370 
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radial diffusion coefficients obtained by Lanzerotti and Morgan (1973) and Lanzerotti et al. (1978) 371 
were based on an analysis of magnetic field fluctuations measured by at ground level (at L=4) and 372 
at synchronous equatorial altitude (L=6.6). In these analyzes, the power spectrum of the 373 
fluctuations was fitted to a functional form (𝑃𝑃 ∝ Ω−𝑠𝑠, with 𝑠𝑠 between 1 and 3). On the other hand, 374 
the numerical evaluations proposed here rely on solar wind measurements, and the autocorrelation 375 
function is fitted to an exponential decay (equation (7)). Because 𝜏𝜏 is found to be very small, both 376 
fitting methods are usually equivalent: In both cases, the power spectrum decreases as ∝ Ω−2 over 377 
a large frequency range. 378 
The time series of the three parameters constitutive of 𝐹𝐹1ℎ together with the magnitude of 379 
𝑙𝑙𝑙𝑙𝑙𝑙10(𝐷𝐷𝐿𝐿𝐿𝐿 𝐿𝐿10⁄ ) computed for the year 2013 for a radiation belt population of angular drift 380 
frequency 𝛺𝛺 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 is accessible online (http://doi.org/10.5281/zenodo.3625265). 381 
  382 
 383 
5. Discussion 384 
 385 
The pros and cons of the method developed in this paper are summarized in the following. 386 
 387 
First, the method faces the same theoretical limitations as the ones underlying Brautigam and 388 
Albert’s formula for electromagnetic diffusion. Namely: It relies on an oversimplified 389 
electromagnetic field model (a “toy model”). Even when fitting the simplified Mead (1964)’s 390 
magnetic field formula to a basic external magnetic field model, such as the one developed by 391 
Tsyganenko (1989), discrepancies appear. There is also little doubt that the response of the 392 
magnetospheric fields to fluctuations in the magnetopause location is more complicated than what 393 
is actually described by the theoretical picture provided here. The proposed radial diffusion 394 
coefficients are also limited at both high and low L values. Indeed, at high 𝐿𝐿 values, the 395 
electromagnetic field is expected to be more distorted and more variable than predicted. In that 396 
context, the distinction between 𝐿𝐿 and 𝐿𝐿∗ is also necessary (e.g. Roederer & Lejosne, 2018). At 397 
low L values, electrostatic radial diffusion is probably very important (e.g., O’Brien et al., 2016; 398 
Selesnick et al., 2016), and yet such diffusion process is not taken into account here.  399 
 400 
Even so, the resulting coefficients binned as a function of the 𝐾𝐾𝐾𝐾 index display remarkable 401 
agreement an empirical law that is generally considered standard. Furthermore, the theoretical 402 
picture presented here provides physical insights on the origin of radial diffusion variability: radial 403 
diffusion increases as the 𝐾𝐾𝐾𝐾 index increases both because the magnetic field is more compressed 404 
(thus, the average asymmetry increases), and because it fluctuates more (thus, the variance of the 405 
asymmetry increases). The model also describes how electromagnetic radial diffusion varies with 406 
drift frequency. When the drift frequency increases, the part of the radial diffusion coefficient that 407 
explicitly depends on energy (third term equation (9)) increases, until it plateaus (for Ω𝜏𝜏 ≫ 1). 408 
The term that quantifies the effect of the statistical characteristics of the magnetopause, 𝐹𝐹𝑇𝑇 , is also 409 
indirectly controlled by drift frequency. Indeed, the signal decomposition into an average and a 410 
fluctuating part requires the definition of a reference. The reference, set by adiabatic invariant 411 
theory, is the drift period. Field variations that evolve on time scales greater than the drift period 412 
are part of the average (that is, they do not violate the third invariant), while field variations that 413 
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evolve on time scales shorter than the drift period constitute the fluctuating part of the signal. As 414 
the drift frequency increases, the average describes more and more precisely the signal 415 
instantaneous values, and the variance decreases. Thus, 𝐹𝐹𝑇𝑇 decreases as the drift frequency 416 
increases. As a result, there is a sweet spot in drift frequency at which radial diffusion is maximal, 417 
Ω𝑚𝑚𝑚𝑚𝑚𝑚. A derivation of equation (9) with respect to 𝑙𝑙𝑙𝑙𝑙𝑙10(Ω)  yields  Ω𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 0.6/𝜏𝜏. With a 418 
fluctuation lifetime, 𝜏𝜏, of the order of a couple of minutes, Ω𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 5 𝑚𝑚𝑚𝑚𝑚𝑚. Even so, for Ω𝜏𝜏 ≪ 1, 419 
as is typically the case for most radiation belt particles, the resulting dependence of 420 
electromagnetic radial diffusion on drift frequency is relatively weak (𝐷𝐷𝐿𝐿𝐿𝐿 ∝ ~Ω0.5). Such feature 421 
greatly simplifies radial diffusion quantification.  422 
In the most general case, radial diffusion is controlled by the asymmetry in the electromagnetic 423 
field fluctuations (e.g., Northrop, 1963; Lejosne et al., 2012). Thus, quantifying radial diffusion 424 
requires monitoring electromagnetic field fluctuations. While previous work attempted to monitor 425 
the asymmetry of the magnetic field at geostationary orbit (Lejosne et al., 2013), this new model 426 
presents the advantage of being operational. Leveraging a toy model for the fields, the asymmetry 427 
of the field is controlled by the magnetopause, whose location is a function of solar wind 428 
parameters. Interestingly enough, it is not the first time that the solar wind is chosen to drive radial 429 
diffusion (Li et al., 2001). From a technical standpoint, the advantage of working with such a 430 
simple model is that it highlights some of the challenges that need to be addressed to quantify 431 
radial diffusion accurately, regardless of the model complexity. In particular, this work highlights 432 
some of the difficulties related to the analysis of non-stationary field fluctuations. 433 
 434 
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