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Abstract

Repeating earthquakes have been found at many faults around the world, and they provide valuable information on diverse

faulting behavior at seismogenic depth. The Haiyuan fault is a major left-lateral strike-slip fault along the northeastern (NE)

boundary of the Tibetan Plateau. Two great earthquakes (1920 Haiyuan, 1927 Gulang) have occurred on this fault system, but

the section between the ruptures of the two earthquakes, also known as the Tianzhu seismic gap, remains unbroken. Shallow

creep has been observed from geodetic data at the eastern end of the seismic gap. However, the driving mechanism and depth

extent of shallow creep are not clear. Here we conduct a systematic search for repeating earthquakes in NE Tibet based on

seismic data recorded by permanent stations in ten years (2009-2018). Based on waveform cross-correlations and subsequent

relocations, we find several repeating earthquake clusters at Laohushan section. This is consistent with the shallow creep inferred

from the geodetic data, indicating repeating earthquakes can be driven by nearby aseismic slip. ˜300 repeaters were found within

clusters of intense seismicity near the rupture zones of the 1927 M8.0 Gulang and 2016 M6.4 Menyuan earthquakes. Relocation

of events in the cluster near the Gulang earthquake delineates two possible unmapped faults orthogonal to the Haiyuan fault. In

addition, we also identify several repeating earthquakes generated by mining activities with different waveforms and occurrence

patterns. Our study suggests that repeating earthquakes around the Haiyuan fault are mostly driven by postseismic relaxation

process associated with 1920 Haiyuan and 1927 Gulang earthquakes.
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 12 

Abstract: Repeating earthquakes have been found at many faults around the world, 13 

and they provide valuable information on diverse faulting behavior at seismogenic 14 

depth. The Haiyuan fault is a major left-lateral strike-slip fault along the northeastern 15 

(NE) boundary of the Tibetan Plateau. Two great earthquakes (1920 Haiyuan, 1927 16 

Gulang) have occurred on this fault system, but the section between the ruptures of 17 

the two earthquakes, also known as the Tianzhu seismic gap, remains unbroken. 18 

Shallow creep has been observed from geodetic data at the eastern end of the seismic 19 

gap. However, the driving mechanism and depth extent of shallow creep are not clear. 20 

Here we conduct a systematic search for repeating earthquakes in NE Tibet based on 21 

seismic data recorded by permanent stations in ten years (2009-2018). Based on 22 

waveform cross-correlations and subsequent relocations, we find several repeating 23 

earthquake clusters at the Laohushan section. This is consistent with the shallow creep 24 

inferred from the geodetic data, indicating repeating earthquakes can be driven by 25 

nearby aseismic slip. ~300 repeaters were found within clusters of intense seismicity 26 

near the rupture zones of the 1927 M8.0 Gulang and 2016 M6.4 Menyuan 27 

mailto:Yangfandeng@gig.ac.cn
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earthquakes. Relocation of events in the cluster near the Gulang earthquake delineates 28 

two possible unmapped faults orthogonal to the Haiyuan fault. In addition, we also 29 

identify several repeating earthquakes generated by mining activities with different 30 

waveforms and occurrence patterns. Our study suggests that repeating earthquakes 31 

around the Haiyuan fault are mostly driven by postseismic relaxation process 32 

associated with the 1920 Haiyuan and 1927 Gulang earthquakes. 33 

 34 

Plain Language Summary: Repeating earthquakes usually have a similar magnitude 35 

and occur at the same fault patch. Based on the ten years data in NE Tibet, we find 36 

~10 % of events in NE Tibet are repeating events. The repeating earthquakes at 37 

Laohushan section of Haiyuan fault mark the boundary between the creep and locked 38 

region. The repeating earthquakes at Menyuan follow the moderate-size mainshocks. 39 

The intense seismicity at the Gulang seismic zone reveals two possible hidden faults. 40 

Mining related repeaters have different waveforms from natural earthquakes and 41 

occur dominantly in afternoons, inferring that repeaters along the Haiyuan fault are of 42 

earthquake origin and indicators of faulting behavior. 43 

 44 

 45 

Key points:  46 

1. Repeating earthquakes are found at the creeping Laohushan section of the Haiyuan 47 

Fault. 48 

2. Intense seismicity at the Gulang seismic zone reveals two possible hidden faults.  49 

3. Repeating earthquakes along the Haiyuan Fault are likely driven by postseismic 50 

processes of large earthquakes. 51 
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 52 

 53 

Introduction 54 

Repeating earthquakes (also known as repeaters) are families of seismic events 55 

generated by repeated loading and failure of a single fault patch (e.g., Vidale et al., 56 

1994; Nadeau et al., 1995). Because they are typically driven by aseismic slow slip 57 

surrounding them (Beeler et al., 2001), repeaters provide new insight into diverse 58 

fault slip behavior at depth, which is usually difficult to characterize from surface 59 

observations alone. These include postseismic afterslip, triggered creep and eposodic 60 

slow slip events, and steady fault creep during interseismic period (Uchida and 61 

Bürgmann, 2019; Uchida, 2019). In addition, repeating earthquakes can be used to 62 

quantify temporal changes of seismic velocities (e.g., Poupinet et al., 1984; Schaff 63 

and Beroza, 2004; Rubinstein and Beroza, 2004; Peng and Ben-Zion, 2006) or 64 

seismic scatterers at depth (Niu et al., 2003; Taira et al., 2009). 65 

Repeating earthquakes was first identified in Central California along the 66 

Calaveras Fault (Vidale et al., 1994) and the Parkfiled section of the San Andreas 67 

Fault (Nadeau et al., 1995). Since then, they have been found on major plate boundary 68 

faults elsewhere around the world, such as the Japan trench (e.g. Igarashi et al., 2003; 69 

Uchida et al., 2003), Taiwan (Chen et al., 2007), Tonga (eg. Yu, 2013), Costa Rica 70 

(Yao et al., 2017), and Turkey (Peng and Ben-Zion, 2005, 2006). There are also 71 

increasing reports on repeating earthquakes in intraplate settings. For example, 72 

repeaters have been found in seismic zones in the central United States (Bisrat et al. 73 

2012). Based on cross-correlating of regional seismic waveforms, Schaff and 74 
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Richards (2004) found that 10% of seismic events in and around China are repeating 75 

earthquakes (with no more than 1 km from each other). In addition, Li et al. (2007) 76 

found repeaters in eastern China along the aftershock zone of the 1976 M7.6 77 

Tangshan earthquake, and Li et al. (2011) identified repeaters in the Longmen Shan 78 

Thrust Fault zone along the rupture zone of the 2008 Mw7.9 Wenchuan earthquake. 79 

Liu et al. (2019) found the repeating earthquake clusters in the aftershock zone of the 80 

2016 Ms6.4 Menyuan earthquake along the northeastern (NE) margin of the Tibetan 81 

Plateau.  82 

The Haiyuan fault (HYF) is a major active left-lateral strike-slip fault along the 83 

NE edge of the Tibetan Plateau (Figure 1). The western and central sections include 84 

the Lenglengling fault (LLLF), Jinqianghe fault (JQHF), Maomaoshan fault (MMSF), 85 

Laohushan fault (LHSF), and the eastern section connects with the Liupanshan fault 86 

(LPSF) at Madongshan (MDS). Several large earthquakes occurred along the Haiyuan 87 

fault system in the past, including the 1920 M7.8-8.3 Haiyuan (Liu-Zeng et al., 2015), 88 

the 1927 M~8 Gulang, the 1990 Ms6.2 Jingtai and the 2016 Ms6.4 Mengyuan 89 

earthquakes. However, there is not yet the consensus of the slip rate along the HYF. 90 

Based on the ages of fault-related, scarp-derived colluvial wedges, Zhang et al. (1998) 91 

obtained a slip rate of 8 ± 2 mm/yr along the eastern section of the HYF. Based on 92 

offset geomorphic features and age constraints, Li et al. (2009) inferred a slip rate of 93 

4.5 ± 1.0 mm/yr on the same section. However, Lasserre et al. (1999) yielded a high 94 

slip rate (12 ± 4 mm/yr) in the middle section, which was recently re-evaluated and 95 

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lasserre,+C
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updated to be 5-9 mm/yr (Yao et al., 2019). 96 

At the east end of the middle Laohushan section, shallow creep has been 97 

observed from geodetic data and is estimated to be 5 ± 1 mm/yr (Jolivet et al., 2012, 98 

2013), close to or slightly smaller than the geologic rate. However, creep in this 99 

section is poorly understood as compared to other known creeping faults of fault 100 

sections around the world (e.g., Harris, 2017). For example, the depth extent of the 101 

creep is not well constrained. In addition, it is unclear whether creep on this section of 102 

the HYF is a transient phenomenon following the 1920 Haiyuan mainshock, or 103 

reflects a long-term slip behavior (Chen et al., 2018).  104 

In order to better understand the seismicity pattern and fault slip behaviors along 105 

the HYF, we conduct a systematic search for repeating earthquakes in this region 106 

based on ten years of microseismic data. Specifically, we identify repeating 107 

earthquake pairs using waveform cross-correlations, and then we group the pair into 108 

clusters. Finally, we use these repeating clusters to better understand the aseismic 109 

process and slip rates along the HYF and other faults in NE Tibet. 110 

 111 

Data and Methods 112 

Within the following geographic boundaries (longitudes between 96-107°E, 113 

latitudes between 36-41°N), there are more than 25,000 M≥1 events from 2009 to 114 

2018 based on the regional catalog archived by the China Earthquake Networks 115 

Center (CENC) (Figure 1). The earthquakes are mostly distributed along the HYF and 116 

other major faults/boundaries in this region, such as near the eastern end of the ATF, 117 
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and the western boundary of the Ordos basin. We obtain raw seismogram data (100 118 

Hz sampling rate) recorded by 51 permanent stations from the Data Management 119 

Centre of the China National Seismic Network (Zheng et al. 2010). These include 44 120 

stations deployed before 2009, and 7 stations deployed at the end of 2014 (Figure S1).  121 

Hypocenter location and waveform similarity are two main methods to identify 122 

repeating earthquakes (Uchida, 2019). Here we use the later one because it is the most 123 

frequently used method and we can relocate the events afterwards. Our analysis 124 

procedure includes the following six steps. First, we compute the P and S arrival time 125 

using the Taup program (Crotwell et al., 1999) according to a local velocity model 126 

(Deng et al., 2018; Table S1) modified from isap91 model (Kennett and Engdahl, 127 

1991). Because there are some hand-picked P and S phases in the catalog, we use 128 

them when available, and use the computed arrival times for the rest traces. We then 129 

apply a 2-16 Hz bandpass filter on the data, which is the predominant frequency range 130 

for microearthquakes (Uchida, 2019). Next, we perform a quality control on the raw 131 

data, based on the signal-noise-ratio (SNR). We use a 20-s window (5 s before the P 132 

wave) as the signal window, and the same 20-s window 25 s before the P wave as the 133 

noise window. We choose the data with the SNR higher than 4 and remove the rest 134 

seismograms with low SNRs.  135 

We then compute cross-correlations (CCs) among all M≥1 events beneath all 136 

stations, and identify repeating event pairs with locations less than 200 km apart with 137 

CC value above 0.80. Because the time windows are usually set to contain both P and 138 
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S phases to ensure the same P-S time and thus the same hypocentral distance (Uchida 139 

et al., 2003), here we choose 2 s before and 18 s after the P arrivals. The predicted P 140 

arrival may be not accurate due to the complicated velocity structure and inaccurate 141 

epicentral location, so we allow a maximum time shift of 5 s to obtain the highest CC 142 

between each waveform pair. Next, we group repeating pairs into clusters using an 143 

Equivalency Class (EC) algorithm (Peng and Ben-Zion, 2005; Press et al., 1986). 144 

When two pairs have a common event and meet a certain threshold (median CC value 145 

≥ 0.9 with number of at least 2 stations), we group them into the same cluster. Finally, 146 

we relocate the repeaters in each cluster using the Growclust program (Trugman et al., 147 

2017) based on the differential arrival times from waveform cross-correlations. 148 

Based on the identified repeaters, we can estimate their cumulative slip according 149 

to their local magnitudes ML. The individual slip d can be estimated by assuming a 150 

standard crack model  151 

𝑑 =
𝑀0

𝜇𝜋𝑟2
                (1)  152 

where r is the rupture size, and Mo is the seismic moment. The rupture size r can be 153 

obtained from (Kanamori and Anderson, 1975) 154 

𝑟 = (
7𝑀0

16∆𝜎
)1/3               (2) 155 

where  is the static stress drop. The seismic moment Mo can be estimated from the 156 

local magnitude ML with the following equation (Abercrombie, 1996) 157 

log(𝑀0) = 9.8 +𝑀𝐿              (3) 158 

Finally, the average slip rate is computed from dividing the cumulative slip with 159 

https://www.sciencedirect.com/science/article/pii/S0040195119302537#bb0215
https://www.sciencedirect.com/science/article/pii/S0040195119302537#bb0265
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the total duration of the repeating cluster (Li et al., 2011). 160 

While the local magnitudes ML can be obtained from the CENC catalog, the 161 

stress drops  for these events are not available. Hence, we use nominal stress drop 162 

values of 1, 5 and 10 MPa, respectively (Li et al., 2011).  163 

 164 

Results 165 

In total, we identify 929 clusters (~2,500 events) in NE Tibet with at least two 166 

repeaters, which accounts for ~10% of earthquakes in this region. Figure 2 shows the 167 

spatial distribution of all repeating clusters, together with the background seismicity. 168 

Even though the repeaters are widely distributed, clusters with more than 8 events are 169 

only found at certain regions along and outside of the HYF. In the following sections, 170 

we discuss them in more detail. 171 

1) The creeping section of the HYF (middle Laohushan section) (region 1) 172 

We find the 31 repeating earthquakes within 12 clusters along the LHSF, which is 173 

in the central section of the HYF (Figure 3). From the map view, the repeaters are 174 

mostly located around 103.7°E, to the west side of the peak creep region as reported 175 

by Jolivet et al. (2013). 87 % and 94 % repeaters have the depth shallower than 10 km 176 

before and after relocation, respectively. Figure 4 shows an example of waveforms 177 

recorded at station GS.JDT for the repeating earthquake cluster with 8 events, which 178 

occurred from 2013 to 2017. The waveforms show high similarity from the P and S 179 

waves to the coda waves, and their magnitudes are similar, indicating that they likely 180 
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rupture the same fault patch at depth.  181 

Between the analyzed time period (2009-2019), a total of four events with 182 

moment magnitude Mw≥4 occurred in this region, and two of them have focal 183 

mechanisms estimated with the gCAP method (Cui et al., 2019). If we include three 184 

more events listed in the global CMT (GCMT) catalog, four of them have strike-slip 185 

focal mechniams and the other one (2009 M4.3) is a thrust event. We observe an 186 

increasing occurrence of repeating events (as well as background events) following 187 

the 2014/11/14 M4.9 and 2015/07/15 M4.0 strike-slip events. No obvious change in 188 

repeating earthquake (and background event) was found following the 2009/10/27 189 

M4.3 thrust and 2018/05/26 M4.1 event (focal mechanisms not determined). 190 

Table S2 summarizes the estimated slip rates for 6 repeating clusters along the 191 

LHSF with three nominal stress drop values. For the cluster with number of events, 192 

the corresponding slip rates with 1, 5 and 10 MPas stress drops are 0.77, 2.25, and 193 

3.58 mm/yr, respectively. If we take the results with 5 MPa for later comparison with 194 

results along the Wenchuan aftershock zone by Li et al. (2011), the average slip rate of 195 

these repeating earthquakes is 2.25 ± 2.24 mm/yr.  196 

 197 

2) Aftershock zone of the 2016 Menyuan earthquake (region 2) 198 

A strong earthquake with a magnitude of Ms6.4 occurred at Menyuan, Qinghai 199 

Province of China at 2016/01/21, close to the LLLF at the western edge of the HYF. 200 

In addition to this event, several moderate-size earthquakes, such as the 1986 M5.4, 201 
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1987 M6.5, 1991 M5.2, and 2013 M5.3 earthquakes, also occurred in this region (Li 202 

et al., 2016). Based on the matched filter detection and relocation of early aftershocks, 203 

Liu et al. (2019) inferred that the 2016 Mengyuan mainshock occurred on a steeply 204 

dipping secondary fault rather than the major LLLF. This interpretation is consistent 205 

with the geodetic and geological observations (Li et al., 2016). Liu et al., (2019) also 206 

found 26 repeating clusters (~172 events) in the aftershock zone of the Mengyuan 207 

mainshock.  208 

From ten years of seismic data, we identify 81 events within 37 clusters in this 209 

region (Figure 5). Most of them occurred following the 2016 Ms6.4 mainshock. A 210 

subtle increase of repeating events is also observed after the 2016 M4.7 and 2017 211 

M4.1 events (likely aftershocks of the Ms6.4 mainshock), but not following the 2013 212 

M5.3 event. Because repeating aftershocks are mostly driven by afterslip (Schaff and 213 

Beroza, 2004; Peng et al. 2005), their recurrence times increase following the 214 

Mengyuan mainshock (Liu et al. 2019). Hence we do not compute their cumulative 215 

slip and average slip rate in this region. 216 

 217 

3) Gulang seismic zone, north of the HYF (region 3) 218 

We found 210 repeating earthquakes (75 clusters) that occurred in the Gulang 219 

seismic zone near the epicenter of the 1927 Gulang earthquake (Figure 6). From the 220 

map view, these repeating earthquakes are located between the strike-slip HYF in the 221 

south and the south-dipping Huangcheng-Shuangta fault (HC-STF) in the north. The 222 
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repeating earthquakes are within the clusters of intensive background seismicity that 223 

deneate two nearly N-S striking features. But there are no mapped faults on the 224 

surface. These repeating earthquakes occurred every year from 2009 to 2018. We find 225 

that repeating earthquake rates increased after the 2011/02/22 M4.1 event, 2014/02/22 226 

M 4.5 event and 2014/03/12 M 4.1 event. In comparison, some repeating clusters are 227 

not related with any moderate-size earthquakes. For example, 10 repeating 228 

earthquakes occurred in a tight cluster between 2013/07/03 and 2013/07/04 with very 229 

short occurrence intervals (marked as C3 in Figure 6). Similar repeating clusters occur 230 

on 2009/06/21 (C1), 2012/06/24 (C2), and 2017/06/08 (C4). Since these sequences do 231 

not have a clear moderate-size mainshock (earthquakes with M≥4, Figure 6), they 232 

may be considered as earthquake swarms (Vidale and Shearer, 2006). 233 

 234 

4) Mining related repeaters 235 

In the CENC catalog, there are 332 marked mining explosions at the boundary 236 

between Neimenggu and Ningxia Provinces (39.0-39.2°N, 105.95-106.15°E. Marked 237 

as region 5 in Figure 2). Because mining explosions almost occur in the same position, 238 

the corresponding seismic waveforms have very high similarities and can be detected 239 

as repeaters in this study. In our study region we find 136 possible repeating events 240 

within 25 clusters that are likely mining related.  241 

We use the following evidence to confirm these events are likely related to 242 

mining activities. First, some events listed in the repeating clusters are marked as 243 
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mining explosion in the CENC catalog. Second, the local times of these events have 244 

peaks in the afternoon instead of a uniform distribution (Figure 7), which is consistent 245 

with the expected mining explosion schedule (e.g., Ruan et al., 2017). Third, we can 246 

identify possible mining related images with Google Map in this region (Figure 8). 247 

Finally, the event magnitudes are tightly clustered (Figure 9), and there are no M>4 248 

events in this region. 249 

In addition to this region, we also find three other regions (regions 6-8 in Figure 2) 250 

with possible mining explosions. Compared with clear P and S arrivals for regular 251 

earthquakes, explosion-generated waveforms have different phases (Figures 3 and 9). 252 

We note that the first few cycles of the P waves are not quite the same among these 253 

regions (Figure 9), which may indicate different styles of explosions (e.g., delayed 254 

versus single fire) (Stump et al., 2002), as well as possible structural difference.  255 

There are also some repeating events in other places, such as MDS that is marked 256 

as region 4 in Figure 2. If there are no M>4 events and no marked surface fault, we 257 

generally consider them as possible mining explosions.  258 

 259 

Discussion 260 

1. The characteristics of repeating earthquakes at LHSF 261 

In this study, we identified 12 clusters with 31 repeating events along and near the 262 

Laohushan section of the HYF, where surface creep has been identified (Jolivet et al., 263 

2013). As mentioned before, it is still not clear what is the cause of creep in this 264 
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region. There is some evidence for the surface-breaking rupture of paleo-earthquakes 265 

in this section. In addition, the cumulative slip offset in this region is similar to 266 

non-creeping brittle faults (Chen et al., 2018). Based on these observations, Chen et al. 267 

(2018) inferred that either the fault is capable of switching between creeping and 268 

brittle faulting over time, or the fault is partially creeping, capable of both creeping 269 

and surface-rupturing brittle faulting. In the second possibility, the creep on the 270 

Laohushan section is a shallow phenomenon, with the fault remaining locked at depth, 271 

similar to the Ismetpasa segment of the North Anatolian fault in Turkey (Ozener et al., 272 

2010; Karabacak et al., 2011; Kaneko et al., 2013) and the Hayward fault in northern 273 

California (Simpson et al., 2001; Schmidt et al., 2005). 274 

Based on an assumed stress drop of 1, 5 and 10 MPas (Li et al., 2011), we 275 

computed the cumulative slip and slip rate of the repeating earthquakes in this region. 276 

We found that the largest slip rate is 6.6 mm/yr and the average slip rate is 2.25 ± 2.24 277 

mm/yr. Although with large uncertainties, our estimated slip rate is less than the 278 

shallow creep rate of ~5 mm/yr from InSAR observations (Jolivet et al., 2013) and 279 

geological rate of 5-9 mm/yr (Yao et al., 2019). 280 

 Our estimation of slip rate based on repeating clusters has several limitations. 281 

First, we only take the M≥1 events into account. Hence, seismic slip released by 282 

events with smaller magnitudes is not included. Second, the M≥1 events catalog may 283 

be incomplete, which could result in a biased estimation of slip rate. Finally, it is 284 

possible that some asperities creep at interseismic time periods (Beeler et al., 2001). 285 
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Hence, what we estimate here can be considered as the lower bound of the actual slip 286 

rate, although we do not expect to observe several folds increase in the slip rate.  287 

After the relocation, the repeaters are mostly located between 4-8 km depth 288 

(Figure 10), which is below the inferred depth of shallow creep (Jolivet et al. 2013). 289 

In addition, these repeaters occurred to the west of the peak creep observed from 290 

InSAR observation (Jolivet et al. 2013). Our observation suggests that the 291 

geodetically observed creep is constrained at shallow depth, while faults at deeper 292 

depth remain locked. Hence, these repeating earthquakes likely marked the boundary 293 

between the creep and locked region, similar to the Parkfield section of the San 294 

Anderas Fault (Nadeau and McEvilly, 1999, 2004; Lengline and Marsan, 2009), the 295 

Morgan Hill section of the Calaveras Fault (Rubin, 2002; Schaff et al., 2002; Peng et 296 

al., 2005), as well as the Hayward Fault (Bürgmann et al., 2000; Shirzaei et al., 2013). 297 

This is also compatible with the observation of earthquake swarms driven by shallow 298 

aseismic slip in Salton Trough, California (Lohman and McGuire, 2007), and 299 

anticorrections between afterslip and aftershocks (including repeating earthquakes) 300 

following the 2012 M7.6 Nicoya, Costa Rica, earthquake (Hobbs et al., 2017; Yao et 301 

al., 2017). These studies suggest that while microseismicity (including earthquake 302 

swarms and repeating earthquakes) can be driven by nearby aseismic slip, they likely 303 

occur in slightly different regions, indicating varying frictional behavior along dip and 304 

strike directions.  305 

Considering that the creeping Laohushan section on the HYF is located 306 
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immediately to the west of 230-km surface rupture of the 1920 Haiyuan M7.8 307 

earthquake, Chen et al. (2018) speculated that long-term post-seismic deformation 308 

following the 1920 Haiyuan mainshock might have a heightened effect on creep rate 309 

observed recently. The creeping section is also located at the eastern end of the 310 

over-200 km long “quite” seismic gap, known as the Tianzhu gap (Gaudemer et al., 311 

1995). Hence, the Laohushan section is somewhat similar to the creeping section of 312 

the San Andreas Fault from Parkfield to Hollister in Central California, which was 313 

sandwiched between the 1857 Fort Tejon and 1906 San Francisco earthquakes. 314 

However, the creeping section of the Haiyuan fault is only 35 km (Jolivet et al. 2012), 315 

much shorter than the ~150 km length for the San Andreas Fault. While the creeping 316 

section is generally considered as ‘barrier’ to seismic ruptures, Noda and Lapusta 317 

(2013) demonstrated that dynamic earthquake ruptures (combined with co-seismic 318 

weakening) can break through long portions of creeping faults, indicating the 319 

possibility a total rupture on long strike-slip faults such as the San Andreas or 320 

Haiyuan Faults. 321 

 322 

2. The implication of intense seismicity at the Gulang seismic zone 323 

Another region (region 3 in Figure 3) with intense background seismicity and 324 

repeating earthquakes is located near the epicenter of the 1927 Gulang earthquake, 325 

north of the HYF (Figure 6). Yang (2017) performed repeating earthquake detections 326 

in this region, and found similar patterns of repeating clusters. While there are no 327 
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corresponding faults mapped on the surface, relocated seismicity is concentrated 328 

along two linear zones trending NNW to nearly NS, indicating two possible hidden 329 

faults at depth (Figure 6). Such interpretation is consistent with the available focal 330 

mechanisms of moderate-size events in this region, which are predominately 331 

NNW-SEE trending right-lateral strike slip events.  332 

Wang (2018) named the intensive seismic activity in this region as “Gulang 333 

seismic window”, which are stress sensitive regions in the aftershock zones following 334 

large earthquakes. Because this region is spatially close to the rupture zone of the 335 

1927 M~8 Gulang earthquake, it is possible that they are extended aftershocks of the 336 

Gulang earthquake. This interpretation is consistent with general observations of 337 

long-tailed aftershock activity, especially in intraplate regions around the world (Ebel 338 

et al., 2000; Stein and Liu, 2009). Even at plate boundary regions, large earthquakes 339 

can potentially affect the deformation pattern and cycles of small to moderate-size 340 

earthquakes at nearby distances. For example, Ben-Zion et al. (1993) employed 3-D 341 

finite-element modeling to infer that the M6-type Parkfield earthquakes are driven by 342 

time-dependent loading from the 1857 M8 Fort Tejon earthquake. Hence, we argue 343 

that intensive earthquake swarms and repeating earthquakes in this region are likely 344 

driven by the relaxation process induced by the 1927 M~8 Gulang earthquake. 345 

Based on seismic velocity inversions, Deng et al. (2018) found that this region is 346 

mechanically weaker compared with the North China Craton in the north, and the 347 

central Qilian in the south. This is comparable with the earthquake swarms at Belo 348 
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Jardim, NE Brazil (Lopes et al., 2010), and the Salton Trough South California 349 

(Lohman and McGuire, 2007), which are likely occurred at the pre-existing weak 350 

zones.  351 

 352 

Conclusions  353 

Based on waveform cross-correlations and relocations, we systematically search 354 

for repeating earthquakes in NE Tibet with ten years of seismic data. The repeating 355 

earthquakes are found in certain regions. Laohushan section of HYF has several 356 

repeating earthquakes, whose epicenters are located to the west of the peak creep 357 

region indicated by InSAR observations. The slip rate estimated from the repeating 358 

earthquakes is slightly smaller than the geodetic and geological observation. However, 359 

our estimation is based on assumed constant stress drops and has several limitations, 360 

and hence could be considered as a lower bound for the slip rate. In addition, the 361 

relocated microearthquakes are mostly located deeper than 4 km, indicating the 362 

geodetically observed creep is constrained at shallow depth, while faults at deeper 363 

depth remain locked. Hence, we infer that these repeating earthquakes likely mark the 364 

boundary between the creep and locked region. We also find many repeating 365 

earthquakes following the 2016 M6.4 Menyuan mainshock. The intense seismicity at 366 

the Gulang seismic zone is aligned along two linear zones indicating two possible 367 

hidden faults. This region may be intrinsically weak and hence these repeating events 368 

can be driven by the long-term relaxation process of the 1927 Gulang earthquake. In 369 

javascript:;
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comparison, repeating events related to mining explosions in this region have 370 

different waveforms from natural earthquakes, and can be readily identified based on 371 

several diagnostic features. 372 

 373 

 374 
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 597 

Figure Caption   598 

Figure 1. (a) The geological setting, major faults (pink), microearthquakes (black dots) and station 599 

distribution (blue triangles) in NE Tibet. The inset marks the study region in a larger map of Tibet. 600 

(b) The focal mechanism of M>3.5 events and GPS velocity in this region. The focal mechanisms 601 

are obtained from Cui et al., (2019) and GCMT catalog. HYF: Haiyuan fault; XHF: Xianshuihe 602 

fault. The GPS data is sourced from Zheng et al., 2017, JGR. The fault geometry is obtained from 603 
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Taylor and Yin (2009).  604 

 605 

Figure 2. Distributions of clusters of repeating earthquake in NE Tibet. Events with white colors 606 

are background seismicity, and cluster with different numbers in each family is marked with 607 

different colors. The detailed information of marked faults is shown in Figure 1. 8 sub-regions are 608 

marked for subsequent analysis. 609 

 610 

Figure 3. (a) A map view showing the repeating earthquakes along the Laohushan section of the 611 

HYF. The M≥4 events are noted in the figure. The red color indicates the cluster with at least 8 612 

events. The blue box indicates the possible creep region (Jolivet et al., 2012). The black box marks 613 

the region for calculating the slip rate. The black square indicates the start point (0 km) on (b-c). 614 

(b) Along-strike distribution of the average, horizontal fault parallel, creep rate measured on 615 

average velocity fields determined by Jolivet et al. (2013). (c) Along-strike distance versus time 616 

for both background events and repeating clusters. The radius of circle corresponds to the 617 

magnitude/rupture size. The fault geometry comes from the airborne LiDAR (Liu-Zeng et al., 618 

2013). The focal mechanisms are obtained from Cui et al., (2019) and GCMT catalog.  619 

 620 

Figure 4. The vertical component waveforms recorded at station GS.YDT for a single cluster with 621 

8 members.  622 

 623 

Figure 5. (a) The map distribution of repeating earthquakes and background events around the 624 

aftershock zone of the 2016 M6.4 Mengyuan mainshock. (b) The time distribution of repeating 625 
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earthquakes and background events at Menyuan. The M≥4 events are noted in the figure. The fault 626 

geometry is from Liu et al. (2019). The blue color indicates the cluster with at least 4 events. The 627 

focal mechanisms are obtained from GCMT catalog. 628 

 629 

Figure 6. (a) The map distribution of repeating earthquakes and background events at the Gulang 630 

seismic zone. (b) The time distribution of repeating earthquakes and background events at the 631 

Gulang seismic zone. The M≥4 events are noted in the figure. The red color indicates the cluster 632 

has at least 8 events. The red arrows (C1, C2, C3, C4) indicate the possible triggered swarms. (c) 633 

The relocated background events (including repeaters) at the Gulang seismic zone. The events 634 

distribution before and after relocation within the shading region marked in (a) and (c). 635 

 636 

Figure 7. The histogram of the event time with local time zone at four regions with likely mining 637 

activities.  638 

 639 

Figure 8. The local topography is shown in Google Map at four regions with likely mining 640 

activities.  641 

 642 

Figure 9. The vertical component waveforms recorded at stations in four regions with clusters 643 

more than 8 events. 644 

 645 

Figure 10. The events (a) and repeaters (b) before and after relocation along and across strike in 646 

the Laohushan section of the HYF. The events located in the box are marked in Fig. 4. 0 km for 647 



31 
 

the along strike is the left boundary of the black box at HYF. The shading region indicates the 648 

possible creep region. The black dashed lines mark the changes before and after relocation. 649 

 650 

 651 
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