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Abstract

Both magmatic and tectonic processes contribute to the formation of volcanic continental margins. Such margins are thought

to undergo short-lived extension across a narrow zone of lithospheric thinning (˜100 km). New observations from the Eastern

North American Margin (ENAM) contradicts this hypothesis. With ˜64,000 km of 2D seismic data tied to 40 wells combined

with published refraction, deep reflection, receiver function and onshore drilling efforts, we quantified along-strike variations

in the distribution of rift structures, magmatism, crustal thickness, and early post-rift sedimentation on the shelf of Baltimore

Canyon trough (BCT), Long Island Platform and Georges Bank Basin (GBB) of ENAM. Results indicate that BCT is narrow

(80-120 km) with a sharp basement hinge and few rift basins. The Seaward Dipping Reflectors (SDR) there are ˜50 km

seaward of the hinge line. In contrast, GBB is wide (˜200 km), has many syn-rift structures, and SDR there are about 200 km

away from the hinge line. Early post-rift depocenters at the GBB coincide with thinner crust suggesting “uniform” thinning

of the entire lithosphere. Models for the formation of volcanic margins do not explain the wide structure of the GBB. The

different characteristics between BCT and GBB point to different modes of rifting. The BCT underwent little, or highly

localized, thinning prior to the volcanic phase. Thinning of the GBB segment was broader. These variations result from either

diachronous rifting, heterogenous rheology or a lateral asthenosphere temperature gradient.
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Abstract 20 

Both magmatic and tectonic processes contribute to the formation of volcanic continental 21 

margins. Such margins are thought to undergo extension across a narrow zone of lithospheric 22 

thinning (~100 km). New observations based on existing and reprocessed data from the Eastern 23 

North American Margin contradict this hypothesis. With ~64,000 km of 2D seismic data tied to 24 

40 wells combined with published refraction, deep reflection, receiver function and onshore 25 

drilling efforts, we quantified along-strike variations in the distribution of rift structures, 26 

magmatism, crustal thickness, and early post-rift sedimentation under the shelf of Baltimore 27 

Canyon trough (BCT), Long Island Platform and Georges Bank Basin (GBB). Results indicate 28 

that BCT is narrow (80-120 km) with a sharp basement hinge and few rift basins. The Seaward 29 

Dipping Reflectors (SDR) there extend ~50 km seaward of the hinge line. In contrast, the GBB is 30 

wide (~200 km), has many syn-rift structures, and the SDR there extend ~ 200 km seaward of the 31 

hinge line. Early post-rift depocenters at the GBB coincide with thinner crust suggesting 32 

“uniform” thinning of the entire lithosphere. Models for the formation of volcanic margins do 33 

not explain the wide structure of the GBB. We argue that crustal thinning of the BCT was closely 34 

associated with late-syn rift magmatism whereas the broad thinning of the GBB segment 35 

predated magmatism. Correlation of these variations to crustal terranes of different compositions 36 

suggests that the inherited rheology determined the pre-magmatic response of the lithosphere to 37 

extension.  38 

1 Introduction 39 

Deep-rooted tectonic and magmatic processes accompany the extension and breakup of 40 

continents, leading to the formation of passive continental margins. The resultant rifted margins 41 

are broadly divided into volcanic and magma-poor margins (Fig. 1; e.g. Doré, & Lundin, 2015; 42 

Franke, 2013; Menzies et al., 2002; Mutter et al., 1988). The structures and petrological 43 

properties of these two archetype margins are described as dichotomic. Whereas, magma-poor 44 

margins usually consist of a wide zone of crustal necking, hyperextension and exhumation of 45 

lower crust and mantle rocks (Fig. 1B; e.g. Franke, 2013; Peron-Pinvidic et al., 2013; Reston, 46 

2009), volcanic margins are often described as having narrow zones of crustal thinning (<100 47 

km) adjacent to thick intrusive and extrusive magmatic additions (Fig. 1A; e.g. Franke, 2013; 48 

Lizarralde and Holbrook, 1997; Stica et al., 2014). 49 

The processes that thin the continental crust and mantle lithosphere giving rise in magma-50 

poor margins were extensively modelled in recent years (e.g. Brune et al., 2014, 2017; Huismans 51 

& Beaumont, 2011, 2014; Lavier & Manatschal, 2006; Peron-Pinvidic et al., 2013; Reston, 2009; 52 

Sutra et al., 2013). The formation of volcanic margins on the other hand, remains unsettled. 53 

Volcanic margins may result from heating of the upper mantle by either a plume head (White & 54 

McKenzie, 1989; White et al., 1987) or non-plume related processes (Kelemen & Holbrook, 55 

1995; McHone, 2000) such as continental insulation (Brandl et al., 2013; Anderson, 1982) or 56 

small-scale convection induced by sharp lithosphere necking (Mutter et al., 1988; King & 57 

Anderson, 1998). However, it is not clear whether the initial lithosphere thinning mechanisms 58 

leading to the formation of volcanic margins are distinct (e.g. Mutter et al., 1988; White & 59 

McKenzie., 1989) or are mostly similar to the mechanical rifting processes that form magma-60 

poor margins (Guan et al., 2019; Eldholm et al., 2000). It is widely accepted that the inherited 61 

structure and composition of the pre-rift lithosphere controls the deformation and thinning 62 

patterns at rifts and passive margins (e.g. Manatschal et al., 2015; Brune et al., 2017; Misra & 63 
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Mukherjee 2015). However, less is known about the role that inheritance plays during the 64 

formation of volcanic margins, as weakening by heating and intrusions might overwhelm the 65 

inherited rheological signal. 66 

We use an extensive set of seismic reflection and auxiliary data along the volcanic 67 

Eastern North American Margin (ENAM; Fig. 2) to constrain syn-rift crustal and lithosphere 68 

thinning patterns at a margin-wide scale. We show that: a) the width of the zone of crustal 69 

thinning varies along the margin. b) extensive (>200 km wide) crustal and lithosphere thinning 70 

predated volcanic breakup in the Georges Bank Basin (GBB) segment, contradicting some 71 

existing models for the formation of volcanic margins; c) rifting of the ENAM can be divided 72 

into pre-magmatic and magmatic rifting stages d) the distribution, width, and nature of pre-73 

magmatic thinning is controlled by the pre-rift rheology and e) magmatic rifting is accompanied 74 

by major strain localization and intense crustal thinning. 75 

1.1 Crustal structure 76 

The most pronounced characteristic of volcanic margins is the magmatic addition related 77 

to their latest stage of formation. These include a thick (<20 km) wedge of subaerially emplaced 78 

volcanic rocks, which were imaged on seismic reflection data as oceanward/seaward dipping 79 

reflectors (SDR) (Fig. 1B; Hinz, 1981; Mutter et al., 1982; Planke et al., 2000) and an intruded 80 

and/or underplated lower crust (e.g. Abdelmalak et al., 2017; Eldholm et al., 1995; Holbrook et 81 

al., 1992; Menzies et al., 2002; White et al., 1987). SDR emplacement occurs on top of seaward 82 

tilting blocks composed of intruded continental or oceanic crust (Stica et al., 2014; Geoffroy et 83 

al., 2005). Alternatively, they tilt as a response to flexural subsidence of gabbroic dikes that form 84 

their base (Mutter et al., 1982; Paton et al., 2017; Tian & Buck, 2019). The SDR transform 85 

seaward into an abnormally thick oceanic crust that gradually thins to typical oceanic thicknesses 86 

away from the continent (Menzies et al., 2002). In most volcanic margins, the transition from an 87 

unthinned continental crust to an igneous/oceanic crust occurs over relatively short distances (50-88 

100 km, indicated by the “Necking domain” in Fig. 1A; Ebinger & Casey, 2001; Franke, 2013; 89 

Paton et al., 2017; White & McKenzie, 1989; White et al., 1987). Nevertheless, volcanic margins 90 

might exhibit wider geometries where older rifting episodes predated volcanic breakup (Guan et 91 

al., 2019). Another phenomenon often associated with volcanic margins is the emplacement of 92 

large igneous provinces shortly before or during rifting (Menzies et al., 2002; White & 93 

McKenzie, 1989; Ziegler & Cloetingh, 2004).  94 

Magma-poor margins seldom include the magmatic components described above. 95 

However, they are associated with other unique characteristics such as hyperextended crust (<10 96 

km thick and composed of brittle hydrated crust), detachment faults and exhumed mantle rocks 97 

(Fig. 1B; Lavier & Manatschal, 2006; Manatschal, 2004; Sibuet et al., 1987). The along-dip 98 

extent of the thinned continental crust is usually wider than that found in volcanic margins and 99 

may reach up to 350 km (e.g. profile SMART 2 in Nova Scotia which appears at Wu et al., 100 

2006). 101 

 1.2 Modes of rifting 102 

The sequence of events leading to the formation of volcanic and magma-poor margins is 103 

also different. In a broad sense, the formation of magma-poor margins involves the breakup of 104 

the continental crust before the breakup of the mantle lithosphere (e.g. Reston, 2009), whereas 105 

rifting of volcanic margins is thought to involve the breakup of the mantle lithosphere before or 106 
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concomitantly with the total breaking of the crust (Franke, 2013).  Magma-poor margins often 107 

experience polyphase rifting and relatively low strain rates during their formation (<15 mm/year 108 

half extension rate, Lundin et al., 2014 and references therein). This slow and protracted rifting 109 

promotes a broad zone of crustal thinning (Reston, 2009 and references therein). The formation 110 

of volcanic margins, on the other hand, is associated with high strain rates (25-30 mm/year half 111 

extension, Schreckenberger et al., 2002; Hopper et al., 2003), increasing weakening of the 112 

lithosphere and strain localization toward the rift axis (Buck, 2004, 2006). 113 

A widely accepted model for the formation of the igneous material that characterizes 114 

volcanic margins, considers rifting over a mantle hotter than normal by at least 150ºC (White & 115 

McKenzie, 1989). The increased mantle temperature is attributed to the presence of a mantle 116 

plume under a continental rift (White & McKenzie, 1989; White et al., 1987) or to upper mantle 117 

convection (e.g. Anderson et al., 1992; Kelemen & Holbrook, 1995). This model treats the co-118 

occurrence of rifting and mantle heating as incidental, yet it requires both. Once the lithosphere 119 

has been thinned by a factor of ~5 it breaks, allowing melt to migrate to the surface. Part of the 120 

melt might not reach the surface and accumulate at the base of the crust (White & McKenzie, 121 

1989; White et al., 1987).  122 

Other models suggest convective partial melting under rifts as an explanation for melt 123 

production during the formation of volcanic margins (Mutter et al., 1988). These models do not 124 

necessarily require increased temperatures to produce melts. Rather, they require rapid and 125 

localized lithospheric thinning that promotes a sharp relief at the lithosphere-asthenosphere 126 

boundary under the rift (Mutter et al., 1988; Van Wijk et al., 2001). The asthenospheric material 127 

that rises into the region of thinned lithosphere is hotter than its surroundings. Lateral 128 

temperature and density differences drive small-scale convection under the rift, bringing more 129 

hot asthenosphere from below and increasing the generation of melts. (Simon et al., 2009; Van 130 

Wijk et al., 2001).  131 

Although the convective partial melting models outline an inverse cause-and-effect 132 

scenario to the one depicted by rifting over hotter than normal mantle models, both types of 133 

models predict margins with narrow zones of crustal and lithospheric thinning (Fig. 1A). The 134 

sharp lithosphere-asthenosphere boundary, a requisite for convective partial melting models, 135 

implies that the thinning must be limited to a narrow zone (~100 km; Mutter et al., 1988). 136 

According to White and McKenzie (1989), the presence of hot asthenosphere under a rift 137 

weakens the lithosphere and promotes strain localization toward the rift axis. If breakup is 138 

achieved, strain localization leads to the formation of a narrow margin. Later works further 139 

proposed that large quantities of magma generated during rifting over a heated mantle would 140 

intrude and heat the lithosphere, reducing the tensile stress required to split it (Buck, 2004, 141 

2006). This “magma-assisted rifting” mechanism was used to explain observations of minor 142 

crustal thinning coincident with large amounts of breakup magmatism at the east Africa rift 143 

system (Buck, 2006; Kendall et al., 2005). Recently, Geoffroy et al. (2015) proposed that two 144 

conjugate syn-volcanic crustal-scale detachment faults accommodate most of the crustal thinning 145 

at volcanic margins. The subsiding hanging walls of these faults accommodate extrusive flows 146 

(SDR), forming a relatively sharp hinge between the untinned and igneous crust (Stica et al., 147 

2014). 148 

Despite the considerable amount of research on the evolution of volcanic margins, the 149 

nature of crustal deformation, the processes that involve the pre-magmatic extension and the 150 

implication these have for the post-rift evolution of such margins, remain unclear. To investigate 151 
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these unresolved issues, the current study examines the ENAM. The ENAM is chosen due to its 152 

relatively continuous and well-constrained rifting phase, and the availability of recently released 153 

seismic and borehole data (Triezenberg et al., 2016). These data, coupled with the availability of 154 

modern interpretation and visualization software allow the documentation of along-margin 155 

variations in greater detail than was previously possible. We examine the syn- and post-rift 156 

evolution of the Baltimore Canyon Trough (BCT) and Georges Bank Basin (GBB) (Fig.2) and 157 

specifically, the extent and geometry of their crustal thinning and distribution of SDR. 158 

 159 

2 The Eastern North American Volcanic Margin 160 

The geology of the ENAM records two full Wilson cycles. The last cycle included the 161 

closure of the Iapetus and Rheic Oceans (e.g. van Staal et al., 2009) and the formation of the 162 

supercontinent Pangea between 420 Ma and 270 Ma (Thomas, 2006, and references therein). 163 

Late Triassic to Early Jurassic rifting of Pangea (e.g. Olsen, 1997; Withjack et al., 2012) was 164 

accompanied by the formation of a series of asymmetric rift basins (i.e. half-grabens, Fig. 2). The 165 

North American remnant of this rift system is bounded by the Appalachian Mountains to the NW 166 

and the continent-ocean boundary to the SE (roughly at the present-day continental slope, Fig.2; 167 

e.g. Leleu et al., 2016; Withjack et al., 2012). The basins accumulated a well-documented 168 

Triassic-early Jurassic syn-rift sequence (e.g. Leleu & Hartley, 2010; Olsen, 1997; Schlische, 169 

1992). The syn-rift sequence records the emplacement of an intense magmatic event that 170 

occurred at ~200 Ma known as the Central Atlantic Magmatic Province (CAMP; e.g. Hames et 171 

al., 2000; Marzoli et al., 1999, 2011, 2018; Nomade et al., 2007; Olsen, 1999; Olsen et al., 2003; 172 

Whiteside et al., 2007). Rift-basin subsidence in central North America ended soon after the 173 

CAMP magmatism (Withjack et al., 2012). Cessation of rifting was attributed to lithospheric 174 

breakup associated with the opening of the Atlantic Ocean. Estimates for the age of breakup 175 

range between 175 Ma (Klitgord & Schouten, 1986), to 190 Ma (Labails et al., 2010; Sahabi et 176 

al., 2004; Sibuet et al., 2012) to 200 Ma (Schettino & Turco, 2009). It was proposed that breakup 177 

was diachronous, starting at ~200 Ma in southern North America, advancing to central North 178 

America at 195-175 Ma (Withjack et al., 1998, 2012). Shuck et al. (2019) suggest that accretion 179 

of proto-oceanic crust occurred over an unbroken lithosphere starting at ~200 Ma. They claim 180 

that full lithospheric breakup was achieved at 175 Ma when normal seafloor spreading began. By 181 

the end of the rifting phase, post-rift thermal subsidence dominated the vertical motions on the 182 

continental margin (e.g. Sawyer, 1985; Steckler & Watts, 1978; Swift et al., 1987). 183 

The discovery of magmatic material, that was accreted during the latest stages of rifting 184 

and earliest seafloor spreading, led to the recognition of the volcanic nature of the ENAM 185 

(Austin et al., 1990; Holbrook & Kelemen, 1993; Holbrook et al., 1992; Holbrook et al., 1994; 186 

Keen & Potter, 1995; Kelemen & Holbrook, 1995; LASE, 1986; Lizarralde & Holbrook, 1997; 187 

Talwani et al., 1995; Tréhu et al., 1989). Holbrook and Kelemen (1993) correlated intrusive and 188 

extrusive bodies, recognized on several wide-angle seismic profiles along the margin, to a 189 

margin-parallel positive magnetic anomaly known as the East Coast Magnetic Anomaly (ECMA, 190 

Fig.2). Hence, magmatism was regional, spanning over ~2000 km from the Blake Plateau Basin 191 

to offshore southern Nova Scotia. This East Coast Margin Igneous Province (ECMIP) is 192 

comprised of an SDR wedge inferred to be extrusive basalt above its intrusive counterpart in the 193 

form of a high-velocity lower crust (Vp=~7.5 km/s). Wide-angle seismic data reveal that the 194 

continental crust thins rapidly seaward toward a point of convergence between the high-velocity 195 
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lower crust and SDR. Seaward of this point, the crust is entirely igneous (LASE, 1986; Tréhu et 196 

al., 1989). At the BCT, the maximum thickness of the igneous crust is 13-24 km (Talwani et al., 197 

1995). 198 

Models for the emplacement of ECMIP favor minor pre-breakup lithospheric thinning 199 

over an abnormally hot asthenosphere. A mantle plume was suggested as the source of excess 200 

heat (White & McKenzie, 1989). The plume was probably situated at the southern part of the rift 201 

system, near Florida (e.g. Wilson, 1997; Ruiz-Martínez et al. 2012). Other proposed heating 202 

mechanisms include continental insulation (e.g. Hole, 2015), edge-driven convection (McHone, 203 

2000) and slab delamination processes (Whalen et al., 2015). Kelemen and Holbrook (1995) 204 

suggested that the magma originated in partial melting of hotter-than-normal mantle (>1500ºC) 205 

under high pressure (>4 GPa). They proposed a scenario in which the lithosphere acted as a thick 206 

lid due to a minor amount of thinning until the final stages of rifting. Reprocessing of the dataset 207 

used by Kelemen and Holbrook (1995) led Talwani and Abreu (2000) to suggest that a 30 km-208 

thick continental crust juxtaposes an igneous crust of comparable thickness at the BCT. They 209 

inferred that crustal thinning was minimal and required high mantle temperatures. Farther south, 210 

under the Carolina Trough (Fig. 2), a similar crustal structure was observed and may also imply 211 

minor thinning prior to breakup (Tréhu et al., 1989). Since ECMIP rocks have not been sampled 212 

offshore, the exact age of the ECMIP and its relation to the CAMP are unresolved issues. Age 213 

estimates for the ECMIP are 172-179 Ma (Benson, 2003), 175 Ma (Klitgord & Schouten, 1986) 214 

and 190 Ma (Labails et al., 2010; Sibuet et al., 2012). Recently, Davis et al. (2018) suggested 215 

that ECMIP is the offshore continuation of CAMP and that its emplacement took between 6 to 216 

31 Myr, starting at ~201 Ma and ending between 195 to 170 Ma.  217 

Although the ENAM is volcanic from the Blake Plateau Basin in the south to the Scotian 218 

Basin in the north, previous studies have noticed that it is segmented. The segmentation is 219 

reflected in the location of the hinge zone, geometry of the rift basins, characteristics of the post-220 

rift unconformity, post-rift sedimentation, elastic thickness of the lithosphere and details of 221 

gravity and magnetic anomalies along the strike of the margin (Klitgord et al., 1988; Behn & 222 

Lin, 2000; Wyer & Watts, 2006). When suggesting an explanation for the along-strike 223 

heterogeneity of the ENAM, some of the cited studies emphasize allogenic factors such as 224 

sediment supply (Poag & Sevon, 1989) whereas others suggested autogenic controls such as rift-225 

related variations in lithospheric strength (Wyer and &, 2006). Works predating the recognition 226 

of the margin as volcanic explained the along-strike variations using rifting models that are more 227 

suitable for magma-poor settings (e.g. upper plate vs. lower plate, Klitgord et al., 1988). The 228 

current study aims at explaining these variations in the context of a volcanic margin. 229 

 230 

3 Data and Methods 231 

We used a comprehensive set of seismic reflection data acquired on the continental shelf 232 

and slope from the U.S.-Canada border to Cape Hatteras (Fig. 3; Table S1 Supporting 233 

information). The 64,000 km of 2D seismic profiles were acquired as 4147 lines using a variety 234 

of acquisition parameters during 23 cruises for industry and research from the 1970s to the 1990s 235 

(e.g. Benson & Doyle, 1988; Klitgord et al., 1988; Poag, 1991; Poag & Sevon, 1989; Schlee & 236 

Fritsch, 1982). The industry data are archived at the USGS National Archive of Marine Seismic 237 

Surveys (Triezenberg et al., 2016). Ca. 4000 km of the seismic data were reprocessed as part of 238 

an offshore CO2 sequestration evaluation project (Cumming et al., 2017; Fortin et al., 2018). 239 
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Forty offshore wells were incorporated (Fig. 3). Well data includes paleontological 240 

reports, check-shot records and geophysical well logs such as sonic and density logs (Table S3). 241 

The data were scanned and digitized as part of the offshore CO2 sequestration project (Cumming 242 

et al., 2017). 243 

A compilation of published results of wide-angle seismic, deep reflection seismic, and 244 

receiver function data helped constrain crustal thicknesses (Fig. 3, Table S2 supporting 245 

information). As part of this compilation, depth domain data were converted into two-way travel 246 

time (TWT) based on refraction results (Fig. 3, Table S2 supporting information). The domain 247 

conversion was done from depth to TWT and not vice versa for three reasons. First, most of the 248 

data used are in the TWT domain. Second, depth domain data are restricted to areas of thin or no 249 

sediment cover. This makes their domain conversion function more straightforward compared 250 

with most of the TWT data which are found in areas with thicker (>3 km) sediment cover. Third, 251 

the TWT domain allows the interpretation of crustal boundaries and large thickness changes 252 

using few assumptions and without having to rely on the choice of conversion velocities. For 253 

onshore depth data, an average of 6.3 km/s conversion velocity was used for the continental crust 254 

(Lizarralde & Holbrook, 1997; Pratt et al., 1988). A depth to Moho grid by Li et al. (2018) was 255 

used for constraining Moho onshore the northern BCT. The grid is the outcome of interpolation 256 

of multiple receiver function stations. For offshore data at the northern BCT, lithological 257 

boundaries (Figure 5 in LASE, 1986) were digitized following the interpretation of Talwani et al. 258 

(1995). Since no refraction data crosses the GBB and LIP, constraints on the crustal structure in 259 

these areas rely on reflection data alone.  260 

Magnetic anomaly data were used to constrain the ECMA and infer on its relation to the 261 

margin structure and especially the SDR. The EMAG2v3 (version 3) global magnetic anomaly 262 

grid used here incorporates satellite, ship, and airborne magnetic measurements and features a 2-263 

arc-minute resolution (Meyer et al., 2017).  264 

Depth to the base of the post-rift (BPR) beneath the coastal plain was constrained using a 265 

Digital Elevation Map by Pope et al. (2016). The map illustrates the structure of the base of the 266 

US North Atlantic coastal plain aquifer from New York in the north to the southern part of North 267 

Carolina in the south (Fig. 3). The coastal plain aquifer is composed of the post-rift sequence. 268 

Hence, the base of the aquifer separates pre-rift basement rocks and syn-rift strata below from 269 

the overlying post-rift sequence. The mapping of the base of the aquifer (post-rift) by Pope et al. 270 

(2016) relies on a regional amalgamation of results of previous studies, which defined the aquifer 271 

based on well-log data. The Pope et al. (2016) Digital Elevation Map was only used onshore and 272 

was smoothed using a 1 km by 1 km window. The map was converted to TWT using an average 273 

velocity of 2.5 km/s based on the average velocity observed for the equivalent depth interval at 274 

the wells located on the outer shelf (e.g. COST B-2, Smith et al., 1976). 275 

 276 

3.1 Seismic Interpretation  277 

Four horizons/horizon packages have been mapped to identify and understand the rifting, 278 

basement, and crustal geometries: top of basement, seaward dipping reflectors (SDR), the Moho, 279 

and BPR. An additional six post-rift horizons have been mapped and will be reported elsewhere.  280 

 281 

https://geomag.colorado.edu/magnetic-field-model-mf7.html
https://www.ngdc.noaa.gov/mgg/geodas/trackline.html
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3.1.1 Top Basement 282 

Since only one well, the COST G-1 well, penetrated pre-rift basement rocks in the study 283 

area, the main input for mapping the top basement is seismic reflection data. On seismic sections, 284 

the sediment-basement interface usually appears as a high amplitude reflector that separates 285 

continuous sedimentary reflectors above from discontinuous, chaotic reflectors below (Figs. 4, 5 286 

and 6). In several locations (e.g. the Long Island Platform and some rift basins at the GBB) along 287 

the margin, the upper part of the basement appears to be reflective as well. This phenomenon 288 

may be attributed to pre-rift sediments or metasediments or to ‘ghost’ artifacts, and it sometimes 289 

obscures picking the top of basement. Where those upper crust reflectors appear, the 290 

interpretation follows a high amplitude reflector that is onlapped by post-rift reflectors (Fig. 4). 291 

Inside rift basins, where dipping, divergent reflectors mark syn-rift strata (e.g. Klitgord et al., 292 

1988), the top of basement is regarded as the base of the divergent wedge (red line, Figs. 4B, 293 

5B). At the deepest parts of GBB and BCT the interpretation of top basement is ambiguous. To 294 

reduce the uncertainty in picking top basement at these areas, the results of published refraction 295 

surveys were used to guide the interpretation of reflection data (Figs. 3, 4 and 6). The absence of 296 

deep refraction data at the GBB makes the interpretation of its deepest part (>5 s TWT) less 297 

certain. 298 

 299 

3.1.2 Seaward Dipping Reflectors (SDR) 300 

Multichannel seismic reflection, together with published refraction data, were also used 301 

to map the extent of SDR along the continental shelf, slope and rise. The SDR were mapped 302 

based on their reflection geometry following the definition of Mutter et al. (1982). In addition, 303 

published wide-angle seismic data were used to constrain the interpretation and to increase data 304 

coverage. The TWT values of the top of the SDR in northern BCT were re-picked on published 305 

Expanded Spread Profile velocities (LASE, 1986). The top of the SDR was assigned to an 306 

increase in P-wave velocity from ~5.7 km/s to ~6.1 km/s. The corresponding TWT values were 307 

then placed on the USGS profile 25 at each Expanded Spread Profile location and compared to 308 

the seismic reflection data. Previous interpretations of the three EDGE profiles (Sheridan et al., 309 

1993) were digitized for mapping the top of the SDR at the southern BCT. The top SDR horizon, 310 

as recognized on both reflection and refraction data, was then traced regionally using seismic 311 

reflection profiles.  312 

 313 

3.1.3 Moho 314 

The base of the seismic crust (Moho) was mapped according to both deep seismic 315 

reflection and published refraction data. Moho reflection were interpreted as deep (9-12 s), 316 

mostly continuous, low-frequency reflectors at the base of a reflective interval that can be 317 

distinguished from an underlying transparent zone (pink line, Fig. 5). These reflectors appear 318 

only on data collected by the USGS. The interpretation of these reflectors to be the Moho agrees 319 

with previous interpretations of the same data at the Long Island Platform (Hutchinson et al., 320 

1985; 1986), the Gulf of Maine (Hutchinson et al., 1988; Hutchinson et al., 1987) and other 321 

seismic data in the ENAM (Keen et al., 1991; LASE, 1986; Lizarralde & Holbrook, 1997; 322 

Sheridan et al., 1993). Previous interpretations of the Moho underneath the continental shelf 323 
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were extended by using two seismic attributes with seismic interpretation: structural smoothing 324 

to increase reflector continuity and time-varying gain. 325 

 326 

3.1.4 Base post-rift 327 

The base post-rift (BPR) horizon is a combination of three stratigraphic tops: the top of 328 

SDR, the top of syn-rift strata, and the top of basement. Where rift basins are present, the BPR is 329 

interpreted as an erosional surface that separates the divergent syn-rift strata from onlapping and 330 

sagging post-rift strata (Figs. 4 and 5). Where SDR are apparent, the BPR is placed at the top of 331 

the seaward dipping package (Figs. 5 and 6). In places where neither SDR nor syn-rift strata 332 

appear, the BPR coincides with top basement. The time span of the hiatus across the BPR 333 

unconformity should generally increase landward. Though diachronous, the BPR unconformity 334 

should correspond to the time interval during which rifting had ceased and post-rift subsidence 335 

commenced seaward of the hinge line. Early estimates for rift cessation point to early Hettangian 336 

age (201 Ma; Walker et al., 2018) while the latest estimates for initiation of seafloor spreading 337 

are of early Aalenian (174 Ma; Walker et al., 2018; for further discussion see Withjack et al., 338 

2012).  339 

3.1.5 Post-rift horizons 340 

 Interpretation of post-rift horizons follows standard seismic interpretation procedures of 341 

sedimentary units (e.g. Mitchum et al., 1977; Vail et al., 1977). Available wells were tied to 342 

sequence bounding surfaces to constrain the ages of the interpreted horizons (For a detailed 343 

description of seismic-well tie procedures and paleontological data see Table S3). In total, six 344 

post-rift horizons were mapped along the margin (Fig. 4, Table 1). Paleontological reports are in 345 

general agreement regarding the ages of Cretaceous and younger strata. Age determination for 346 

the Cretaceous sequences follows Jordan et al. (2019), Miller et al. (2018) and Schmelz et al. 347 

(2019). There is, however, no consensus regarding the pre-Cretaceous chronostratigraphy (For 348 

further discussion see Cousminer & Steinkraus, 1988; Poag, 1991; Poag & Valentine, 1988). The 349 

Jurassic chronostratigraphy presented here follows Poag and colleagues’ interpretations (Poag, 350 

1991; Poppe et al., 1992a; b). No rocks older than Kimmeridgian were penetrated in the BCT. 351 

Thus, the age assignment of the deeper MJ horizon at the BCT follows Poag (1985), which 352 

estimated it to be Top Callovian. 353 

 354 

4 Interpretation 355 

4.1 Top Basement and basement faults 356 

The following paragraphs describe the structure of the top basement surface and the rift 357 

basins found in the research area. Some of the rift basins were previously described (e.g. 358 

Hutchinson & Klitgord, 1988; Hutchinson et al., 1985; Klitgord et al., 1982). However, the tight 359 

grid (<7 km line spacing at the GBB) used here uncovers details that were previously concealed. 360 

It provides accurate estimates of the extent, orientation and lateral terminations of previously 361 

recognized rift basins and the detection of new basins not identified in earlier surveys.  362 
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4.1.1 Georges Bank Basin 363 

The top basement at the GBB has the highest density of faults of all the margin segments 364 

examined in this study (Fig. 7). The faults accommodate normal displacement and form a 365 

complex array of rift basins that generally deepen toward the shelf edge. Two main fault 366 

orientations appear: NNE-SSW (AB, FB, IYB, OYB in Fig. 7) and ENE-WSW (PB, F2 in Fig. 367 

7). Smaller, secondary faults inside the Atlantis Basin are sub-parallel to the ENE trend. Both the 368 

existence ENE-WSW direction and secondary faults are presented here for the first time. 369 

The basement faults at the GBB dip both landward and seaward forming horsts, grabens 370 

and half grabens. The Atlantis Basin is composed of three main NNE striking normal faults 371 

(Figs. 4 and 7). The two faults that bound the basin dip toward each other, forming a full graben 372 

with two fault-bounded highs/horsts. On a cross-section, the faults appear listric with a 373 

maximum displacement of ~2 s (Fig. 4). They can be traced to travel times of 5-6.5 s. The 374 

southern ending of the Atlantis Basin is unclear on the seismic data: the three main faults either 375 

terminate abruptly toward the present-day shelf edge or continue under the continental slope 376 

where data are ambiguous. A newly identified basin is named here Poag Basin after USGS 377 

scientist emeritus C. Wylie Poag, who made seminal contributions to the study of the Atlantic 378 

margin stratigraphy. The Poag Basin bounds the northern extent of the Atlantis Basin (Fig. 7). It 379 

is a 130 km long half graben with a SW dipping listric border fault that is seismically visible to 380 

travel times of 5.5 s. North of the Poag Basin, the Franklin Basin is the shallowest basin under 381 

the GBB (Fig. 7). On its western side it is bound by three en-echelon normal listric faults that dip 382 

ESE and penetrate to a maximum travel time of 5.5 s. The maximum vertical displacement on 383 

the main faults is ~1.5 s. Antithetic and synthetic faults of smaller displacement are mappable to 384 

the east of the main faults.  385 

The deepest part of the GBB, the Georges Bank Trough, is located east of the Poag and 386 

Atlantis Basins. Two normal faults bound the Georges Bank Trough to the north and west (F1 387 

and F4 in Fig. 7) whereas the Yarmouth Arch bound it to the east. Although seismic penetration 388 

does not provide clear determination of its maximum travel-time, the data provide information 389 

about its fault orientations, surface dips, and general geometry. It consists of two fault-bounded 390 

steps (the bounding faults are marked F1 and F2 in Fig. 7). Both steps plunge to the SE toward 391 

N-S faults that bound the Trough to the SW (F3 and F4 in Figs. 4 and 7).  392 

The area east of the Franklin Basin and north of the Georges Bank Trough diverts from 393 

the general seaward deepening trend of the margin. There, two rift basins, the Inner and Outer 394 

Yarmouth Basins are separated by a prominent basement horst - the Yarmouth Arch. The Inner 395 

Yarmouth Basin is a half-graben 50 km wide by 90 km long that extents to travel times greater 396 

than 4 s (Figs. 5 and 7). The basin and faults that bound it to the east strike NNE-SSW and 397 

gradually terminate towards the LeHave Platform (Fig. 7). A convergent transfer zone, where 398 

two opposing normal faults dip toward each other, separates the Inner Yarmouth Basin from the 399 

Georges Bank Trough. The dip of the eastern border faults of the Inner Yarmouth Basin is WNW 400 

making the Yarmouth Arch the footwall of this fault system. The fault system forms 2-4 tilted 401 

blocks between the Yarmouth Arch and the Inner Yarmouth Basin (Figs. 5 and 7). Cumulative 402 

vertical displacement of the Inner Yarmouth Basin fault system reaches ~3 s. Assuming no 403 

erosion of the footwall and seismic velocity of 5 km/s for the syn-rift section, that is equivalent 404 

to more than 7 km. The cumulative heave of this fault system reaches ~18 km. On a section 405 

view, these faults appear listric (Fig. 5). In their shallowest part, their inclination is 40 º to 30º. 406 

The inclination decreases as they penetrate ~3.5 s into the crust.  407 
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The Inner Yarmouth Basin and its bordering fault system comprise the upper crustal 408 

manifestation of a possible crustal-scale shear zone. Fig. 5 illustrates a zone of reflective lower 409 

crust <2 s above the Moho. Above this zone, at the northwestern part of the section, is a series of 410 

reflectors that mildly (<13º) dip landward. These reflectors are traceable over ~80 km, 411 

shallowing to the southeast. In the upper continental crust, these reflectors coincide with the fault 412 

system that forms the Inner Yarmouth Basin. Following the interpretation of similar observations 413 

at other rifts and continental margins (e.g. Clerc et al., 2015; Clerc et al., 2018; Fazlikhani et al., 414 

2017; Phillips et al., 2016; Reston et al., 1996), these inner crustal reflectors may indicate 415 

detachment faulting, crustal shearing, and ductile deformation of the crust. 416 

The Yarmouth Arch is a ~120 km long, 30 km wide, NNE-SSW trending elongated horst 417 

found east of the Inner Yarmouth Basin. Steep, east-dipping faults bound the Arch to the east and 418 

separate it from the Outer Yarmouth Basin. An E-W fault, oblique to the Yarmouth Arch, marks 419 

its southern termination and separates it from the Georges Bank Trough. The structure of the 420 

south-eastern corner of the Arch is not well constrained by the available data. However, the trend 421 

of neighboring areas to the south and east suggests that an elevated branch of the Arch may 422 

extend SE, toward the shelf edge. The Outer Yarmouth Basin is composed of two subbasins 423 

separated by an east-dipping fault. Overall, the entire ~200 km wide GBB, from the western 424 

Franklin Basin to the shelf edge, represents a zone of deformed and faulted basement. 425 

 426 

4.1.2 Long Island Platform 427 

The top basement in the Long Island Platform is the shallowest of the three margin 428 

segments (Figs. 4 and 7). It descends from near sea-surface elevation at the shoreline to about 5 s 429 

under the continental slope along a convex trajectory (Fig. 7). The seismic data reveal three 430 

known rift structures: Nantucket Basin, Long Island Basin and New York Bight Basin (Fig. 7). 431 

Nantucket Basin is located in the eastern part of Long Island Platform, NW of Atlantis Basin. It 432 

is interpreted here as an arcuate half-graben with a down to the SE boundary fault. Reaching a 433 

maximum of ~3 s TWT, it is the deepest rift basin at the Long Island Platform. At the center of 434 

Long Island Platform is the Long Island Basin. Its border fault dips toward the ESE, down 435 

throwing its hanging wall to more than 2 s. The New York Bight Basin in the western Long 436 

Island Platform is composed of five identified faults. Due to the sparsity of data in this area, its 437 

faults’ orientations are not well constrained, and the interpreted dips shown in Fig. 7 are apparent 438 

dips. Nevertheless, the easternmost fault of the Basin was identified on two profiles as having a 439 

westward dip. Thus, the other faults of the New York Bight Basin were assigned with a similar 440 

westward dip.  441 

 442 

4.1.3 Baltimore Canyon Trough 443 

Offshore New Jersey, the top basement reaches more than 8 s TWT (Figs. 6 and 7). 444 

Reflection data do not allow identification of a single top basement reflector or a seismic facies 445 

boundary in these deep basin areas (Fig. 6). Hence, interpretation relies mostly on published 446 

refraction control points (LASE, 1986) that are tied to reflection profiles. In areas shallower than 447 

~6 s, the top basement is identifiable on reflection data as well. In map view, the BCT has an 448 

asymmetric arcuate shape. To the north, the top basement plunges steeply southward from 1.5 s 449 

under the western Long Island Platform, to 8 s over less than a 100 km. Farther SW, offshore 450 

New Jersey, the top basement dips southeastward with the same amount of deepening occurring 451 
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over ~150 km. SW of New Jersey and offshore Delaware Bay, the top basement deepens to 452 

about 6 s on an ESE trajectory. At the southern BCT the top basement dips mostly to the east. 453 

There, a sharp hinge separates a shallow (<3 s), gentle top basement surface under the inner shelf 454 

from the deeper part under the outer shelf (Figs. 7 and 8).  455 

Few faults involving basement were identified at the BCT. The sparsity of faults in the 456 

deepest part, over 6 s, may be attributed to poor seismic resolution. A near-vertical, down-to-the-457 

north, fault (Named here the Delaware Bay Fault, Figs. 4 and 7) separates the deep northern BCT 458 

from the shallower southern BCT. The fault has an E-W strike and a maximum vertical 459 

displacement of ~0.5 sec. A similar fault might be present at the opposing northern flank of the 460 

northern BCT (Fig. 4), although data sparsity does not allow it to be clearly identified and 461 

mapped.  462 

Only one rift basin can be identified at the BCT in the offshore seismic grid, the Norfolk 463 

Basin, which is located under the inner continental shelf of the southern BCT (Fig. 7). Its border 464 

fault dips to the east and has a maximum displacement of ~1.5 s. A series of synthetic faults are 465 

located east of the border fault. East of the Norfolk Basin, two structural ridges plunge eastward 466 

under the outer shelf. It is not clear from the seismic data whether these structures are bounded 467 

by faults. About 70 km to the south of the Norfolk Basin, lies a ~20 km wide basement 468 

depression. Its imaging does not reveal clear faults that might bound it. South of that depression, 469 

the top basement is shallower (<3 s), dipping moderately eastward toward the shelf edge. Three 470 

elongated rift basins along the northern BCT hinge line that were previously described by 471 

Klitgord et al. (1988) and Benson and Doyle (1988) based on seismic reflection data were not 472 

identified using the denser dataset presented here. 473 

4.2 Base Post-Rift (BPR) 474 

The general structure of the BPR surface is that of a smooth surface along the top 475 

basement, along the top of the rift basins and along the top of the SDR where these overlay the 476 

top basement (Figs. 4 and 9). In the GBB area, the BPR descends towards the southeast from less 477 

than 0.5 s at the eastern Long Island Platform. Further east, seaward of the Gulf of Maine, the 478 

BPR first descends above syn-rift strata of the Inner Yarmouth Basin, forming a trough that 479 

plunges to the southwest. East of the Inner Yarmouth Basin, the BPR rises along the top 480 

basement of Yarmouth Arch, forming a 170-km long by 70-km wide elongated ridge that also 481 

plunges to the southwest (Figs. 5 and 7). The BPR then descends to the southeast above the syn-482 

rift strata within the Outer Yarmouth Basin (Figs. 5 and 9). The trough above Inner Yarmouth 483 

Basin connects to a deeper and wider south-trending trough coincident with the Georges Bank 484 

Trough (as seen in the top basement map, Fig. 7). With travel times of 4.5 s, this is also the 485 

deepest part of the BPR under the GBB shelf. The descent from the ~0.5 s deep Gulf of Maine to 486 

the deepest trough occurs gradually over ~150 km.  487 

The BPR surface at the Long Island Platform coincides with the top basement where rift 488 

basins are absent (Figs. 4 and 10). The BPR has a southward plunging convex structure along 489 

most of the Long Island Platform (Figs. 9 and 10). A steep E-W slope separates the Long Island 490 

Platform from the northern BCT.  491 

The asymmetry of the BCT, as observed in the top basement surface, also characterizes 492 

the BPR. Similarly to the top basement, the BPR morphology shifts from convex (shallower 493 

parts) to concave in the deeper areas (Fig. 9). The dip in the deepest part of the BPR (> ~5 s) is 494 
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gentler than the dip of top basement in the same locality. The gentler BPR dip is attributed to the 495 

filling of the space trapped between the top basement and BPR by SDR and possibly syn-rift 496 

strata. (Figs. 4, 6 and 8). The BPR at the outer northern BCT reaches more than 6.5 s (Figs. 6 and 497 

9). To the south, the BPR dips mostly eastward. The faults, troughs and highs apparent in the 498 

southern BCT top basement have no expression on the BPR. 499 

At the onshore Salisbury Embayment, the BPR is concave, deepening toward the BCT 500 

(Fig. 9). It outcrops at the landward edge of the coastal plain from New York City to the southern 501 

extent of the study area and reaches a maximum depth of ~2 s TWT beneath the coastline. In the 502 

northern part of the embayment, the BPR forms a concentric structure, plunging towards the 503 

central BCT. 504 

 505 

4.3 Seaward Dipping Reflectors (SDR) 506 

SDR appear on seismic data along the entire studied margin. Although their spatial extent 507 

and down-dip position change along the margin strike, several geomorphic characteristics remain 508 

similar. In all the sections that show both SDR and their underlying top basement surface, the 509 

SDR packages have a wedge-shaped geometry that thickens seaward and pinches out landward 510 

(Figs. 6 and 8). The SDR themselves toplap with respect to the BPR. At the GBB and Long 511 

Island Platform, the SDR landward termination is 10-30 km seaward of the present-day shelf 512 

edge, taken here as the 200 m isobath (Figs. 5, 10, 11 and 12). At the BCT, however, the SDR 513 

pinch outs are located more landward, underneath the continental shelf. The landward distance 514 

between the pinchout and the 200 m isobath decreases gradually from ~100 km at the 515 

northernmost BCT to ~30 km at the southern BCT. The seaward termination of the packages is 516 

less distinctive than their landward termination. 517 

4.4 Moho depth 518 

Moho reflectors in the USGS seismic lines were identified on dip profiles at the GBB, 519 

Long Island Platform and the southern BCT (Fig. 13A). At the GBB, four profiles revealed 520 

Moho reflectors at 8-10.5 s (Figs. 5 and 13A). Four dip profiles and one strike profile show a 521 

relatively continuous series of reflectors at depths of 9-11 s under the Long Island Platform. 522 

Moho reflectors are sparsely imaged on the USGS lines covering the BCT. They appear over 523 

short distances (tens of kilometers) as discontinuous reflectors on one strike profile and 6 dip 524 

profiles, mostly at the southern BCT.  525 

Interpolation of interpreted Moho reflectors combined with published Moho picks 526 

yielded a regional structural map (Fig. 13B). Travel times to the Moho mostly range between 9 527 

to 12 s. At the GBB the interpolated map shows a ~100-km-wide by 400 km long ridge in the 528 

Moho surface. This elevated Moho extends in a southerly direction from the inner Gulf of Maine 529 

to outer GBB and is located mostly in the region between the Franklin Basin and the Inner 530 

Yarmouth Basin (Fig. 7). The ridge is higher than its surroundings by 1-1.5 s. Under the Long 531 

Island Platform, the Moho exhibits general southward dips. Under the offshore portion of the 532 

northern BCT the Moho is deeper (~11 s) than under New Jersey coastal plain (~10 s). At the 533 

southern BCT, however, there is no clear distinction between the depth to the Moho offshore and 534 

onshore.  535 

The heterogeneous distribution of seismic velocities above the Moho may cause the 536 

appearance of artificial structures on the TWT structural map. In that sense, the presence of 537 
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thick, low-velocity sedimentary basins will increase the underlying Moho travel times. Some of 538 

the bias is resolved by looking at the crustal thickness map (See description of the BPR to Moho 539 

interval and supporting information). 540 

4.5 Isochron maps 541 

 4.5.1 Base Post-Rift to Moho interval 542 

The isochron between the BPR surface and the Moho was calculated regionally (Fig. 543 

14A). We chose this interval and not the more orthodox top basement to Moho interval for two 544 

main reasons. First, the interpretation of the BPR surface is more straightforward than that of the 545 

top basement. Therefore, its spatial extent and degree of accuracy are higher, especially where 546 

thick syn-rift or SDR successions occur. Second, the use of the BPR as an upper datum for the 547 

calculation filters out short-wavelength (<50 km) thickness variations associated with rift basins. 548 

These basins manifest crustal deformation restricted to the upper crust that does not necessarily 549 

have mantle compensation. The BPR surface smooths these basin structures, thus emphasizing 550 

regional crustal thickness variations. The presented thickness could be treated as an upper limit 551 

for crustal thickness as the thickness trapped between the BPR and top basement is added to its 552 

calculation. On the deeper troughs (outermost BCT and the GBB trough), the difference between 553 

the crustal thickness and BPR to Moho thickness may reach >2 s. This difference nulls where 554 

rift-basins are absent. 555 

The travel time interval of the BPR to Moho varies along and across the margin. It ranges 556 

between extreme values of <4 s at the outer northern BCT to ~12 s landward of southern BCT 557 

(Fig. 14A). The thickness in ~70% of the region is between 8 and 11 s. GBB is bisected by an 558 

NNE-SSW-oriented travel-time minimum which coincides with Inner Yarmouth Basin and 559 

Georges Bank Trough. There, thick syn-rift infill (up to 3 s) with velocities slower than the 560 

surrounding basement rocks (<5 km/sec for the syn-rift vs. ~6.3 km/sec for the continental crust) 561 

is expected to increase the travel time interval. This, in turn, causes artificial inflation of the 562 

BPR-to-Moho interval. Thus, the thickness minimum under the Georges Bank Trough and Inner 563 

Yarmouth Basin is probably even more dramatic than is observed in the time domain. Farther 564 

south, toward the GBB shelf edge, the thickness of the interval decreases to less than 5 s.  565 

Unlike the GBB, the Long Island Platform is almost devoid of syn-rift basins with 566 

velocities slower than crustal velocities (Fig. 7). Travel-time crustal thickness at the Long Island 567 

Platform, is relatively constant, between 8.5 and 9.5 s (Fig. 14A). Similar values extend south 568 

west under the New Jersey coastal plain. At the BCT, the BPR to Moho interval has an 569 

asymmetric thickness minimum close to the shelf edge offshore New Jersey. The transition from 570 

>9 s thickness at the Long Island Platform and New Jersey coastal plain to the thinnest part at the 571 

BCT (<4 s) occurs over less than 110 km. Under the outer southern BCT shelf the interval 572 

thickness is 6-7 s; 2-3 s thicker than under the LASE profile ~250 km to the north. The thickness 573 

gradient is steepest under the western flank of the southern BCT, where the interval thins by 4 s 574 

over ~50 km.  575 

The gradient map of the BPR to Moho travel-time thickness shows a “hinge line” where 576 

rapid seaward thinning of the crust (in TWT) begins (red line in Fig. 14B). The hinge line 577 

roughly bounds the BCT and GBB on the west and the Long Island Platform on the east and 578 

south. At the BCT, the steepest local gradient is found immediately east of the hinge line. 579 

 580 
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4.5.2 Early Post-rift 581 

The thickness of post-rift Jurassic sediments, described below, indicates the distribution 582 

of the depocenters that developed in the early stages of the drift phase, 30-45 Myr after the 583 

continental breakup. Post-rift Jurassic sediments are concentrated in two depocenters under the 584 

continental shelf, filling the GBB and the BCT (Fig. 15). The GBB depocenter is an NNE-SSW 585 

trough with a maximum travel-time thickness of ~1.8 s at its southern half. It decreases gradually 586 

northward to ~ 1 s at the northern edge of the map. Sediment thickness is much thinner (<800 587 

milliseconds) east of the GBB depocenter. At the Long Island Platform post-rift Jurassic 588 

sediments are found only at the outer shelf (Figs. 4 and 15). The BCT Jurassic depocenter is 589 

asymmetric, thicker in the north (>3.5 s) than in the south. North of there, the Jurassic thins 590 

rapidly toward the Long Island Platform (Figs. 4 and 15) and pinches-out after ~100 km. The 591 

western edge of the BCT depocenter is not constrained by the offshore seismic data at the 592 

northern BCT.  593 

4.6 Thermal subsidence and lithospheric structure of the Georges Bank Basin 594 

Since the formation of a volcanic margin is to a large extent a thermal process, the rift-595 

stage structure of the thermal lithosphere should be examined. To estimate the lithospheric 596 

thinning patterns at the time of rifting, we evaluate the thermal relaxation of GBB as expressed 597 

by the thickness of the early post-rift sequence. The connection between early post-rift 598 

thicknesses and lithospheric thinning is valid assuming that the thinning occurred shortly before 599 

breakup and ended with the onset of seafloor spreading (McKenzie, 1978). This assumption is 600 

supported by direct age dating of the syn-rift sequence in drill holes at the GBB (e.g. Poag, 1991) 601 

and by seismic stratigraphic analysis that shows the rift basins and basement rocks all being 602 

truncated by the post-rift unconformity (i.e. BPR in Figs. 4 and 5; Klitgord et al., 1988). The 603 

inference of a spatial connection between lithospheric thinning and early post-rift depocenter 604 

also assumes very low flexural rigidity of the lithosphere. Such low rigidities characterize 605 

regions of upwelled asthenosphere (Watts et al., 1982) and young volcanic margins specifically 606 

(Tian & Buck, 2019). 607 

The post-rift Jurassic deposits represent the first 30-45 Myr of deposition on the ENAM 608 

after breakup. During this initial post-rift phase where the lithosphere had been thinned, thermal 609 

gradients are expected to be steep and thermal subsidence high (McKenzie, 1978). Thermal 610 

subsidence indeed peaked during the early post-rift of ENAM, forming most of the Jurassic 611 

accommodation space (Poag & Sevon, 1989; Steckler & Watts, 1978). Hence, the post-rift 612 

Jurassic thickness (Fig. 15) can be treated as a proxy for identifying thermal subsidence patterns 613 

and thus areas of lithospheric thinning. Fig. 16 shows that the thicknesses of the BPR to Moho 614 

across the GBB is inversely proportional to the thickness distribution of the early post-rift 615 

Jurassic unit. For example, areas where the BPR to Moho interval is thinnest (5.8 s, 17.4 km, 616 

assuming an average velocity of 6 km/s) are overlain by the greatest thickness of post-rift 617 

Jurassic sediments (1.85 s, 4.1 km, assuming an average velocity of 4.5 km/s based on well data 618 

(Taylor & Anderson, 1982)). Areas with thicker BPR to Moho (8 s, ~24 km) are overlain by 619 

thinner Jurassic strata (0.8 s, ~1.8 km). The spatial relations between crustal thinning and early 620 

post-rift thermal relaxation are evident on a map view (Fig. 17). The crustal hinge line outlines 621 

the western and northern bounds of the GBB Jurassic depocenter and, seemingly the zone of 622 

lithospheric necking. This suggested spatial coincidence of crustal and lithospheric boundaries, 623 

together with the thickness relations shown in Fig. 16 allude that thinning of the crust and mantle 624 
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lithosphere under GBB spatially overlapped. It is possible that not only the crust deformed and 625 

thinned over a ~200 km wide zone, but so did the lithosphere. 626 

5 Discussion 627 

5.1 Breakup volcanism, the East Coast Magnetic Anomaly and the width of the extended 628 

continental crust 629 

The final stages of the formation of the ENAM were accompanied by voluminous 630 

magmatic eruptions and the emplacement of the ECMIP. The results presented here show that 631 

the landward extent of the volcanism, as marked by the pinch-out location of the SDR wedge, 632 

spatially correlates with the western limit of the ECMA (Figs. 5, 6, 8, 10, 11 and 12). This 633 

observation supports previous correlations that were based on a few isolated 2D seismic lines 634 

(e.g. Austin et al., 1990; Holbrook & Kelemen, 1993). However, the relationship between the 635 

landward extent of the SDR wedge and the corresponding magnetic anomaly varies along the 636 

margin. Whereas at the GBB and the Long Island Platform the SDR pinch-out correlates with the 637 

landward edge of a narrow (~80 km) high amplitude anomaly that is regarded as the axis of the 638 

ECMA (Behn & Lin, 2000; Benson & Doyle, 1988; Klitgord et al., 1988), at the BCT, and in 639 

particular at its northern part, the SDR terminate where a low amplitude extension of the 640 

anomaly feathers out (Figs. 6 and 12). It is noteworthy that this extension also appears in a 641 

reduced to pole version of the magnetic anomaly map, as presented by Behn and Lin (2000).  642 

To evaluate the extent of crustal thinning west of the breakup line, it is crucial to define 643 

both the landward and seaward bounds of the area of thinned continental crust. Rift structures are 644 

widely spread (up to 400 km) between the eastern Appalachians and the continental slope (Fig. 645 

2; Withjack et al., 2012). Yet, onshore rift basins usually overlay continental crust of normal or 646 

thicker-than-normal thickness (>35 km, Li et al., 2018). Stretching in these areas appears to be 647 

restricted to the upper crust and does not involve local mantle compensation (Harry & Sawyer, 648 

1992; Sawyer & Harry, 1991; Li et al., 2018). Most of the thinning occurs farther seaward, along 649 

a margin-parallel belt (Fig. 14). Whilst the data presented here provides a good estimate of the 650 

landward boundary of this thinning belt (i.e. the hinge line, Fig. 14), its seaward edge, where the 651 

crust turns entirely igneous, is more elusive (for further discussion regarding the challenges in 652 

determining the edge of the continental crust see Eagles et al., 2015). The high amplitude pick of 653 

the ECMA was previously regarded as the approximate position of the seaward edge of the 654 

continental crust (i.e. ocean-continent transition; e.g. Austin et al., 1990; Greene et al., 2017; 655 

Klitgord et al., 1988; Withjack et al., 2012). In addition, interpretations of refraction profiles 656 

along the ENAM suggest that the crust located seaward of the ECMA axis is entirely igneous or 657 

oceanic (Figs. 6, 8 and 12; Austin et al., 1990; Holbrook et al., 1994; Talwani et al., 1995; 658 

Talwani & Abreu, 2000; Shuck et al., 2018). Considering the paucity of available refraction data, 659 

the ECMA is assumed here to mark the seaward edge of the continental crust. Therefore, the 660 

crust in the area bounded by the hinge line and the axis of the ECMA is considered thinned 661 

continental crust, probably intruded and partially overlaid by breakup volcanism. The width of 662 

this area, when measured perpendicular to the ECMA, reaches ~220 km at the GBB and ~110 663 

km at the northern BCT (Fig. 12). It is narrowest at the Long Island Platform and southernmost 664 

BCT where it extends for ~60 km. 665 

 666 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 

5.2 Along margin variability: key differences between the segments 667 

Our data reveal an along-margin variability in crustal structure, deformation style, 668 

volcanic addition and post-rift sedimentation of the ENAM. The variability is especially 669 

noteworthy between the GBB and the BCT- two parallel segments, oriented perpendicular to the 670 

rifting-related extensional regime (Withjack et al., 2012). Variations are manifested in several 671 

ways: (a) whereas a narrow band of thinned continental crust lies seaward of a steep hinge zone 672 

at the BCT (<110 km), a gentle hinge zone borders a wide (up to 220 km) thinned zone at GBB; 673 

(b) few rift basins are observed at the BCT whereas a complex system of well-developed rift 674 

basins and detachment faulting constitutes the base of GBB; (c) volcanism in the form of SDR at 675 

the BCT, reaches landward <50 km east of the hinge line whereas the landward boundary of the 676 

SDR at GBB is located much farther seaward under the continental rise, separated from the hinge 677 

line by up to 200 km; (d) the early post-rift sediment fill of the BCT consistently thickens 678 

seaward, whereas at the GBB the thickness increases toward the middle shelf and decreases 679 

again towards the Yarmouth Arch (basement high) under the outer shelf. 680 

A broad zone of thinned crust landward of the ECMA is also observed in the volcanic 681 

Scotian margin of Canada, immediately north of the GBB (Fig. 2; Deptuck & Kendell, 2017; 682 

Savva et al., 2016). Water depth at the Scotian Margin reaches ~2.5 km (Savva et al., 2016), 683 

Jurassic sediment thickness is ~3 km (Deptuck & Kendell, 2017) and crustal thickness is 20 km 684 

(Dehler, 2012). It, therefore, appears that a broad zone of crustal and likely lithospheric thinning 685 

landward of the magmatic outpouring extends along a substantial (650 km) portion of the 686 

Atlantic margin, which includes both the GBB and the volcanic SW-most Scotian margin. 687 

The Long Island Platform, located between the GBB and BCT, has a relatively thick crust 688 

(8-10 s or ~31-25 km), few extensional structures and minor early post-rift subsidence (0-3 s or 689 

0-5 km top basement depth; Figs. 4 and 7). Its hinge line, top basement dip, and ECMA trend are 690 

oblique to those found at BCT and the GBB. At the eastern Long Island Platform, the BPR-to -691 

Moho interval maintains its thickness from the inner shelf to the shelf edge (Fig. 14A) and forms 692 

a steep BPR-to -Moho hinge, about 50-km-away from the ECMA and the SDR. The obliquity of 693 

the Long Island Platform, relative to its neighboring segments and the minor thinning of its crust 694 

were previously interpreted as the result of transform or wrench motion during rifting 695 

(Hutchinson & Klitgord, 1988; Klitgord & Behrendt, 1979; Klitgord et al., 1988; Thomas, 2006). 696 

Some have linked the obliquity of the Long Island Platform and its suggested transform motion 697 

to the intersection of the margin at this segment by oceanic fracture zones (Klitgord et al., 1988; 698 

Le Pichon & Fox, 1971). Yet, recent studies have rejected the genetic connection between 699 

oceanic fracture zones and syn-rift strike-slip faults (e.g. Taylor et al., 2009). While tensile strain 700 

in an oceanic lithosphere tends to localize in an orthogonal or parallel direction (Dauteuil & 701 

Brun, 1996), strain in a continental lithosphere may be accommodated by oblique rifting (e.g. 702 

Gulf of California (Bennett & Oskin, 2014) and Gulf of Aden (Autin et al., 2013)). Thus, 703 

inference regarding the transform nature of the Long Island Platform cannot be based solely on 704 

its spatial relation to oceanic fracture zones. The intrinsic characteristics of the Long Island 705 

Platform do not match these expected from a transform margin. It lacks fundamental structures 706 

of transform margins such as a marginal ridge, continent-ward tilted horizons and a marginal 707 

plateau (Mercier de Lépinay et al., 2016). On the other hand, the presence of a sharp hinge, 708 

minor crustal thinning, and post-rift subsidence fits an obliquely rifted margin (Davison, 1997). 709 

From a kinematic perspective, the Long Island Platform might have served as an 710 
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accommodation/transfer zone (e.g. Morley et al., 1990; Schlische & Withjack, 2009) between 711 

two orthogonal rift segments.  712 

 5.3 Examination of models for the creation of volcanic margins 713 

Models of magmatic rifting and volcanic margin formation predict a narrow zone (<100 714 

km) of crustal and lithospheric thinning and steep relief at the base of the lithosphere. The 715 

narrow geometry is considered to be either the result of weakening and localizing processes that 716 

stem from the steep geothermal gradient at volcanic rifts  (Buck, 2004; 2006; Geoffroy, 2005; 717 

Geoffroy et al., 2015; White & McKenzie, 1989) or the initial conditions required for melt 718 

generation (Mutter et al., 1988; Simon et al., 2009; Van Wijk et al., 2001). The proposed models 719 

are supported by globally distributed observations of narrow volcanic margins (e.g. Franke, 720 

2013; Franke et al., 2007; Hopper et al., 2003; Hopper et al., 1992; Paton et al., 2017; Schnabel 721 

et al., 2008; Tréhu et al., 1989) including the crustal structure of the BCT (Figs. 6, 8 and 14; 722 

Holbrook et al., 1994; LASE, 1986; Lizarralde & Holbrook, 1997).  723 

Although the GBB is volcanic, it does not fit the observations and models of a narrow 724 

thinning zone that is usually ascribed to volcanic margins. The observations presented here 725 

indicate a ~220 km wide zone of crustal thinning at the GBB (Figs. 5, 7, 14). The thinning is 726 

manifested by well-developed brittle extensional structures possibly coupled with ductile 727 

deformation of the middle crust (or below). The crust is considerably thinner than typical 728 

continental crust (35-40 km; Christensen & Mooney, 1995) and reaches a minimum thickness of 729 

4-6 s or 12-19 km, assuming an average crustal Vp of 6.3 km/s (Fig. 5; Fig. S1 in supporting 730 

information). The wide extent of thinned crust, together with the presence of middle crust 731 

detachment faulting and developed surface extensional structures, are usually ascribed to 732 

magma-poor margins. At such margins, the zone in which such features occur is referred to as 733 

the ‘necking domain’ (Peron-Pinvidic et al., 2013; Reston, 2009; Sutra et al., 2013). The necking 734 

domain represents a thinning phase during which strain localization and deformation of the 735 

middle and possibly lower crust occurs, promoting drastic crustal thinning. In the sequence of 736 

events that leads to the formation of magma-poor margins, thinning follows a phase of tectonic 737 

stretching that is locally uncompensated by mantle uplift (i.e. ‘stretching phase’) and predates 738 

hyperextension of the crust and exhumation of mantle rocks (i.e. ‘hyperextension/exhumation 739 

phase’; Peron-Pinvidic et al., 2013). The juxtaposition of a wide necking domain and SDR 740 

makes the structure of the GBB (and likely also the southwest Scotian margin) a hybrid between 741 

an underdeveloped magma-poor margin and a volcanic margin. 742 

The broad (> 200 km) syn-rift thinning under the GBB challenges the understanding of 743 

the thermomechanical conditions suggested for the formation of volcanic margins. The initial 744 

conditions required for a volcanic breakup, as proposed by Mutter et al. (1988), include a sharp 745 

near-vertical asthenosphere-lithosphere boundary that would induce convective partial melting. 746 

This condition was most probably not met at the GBB where the relief of the base of the thermal 747 

lithosphere was moderate and thinning of the lithosphere probably took place over 200 km across 748 

the margin. Buck (2004, 2006) proposed that a considerable amount of lithosphere extension 749 

over a hotter-than-normal asthenosphere would be accommodated by dike intrusions. Moreover, 750 

high heat flux around the intrusions would weaken the lithosphere and promote strain 751 

localization toward the rift axis. This mechanism would result in a minor and localized thinning. 752 

Although this model might successfully explain the narrow structure of the BCT, it fails to 753 

explain the broad necking zone under GBB. Kelemen and Holbrook (1995) also proposed that 754 
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lithospheric necking was minor prior to the formation of the volcanic BCT and originated in 755 

melts formed under high pressure (up to 4 GPa) and temperatures, which they attributed to the 756 

presence of a thick lithospheric lid above the melt. At the GBB, however, pre-magmatic necking 757 

reduced the thickness of such a lid. Geoffroy et al. (2015) emphasized the role of continentward-758 

dipping detachment faults play during crustal necking at volcanic margins. The abundance of 759 

oceanward dipping faults at the GBB (Fig. 7), the ~200 km offset between the crustal necking 760 

and the ECMIP (Fig. 17), the lack of evidence supporting continentward dipping faults 761 

associated with the SDR along the entire ENAM (Figs. 8, 10 and 11; Lizarralde & Holbrook, 762 

1997) do not support the model proposed by Geoffroy et al. (2015). 763 

A possible reconciliation between lithospheric thinning and the melting under high 764 

pressure might include a time-varying geotherm. In this scenario, initial rifting would take place 765 

over a “cold” mantle (potential temperature is <1300ºC, Reston, 2009) forming a wide, magma-766 

poor structure. If mantle temperature were to rise later, this magma-poor structure would be 767 

superimposed by a narrower volcanic structure. If this is the case for the rifting of the GBB, then 768 

the increase in mantle temperature is not expected to result from the geometry of the rift as in the 769 

edge-driven convection models (Mutter et al., 1988; King & Anderson, 1998). Similarly, 770 

elevated mantle temperature could not be related to a heated pre-rift mantle such as in the 771 

continental insulation models (e.g. Anderson, 1982; Brandl et al., 2013; Hole, 2015) since the 772 

initial rifting took place over a cold mantle. Rather, it should stem from processes not related to 773 

the rift itself, such as a mantle plume (White & McKenzie., 1988). If, as some suggested, the 774 

plume was situated at the southern part of the rift (Wilson, 1997; Ruiz-Martínez et al. 2012), the 775 

amount of magmatic additions to the margin should decrease northward. Yet, the intensity of the 776 

ECMA does not decay northward (Fig. 2). Since the amplitude of the ECMA correlates with the 777 

added magmatic volume (Holbrook & Kelemen; 1993; Talwani et al., 1995), there is also no sign 778 

of northward decrease in the volume of the breakup magmatism. The independence of the 779 

reduced-to-pole ECMA and the SDR burial depth supports the connection between the intensity 780 

of the ECMA and the volume of the volcanic rocks (Figures 7b and 7c in Behn & Lin, 2000). 781 

Moreover, some geochemical (Whalen et al., 2015; Shellnutt et al. ,2018; Elkins et al., 2020) and 782 

geophysical (Shuck et al., 2019) evidence cast doubt on a mantle plume origin of CAMP and 783 

ECMIP melts. Other mechanisms such as volatile enrichment of the mantle (Elkins-Tanton, 784 

2007) and slab break-off (Whalen et al., 2015; Elkins et al., 2020) may also explain the sudden 785 

initiation of magmatism. Unfortunately, these cannot be confirmed or disproved using the data 786 

presented here.  787 

The eastern North Atlantic volcanic margin in northern Europe was formed by successive 788 

rifting events dating from the Late Devonian to the early Cenozoic volcanic breakup (Doré et al., 789 

1999; Roberts et al., 1999). This led some authors to suggest that wide rifting, like rifting that 790 

predates to the formation of magma-poor margins, also predates the formation of volcanic 791 

margins (Eldholm et al., 1995, 2000). However, the protracted nature of rifting of the eastern 792 

north Atlantic implies that although the crust under that margin was thin, the lithosphere was not 793 

necessarily thin at the onset of rift magmatism. Cooling of upwelled mantle between rifting 794 

phases should have resulted in the re-thickening of the lithosphere. Unlike the European North 795 

Atlantic, the Central Atlantic, and the ENAM in particular, had experienced a relatively short 796 

and continuous rifting that was immediately followed by seafloor spreading (Withjack et al., 797 

2012). Recently, Guan et al. (2019) proposed that volcanic margins that experienced non-798 

magmatic rifting shortly before their volcanic breakup exhibit narrow necking zones, whereas 799 

longer time spans between failed rifting and volcanic breakup result with wide volcanic margins. 800 
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This is in contradiction with the observed variations between the GBB and BCT, which 801 

experienced similar rifting histories before their volcanic breakup. 802 

The African side of the Atlantic South Austral margin is a possible example of a volcanic 803 

margin that was tectonically thinned soon before its magmatic phase. Like the GBB, the 804 

southernmost part of the margin exhibits a wide area of thinned continental crust, high-strain 805 

extensional structures and detachment faulting along with SDR that correlate with a prominent 806 

magnetic anomaly (Blaich et al., 2011). The geometry of the adjacent segment to the north 807 

exhibits the typical narrow and steep margin. Examining the Brazilian margin, Stica et al. (2014) 808 

interpreted a 280 km wide zone of necked and intruded crust between the hinge line and the first 809 

oceanic crust of the Pelotas Basin. Yet, unlike the GBB, most of this zone underlies a thick SDR 810 

wedge, which the authors interpret as “continental igneous crust”. A modern analogue for the 811 

rifting of the GBB may be found at the Manda Hararo active rift in central Afar. There, Stab et 812 

al. (2016) observed a wide zone (~200 km) of crustal necking, mid-crustal detachment faulting 813 

along with abundant volcanism.  814 

Although it is clear from our results that the style of thinning varied along the ENAM, the 815 

causes for these variations remain unsettled. Trying to explain the difference in crustal structure 816 

and post-rift subsidence, Klitgord et al., (1988) and Wernicke and Tilke, (1989) proposed a 817 

simple shear model (Wernicke, 1985; Lister et al., 1991) with alternating polarities between the 818 

segments. Modeling efforts have shown, however, that simple-shear rifting does not allow 819 

enough melt production for the formation of volcanic margins (Buck et al., 1988; Latin & White, 820 

1990; Simon et al., 2009). More recent numerical modeling addressed the width of the 821 

lithosphere necking zone at rifts and passive margins (e.g. Svartman Dias et al., 2015; Tetreault 822 

& Buiter, 2018). According to these models, two main factors appear to determine the 823 

architecture of a rift system: the extensional strain rate and the rheology of the lithosphere. 824 

Estimates of syn-rift divergence rates at ENAM range between 2-6 mm/year for the Carolina 825 

Trough (Kneller et al., 2012; Ruiz-Martínez et al. 2012, respectively) to 8 mm/year for the BCT 826 

(Schettino & Turco, 2009). The margin-wide distribution of slow to ultra-slow divergence of 827 

similar orientation cannot account for the lateral variation in margin architecture. Thus, we 828 

suggest rheological rather than kinematic contrasts were dominant in shaping the margin’s width. 829 

 5.4 The origin of along-margin variability at the ENAM 830 

Previous interpretations and numerical modeling of the rifting and breakup of the Central 831 

Atlantic margin mostly assumed initial conditions of homogenous rheology of the continental 832 

lithosphere subjected to tensile stresses and perhaps underlying heat and melt source (Klitgord et 833 

al., 1988; Wernicke & Tilke, 1989; Dunbar & Sawyer; 1989). Furthermore, most margin-scale 834 

rifting models lack the crustal and likely lithospheric lateral heterogeneity as manifested in the 835 

crustal fabric of eastern North America and the time-varying geotherm imposed by the 836 

emplacement of CAMP and ECMIP. The lithosphere in which rifting and breakup occurred was 837 

the outcome of ~160 Myr of west-dipping subduction, collision and right-lateral translation 838 

(Hatcher, 2010; Van Staal et al., 2009; Hibbard et al., 2007,2010). The convergence phase ended 839 

with the collision of Gondwana along the Rheic/Allegahanian suture at ~280 Ma, leaving a 840 

heterogenous pre-rift lithosphere (Figs. 2b and 18). In addition to the spatial rheology variations, 841 

the introduction of heat by the emplacement of CAMP and ECMIP added a time-varying 842 

component to the rheological structure of the lithosphere (Kelemen & Holbrook, 1995; Marzoli 843 

et al., 1999). To try and address these complexities, we first examine the along-strike variability 844 
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of ENAM’s crustal building blocks and their response to the pre-magmatic rifting and later 845 

examine the effect of magmatism on the rift architecture. 846 

 847 

5.4.1 Rheological controls on the pre-magmatic rifting 848 

Examining the pre-rift crustal fabric reveals major compositional differences along the 849 

strike of the ENAM. The outboard portion of the Appalachian crust is composed of peri-850 

Gondwanan Terranes that were accreted to Laurentia before the Alleghenian orogeny. Meguma 851 

terrane at the northern part of the margin (Figs. 2, 18b and 18c), is the easternmost and latest 852 

accreted terrane to Laurentia (Hibbard et al., 2007; Hatcher et al., 2010). Exposed in Nova 853 

Scotia, the Meguma terrane overthrusts the Avalon terrane to the NW (Figs. 18b and 18c). The 854 

Avalon terrane overthrusts the Gander terrane from New England to Newfoundland, but 855 

probably abuts the older Appalachian belts (the Goochland or Piedmont domains) landward of 856 

the BCT (Figs. 2 and 18a; Hatcher et al., 2010; Hibbard et al., 2006 Sheridan et al., 1993). 857 

Basement rocks under the GBB and the Scotian Shelf are interpreted to belong or be closely 858 

related to the Meguma terrane (Hutchinson et al., 1988; Pe Piper & Jansa, 1999; Kuiper et al., 859 

2017). To the south, the Avalon Terrane was suggested to underlie the BCT constituting the most 860 

outboard Paleozoic terrane of this segment (Sheridan et al., 1993; Hatcher et al., 2010).  861 

The Meguma and Avalon terranes have different compositions. The Meguma terrane is 862 

composed of 10-12 km of metasedimentary sequence (White et al., 2010) that overlies crystalline 863 

rocks of Gondwanan passive margin affinity. Both metamorphic and crystalline rocks are 864 

intruded by mostly felsic plutons of Devonian age (van Staal et al., 2009). The Avalon terrane is 865 

composed of several arc-related volcano-sedimentary belts. The oldest exposed Avalonian rocks 866 

in Newfoundland represent oceanic crust and are composed of plutonic and volcanic rocks of 867 

gabbroic composition (O'Brien et al., 1996). These rocks are overlain and intruded by 868 

Neoproterozoic sediments and arc-related magmatic rocks of bi-model composition (O'Brien et 869 

al., 1996; van Staal et al., 2009). Although a full lithological description of the two terranes is 870 

lacking, the thick metasedimentary sequence and presumably felsic basement of the Meguma 871 

terrane should result in a weaker rheology compared to the rheology expected from the 872 

intermediate-mafic Avalonian composition. 873 

The compositional differences between the terranes were manifested during the pre-874 

magmatic Mesozoic extension. In areas where the two terranes juxtapose, extension-related 875 

crustal thinning remained confined to the Meguma terrane. Inboard of the Meguma-Avalon 876 

suture, the Avalon terrane is observed to be mostly unbroken and unthinned (Figs. 18b and 18c). 877 

For example, Pe Piper and Jansa (1999) showed that crustal necking offshore Nova Scotia was 878 

limited to the Meguma basement. Similar relations exist farther south between the unthinned 879 

Avalon crust of the Gulf of Maine and the thinned Meguma crust under the GBB (Hutchinson et 880 

al., 1988; Keen et al., 1991). Our suggested hinge line in the GBB coincides with the Hutchinson 881 

et al. (1988) and Keen et al. (1991) boundary between the Avalon and Meguma terranes (Fig. 14) 882 

and implies that the Meguma terrane had a weaker, more easily deformed crust in which 883 

extensional strain concentrated. More generally, where the Eastern North American margin 884 

included the Meguma terrane, the distribution of rift basins is restricted to the Meguma belt 885 

(Figs. 2, 18b and 18c). Where the Meguma terrane is absent and the Avalon terrane constitutes 886 

the outboard terrane, rift basins developed farther inland on top of older Appalachian domains 887 

(Figs. 2 and 18a; Hatcher et al., 2010). If our hypothesis is correct, the weaker Meguma terrane 888 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 

accommodated the extensional stresses, whereas the stronger Avalon terrane resisted the 889 

extensional deformation and transferred the stress to adjacent areas. Furthermore, post-CAMP-890 

intrusions faulting at the rift-basins onshore the BCT (Withjack et al., 2012) implies that strain 891 

localization, and thus necking (Buck et al., 1999) of the crust under the BCT did not occur earlier 892 

than 200 Ma. We argue that the necking of the BCT was made possible only when rifting was 893 

magma-assisted, later than ~195 Ma (see later discussion).  894 

The weaker inherited rheology of the GBB allowed rifting to progress from stretching to 895 

necking without the need for magmatic softening. The weak Meguma rheology facilitated deep 896 

detachment faulting, shearing, and ductile behavior of the middle to lower crust (Fig. 5) along 897 

with intense brittle deformation of the upper crust (Fig. 7). The fault-bounded rift basins in the 898 

GBB are coincident with the zone of crustal thinning. The age of these basins is considered pre-899 

SDR (Carnian-Norian age: 237-208.5 Ma; Poag ,1991). Thus, the 200 km wide crustal and 900 

possibly lithospheric necking zone observed at the GBB resulted from pre-magmatic rifting. The 901 

presence of the weak rheology of the Meguma terrane probably enabled wide necking (Svartman 902 

Dias et al., 2015). Thus, we propose that a composition-controlled strain distribution determined 903 

the along-margin variations in the pre-magmatic necking stage as observed on our data.  904 

5.4.2 Magma-assisted rifting at ENAM 905 

The Eastern North American Rift System entered its magmatic phase with the 906 

emplacement of CAMP at ~200 Ma, 40-30 Myr after rifting began. Fault-controlled subsidence 907 

onshore the BCT segment mostly ceased a few Myr after the emplacement of CAMP (Withjack 908 

et al., 2012). The abandonment of faults landward of the ECMIP in conjunction with the 909 

initiation of volcanism is also observed at the GBB. There, the SDR emplacement follows the 910 

Post-Rift Unconformity (Klitgord et al., 1988). Le Roy and Pique (2001) describe oceanward 911 

migration of strain simultaneously with volcanism at the African conjugate of ENAM. Early 912 

passive margin models would attribute the cessation of faulting to the onset of seafloor spreading 913 

(Falvey, 1974; McKenzie, 1978), suggesting the emplacement of CAMP and the SDR are related 914 

to the initiation of seafloor spreading. However, Shuck et al. (2019) and Kelemen and Holbrook 915 

(1995) showed that the generation of the magmas that formed ECMIP and the subsequent proto-916 

oceanic crust took place under a lithospheric lid 15-70 km thick. In other words, the tectonic 917 

transition associated with the emplacement of the ECMIP does not signify the breakup of the 918 

lithosphere or the rift-drift transition but rather a change in nature of strain accommodation that 919 

was from this point dominated by the intense magmatism instead of faulting.  920 

Models predict that dike intrusion would reduce the tectonic force required for 921 

mechanical stretching and promote strain localization, thus narrowing a rift system (Buck et al., 922 

1999; Buck, 2004, 2006). The reduction in lithospheric strength is attributed to heating caused by 923 

the magmatic intrusions. The applicability of the suggested relationship between the magmatism 924 

of the rift and strain localization at ENAM could be examined by comparing its volcanic and 925 

magma-poor segments. The ENAM volcanic to non-volcanic transition occurs north of the GBB, 926 

offshore southern Nova Scotia (Fig. 2; Keen & Potter, 1995; Dehler, 2012; Deptuck, 2020). The 927 

rift basins north of the transition and landward of the ECMA (Fundy, Mohican, and Orpheus 928 

basins) continued accumulating sediments 5-25 Myr after the emplacement of CAMP (Withjack 929 

et al., 2012). That is, strain localized and faulting ceased only in segments where CAMP 930 

magmatism was followed by magmatic rifting associated with the emplacement of extrusive 931 

basalts (SDR). Similar magmatic localization occurred at the Afar region in east Africa where 932 
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localized volcanism replaced faulting along widely distributed border faults (Wolfenden et al., 933 

2005; Keir et al., 2006).  934 

The crustal structure of the BCT fits observations at the currently active magma-assisted 935 

East African Rift. The necking zone of the BCT is narrow (80-110 km) and is overlaid by SDR. 936 

The hinge line roughly parallels the landward edge of the SDR alluding to a genetic relation 937 

between volcanism and crustal thinning (Figs. 6, 8 and 17). Similarly, at the northern part of the 938 

East African Rift, zones of localized crustal thinning overlap areas of voluminous basaltic flows 939 

interpreted as early-stage SDR (Bastow & Kier, 2011). To explain the tight connection between 940 

volcanism and crustal thinning, Bastow and Kier (2011) proposed that initially, repetitive, 941 

localized magmatic intrusions reduced lithospheric strength without reducing crustal thickness. 942 

Once sufficiently weakened, the lithosphere thinned mechanically along a narrow band. The 943 

narrow thinning resulted in decompression melting and extrusion of voluminous basaltic flows 944 

above the area of intruded and thinned continental crust. The BCT crustal structure and its 945 

relation to the distribution of SDR lead us to suggest that a similar sequence of events occurred 946 

during the ENAM magmatic phase.  947 

With the transition to the magmatic phase later than 200 Ma, the dominant factor in 948 

determining the rheology, and thus the locus of straining, was no longer the composition of the 949 

crust but the strength reduction by magmatic intrusions. At this stage, the rift basins west of the 950 

ECMA were abandoned and strain migrated toward areas weakened by diking and heating (Figs. 951 

18a.3 and 18b.3). Therefore, the structures inboard of the ECMA represent the pre-magmatic 952 

deformation, whereas the structures overlapping ECMA resulted from superposition of pre-953 

magmatic and magmatic rifting. Offshore central and northern Nova Scotia, where the rift never 954 

turned magmatic (Keen & Potter, 1995), crustal thinning continued after 200 Ma as indicated by 955 

the presence of hyperextended crust offshore (Fig. 18c.4; Funck et al., 2004; Wu et al., 2006). 956 

An alternative explanation for continued rifting in central and northern Nova Scotia up to ~175 957 

Ma was that the breakup was diachronous being earlier in the south than in the north (Withjack 958 

et al., 2012). Recent work by Shuck et al. (2019) suggests however, that extension without 959 

seafloor spreading also persisted until around that time (175 Ma) offshore Cape Hatteras, just 960 

south of our study area. Therefore, the breakup does not appear to have been diachronous. 961 

 962 

5.4.3 Rheology and across-ocean asymmetry 963 

The previous paragraphs discussed the along-strike heterogeneity of the ENAM. Recent 964 

studies of the west African margin show that the structure also varies between the conjugate 965 

pairs across the Atlantic Ocean (e.g. Labails et al., 2009; Biari et al., 2017: Klingelhoefer et al., 966 

2016). The African conjugate of the BCT has a narrower necking zone, more moderately thinned 967 

crust and fewer or no SDR compared to the BCT (Labails et al., 2009; Biari et al., 2017). Data 968 

regarding the crustal structure of the conjugate of the GBB is lacking. The Moroccan conjugate 969 

of northern Nova Scotia is also narrower and thinner than its American pair (Biari et al., 2017). 970 

Similar to the ENAM, the African conjugate underwent oceanward strain localization associated 971 

with late Triassic-early Jurassic volcanism (Le Roy & Pique, 2001). We speculate that, also like 972 

the ENAM, the African inherited pre-rift rheology determined the nature of the pre-magmatic 973 

rifting. We propose that the structural asymmetry might reflect the asymmetry in rheological 974 

properties between the conjugate pairs. Following a prolonged history of westward subduction 975 

and collision, the Permian North American side of the rift was made of a series of peri-976 

Gondwanan accreted terranes overlying a wedge of Laurentian (Grenville) crust that thinned 977 
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toward Gondwana (Fig. 18; Hibbard et al. ,2006; Hatcher et al., 2010; Cook & Vasudevan, 2006; 978 

Sheridan et al., 1993; Sheridan et al., 1999, Hughes &  Luetgert, 1991; Marillier et al., 1989). 979 

The Rheic/Alleghenian suture separated the peri-Gondwanan terranes from the over-thrusted 980 

African Craton (McBride & Nelson, 1988; Villeneuve, 2005). McBride and Nelson (1988) 981 

suggested that breakup and the emplacement of the ECMIP followed the Rheic/Alleghenian 982 

suture and the suture served as a zone of weakness during the Mesozoic rifting (Figs. 18a.3 and 983 

18b.3). The coincidence of the ECMIP with the suture would have left the Appalachians and 984 

their accreted terranes on the Laurentian (North American) side of the ocean and the African 985 

Craton on the Gondwanan side. If pre-magmatic extensional deformation concentrated on the 986 

peri-Gondwanan terranes (see previous discussion) and other Appalachian weakness zones, then 987 

the African side of the rift should have remained mostly unthinned. A full model describing the 988 

interaction between the dying convergent Paleozoic boundary and the birth of the Mesozoic 989 

ocean is beyond the scope of this paper. However, we note that such model will have to consider 990 

the inherited asymmetry and the uneven distribution of the crustal and lithospheric rheology. 991 

 992 

6 Conclusions 993 

A full crustal model of the ENAM shelf from Cape Hatteras to the U.S-Canada border was 994 

constructed and incorporated with seismic interpretation and mapping of upper crustal structures, 995 

breakup volcanism and early post-rift sedimentation patterns to examine the nature of the pre-996 

magmatic thinning of the crust and mantle lithosphere in a volcanic margin setting. The results 997 

are based on seismic interpretation of more than 64,000 km of seismic reflection profiles tied to 998 

40 wells and of published data. Dense data and newer processing and visualization techniques 999 

provided significantly more detailed crustal and fault structures of the ENAM shelf than was 1000 

previously available. We found that the structure of the southern and northern BCT is typical of a 1001 

volcanic continental margin with a narrow (~50 km) transition zone between a normal thickness 1002 

continental crust and the breakup volcanism. The crustal structure of the GBB shows a broad 1003 

zone (≤200 km) of crustal thinning landward of the SDR inferred to be coupled with a broad 1004 

zone of lithospheric thinning. To explain these differences, we divide the rifting into pre-1005 

magmatic (prior to the emplacement of ECMIP) and magma-assisted rifting. While the GBB 1006 

underwent intense pre-magmatic thinning, the BCT experienced no or minor thinning prior to the 1007 

emplacement of ECMIP. We suggest that the nature and vigor of pre-magmatic rifting were 1008 

determined by the spatial distribution of the pre-rift crustal rheology. Weaker rheology of the 1009 

Meguma terrane underlying the GBB allowed intense faulting and crustal thinning, whereas the 1010 

stronger rheology of the Avalon terrane underlying the BCT inhibited crustal thinning and 1011 

transferred the tensile stresses westward to the older Appalachian domains. Magma-assisted 1012 

rifting started with the emplacement of ECMIP (later than 200 Ma). It included localized 1013 

magmatic heating and intrusion. Heating overwhelmed the compositional constraints on the 1014 

rheology and facilitated oceanward strain localization. Localized straining resulted in a narrow 1015 

necking zone overlaid by SDR. We speculate that the cross-ocean asymmetry in deformation and 1016 

magmatism between the passive margins of Africa and North America may have also been 1017 

governed by the heterogeneous distribution of the rheology. 1018 
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Figure 1. Schematic comparison between A) a volcanic continental margin (modified after Doré, 1637 

& Lundin, 2015; Franke, 2013; Eldholm et al., 1995) and B) a magma-poor continental margin 1638 

(modified after Doré, & Lundin, 2015; Franke, 2013; Peron-Pinvidic et al., 2013; Sutra et al., 1639 

2013). Abbreviations: HVLC = High Velocity Lower Crust; SDR = Seaward Dipping Reflectors; 1640 

ZECM = Zone of Exhumed Continental Mantle. 1641 

Figure 2. a) Major geological features of eastern North America. Light grey contours are 1 km 1642 

spaced bathymetry contours. East Coast Magnetic Anomaly (ECMA) data is after Meyer et al. 1643 

(2017). Locations of early Mesozoic rift basins are marked with red shading after Klitgord et al. 1644 

(1988) and Withjack et al. (2002) and references therein. Oceanic fracture zones and onshore 1645 

faults (dark gray lines) are after Klitgord et al. (1988) and Hibbard et al. (2006) respectively. The 1646 

transition from a volcanic to a non-volcanic margin south of Nova Scotia is marked after 1647 

Deptuck and Kendell (2017). Locations of major cities are indicated as stars. The segments of 1648 

the Eastern North American Margin are BCT = Baltimore Canyon Trough, LIP = Long Island 1649 

Platform, GBB = Georges Bank Basin, SB = Scotian Basin. Main rift basins: C = Culpeper; CV 1650 

= Connecticut Valley; F = Fundy; G = Gettysburg; O = Orpheus; T = Taylorsville. Other 1651 

abbreviations: CH = Cape Hatteras; CC = cape cod; DB = Delaware Bay; GOM = Gulf of 1652 

Maine; NESM = New England Seamount Chain; NJ = New Jersey; NS = Nova Scotia. b) 1653 

Distribution of crustal building blocks and terranes (after Hibbard et al. (2006) and (2007), 1654 

Hatcher et al. (2010) and Sheridan et al. (1993)). Br = Brunswick; Ca = Carolina; DD = Dunage 1655 

Domain; G = Goochland; LR = Laurentian Realm; PD = Piedmont Domain; Sw = Suwannee.  1656 

Figure 3. Distribution of data used superimposed on bathymetry. Black and blue lines mark the 1657 

locations of the present-day shoreline and 200 m isobath, respectively. Red diamonds are 1658 

locations of LASE (1986) Expanded Spread Profile data. Onshore depth to base of coastal plain 1659 

aquifer is from Pope et al. (2016). Bathymetry data are from Andrews et al. (2013). BOS = 1660 

Boston; NY = New York; WA = Washington. 1661 

Figure 4. A) Composite multichannel seismic reflection section of pre-stack time migrated 1662 

USGS profile 12 and industry data, along the strike of the ENAM. B) Interpretation of A. Inset 1663 

shows stratigraphy color code (see table S1 for the ages of the horizons). Red circles mark 1664 

locations of Moho reflectors as they appear on crossing dip-oriented reflection profiles. Red 1665 

rhombuses are locations of the Moho, Top Basement and Base Post-Rift horizons based on 1666 

crossing seismic refraction profiles, which are indicated by vertical dashed lines. Projections of 1667 

two wells, located less than 2 km NW of the profile, are shown in the Georges Bank Basin. C) 1668 

Map showing the profile location. AB = Atlantis Basin; DBF = Delaware Bay Fault; GBT = 1669 

Georges Bank Trough; YA = Yarmouth Arch. 1670 

Figure 5. A) USGS multichannel seismic reflection profile 18 across the northern GBB 1671 

continental shelf, slope and rise. B) Interpreted section. Inset shows stratigraphy color code (see 1672 

table S1 for the ages of the horizons). C) Map showing the profile location. Magnetic anomaly 1673 

profile is shown across the top of the section A. ECMA = East Coast Magnetic Anomaly; IYB = 1674 

Inner Yarmouth Basin; OYB = Outer Yarmouth Basin; SDR = Seaward Dipping Reflectors; YA 1675 

= Yarmouth Arch. 1676 

Figure 6. A) Dip-oriented section across the northern Baltimore Canyon Trough composed of 1677 

reprocessed, pre-stack time migrated USGS multi-channel reflection profile 25 offshore and base 1678 
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of coastal plain aquifer Digital Elevation Map and results of receiver function analysis used to 1679 

mark the BPR and Moho onshore. B) Interpreted section. Red rhombuses are locations of the 1680 

Moho, high-velocity lower crust, Top Basement, Seaward Dipping Reflectors package and top 1681 

carbonate bank based on re-interpretation of wide-angle seismic results (LASE, 1986). Positions 1682 

of the Base Post-Rift, the Moho west of the hinge line and the seaward limit of continental crust 1683 

are after Pope et al. (2016), Li et al. (2018) and Talwani et al. (1995), respectively. See figure 3 1684 

for description of the stratigraphy. Dashed rectangle marks location of C. C) Uninterpreted, 1685 

vertically exaggerated magnification of the part in A that show SDR. D) Map showing the 1686 

section location. ECMA = East Coast Magnetic Anomaly; HVLC = High Velocity Lower Crust; 1687 

SDR =Seaward Dipping Reflectors; SLCC = Seaward Limit of Continental Crust. 1688 

Figure 7. Structural map of Top Basement (in Two Way Travel Time) based on interpretations 1689 

of seismic reflection and published results of seismic refraction data. Black patches mark fault 1690 

heaves. Cross-hatched pattern at the GBT represents an area where interpretation is less certain. 1691 

AB = Atlantis Basin; BOS = Boston; DB = Delaware Bay; DBF = Delaware Bay Fault; FB = 1692 

Franklin Basin; GBB = Georges Bank Basin; GBT = Georges Bank Trough; IYB = Inner 1693 

Yarmouth Basin; LIB = Long Island Basin; LIP = Long Island Platform; NaB = Nantucket 1694 

Basin; NBCT = Northern Baltimore Trough; NoB = Norfolk Basin; NY = New York; NYB = 1695 

New York Bight Basin; OYB = Outer Yarmouth Basin; PB = Poag Basin; SBCT = Southern 1696 

Baltimore Canyon Trough; WA = Washington; YA = Yarmouth Arch. 1697 

Figure 8. A) Dip-oriented section across the southern Baltimore Canyon Trough coastal plain to 1698 

continental rise based on MA-032 time-migrated multi-channel reflection profile. Magnetic 1699 

anomaly profile is shown across the top of the section. Position of the Base Post-Rift west of the 1700 

coastline is after Pope et al. (2016). Position of the Moho, top basement under the SDR, seaward 1701 

limit of continental crust and the presence of high-velocity lower crust are interpolated based on 1702 

adjacent (~13 km) refraction data (Lizarralde & Holbrook, 1997; Sheridan et al., 1993; Talwani 1703 

et al., 1995). Dashed rectangles mark locations of B and C. B) and C) Uninterpreted and 1704 

interpretation of magnifications of the parts in A that show SDR. Note the overlap between the 1705 

positive East Coast Magnetic Anomaly and the distribution of seaward dipping reflectors. D) 1706 

Map showing the profile location. See figure 3 for description of the stratigraphy. ECMA = East 1707 

Coast Magnetic Anomaly; HVLC = High-Velocity Lower Crust; SDR = Seaward Dipping 1708 

Reflectors. 1709 

Figure 9. Two-way travel time structural map of the Base Post-Rift. Abbreviations of names of 1710 

structures underlying the BPR: AB = Atlantis Basin; GBT = Georges Bank Trough; IYB = Inner 1711 

Yarmouth Basin; NoB = Norfolk Basin; OYB = Outer Yarmouth Basin; YA =Yarmouth Arch. 1712 

Other abbreviations: BOS = Boston; GBB = Georges Bank Basin; GOM = Gulf of Maine; NBCT 1713 

= Northern Baltimore Canyon Trough; NY = New York; SBCT = Southern Baltimore Canyon 1714 

Trough; SE = Salisbury Embayment; WA = Washington. 1715 

Figure 10. A) Interpreted dip-oriented time-migrated multichannel seismic profile 288-AN-1716 

16744 across the Long Island Platform outer continental shelf, slope and rise. Magnetic anomaly 1717 

profile is shown across the top of the section. See figure 3 for description of the stratigraphy. The 1718 

East Coast Magnetic Anomaly and the Seaward Dipping Reflectors spatially overlap. Dashed 1719 

rectangle marks location of B. B) Magnifications of uninterpreted and interpretation of the part 1720 

in A that show diverging Seaward Dipping Reflectors. C) Map showing the profile location. 1721 
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Figure 11. A) Interpreted dip-oriented seismic reflection section (part of USGS profile 4) across 1722 

the northern Georges Bank Basin continental slope and rise. Magnetic anomaly profile is shown 1723 

across the top of the section. Dashed rectangle marks location of B. Note the overlap between the 1724 

East Coast Magnetic Anomaly and the distribution of Seaward Dipping Reflectors. B) Magnified 1725 

seismic expression of the Seaward Dipping Reflectors and its interpretation. C) Map showing the 1726 

profile location. 1727 

Figure 12. Magnetic anomaly map (adopted from Meyer et al., 2017). Locations of the landward 1728 

pinch-outs of SDR identified on seismic reflection sections are shown as red circles. Yellow 1729 

triangles mark the pinch-out location of the Base Post-Rift horizon on seismic sections that do 1730 

not clearly show an SDR geometry (Strike profiles or profiles of insufficient imaging quality). 1731 

Outlined green squares indicate locations of the seaward limit of the continental crust as 1732 

observed on seismic refraction data (after Talwani et al., 1995). BOS = Boston; NY = New York; 1733 

WA = Washington. 1734 

Figure 13. A) Distribution of data and published results used for constraining base of the crust 1735 

(the Moho) depths (in two-way travel time). Moho picks (this study) are marked in red-yellow-1736 

green-blue-purple spectra. Dashed red polygon marks the area used for interpolation of the Moho 1737 

depths. Legend show data sources. B) Time-domain structural map of the Moho interpolated 1738 

from A. GBB = Georges Bank Basin; LIP = Long Island Platform; NBCT =Northern Baltimore 1739 

Canyon Trough; SBCT =Southern Baltimore Canyon Trough. 1740 

Figure 14. A) Thickness (in two-way travel time) of the interval between Base Post-Rift and the 1741 

Moho and B) Gradient of Base Post-Rift-to-Moho thickness expressed as dip angle in pseudo-1742 

degrees, assuming the 1 millisecond equals 1 meter. Contours on both maps represent Base Post-1743 

Rift-to-Moho thickness. Red line is the hinge line as defined by the location of increasing Base 1744 

Post-Rift-to-Moho thickness. Histogram below color scales represent the relative abundance of 1745 

values. BOS = Boston; BCT = Baltimore Canyon Trough; CH = Cape Hatteras; DB = Delaware 1746 

Bay; GB = Georges Bank; GOM = Gulf of Maine; NJ = New Jersey; NY = New York, WA = 1747 

Washington. 1748 

Figure 15. Two-way travel-time thickness of the post-rift Jurassic sequence. Histogram below 1749 

color scales represent the relative abundance of a specific values. BOS = Boston; GBB = 1750 

Georges Bank Basin; NBCT = Northern Baltimore Canyon Trough; NY = New York, WA-1751 

Washington. 1752 

Figure 16. Post-rift Jurassic thickness (in two-way travel time) against the thickness of the Base 1753 

Post-Rift to Moho interval at Georges Bank Basin. 1754 

Figure 17. Magnetic anomaly map (Meyer et al., 2017) overlaid by key results, including 1755 

location of the hinge line, locations of the SDR landward pinch-out (red circles) and Jurassic 1756 

thickness contours (colored according to a thickness spectrum). Green squares mark locations of 1757 

the seaward limit of the continental crust as observed on seismic refraction data (after Talwani et 1758 

al., 1995). BOS = Boston, GBB = Georges Bank Basin; LIP = Long Island Platform; NBCT = 1759 

Northern Baltimore Canyon Trough; NY = New York; SBCT = Southern Baltimore Canyon 1760 

Trough; WA = Washington. 1761 
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Figure 18. Schematic model for the formation of ENAM along the BCT (a), GBB (b) and 1762 

Central and Northern Nova Scotia (c) segments (not to scale). Where Meguma terrane is present, 1763 

it focused the pre-magmatic extensional strain. Strain had localized oceanward when rifting at 1764 

the BCT and the GBB turned magmatic. General pre-rift crustal configuration of ENAM follows 1765 

Hibbard et al. (2006) and Hatcher et al. (2010). Specific additions include the BCT crustal 1766 

composition (Sheridan et al., 1993), the extension of Laurentia under the peri-Gondwanan 1767 

terranes (Cook & Vasudevan, 2006; Pratt et al., 1988; Marzen et al., 2019), the nature of the 1768 

Gondwanan crust (Villeneuve, 2005; Le Roy & Pique, 2001), the structural relations between 1769 

Avalon and Meguma terranes (Hutchinson et al., 1988; Keen et al., 1991; Pe Piper & Jansa, 1770 

1999), the proto-oceanic stage structure of the BCT (Lizerralde & Holbrook, 1997; LASE, 1986; 1771 

Labails et al., 2009; Shuck et al., 2019; Biari et al., 2017), GBB (Dehler, 2012) and Central and 1772 

Northern Nova Scotia (Maillard et al., 2006; Klingelhoefer et al., 2016; Wu et al., 2006) 1773 

segments, the role of the Alleghenian suture as a magma conduit during the emplacement of 1774 

ECMIP (McBribe & Nelson, 1988) and the possible existence of a Rheic slab under Laurentia 1775 

(Whalen et al., 2015; Van Staal et al., 2009) 1776 

 1777 

Table 1. Seismic Horizons and Their Corresponding Ages 1778 

Horizon Geological Period Age (Ma) a 

T1 Top Oligocene 23 

UK Top Cretaceous 66 

MK Middle Cenomanian ~97 

LK Top Barremian 126 

UJ Top Tithonian 145 

MJ Top Callovian (?) 164? 

BPR Hettangian (?) -early Aalenian (?) 201-174 

Top Basement Paleozoic >252 

Moho NA  

Note. aWalker et al. (2018) 1779 

 1780 

 1781 
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Figure S1. Crustal thickness along ENAM (In TWT) as represented by the interval 
bounded by the Top Basement and Moho. Black and blue lines mark the locations of the 
present-day shoreline and 200 m isobath, respectively. 
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Survey # lines 
Length 

[km] 
Domain Acquisition year Source Receivers 

Record length 
[ms] 

Final processing 
step 

Reference 

1** 12 570 TWT 1977 980 cubic inches NA 6900 Migration 
[Triezenberg et 

al., 2016] 

388-a 29 1441 TWT 1981 NA NA 6900-9900 Migration 
[Triezenberg et 

al., 2016] 

80PMA- 15 859 TWT 1980 
14 X 2,682 cubic 

inches 48 6600-9920 Migration 
[Triezenberg et 

al., 2016] 

81- 129 3823 TWT 1981 
25 X 2220 cubic 

inches Airgun 96 5600-7925 Migration 
[Triezenberg et 

al., 2016] 

88 GBB 16 414 TWT 1988 NA NA 8000 Migration 
[Triezenberg et 

al., 2016] 

a-E01-75-Mig-
123-251 141 8853 TWT 1975 

10 X 1,700 cubic 
inches Airgun NA 6900-9000 Migration 

[Triezenberg et 
al., 2016] 

d- 172 12011 TWT 1975 
18 X 1,700 cubic 

inches NA 6824-8224 Migration 
[Triezenberg et 

al., 2016] 

Dan Lizarralde 
LsP 1 142 TWT 2009 

45 in.^3/105 in.^3, 
generator–injector 

(GI) air gun 48 4000 Migration 
[Siegel et al., 

2012] 

de- 92 5348 TWT 1975 
18 X 1,700 cubic 

inches NA 7000-8500 Migration 
[Triezenberg et 

al., 2016] 

ma- 1 23 TWT 1977 
1,080 cubic inches 

Airgun NA 8000 Migration 
[Triezenberg et 

al., 2016] 

mmg-15 1 25 TWT 1976 
5,400 cubic inches 

Airgun 96 5900 Migration 
[Triezenberg et 

al., 2016] 

npr 29 1166 TWT 1978 
7 X 1,341 cubic 

inches 48 6000 Migration 
[Triezenberg et 

al., 2016] 

PR-82 84 1485 TWT 1982 
14 X 3,050 cubic 

inches 96 7900-8000 Migration 
[Triezenberg et 

al., 2016] 

PRI 5 254 TWT 1979 1,940 cubic inches 96 6744-7900 Migration 
[Triezenberg et 

al., 2016] 

Reprocessed 
USGS 21 4187 TWT 1973-1978 

4 to 23 airguns 
with a total volume 

of 1200 to 2160 
cubic inches 24-48 7000-15000 

Pre-stack time 
migration 

[Fortin et al., 
2018] 

Southern BCT 
wide grid 80 5522 TWT 1976 

18 X 1,700 cubic 
inches NA 6900-10000 Migration 

[Triezenberg et 
al., 2016] 

sx- 20 1102 TWT 1988 Airgun NA 6970-8700 Migration 
[Triezenberg et 

al., 2016] 

TX 1 43 TWT 1976 
5 X 660 cubic 
inches Airgun NA 6800 Migration 

[Triezenberg et 
al., 2016] 
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Table S1. Seismic Reflection Surveys Used for Interpretation. Data published by 
Triezenberg et al. [2016] are available at the USGS National Archive of Marine Seismic 
Surveys: https://walrus.wr.usgs.gov/namss/search/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

USGS CDP 50 8657 TWT 1973-1978 

4 to 23 airguns 
with a total volume 

of 1200 to 2160 
cubic inches 24-48 3500-15000  

[Triezenberg et 
al., 2016] 

Southern BCT 
tight grid 43 1270 TWT 1982 5,600 cubic inches NA 6800 Migration 

[Triezenberg et 
al., 2016] 

XPR-78 27 1060 TWT 1978 
7 X 1,341 cubic 

inches 48 6000-7000 Migration 
[Triezenberg et 

al., 2016] 

JGM 75 2774 TWT 1984 
18 X 3,000 cubic 

inches 120 5000-7000 Migration 
[Triezenberg et 

al., 2016] 

GB-75 44 1261 TWT 1975 1,200 cubic inches 48 6000 Migration 
[Triezenberg et 

al., 2016] 

na GBB 65 1599 TWT 1983 4,000 cubic inches NA 6800 Migration 
[Triezenberg et 

al., 2016] 
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Survey Line Region Type 
Vertical 

dimension 
Horizons Conversion velocity Reference 

-- 88-2 Gulf of Maine Deep reflection TWT 
Base post-rift, 

Moho 
NA [Keen et al., 1991] 

-- USGS 1A Gulf of Maine Deep reflection TWT 
Base post-rift, 

Moho 
NA 

[Hutchinson et al., 

1988; Hutchinson et 

al., 1987] 

LASE 6 
N. Baltimore 

Canyon Trough 

Seismic 

refraction/wide-

angle reflection 

TWT 

Base of extended 

continental crust, 

Moho, Base post-

rift (reinterpreted) 

NA [LASE, 1986] 

-- I-64 
Virginia 

Piedmont 
Deep reflection TWT 

Top Basement, 

Moho 
NA 

[Pratt et al., 

1988] 

EDGE 

MA-801 

(offshore), 

MA-802, 

MA-803 

S. Baltimore 

Canyon Trough 

seismic 

refraction/wide-

angle reflection 

TWT 
Base post-rift, 

Base SDRs, Moho 
NA 

[Sheridan et al., 

1993] 

EDGE 
MA-801 

(onshore) 

S. Baltimore 

Canyon Trough 

Seismic 

refraction/wide-

angle reflection 

Depth Moho 6.3 [km/s] 
[Lizarralde and 

Holbrook, 1997] 

-- -- 

New England 

(Only the coastal 

plains of New 

Jersey and New 

York were used in 

the current study) 

Teleseismic 

receiver functions 
Depth Moho 6.3 [km/s] [Li et al., 2018] 

Table S2. Published Deep Seismic Results Incorporated in the Analysis.  
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Well Region 
Total depth 

[m] 
Checkshots 

Vp 
log 

Density 
log 

Seismic-well tie 
procedure  

Paleontological 
report reference 

Remarks 

COST G-
1 

GBB 4898.4 NA V V * [Poag, 1991] 
*Time-Depth-

Relationships are taken 
and digitized from Taylor 
and Anderson [1982]. A 

synthetic seismogram was 
constructed to evaluate 

the tie to the seismic data 

COST G-
2 

GBB 6667.2 NA V V 
 
* 

[Poag, 1991] 

Exxon 
133-1 

GBB 4303.2 V V V ISWT [Edson et al., 2000a]  

Conoco 
145-1 

GBB 4419.6 V V V ISWT [Poppe et al., 1992]  

Tenneco 
187-1 

GBB 5525.1 V V V SC [Edson et al., 2000d]  

Mobil 
273-1 

GBB 4748.8 V V V ISWT [Edson et al., 2000b]  

Mobil 
312-1 

GBB 6096 V V V ISWT [Poppe and Poag, 1993]  

Shell 
357-1 

GBB 5921.3 V V V ISWT [Edson et al., 2000c] 

Shallow (<3670m) 
checkshots data is 
taken from Mobil 

312-1 
Shell 
410-1 

GBB 4745.1 V V V ISWT [Poppe and Poag, 1993]  

Exxon 
975-1 

GBB 
4451.6 

 
V V V ISWT [Poppe and Poag, 1993]  

COST B-
2 

BCT 4838.8 NA V V * [Poag, 1985] 

*Time-Depth-
Relationships are taken 

and digitized from 
Scholle [1977]. A 

synthetic seismogram was 
constructed to evaluate 

the tie to the seismic data 

COST B-
3 

BCT 4807.2 NA V V * [Poag, 1985] 

*Time-Depth-
Relationships are taken 

and digitized from 
[Scholle, 1980]. A 

synthetic seismogram was 
constructed to evaluate 

the tie to the seismic data 
Mobil 17-

2 
BCT 4115.0     [Edelman et al., 1979]  

Murphy 
106-1 

BCT 5610.0 V V V SC [Adinolfi, 1986]  

Shell 272-
1 

BCT 4115.0 NA V V * [Poag, 1985] 

*Time-Depth-
Relationships are taken 
and digitized from the 

neighboring Shell 273-1 
well 

Shell 273-
1 

BCT 4826.0 V V V ISWT [Steinkraus, 1979]  

Shell 372-
1 

BCT 3515.4 V V V ISWT [Edson, 1987a]  

Tenneco 
495-1 

BCT 5547.0 V V V ISWT 
[International_Biostratigraphers_Incorporated, 

1979b] 
 

Exxon 
500-1 

BCT 3316.0 V V V ISWT [Crane, 1979c]  

Mobil 
544-1A 

BCT 4806.7 V V V ISWT [Gauger, 1979]  

Shell 586-
1 

BCT 4828.0 V V V ISWT [Edson, 1986]  
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Shell 587-
1 

BCT 4420.0 NA V V SC [Edson, 1987b]  

Conoco 
590-1 

BCT 3607.3 V V V ISWT 
[International_Biostratigraphers_Incorporated, 

1978a] 
 

Texaco 
598-1 

BCT 4884.0 V V V ISWT [Kobelski, 1987]  

Exxon 
599-1 

BCT 5199.3 NA V V * [Cousminer et al., 1986] 

*Time-Depth-
Relationships are taken 
and digitized from the 

neighboring Texaco 598-
1 well 

Shell 632-
1 

BCT 4241.6 V V V CS [Picou, 1978]  

Texaco 
642-1 

BCT 5377.0 NA V V * [Amato and Bielak, 1990] 

*Time-Depth-
Relationships are taken 
and digitized from the 
neighboring Tenneco 

642-2 well 
Tenneco 

642-2 
BCT 5554.0 V V V ISWT [Bielak, 1986]  

Tenneco 
642-3 

BCT 4785.2 V V V ISWT NA 

This well had no 
available paleontological 
report. It was used only 

for calibration of seismic-
well tie  

Exxon 
684-2 

BCT 5096.9 V V V ISWT [Crane, 1979b]  

Exxon 
684-1 

BCT 5243.0 V V V ISWT [Crane, 1979a]  

Gulf 718-
1 

BCT 3882.5 NA V V * [Poppe et al., 1990] 

*Time-Depth-
Relationships are taken 
and digitized from the 

neighboring Shell 632-1 
well 

Exxon 
728-1 

BCT 4609.2 NA V V * [Stough, 1981] 

*Time-Depth-
Relationships are taken 
and digitized from the 

neighboring Exxon 684-2 
well 

Exxon 
816-1 

BCT 5386.3 V V V CS [Crane, 1981]  

Homco 
855-1 

BCT 5305.0 NA V V * 
[International_Biostratigraphers_Incorporated, 

1979a] 

*Time-Depth-
Relationships are taken 
and digitized from the 

neighboring Gulf 857-1 
well 

Gulf 857-
1 

BCT 5320.0 V V V ISWT [Bifano, 1978]  

Exxon 
902-1 

BCT 4802.0 V V V ISWT [Crane, 1979d]  

Shell 93-1 BCT 5407.0 V V V ISWT [Amato, 1987]  

Homco 
676-1 

BCT 3781.0 NA V V * 
[International_Biostratigraphers_Incorporated, 

1978b] 

*Time-Depth-
Relationships are taken 
and digitized from the 

neighboring Shell 632-1 
well 

Table S3. Wells Used for Stratigraphic Division. 
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