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Abstract

We analyze a new model for growing networks, the constrained Leath invasion percolation (CLIP) model. Cluster dynamics

are characterized by bursts in space and time. The model quantitatively reproduces the observed frequency-magnitude scaling

of earthquakes in the limit that the occupation probability approaches the critical bond percolation probability in d=2. The

model may have application to other systems characterized by burst dynamics.
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We analyze a new model for growing networks, the constrained Leath invasion

percolation (CLIP) model. Cluster dynamics are characterized by bursts in space

and time. The model quantitatively reproduces the observed frequency-magnitude

scaling of earthquakes in the limit that the occupation probability approaches the

critical bond percolation probability in d=2. The model may have application to

other systems characterized by burst dynamics.

I. INTRODUCTION

Many driven physical processes in nature do not occur at constant rates, but rather have

a burst-like character in space and time, clustering in space and time. Examples include

earthquake seismicity[1], price changes price in financial markets[2], avalanche dynamics

and forest fires[3], and transcriptional bursts in genomic systems[4]. In turn, many of these

systems and their associated models have been mapped onto percolation models, which is a

simple model for clustering[5]. An example of this type of mapping for financial markets is

described in ref.[6]. An example for earthquake systems is discussed in ref.[7].

Here we discuss the invasion percolation model[8] that was originally developed to describe
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fluid injection into a porous medium, then apply it specifically to the problem of earthquake

dynamics and statistics. Invasion percolation (IP) is a variation on the standard models of

site and bond percolation[5], and is a type of connected graph-theoretic model wherein the

nodes and edges can represent many types of quantities.

Similar to the Leath method[9] in site percolation, one starts with a central seed site and

grows the cluster outward. However, in the the IP model, bonds connected to existing cluster

sites are opened in order of lowest probability or bond strength first, then next-lowest, and

so forth. Eventually the cluster grows to ”infinity” (or a pre-defined maximum size). One

of the characteristics of the classical IP model is that there is only one time scale, the time

scale on which bonds are progressively opened.

To summarize our results: We propose a new model for burst-like dynamics, the con-

strained Leath invasion percolation (CLIP) model. We show that this model is loopless

similar to the model in ref.[10] Interpreting the percolation sites as units of energy release,

we show that the model reproduces the observed natural scaling of earthquakes with the

correct scaling exponent in the limit that the occupation probability equals the critical bond

percolation probability in d = 2, pocc = 0.5. Comparing these results to observed scaling of

earthquakes in several geological regimes, we find good quantitative agreement.

II. BURSTS

One of the characteristics of the IP model is the existence of bursts. Once a strong bond

is opened, fluid may enter a region where weaker bonds may exist[3, 11, 12]. Burst sites

are defined relative to an (arbitrarily) defined burst threshold strength, usually taken to be

very near the critical bond probability value pbc. A burst is defined to include all bonds that

are opened sequentially, where the bond strength is less than an arbitrarily defined burst

threshold strength. As a practical example, ref.[13] associated invasion percolation bursts

with resistance jumps observed in laboratory studies of mercury injection into a porous

medium.

A burst begins when an opened bond strength is smaller than the arbitrarily defined

threshold and ends when an opened bond strength is greater than the threshold. Because the

bursts are defined in this way, the particular dynamics used to grow the cluster will determine

whether the individual bursts are spatially connected as well as temporally sequential. In
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other words, a sequence of opened bonds may not imply that a burst is a spatially connected

object.

There is no concept of time independent from the sequence of opened bonds in the classical

IP model. However, with respect to earthquakes in nature, there are multiple time scales.

Bursts of activity may occur episodically in time, separated by a period of repose as the

system ”recharges” for the next seismicity burst[1]. For a more general model, we now modify

the classical IP model to allow for bursts that are both spatially and temporally localized,

and in which time increments have a meaning independent of the temporal development of

the bursts. Or to state in an alternate way, in our modification of the model, we allow for

multiple time scales.

III. CONSTRAINED LEATH INVASION PERCOLATION

In the CLIP model, we combine the idea of growing clusters via the Leath algorithm,

with the constraint that each site can only be connected to the origin by means of a single

pathway of bonds. We start with the ”injection site” as the origin, although models with

multiple injection sites could be constructed. In this model, we occupy sites in the growing

cluster via Leath events or bursts. We also apply the constraint that a site can only be

connected by a single path of bonds to the origin, so that multiple connection paths are not

allowed, similar to constraints imposed by the method in ref. [14]

Here we consider two time scales, an ”injection scale” or long time scale on which the

injections occur, and a ”burst scale” or short (”instantaneous”) time scale on which the

bond-opening events occur. The cluster begins with growth from the origin on the first long

time step.

On a square lattice in d = 2, the four nearest neighbor sites to the origin are first

identified. As in the Leath algorithm[9], each of these four sites are tested by generating

a uniformly distributed random number on (0,1). If the random number is less than an

occupation probability pocc, the site is occupied and the bond between the origin and that

site is opened. Testing and opening of the bonds is assumed to occur on the short time

scale. This step is regarded as the first burst.

Once the testing is completed on the four nearest neighbors to the origin on the first long

time step, the model proceeds to the second long time step, during which the second burst
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FIG. 1: Example of 5 bursts with associated open bonds. Bursts are shown as separate colors. Yellow star

denotes the initial seed. (a) Bursts sites are color-coded, connecting bonds are shown as dark lines. (b)

Open bonds only shown as lines.

occurs. Two tests are carried out. The first test demands that the random number be less

than pocc, and the second test demands that an occupied site can only be connected to the

origin by a single path of bonds.

The process is repeated for all later generations of bursts. The cluster grows by a series

of Leath bursts, constrained by the requirement that a site is only connected to the origin

once. Because the model is fundamentally constrained by bond pathways, we expect that

the critical value of occupation probability should be 0.5, the value for bond percolation in

d = 2. This expectation is borne out by simulations. Once the a burst is completed, one of

the sites in the cluster is then chosen at random as the next growth site and its neighbors

are identified and tested by comparing random numbers to pocc and the process repeats.

An example of such a cluster composed of 5 bursts is shown in Figure 1(a) for the value

pocc = 0.45. In Figure 1(b) it can be seen that there are no open regions in the cluster

network that are totally surrounded by opened bonds and thus isolated. In the conceptual

physical model, all pre-existing fluid therefore has the possibility of ”draining” out of the

medium as bonds are opened. It can be seen that the bursts, which occur sequentially over

the long time scale characteristic of fluid injection at the origin, are spatially connected.

Each burst is assumed to develop over the short burst time scale.

In Figure 2 we show the number-size non-normalized probability density functions f (S)
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FIG. 2: Non-normalized probability density functions for number of bursts vs. burst magnitude size(number

of sites in a burst) on log-log axes for two values of occupation probability. Line slopes as shown. (a) Left,

pocc = 0.45. (b) Right, pocc = 0.497.

for bursts in models with two different values of occupation probability, pocc = 0.45 (a) and

pocc = 0.497 (b). Figure 2(a,b) are plotted on Log-Log axes, so that scaling, or power law

functions will appear as a straight line. Here number is the number of bursts and burst

size S is the number of occupied sites in the burst. Note that this plot bins the data prior

to fitting the scaling line, but the data are computed to machine precision. Quoted errors

in data fits, which are calculated by least squares here and in Figure 3, arise from the fit

shown.

Both Figures 2(a,b) are statistics for calculations with 300,000 bursts. Figure 2(a) has a

shorter scaling region, whose best fit scaling line between 2.0 ≥ Log10 (S) ≥ 0.25 has a slope

of −0.806 ± 0.053. Figure 2(b), nearer to the critical occupation probability of pbc = 0.5,

has a longer scaling region. The best fitting scaling line between 3.816 ≥ Log10 (S) ≥ 0.25 is

−.667± 0.013 ≈ −2/3. This latter slope in Figure 2(b) has a significance that will become

apparent shortly. We note that problems in fitting earthquake data have been discussed

extensively in [15, 16].

The fact that the slope of the scaling line should be more negative in Figure 2(a) than

Figure 2(b) is clear. Both plots have 300,000 bursts, and as a pocc → pbc = 0.5, bursts will

tend to grow larger once they are initiated. This fact is borne out by the data in Figure

2, as (a) has 2.11 million sites in the growing cluster, whereas (b) has 45.26 million sites
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FIG. 3: Non-normalized survivor (exceedance) distributions for number of bursts vs. burst magnitude

(defined in the text) on log-log axes for two values of occupation probability. b-values as shown. (a) Left,

pocc = 0.45. (b) Right, pocc = 0.497.

in the growing cluster. In Figure 2(b), there are proportionally many more large clusters

relative to the number of small clusters than in Figure 2(a). As a result, the magnitude of

the scaling line slope in Figure 2(a) should be larger than the magnitude of the scaling line

slope in Figure 2(b).

For naturally occurring earthquakes, the standard in the literature is to plot

the Gutenberg-Richter frequency-magnitude (or number-magnitude) relation as a non-

normalized survivor distribution or exceedance distribution for earthquakes greater than

a magnitude M as in Figure 3(a,b). Earthquake magnitude is typically defined based on

the energy release in earthquakes, a quantity that is characterized by the seismic moment

W [17].More specifically, the standard definition of moment magnitude Mw in SI units is:

1.5Mw = Log10 (W )− 9.0 (1)

where:

W = µUA (2)

Here µ is the elastic shear stiffness, U is the displacement on the earthquake fault, and A is

the slipped area on the fault.

We now convert the simulation data shown as the non-normalized probability density

functions in Figure 2(a,b), to non-normalized survivor (exceedance) distributions as shown
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in Figure 3(a,b). Here there is no need to bin the data. In addition, rather than assuming

that each site in a burst represents an element of burst area, let us assign each site to

represent an element of seismic moment, consistent with the idea of CLIP as a general

graph-theoretical model.

Analogous to equation (1), we define the burst magnitude MB by the relation:

1.5MB = Log10 (S) (3)

where again S is the burst size, or number of occupied sites in the burst. The results are

shown in Figure 3(a,b). Here, the slope of the scaling line on the survivor distribution plot

is typically called the Gutenberg-Richter[1] b-value. Earthquake number- magnitude scaling

relations are empirically found to be approximately described by the equation:

Log10 (N) = a− bMW (4)

where a and b are constants. Examples are shown below.

Similar to the results of Figure 2, it can seen that the b-value of 1.332± 0.022 in Figure

3(a) is larger than the b-value of 0.999 ± 0.005 in Figure 3(b). Again, this is because the

number of overall sites in the cluster is larger for larger pocc having the same number of

bursts. In Figure 3(b), which was a model for which pocc = 0.497 (near pbc = 0.5), the

b-value is very close to b = 1.0. The data in Figure 3 were fit between 1.552 ≥ MB ≥ 0.25

for Figure 3(a), and between 1.908 ≥ MB ≥ 0.25 for Figure 3(b). We note that to verify

the b-values, we also computed them by the Maximum Likelihood method and found very

similar results [18–20]

More generally, for a sequence of values of pocc, we find the results shown in Figure 4.

Error bars for the b-values are shown as well (68% confidence). The short dashed extension

to the red line represents the extrapolation of the data to the critical value of probability

pbc = 0.5. It is found that the extrapolated b-value is b→ 1.002± 0.006 as pocc → pbc = 0.5.

As we discuss below, this b-value is characteristic of values seen in observed earthquake

seismicity.

To show why the limiting value of b in Figure 4 approaches b = 1, we write the exceedance

distribution N (> MB) for MB in terms of the probability density function fB (MB) as:

N (> MB) =

∫ ∞
MB

fB (M ′
B) dM ′

B (5)
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FIG. 4: b-value vs. occupation probability pocc for CLIP bursts. Data were fit for the range of values

0.45 ≤ pocc ≤ 0.497. Extrapolation to the critical value pocc = pbc = 0.5 indicates that the b-value at

criticality for the Number-Magnitude relation is expected to be b = 1.002± 0.006.

As discussed previously, we see from Figure 2(b) that as as pocc → pbc = 0.5, the probability

density function f (S) asymptotically approaches a power law:

f (S)→ cS−x as pocc → pbc = 0.5 (6)

where c is a constant and x→ 2/3.

Combining (3) and (6), we find the probability density function fB (MB) is:

fB (MB) = f (S (MB)) = c[
(
101.5MB

)
]−x → c10−MB as pocc → pbc = 0.5 (7)

Substituting (7) into (5) we finally find that:

N (> MB) =

∫ ∞
MB

fB (M ′
B) dM ′

B = cLog1010−MB (8)

From definition (4) and equation (8), we therefore see that b and a → log10 (clog10) as the

occupation probability pocc → pbc = 0.5.

IV. EARTHQUAKE DATA

To compare with observed earthquake data, we show the b-value data for multiple sites

and geologic regimes in Table 1, for the seismicity data in circular regions. Data are from
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the US Geological Survey. Tectonic regimes (T ) are generally characterized by b-values

close to b ∼ 1, consistent with nearly critical behavior pocc ∼ 0.5. In these locations, very

large earthquakes (large ”bursts”) are possible and often observed. In nature, values b < 1

are unusual, and are often found to be due to observational problems of detecting small

earthquakes[1]. Another factor may be uneven coverage of seismometers, such as in areas

that combine land, where the coverage is usually good, and oceanic areas, where the coverage

is often less reliable.

Volcanic regimes (V ) are generally characterized by somewhat higher non-critical prob-

abilities and b-values near b ∼ 1.1, since larger earthquakes are not often observed on the

smaller fault systems present in volcanic edifices. Injection and fracking locations (I/F) have

yet smaller fault systems, and consequently smaller earthquakes, with higher b-values near

b ∼ 1.2− 1.5. But see also [21, 22] for a discussion.

V. DISCUSSION

The CLIP model extends the original IP model that was originally developed to describe

the type of physics involved in systems in which an invading incompressible fluid displaces
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a pre-existing incompressible fluid. In earthquakes, activity is often observed to begin in a

location after a period of quiescence, then progresses in series of burst-like events to cluster

in space and time [23–31]. These bursts include foreshock-mainshock-aftershock sequences,

as well as swarms [32]. We also note we adopted a d=2 bond percolation model since

earthquake faults are generally found to be a nearly planar slip surface.

Previous papers have developed simple models for earthquakes based on percolation[5]

and slider blocks[33, 34]. In the mean field versions of these models, the frequency-size

exponent τ − 1 is generally found to have the value τ − 1 = 1.5 for mean field systems as

described in, for example [34], to be compared to Figure 2.. Interpreting a connected site

as an element of moment release as we have assumed in this paper, one would find b = 1.5,

compared to the observed value near b ∼ 1.

On the other hand, using a slider block model with damage, ref.[7] found that models

could be developed in which b ∼ 1.0. In both of these other models, τ is a constant irrespec-

tive of model parameters. As another example, the SOC model of [35] is characterized by

an area-scaling exponent of τ − 1 ∼ −1, so it too would have b ∼ 1. However, for all these

models, the area-scaling exponents are constant, and therefore the b-value is constant.

The CLIP model, on the other hand, has a variable b-value. As the CLIP occupation

probability approaches the critical value pocc → pbc = 0.5, larger bursts become progressively

easier to generate, leading to a lower b-value that approaches the observed value in the limit.

We note that other scaling laws characteristic of earthquakes can be obtained from the

CLIP model. For example, we find that the fractal dimension of the clusters Df = 1.89 ±

0.021, in good agreement with the observationally measured value of Df = 1.9 [36].

As described in many previous publications of long standing, the mobilization of pore

fluids is thought to be intimately connected to the physics of earthquakes [37–45], providing

possible justification for the CLIP model. This simple CLIP model may find application to a

range of earthquake-type models of clustering by burst-like phenomena. In that regard, the

model will also allow earthquake seismicity data to be interpreted in terms of current values

of burst probabilities pocc. These and other results will be discussed in future publications

[46, 47].
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