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Abstract

Global mean surface air temperature (T) variability on subdecadal timescales can be of substantial magnitude relative to

the long-term global warming signal and such variability has been associated with considerable environmental and societal

impacts. Therefore, probabilistic foreknowledge of short-term T evolution may be of value for anticipating and mitigating

some course-resolution climate-related risks. Here we present an empirically-based methodology that utilizes global spatial

patterns of annual surface air temperature to predict subsequent annual T anomalies via Partial Least Squares Regression. The

method’s skill is achieved via information on the state of long-term global warming as well as the state and recent evolution of

the El Niño-Southern Oscillation and the Interdecadal Pacific Oscillation. We test the out-of-sample skill of the methodology

using a “forecast mode” where statistical predictions are made precisely as they would have been if the procedure had been

operationalized starting in the year 2000. The forecast errors for lead times of 1 to 4 years are smaller than näıve benchmarks

using persistence and perform favorably relative to most dynamical Global Climate Models retrospectively initialized to the

observed state of the climate system. Thus, this method can used as a computationally-efficient benchmark for dynamical model

forecast systems.
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 7 

Abstract 8 

Global mean surface air temperature (Tglobal) variability on subdecadal timescales can be of 9 

substantial magnitude relative to the long-term global warming signal and such variability has been 10 

associated with considerable environmental and societal impacts. Therefore, probabilistic 11 

foreknowledge of short-term Tglobal evolution may be of value for anticipating and mitigating some 12 

course-resolution climate-related risks. Here we present an empirically-based methodology that 13 

utilizes global spatial patterns of annual surface air temperature to predict subsequent annual Tglobal 14 

anomalies via Partial Least Squares Regression. The method’s skill is achieved via information on 15 

the state of long-term global warming as well as the state and recent evolution of the El Niño-16 

Southern Oscillation and the Interdecadal Pacific Oscillation. We test the out-of-sample skill of the 17 

methodology using a “forecast mode” where statistical predictions are made precisely as they would 18 

have been if the procedure had been operationalized starting in the year 2000. The forecast errors 19 

for lead times of 1 to 4 years are smaller than naïve benchmarks using persistence and perform 20 

favorably relative to most dynamical Global Climate Models retrospectively initialized to the 21 

observed state of the climate system. Thus, this method can used as a computationally-efficient 22 

benchmark for dynamical model forecast systems. 23 

 24 

Plain Language Summary 25 

Year-to-year global temperature variability can be large compared to the long-term progression of 26 

global warming and such year-to-year variability has been shown to have considerable 27 

environmental and societal effects. Thus, approximate foreknowledge of yearly global temperature 28 

deviations should be of value for anticipating some climate impacts. This study presents an 29 

application a statistical technique, Partial Least Squares Regression, to the problem of year-to-year 30 

global temperature prediction. For the task of predicting global temperature one to four years ahead 31 

of time, we find that the method is skillful relative to simple benchmarks and it is competitive with 32 

predictions produced from much more computationally-expensive Global Climate Models. 33 

 34 

Key points: (140 character limit including spaces) 35 

• Global patterns of annual local surface air temperature can be used to predict subsequent 36 

annual global temperature deviations 37 

• The state of Global Warming, El Niño and the IPO constrain subsequent annual global 38 

temperature to within ~0.45C (±2𝜎) 39 

• The method is skillful relative to a persistence benchmark and it is competitive with 40 

hindcasts from initialized Global Climate Models 41 

 42 

 43 

 44 

 45 
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1. Introduction 46 

Human-caused increases in the atmospheric concentration of well-mixed greenhouse gases 47 

are causing pronounced global climate change on decadal to centennial timescales [Bindoff et al., 48 

2013]. Perhaps the most-recognized measure of this change is the long-term effect on global mean 49 

surface air temperature (Tglobal), which has increased at a rate of ~0.14C per decade since the 50 

middle of the 20th century [Hansen et al., 2010]. Superimposed on top of this externally-forced 51 

decadal to centennial-scale warming, is variability which is mostly unforced and spontaneously 52 

generated from interactions internal to the ocean-atmosphere-land system [Bindoff et al., 2013]. 53 

Such Tglobal variability is not as persistent as the contemporary externally-forced signal but it can 54 

be substantial in magnitude over subdecadal timescales.  55 

 56 

For example, Tglobal increased by ~0.42C between 2011 and 2016 which is equivalent to 57 

approximately three decades worth of long-term warming at the aforementioned historically-58 

observed rate. This suggests that, on subdecadal timescales, deviations in Tglobal can approach 0.5C 59 

in magnitude which has recently been associated with appreciable impacts on climate-related risk 60 

[Guldberg et al., 2018]. For instance, the aggregate probability of exceeding the preindustrial-61 

defined 99.9th percentile of daily heat extremes over land increases by 50% to 100% with such a 62 

magnitude shift in Tglobal [Fischer and Knutti, 2015]. In addition to being of large relative 63 

magnitude, subdecadal Tglobal variability also has an extensive spatial footprint in the sense that 64 

approximately 87% of the global surface and 99% of the global land surface exemplifies a positive 65 

linear relationship between local annual unforced Surface Air Temperature (SAT) deviations and 66 

unforced Tglobal deviations (Figure 1). 67 

 68 

Given the extensive spatial footprint and large magnitude of subdecadal Tglobal variability, it 69 

is perhaps unsurprising that such variability has been linked to considerable environmental and 70 

societal impacts. Unforced subdecadal global temperature variability, typically associated with the 71 

state of the El Niño-Southern Oscillation [ENSO [Trenberth et al., 2002]] and its related effects 72 

[McPhaden et al., 2006], has been connected to global patterns of primary production [Behrenfeld 73 

et al., 2001], the distribution of sea bird, marine mammal, and fish populations [Stenseth et al., 74 

2002], as well as coral bleaching [Walther et al., 2002]. Such variability has also been linked to 75 

variation in societal phenomena including agricultural output [David and Christopher, 2007], gross 76 

domestic product growth [Burke et al., 2015], monetary inflation [Cashin et al., 2017], energy 77 

demand [Deschênes and Greenstone, 2011], human mortality [Deschênes and Greenstone, 2011], 78 

and civil conflicts [Hsiang et al., 2011]. In addition to these substantive impacts, subdecadal Tglobal 79 

variability tends to attract significant attention in popular media [Gillis, 2017], which influences 80 

the public perception of the urgency/necessity of implementing climate-change mitigation policy.  81 

 82 

Given the above concerns, there is potentially substantial utility in the approximate 83 

foreknowledge of annual Tglobal values (here, anomalies with respect to the 1951-1980 mean). 84 

However, forecasting the particular state of the climate system from months to years ahead of time 85 

is notoriously difficult because it is a timescale long enough such that chaos significantly degrades 86 

forecasts made based on initial conditions but a timescale too short for typical externally-forced 87 

signals to strongly emerge from the ‘noise’ of unforced variability [Kirtman et al., 2013; Meehl et 88 

al., 2009].  89 

 90 

Despite these challenges, there has been an emphasis on annual to decadal climate 91 

prediction using both statistical [Krueger and Storch, 2011; Newman, 2013; Suckling et al., 2017; 92 

Sévellec and Drijfhout, 2018; Thomas et al., 2008] and dynamical models [Keenlyside et al., 2008; 93 

Kirtman et al., 2013; Smith et al., 2007]. A particular focus has been placed on the use of dynamical 94 

Global Climate Models (GCMs) initialized to the observed state of the climate system and run 95 
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forward in time, in a manner similar to the procedure used in numerical weather prediction 96 

[Keenlyside et al., 2008; Kirtman et al., 2013; Smith et al., 2007]. This method has exhibited 97 

potential, especially in certain locations, but these GCM-based predictions come with noteworthy 98 

challenges such as large computational expense, incomplete observations for initialization, the 99 

necessity to correct for mean biases and the necessity to correct for model drift due to ‘coupling 100 

shock’ [Meehl et al., 2013a]. Furthermore, accurate GCM simulation of internal modes such as 101 

ENSO and its teleconnections are of utmost importance for this application but many GCMs still 102 

struggle in their simulation of physical processes key to ENSO dynamics [Bellenger et al., 2013]. 103 

 104 

In this study, we introduce a complement to GCM-based decadal prediction that makes use 105 

of historically-observable empirical relationships between the state of the climate system at any 106 

given time and subsequent annual Tglobal anomalies. Subdecadal Tglobal anomalies are primarily 107 

related to modes of variability in the climate system such as ENSO [Brown et al., 2014; Trenberth 108 

et al., 2002], and thus some previous efforts to statistically forecast subdecadal Tglobal have relied 109 

primarily on the use of ENSO indices as predictor variables (e.g., [Smith et al., 2007; Suckling et 110 

al., 2017]). However, these methods generally require an ad-hoc calculation of an ENSO index 111 

which may not fully capture the influence of ENSO on Tglobal. Furthermore, other modes of 112 

variability like the Interdecadal Pacific Oscillation (IPO; [Meehl et al., 2013b]], the Atlantic 113 

Multidecadal Oscillation (AMO; [Chylek et al., 2014]), the North Atlantic Oscillation [NAO; [Li 114 

et al., 2013]), and variability over the Southern Ocean [Brown et al., 2017], have all been suggested 115 

to influence global temperature, but they are often neglected as potential predictors of Tglobal. Part 116 

of the challenge is that many of the aforementioned modes are correlated with each other (either 117 

positively or negatively) which precludes their use in statistical frameworks that assume linear 118 

independence of predictors. 119 

 120 

With the above considerations in mind, we seek an empirical methodology for predicting 121 

unforced Tglobal deviations that (a) allows predictors of Tglobal to be globally comprehensive and thus 122 

does not arbitrarily exclude modes of variability originating from, e.g., high latitudes; (b) creates 123 

predictors based on the relationship of the data to predictands (as opposed to using, e.g., a priori 124 

and/or ad hoc climate indices); and (c) creates predictors that are uncorrelated with each other. We 125 

achieve these goals via the use of Partial Least Squares Regression (PLSR [Brown and Caldeira, 126 

2017; Wold, 1966]). 127 

 128 

2. Methods 129 

 130 

We apply Partial Least Squares Regression (PLSR) to the problem of forecasting Tglobal 131 

anomalies in the following way. First, observed gridded local SAT (latitude, longitude, annual time) 132 

anomalies were obtained from the four primary observational datasets: HadCRUT4 [Morice et al., 133 

2012], NASA GISTEMP [Hansen et al., 2010], NOAA [Vose et al., 2012], and Berkeley Earth 134 

Surface Temperature (BEST) [Rohde et al., 2013]. 135 

 136 

Second, PLSR was performed between predictors of gridded local SAT fields (normalized 137 

locally by their standard deviation across time) and predictands of subsequent Tglobal deviations. 138 

SAT fields were used as predictor variables of Tglobal because they represent some of the longest 139 

and most spatially-comprehensive data available and because much information on the state of 140 

various modes of variability in the climate system are contained in the SAT field. 141 

 142 

The PLSR framework is similar to that of a Multiple Linear Regression (MLR) problem. In 143 

MLR, application to the current problem would entail finding coefficients, 𝑏⃗ , such that the mean 144 

squared residuals (𝑟 ) are minimized in the system, 145 
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 146 

𝑦⃑𝑡 = [𝑋]𝑡−1𝑏⃗ + 𝑟,                                                                                                               (1) 147 

 148 

where 𝑦 𝑡 would be annual Tglobal anomalies as a function of time (e.g., from 1901-2019) and the 149 

matrix [X]t-1 would contain the global spatial field of SAT which precedes the unforced Tglobal 150 

anomalies in time (e.g., where the rows would correspond to years 1900-2018, and the columns 151 

would correspond to each individual gridded location). Because of the high degree of spatial 152 

autocorrelation in the SAT predictor fields, the columns in [X]t-1 will inevitably be highly collinear, 153 

and thus [X]t-1 will be well-below full rank. This precludes the application of MLR to this problem. 154 

However, PLSR offers a solution to this issue by creating linear combinations of the columns in 155 

[X]t-1 (PLSR components) that represent a large portion of [X]t-1’s variability. The procedure is 156 

similar to Principle Component Analysis (PCA) but instead of seeking components that explain the 157 

maximum variability in [X]t-1 itself, PLSR seeks components in [X]t-1 that explain the variability in 158 

𝑦 𝑡. Ultimately, PLSR is akin to the MLR procedure performed on a matrix [Z]t-1 containing a 159 

relatively low number of PLSR components which represent much of the variability in [X]t-1, 160 

 161 

𝑦⃑𝑡 = [𝑍]𝑡−1𝛽 + 𝑟.                                                                                                               (2) 162 

 163 

Below we show results using four PLSR components but conclusions are not sensitive to 164 

this specific number. We carry out PLSR using the MATLAB™ function ‘plsregress’ 165 

(https://www.mathworks.com/help/stats/plsregress.html). This function performs PLSR regression 166 

using the SIMPLS algorithm (see also methods in [Brown and Caldeira, 2017] for more details). 167 

 168 

Equation (2) is for the specific case of predicting Tglobal anomalies from only the previous 169 

year’s SAT field. However, in our application, we use the previous two years to predict the next 170 

four years of Tglobal deviations. Two lagged years were used because we found that there was some 171 

increase in skill by including information on not only the most recent state but also the evolution 172 

of predictors. 173 

 174 

When using two preceding years, the matrices are horizontally concatenated prior to the 175 

application of PLSR. So in our application, equation (1) becomes,  176 

 177 

𝑦⃑𝑡 = ([𝑋]𝑡−1 |[𝑋]𝑡−2)𝑏⃗ + 𝑟.                                                                                                (3) 178 

 179 

The problem was then conducted separately for each lead-time. So, for lead-times of 2, 3 180 

and 4 years, equation (3) becomes,  181 

 182 

𝑦⃑𝑡+1 = ([𝑋]𝑡−1 |[𝑋]𝑡−2)𝑏⃗ + 𝑟,                                                                                            (4) 183 

 184 

𝑦⃑𝑡+2 = ([𝑋]𝑡−1 |[𝑋]𝑡−2)𝑏⃗ + 𝑟,                                                                                            (5) 185 

 186 

and 187 

 188 

𝑦⃑𝑡+3 = ([𝑋]𝑡−1 |[𝑋]𝑡−2)𝛽 + 𝑟,                                                                                            (6) 189 

 190 

respectively.  191 

 192 

2.1 LASSO Regularization 193 

 194 
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 In order to prevent overfitting we implement the Least Absolute Shrinkage and Selection 195 

Operator LASSO regularization [Tibshirani, 1996] 196 

(https://www.mathworks.com/help/stats/lasso.html) using only the PLSR forecast and the most 197 

recent Tglobal anomaly as the two predictor variables. This serves as a check against overfitting in 198 

the sense that it damps the influence of predictors that cause poor predictions on our-of-sample 199 

data. The overall effect of this procedure is that under circumstances of little to no out-of-sample 200 

skill, the predictions will revert to the mean value of the predictand. Henceforth, we refer to our 201 

overall procedure as the BC2020 method.  202 

 203 

2.2 Validation 204 

 205 

Model validation was achieved via leave-one-out cross validation for years prior to 2000 206 

(which we refer to as “hindcast mode”) and through completely out-of-sample predictions made on 207 

the post 2000 data (which we refer to a “forecast mode”). 208 

 209 

Under leave-one-out cross-validation each Tglobal anomaly in the time series took a turn 210 

acting as a test year, with the remaining years designated as training years. Each test year was held 211 

out of the procedure such that the method was blind to the correct Tglobal anomaly for the test year. 212 

PLSR was then performed on the training years and the resulting regression coefficients were used 213 

to predict the Tglobal deviation for the test year. If the predictand lead time was one year, and two 214 

lagging years were used as predictors, equation (1) could be expanded as,  215 

 216 

[
 
 
 
 
 
𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝑡3
𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝑡4
𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝑡5

…
𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝑡𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
1 𝑆𝐴𝑇𝑡2,𝑙𝑜𝑐1

… 𝑆𝐴𝑇𝑡2,𝑙𝑜𝑐𝑘
… 𝑆𝐴𝑇𝑡1,𝑙𝑜𝑐1

… 𝑆𝐴𝑇𝑡1,𝑙𝑜𝑐𝑘

1 𝑆𝐴𝑇𝑡3,𝑙𝑜𝑐1 … 𝑆𝐴𝑇𝑡3,𝑙𝑜𝑐𝑘 … 𝑆𝐴𝑇𝑡2,𝑙𝑜𝑐1 … 𝑆𝐴𝑇𝑡2,𝑙𝑜𝑐𝑘 

1 𝑆𝐴𝑇𝑡4,𝑙𝑜𝑐1
… 𝑆𝐴𝑇𝑡4,𝑙𝑜𝑐𝑘

… 𝑆𝐴𝑇𝑡3,𝑙𝑜𝑐1 … 𝑆𝐴𝑇𝑡3,𝑙𝑜𝑐𝑘 

… … … … … … … …
1 𝑆𝐴𝑇𝑡𝑛−1,𝑙𝑜𝑐1

… 𝑆𝐴𝑇𝑡𝑛−1,𝑙𝑜𝑐𝑘
… 𝑆𝐴𝑇𝑡𝑛−2,𝑙𝑜𝑐𝑘

… 𝑆𝐴𝑇𝑡𝑛−2,𝑙𝑜𝑐𝑘]
 
 
 
 
 

∙

[
 
 
 
 
𝑏0

𝑏1

𝑏2

…
𝑏𝑛∙𝑘]

 
 
 
 

+

[
 
 
 
 
𝑟𝑡3
𝑟𝑡4
𝑟𝑡5
…
𝑟𝑡𝑛]

 
 
 
 

,          (7) 217 

 218 

where the subscript t refers to annual time and the subscript loc refers to the global gridded location. 219 

If the Tglobal anomaly corresponding to the 4th year in dataset [t4, 2nd row in equation (7)] was 220 

designated as the test year, then the row corresponding to this year would be deleted [represented 221 

by being crossed-out in equation (7)] and Tglobalt4 would be hindcast with regression coefficients (𝑏⃑⃗) 222 

that were calculated without knowledge of the corresponding predictor-predictand combination. 223 

Note, that information form these deleted years (t4, t3 and t2) still appear in the linear system 224 

elsewhere (e.g., SAT from t2 still informs the prediction for Tglobalt3).  225 

 226 

In hindcast mode, each year took a turn acting as a test year and the difference between the 227 

forecast Tglobal anomaly and the observed Tglobal anomaly (Figure 4 and Figure 5) was used to 228 

summarize the predictive skill of the method (Figure 3) and inform the confidence intervals of the 229 

forecast (Figure 4 and Figure 5).  230 

 231 

The predictive skill of the BC2020 model is also quantified using forecast mode where its 232 

predictions are tested on completely out-of-sample data in the years following 2000. Forecast mode 233 

is conducted just as the model would have been run if it was operationalized staring in the year 234 

2000. That is, no information from future data is used for any part of the training. Specifically, 235 

forecasts are made each year (at 1 to 4 year lead times) and model parameters are updated each year 236 

prior to the next year’s forecast. 237 

2.3 Note on treatment of forced variability. 238 

 239 
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We do not attempt to partition temperature variability into forced and unforced components. 240 

Rather we allow the PLSR procedure itself to partition most of the forced variability into the 1st 241 

PLSR component (Figure 6a, 6b and 6c). We choose to do this because, despite much research on 242 

the issue [Frankcombe et al., 2015; Mann et al., 2014], the isolation of unforced from total 243 

temperature variability remains a major challenge. When trying to do the decomposition, 244 

insufficient temporal/spatial variability of historical forcings may cause an insufficient amount of 245 

historical variability to be categorized as forced variability, and thus too much variability may be 246 

categorized as unforced variability. On the other hand, some studies have suggested that the best 247 

estimates of decadally-varying forcing may have been implicitly over-fit to observations to some 248 

degree [Tung and Zhou, 2013]. Under this view, the observed multidecadal temperature variability 249 

would contain a substantial unforced component and attempts to remove to partition variability into 250 

a forced and unforced component may be biased in favor of allocating too much variability into the 251 

forced designation and necessarily leaving too little variability in the unforced designation. Lacking 252 

a clear consensus on how to best decompose forced and unforced variability we choose to allow 253 

the PLSR procedure itself to partition most of the forced variability into the 1st PLSR component 254 

(Figure 6a, 6b and 6c) which we refer to as the global warming component.  255 

 256 

This methodological decision has the added benefit of allowing the procedure to be 257 

completely independent of assumptions about the time-evolution of external forcings and/or their 258 

representation in dynamical GCM simulations. This is preferable if the method is to serve as a 259 

benchmark or point of comparison for dynamical GCMs.  260 

 261 

Additionally, a major benefit of not attempting to remove forcing as a preprocessing step is 262 

that it eliminates the risk of inadvertently feeding in the model information that it would not have 263 

in an operationalized setting. When the model is run in forecast mode, the lack of data preprocessing 264 

grantees that there is no information leakage that would cause spuriously low prediction errors. 265 

Thus, forecast mode prediction errors incorporate uncertainty in both forced and unforced 266 

variability which is desirable when informing confidence intervals going forward in a real-world 267 

setting. However, this also means that because the method cannot anticipate time-varying changes 268 

in external forcings, it is at an inherent disadvantage compared to GCMs that incorporate 269 

retrospective time-varying forcings and statistical models trained on only the unforced component 270 

of variability. 271 

 272 

2.4 Ability of BC2020 Method to forecast idealized signals 273 

 274 

As a demonstration of concept, we employ the BC2020 method on idealized synthetic data. 275 

Specifically, we generated synthetic data over the period 1880-2017 which consisted of 276 

combinations of sine waves (Figure 2a and Figure 2b) and random noise (not shown). We inserted 277 

one oscillation in the Northern Hemisphere grid points and one in the Southern Hemisphere grid 278 

points, with each grid point receiving its own random noise time series. We then ran the BC2020 279 

method on the gridded data. Cross-validated hindcasts as well as an out-of-sample forecast are 280 

shown in Figure 2c. It can be seen that the methodology is able to learn the relationships between 281 

SAT patterns and subsequent Tglobal anomalies. This is particularly apparent in the forecast period 282 

(2013-2017 in Figure 2c) where the method predicts an uptick in Tglobal (based on previous patterns) 283 

even though Tglobal had been trending down since ~2004. 284 

 285 

2.5 CMIP5 decadal hindcast experiments 286 



Earth and Space Science                                              Brown and Caldeira                                                                     Page 7 of 24 

 

An alternative method for predicting Tglobal deviations comes from the observationally-287 

initialized GCMs that participated in the CMIP5 decadal hindcast experiments [Taylor et al., 2011]. 288 

These GCMs were initialized to various aspects of the observed state of the climate system (Table 289 

1) and run forward in time, incorporating retrospective estimates of external forcings over the given 290 

forecast period (e.g., hindcasts starting in 1990 incorporated forcing in 1991 associated with the 291 

Mt. Pinatubo volcanic eruption even though that forcing was not predictable in advance). Therefore, 292 

the decadal hindcast experiments incorporate retrospective information on external forcing and thus 293 

their hindcast performance is at an advantage relative to the BC2020 method. There are 18 GCMs 294 

that participated in this experiment. Several GCMs use multiple initialization methods. These 295 

GCMs have some ensemble members which are initialized to the absolute observed anomalies of 296 

variables (full field initialization), while some ensemble members are initialized with anomalies 297 

from observed climatology (anomaly initialization). We treat GCMs’ ensemble sets that use 298 

different initialization methods as being effectively different GCMs. This treatment has the effect 299 

of expanding the number of GCMs in this experiment from 18 to 24 (Table 1). 300 

When GCMs are initialized to observations they have a tendency to drift towards their own 301 

preferred climate state which is often biased relative to observations. In order to correct for both 302 

the bias and the drift we apply the standard method of drift correction recommended by the 303 

International CLIVAR Project office. This method is described below and illustrated for a single 304 

GCM (bcc-csm1-1) in Fig S1. 305 

The raw Tglobal hindcasts are represented as Yj where j is the initial forecast time (j = 1, …n) 306 

and  is the forecast lead time in years ( = 1,…m; Figure S1a). The initial forecast time depends 307 

on the model (Table 1). The corresponding observations for which the hindcasts are compared 308 

against are represented as Xj (Figure S1c). For the main results, we show RMSEs with respect to 309 

GISTEMP but RMSEs with respect to the other three observational datasets are shown in Figure 310 

S4. The average anomalies over the entire series of forecasts are given by, 311 

 312 

𝑌̅𝜏 =
1

𝑛
∑ 𝑌𝑗𝜏

𝑛

𝑗=1
, 313 

 314 

𝑋̅𝜏 =
1

𝑛
∑ 𝑋𝑗𝜏

𝑛

𝑗=1
, 315 

 316 

(Figure S1d and S1e respectively).  317 

 318 

Drift is calculated on a model-by-model basis as the difference between the ensemble mean 319 

forecasts and observations over all cases, 320 

 321 

𝑑𝜏 = 𝑌̅𝜏 − 𝑋̅𝜏, 322 

 323 

(Figure S1f). 324 

 325 

The drift (which implicitly contains any mean bias) is then subtracted from the raw hindcasts 326 

to obtain bias/drift corrected hindcasts, 327 
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 328 

𝑌̂𝑗𝜏 = 𝑌𝑗𝜏 − 𝑑𝜏 = 𝑋̅𝜏 + (𝑌𝑗𝜏 − 𝑌̅𝜏) = 𝑋̅𝜏 + 𝑌𝑗𝜏
′ , 329 

 330 

(Figure S1g and S2). 331 

 332 

where 𝑌𝑗𝜏
′ = 𝑌𝑗𝜏 − 𝑌̅𝜏 is the anomaly of the raw forecast relative to the forecast average over 333 

all forecast periods. We perform this procedure in a hold-one-out cross-validated manner such that 334 

the anomalies over any given hindcast time period of evaluation are not included in the bias/drift 335 

calculation for that time period.  336 

Other studies have suggested yet more involved post-processing of the decadal hindcast 337 

experiments in which the time-dependent aspect of the drift is taken into account. Such post-338 

processing requires free-running historical experiments which are not available for all of the CMIP5 339 

GCMs considered here and thus we use time-independent drift correction. 340 

2.6 Comparison to other statistical methods. 341 

Several other studies have published statistical procedures capable of predicting Tglobal on 342 

subdecadal timescales [Krueger and Storch, 2011; Newman, 2013; Suckling et al., 2017; Sévellec 343 

and Drijfhout, 2018; Thomas et al., 2008]. None of these procedures are directly comparable to the 344 

method outlined in this work because different choices are made regarding the treatment of the 345 

forced component of variability, the target Tglobal dataset, the timespan of the training data, the 346 

timespan of the test data, and the rigor of the cross-validation (Table S1). Nevertheless, we provide 347 

comparisons of the BC2020 method to the most analogous results from these previous studies 348 

(green lines and magenta dots in Figure S4). However, a rigorous comparison of methods would 349 

require a standardization of method protocols, training datasets, evaluation datasets, etc. and is 350 

beyond the scope of this study.  351 
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3. Results 352 

 353 

3.1 Hindcast skill comparison 354 

Figure 3 shows the root-mean-square error (RMSE) of Tglobal hindcasts relative to 355 

observations for the BC2020 method (blue), a persistence benchmark (black), and GCM decadal 356 

hindcast experiments (red) using the NASA GISTEMP dataset as observations (other three datasets 357 

shown in Figure S4). The RMSEs of the BC2020 method for both cross-validated 1900-2000 358 

predictions (hindcast mode) and completely out-of-sample predictions post 2000 (forecast mode) 359 

are shown. The persistence benchmark uses the average of the previous five years to forecast the 360 

year in question (using five years minimized the error from persistence).  361 

Averaged across the prediction lead times of 1 to 4 years, the BC2020 method produced 362 

lower RMSEs than the persistence benchmark and lower RMSEs than the mean RMSE of the 363 

initialized GCMs. Perhaps surprisingly, the mean GCM had a larger RMSE than the persistence 364 

benchmark which highlights the challenges associated with dynamical climate prediction at this 365 

timescale and suggests that the average GCM has difficulty simulating downstream teleconnections 366 

between various modes of variability and subsequent Tglobal deviations. 367 

3.2 Hindcasts and forecasts 368 

Figure 4 and Figure 5 shows the BC2020 method’s hindcast and forecast predictions of 369 

Tglobal at lead-times of 1 to 4 years applied to the NASA GISTEMP dataset (the other 3 datasets are 370 

shown in Figure S3).  371 

Scientific discussion of decadal climate variability and a potential short-term hiatus in 372 

global warming began emerging around the latter portion of the 2000s decade [Easterling and 373 

Wehner, 2009]. In 2004, the BC2020 method would have predicted a slight cooling through 2008 374 

(the 4-year lead-time forecast valid in 2008, magenta dot, was close but below the actual value), 375 

and thus might have hinted at the emergence of what would come to be known as the hiatus 376 

[Medhaug et al., 2017]. By 2012, there was much scientific discussion of the global warming hiatus 377 

[Kaufmann et al., 2011; Meehl et al., 2011; Solomon et al., 2011; Solomon et al., 2010] and its 378 

potential to persist. In that year, the BC2020 method predicted the Tglobal was primed to experience 379 

an uptick over the subsequent 4 years, and it predicted a new historical record in 2016 (magenta dot 380 

for 2016). This surge in Tglobal did come to pass, and 2016 did set the historical record, although it 381 

surpassed the magnitude of the BC2020 forecasted anomaly. The BC2020 method has produced 382 

some forecasts that were off by a large margin as well. For example, the 1-year lead time errors for 383 

2006 and 2014 were both about -0.2C. Note, however, that these errors help inform the confidence 384 

intervals for both the hindcasts and forecasts over the period 2020-2023.  385 

The spatial patterns of and time evolution of SAT variability, that are the most relevant to 386 

the prediction of subsequent Tglobal anomalies, are illustrated in Figure 6. Figure 6a, 6d and 6g show 387 

the PLSR scores (analogous to the principle component time series in Principle Component 388 

Analysis, PCA) and the loadings (analogous to the Empirical Orthogonal Functions (EOFs)) of the 389 

first three PLSR components which explain 85%, 5% and 3% of the variance in subsequent Tglobal 390 

variability at the 1-year lead-time. Positive PLSR loadings displayed on the maps denote where 391 

local SAT anomalies are associated with subsequent warm unforced Tglobal anomalies and negative 392 

PLSR loadings denote where local cool SAT anomalies are associated with subsequent warm Tglobal 393 

anomalies. 394 
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The first PLSR component (Figure 6a-6c) largely corresponds to the externally forced 395 

global warming signal and is the dominant explainer of variability since 1900. The externally forced 396 

nature of the component is apparent from the spatially coherent nature of the pattern (Figure 6b and 397 

6c).  398 

The second PLSR component (Figure 6d-6f) shows that warm Tglobal anomalies (apart from 399 

the global warming signal) are preceded by cool local SAT anomalies in the tropical Pacific two 400 

years prior (Figure 6e). However, one year prior to a warm Tglobal anomaly (again relative to the 401 

long-term global warming signal), there tends to be a warm anomaly over the equatorial Pacific 402 

(Figure 6f). This pattern indicates that unforced warm Tglobal deviations are associated with a 403 

transition from La Niña-like conditions two years prior, to El Niño-like conditions one year prior 404 

to the year in consideration.  405 

The 3rd PLSR component shows that warm Tglobal anomalies are associated with a positive 406 

IPO. The sharpening of the IPO pattern from two years to one year prior to the prediction year 407 

indicates that positive Tglobal anomalies are associated with an antecedent strengthening of an 408 

already positive IPO state. These findings are consistent with independent methodologies that have 409 

highlighted the Pacific’s prominence in the modulation of unforced Tglobal variability [Brown et al., 410 

2014; England et al., 2014].  411 

Overall, the first three PLSR components agree with the broader literature that the long-412 

term Tglobal evolution can be predicted by the state of global warming, and subsequent refinements 413 

of the Tglobal anomaly for any given year can be made by incorporating information on the state of 414 

ENSO and of the IPO. 415 

3.3 True forecast.  416 

Training on data from 1900-2019 and using SAT deviations from 2018-2019 as predictor 417 

fields, the BC2020 method forecasts Tglobal anomalies, with 2 uncertainty ranges of +0.98C ( 418 

0.2), +0.98C (0.22), +0.91C (0.24) and +0.95C (0.24) above the 1951-1980 mean for the 419 

NASA GISTEMP dataset (Figure 4 and 5). The BC2020 method’s forecast for 2020 and 2021 420 

suggests values nearly equal to that of 2019 before slightly lower values in 2022 and 2023 (Figure 421 

4 and Figure 5). Thus the BC2020 method does not necessarily foresee the 2016 global 422 

temperature record being broken in the forecast period.  423 

 424 

4. Conclusion 425 

 426 

The empirical method laid out in this study shows skill in hindcasting global mean surface 427 

temperature (Tglobal) anomalies and even preforms better than most dynamical Global Climate 428 

Models (GCMs) at this task. This indicates that a large fraction of the information necessary to 429 

constrain short-term Tglobal evolution is contained in the antecedent global surface air temperature 430 

field (the only predictor variable used here). Given that short-term Tglobal variability is of substantial 431 

magnitude relative to the long-term trend and it has an extensive global spatial footprint with broad 432 

ecological and societal impacts, this tool represents a computationally inexpensive means of 433 

anticipating and possibly mitigating some short-term climate effects. 434 

 435 

Nevertheless, the physical mechanisms that can be surmised from statistical relationships 436 

are necessarily limited. Insight on the mechanistic underpinnings of the BC2020 method’s skill can 437 

be informed from PLSR loading patterns (Figure 6) but the most compressive physical 438 

understanding of interannual Tglobal variability will ultimately involve the use GCMs. Furthermore, 439 
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GCMs provide geographic-specific predictions for many variables which are necessary for 440 

developing process understanding and for anticipating many impacts. Thus, the method presented 441 

here should not be considered a replacement for GCM decadal prediction but rather it should be 442 

viewed as a complement and/or a benchmark to which GCM predictions can be compared.  443 
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Figures  482 

 483 

Figure 1. Spatial footprint of annual unforced global mean surface air temperature variability 484 

showing that the majority of the surface displays a positive relationship with the global mean. 485 

Colors represent the magnitude of the linear regression coefficient (slope) between local unforced 486 

(subdecadal timescale) annual surface air temperature deviations and global mean unforced 487 

(subdecadal timescale) annual surface air temperature deviations. Stippling indicates that the linear 488 

regression coefficient is not statistically different from zero at the 90% confidence level or above. 489 

Data is from the GISTEMP dataset and spans 1950-2019. This timespan was selected due to it being 490 

the longest time period with near global spatial coverage. Unforced variability was isolated from 491 

forced variability so that subdecadal variations could be highlighted rather than the long-term trend. 492 

This decomposition between forced and unforced variability was achieved via multiple linear 493 

regression against historical radiative forcings. 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 
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 506 

Figure 2. BC2020 method applied to idealized synthetic data. (a-b) Sine curves placed in the 507 

Northern Hemisphere grid points (a) and Southern Hemisphere grid points (b) in addition to random 508 

noise (not shown). c) Analogous to Figure 5 but applied to this idealized case. 509 
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 523 

Figure 3. Prediction errors for various methods of anticipating global mean surface air temperature 524 

anomalies. The root mean square error (RMSE) is shown between predictions of global mean 525 

surface air temperature anomalies and observed global mean surface air temperature anomalies as 526 

a function of prediction lead-time. The RMSEs for the GCM decadal hindcasts are calculated over 527 

time periods that vary by model as described in Table S1. Note that the GCM decadal hindcast 528 

experiments incorporate retrospective information on external forcing and thus their hindcast 529 

performance is at an advantage relative to the BC2020 method. 530 

 531 

 532 

 533 

 534 

 535 
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 538 

 539 

 540 

 541 

 542 
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 543 

Figure 4. Out-of-sample predictions for each lead-time as well as the forecasts for the years 2020-544 

2023. Predictions for years through 2000 utilize leave-one-out cross validation and predictions for 545 

the years following 2000 are made precisely as they would have been if the method was 546 

operationalized starting in the year 2000 (model parameters are tuned only on past data and 547 

progressively updated each year to make the forecasts). Forecasts for 2020-2023 show 1 (thick 548 

lines) and 2 (thin lines) confidence intervals which are derived from the RMSE of the forecast 549 

mode errors. The grey shading is the 2 naïve persistence forecast which projects the next year’s 550 

global temperature anomaly as being the average of the previous 5 years’ global temperature 551 

anomalies (averaging over 5 years minimized the persistence error). The GISTEMP dataset is used 552 

for observations here but results are similar for the other three global temperature datasets 553 

considered (Figure S3). 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 
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 564 

Figure 5. Same information as Figure 4 but displayed on a single figure. The legend displays the 565 

prediction Root Mean Square Errors (RMSEs) for hindcast mode, forecast mode and for the 566 

persistence forecast respectively for each lead time.  567 

 568 
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 581 

Figure 6. (a,d,g) Partial Least Squares Regression scores (analogous to Principle Component time 582 

series) illustrating the temporal variation of the modes of variability shown in the maps of the 583 

corresponding row. (b, c, e, f, h, i) Partial Least Squares Regression loading maps (analogous to 584 

Empirical Orthogonal Function maps) for the first three components associated with a subsequent 585 

year’s global temperature anomaly (i.e., 1-year lead time). Positive loadings indicate that a warm 586 

unforced local surface air temperature anomaly at that location is associated with a warm 587 

subsequent global temperature anomaly and negative loadings indicate that a cool unforced local 588 

surface air temperature anomaly at that location is associated with a warm subsequent global 589 

temperature anomaly. (j,k) Unforced local surface air temperature anomalies for two years (2018-590 

2019) informing the BC2020 method’s forecast for 2020-2023. 591 
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Table 1. Information of the CMIP5 GCMs that participated in the decadal hindcast experiments. 601 

RMSEs in Figure 3 are calculated over all available ensemble members and over all start years for 602 

each effective GCM. 603 
Effective 

Model 

Number 

Model Name 

Number of 

ensemble 

members 

Initialization 

Method 
Start Years 

1 bcc-csm1-1 4 i1 1961-2007 

2 CanCM4_i2 10 i1 1962-1980, 1982-2005, 2007-2012 

3 CCSM4 10 i1 1976, 1986, 1991, 1996, 2001-2007 

4 CFSv2-2011 4 i1 
1981, 1982, 1984, 1986, 1991, 1994, 1996, 1997, 1999, 2001, 

2004, 2006, 2007, 2010, 2011 

5 CMCC-CM 1 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006 

6 CNRM-CM5 10 i1 
1960, 1961, 1965, 1966, 1970, 1971, 1975, 1976, 1980, 1981, 

1985, 1986, 1990, 1991, 1995, 1996, 2000, 2001, 2005, 2006 

7 EC-EARTH 10 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006 

8 FGOALS-g2 3 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006 

9 FGOALS-s2 3 i1 1966, 1971, 1976, 1981, 1986, 1996, 2001 

10 GEOS-5 3 i1 1961-1981, 1986-2010 

11 
GFDL-

CM2p1 
10 i1 1962-2013 

12 HadCM3 10 i2 1961-2010 

13 
IPSL-

CM5A-LR 
6 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006 

14 MIROC4h 6 i1 1966, 1971, 1976, 1986, 1991, 1996, 2001 

15 MIROC5 6 i1 1960, 1962-1980, 1982-2005, 2007-2011  

16 
MPI-ESM-

LR 
10 i1 1961-2011 

17 
MPI-ESM-

MR 
3 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001-2011 

18 
MRI-

CGCM3 
9 i1 

1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006, 

2011, 2012 

19 CanCM4_i2 10 i2 1966, 1971, 1976, 1986, 1991, 1996, 2001-2005, 2007-2009 

20 
CFSv2-

2011_i2 
3 i2 1961, 1966, 1971, 1976, 1981, 1986, 1991 

21 
CMCC-

CM_i2 
1 i2 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006 

22 
CMCC-

CM_i3 
1 i3 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006 

23 
EC-

EARTH_i3 
10 i3 1961-2006 

24 HadCM3_i3 10 i3 1961-2010 

 604 

 605 

 606 

 607 
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Supplementary Tables and Figures 608 

Table S1. Other notable studies concerned with statistical prediction of global mean surface air 609 

temperature and how their methods and evaluation procedures differ from BC2020. Comparison of 610 

hindcast errors between these studies and BC2020 are shown in Figure S4 (all are green in Figure 611 

S4 except for Sevellec and Drijfhout (2018) which is represented with a magenta square 612 

corresponding to their reported RMSE over lead times of 1-5 years). A rigorous comparison of 613 

methods with BC2020 would require a standardization of method protocols, training datasets, 614 

evaluation datasets, etc. and is beyond the scope of this study.  615 

Reference 
Method 

name 

Reference 

Figure 

Target 

Tglobal 

dataset 

Hindcast 

evaluation 

time period 

Other major distinctions with BC2020 

Laepple et 

al., 2008 
IENS 

Fig. 3a, 

black solid 

line 

GISTEMP 1930-2006 

Forced Tglobal variability not removed - CMIP3 

20C3M experiment used to represent forced Tglobal; 

no implicit foreknowledge of volcanic forcing 

Krueger and 

Von Storch, 

2011 

Prediction 

model (10) 

Fig. 2b, 

black solid 

line 

HadCRUT3 1930-2006 

Represents forced Tglobal variability with 

atmospheric CO
2
 concentration; 10-year block 

cross-validation 

Newman, 

2013 
LIM 

Fig. 3f, 

blue line 
HadCRUT3 1901-2009 

Forced Tglobal variability not removed; 10-year 

block cross-validation 

Suckling et 

al., 2017 
Real-time 

Fig. 7b, red 

line 

Cowtan & 

Way 
1960-2014 

Forced Tglobal variability not removed - predictors 

include external forcing time series; no implicit 

foreknowledge of forcing included; several model 

parameters (GHG forcing lag, NINO3.4 lag, 

predictor screening) are set outside of and prior to 

any cross-validation; RMSE calculated with 

respect to an ensemble mean 

Suckling et 

al., 2017 

Prescribed 

natural 

forcing 

Fig. 7b, 

green line 

Cowtan & 

Way 
1960-2014 

Forced Tglobal variability not removed - predictors 

include external forcing time series; 

foreknowledge of volcanic eruption forcing 

included; several model parameters (GHG forcing 

lag, NINO3.4 lag, predictor screening) are set 

outside of and prior to any cross-validation; 

RMSE calculated with respect to an ensemble 

mean 

Suckling et 

al., 2017 

Exploiting 

the trend 

Fig. 7b, 

blue line 

Cowtan & 

Way 
1960-2014 

Forced Tglobal variability not removed - predictors 

include external forcing time series; several model 

parameters (GHG forcing lag, NINO3.4 lag, 

predictor screening) are set outside of and prior to 

any cross-validation; RMSE calculated with 

respect to an ensemble mean 

Sevellec and 

Drijfhout, 

2018 

PROCAST N/A GISTEMP 1880-2017 
Forced Tglobal variability removed with Multiple 

Linear Regression but different forcings used 

 616 

 617 

 618 

 619 

 620 



Earth and Space Science                                              Brown and Caldeira                                                                     Page 20 of 24 

 

 621 

Figure S1. Illustration of bias and drift correction performed on the CMIP5 decadal hindcast 622 

experiments. See text for details. 623 

 624 

Figure S2. All CMIP5 decadal hindcast experiment results after bias and drift correction.  625 
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 626 

Figure S3. Same as Figure 5 but showing all four temperature datasets. 627 

 628 

Figure S4. Same as Figure 3 but showing all four temperature datasets. 629 
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