Nonradial Oscillations of Saturn: Forcing of the Slowest Spiral Density Waves in the C Ring by I-modes and R-modes and the Implications for the Internal Structure

Andrew Friedson ${ }^{1}$ and Katie Broad ${ }^{2}$
${ }^{1}$ Jet Propulsion Laboratory
${ }^{2}$ Purdue University

November 23, 2022

Abstract

It is now known that many spiral density waves in Saturn's C ring are forced by resonant gravitational interactions with the planet's nonradial oscillations. Observations of their periods have the power to reveal new information concerning subtle aspects of the planet's internal structure. The properties of a certain class of nonradial oscillations, consisting of the inertial and rotational normal modes (i-modes and r-modes), are particularly sensitive to small departures of the internal density stratification from adiabatic, and may be especially useful in revealing such departures and their implications for any compositional gradients residing inside Saturn. We calculate the frequencies and eigenfunctions (shapes) of the i-modes and r-modes for a given suite of internal structure models and determine the Lindblad resonance locations and periods of the density waves they excite in the C ring. We find that for reasonable models of Saturn's internal structure, the i-mode and r-mode frequencies overlap the range of frequencies of the slowest density waves observed in the C ring, that is, those having pattern speeds similar to Saturn's rotation rate. In addition, the presence of observable density waves forced by r-modes requires Saturn to possess (at least) two statically stable (non-convective) regions, one in the deep interior and the other in the outer molecular hydrogen envelope. The inner zone is most likely stabilized by a significant compositional gradient, the outer zone by a compositional gradient, by baroclinic processes, or both. Unresolved questions remain. Currently, the model predicts that if energy is equipartitioned among the i-modes, then some slow density waves should be detectable at radii inside $\sim 84500 \mathrm{~km}$ in the C ring. None have been observed inside this radius. In addition, the source of excitation of the normal modes remains to be identified. We are currently exploring whether they can draw their energy from baroclinic instability in the outer stable zone. These questions will be addressed at length at the meeting. This work is supported by the NASA SSW program.

P21H-3462. Nonradial Oscillations of Saturn: Forcing of the Slowest Spiral Density Waves in the C Ring by I-modes and R-modes and the Implications for the Internal Structure
A. James Friedson (Andrew.Friedson@jpl.Caltech.edu) ${ }^{1}$, Katherine Broad ${ }^{2}$
${ }^{1}$ Jet Propulsion Laboratory California Institute of Technology, ${ }^{2}$ Summer Undergraduate Research Fellow, California Institute of Technology/Purdue University

Some generic normal modes of a non-
rotating planet. Images from T im
Bedding, U. Sydney

The frequencies of the i-modes and r-modes are sensitive to the $A(r)$ protile. $A(r)$ measures the deviation of the radial density gradient from that of an adiabatic
profile. The model produces r-modes capable of creating detectable density waves in profile. The model produces r-modes capable of creating detectable density waves in
the C ring only if statically stable regions exist near the inner core and outer the C ring only if statically stable regions exist near
molecular envelope, as indicated in the figure on the left.

RADIAL EIGENFUNCTIONS
Below are examples of the (unnormalized) radial displacement eigenfuncti Below are examples of the (unnormalized) radial displacement eigenfunction
computed by the model for an r-mode (left) and i-mode (right).

These results are taken from the internal structure model shown with green circles in Box 4. The shape of the eigenfunction, particularly the number of radial nodes, strongly influences the mode's effectiveness in driving a density wave in the C ring.
R -modes are produced in the model only if there is a deep stable (non-convective) R-modes are produced in the model only if there is a deep stable (non-convective)
region, and will force density waves of significant amplitude only if there is also a region, and will force density waves of significant amp
statically stable region in the outer molecular envelope.
6 BAROCLINIC INSTABILITY OF NORMAL MODES
The normal modes have been calculated numerically for a barotropic, uniformly
rotating state, for which mean pressure and density surfaces coincide. When these
conditions are relaxed for a differentially rotating planet (strictly, one for which
$\begin{aligned} & \partial \Omega / \partial z \neq 0, z \text { along rotation axis), the normal modes may become baroclinically } \\ & \text { unstable, extracting energy from the lateral buoyancy gradient. If we write the }\end{aligned}$
$\begin{aligned} & \text { unstable, extracting energy from the lateral buoyancy gradient. If we write the } \\ & \text { equations of motion in terms of the perturbation Lagrangian displacement } \xi \text { in the }\end{aligned}$
form (e.g. Aerts+2010, Asteroseismology, Springer Netherlands)
$\rho \frac{\partial^{2} \xi}{\partial t^{2}}=L(\xi)$
where L is a linear functional of ξ, a necessary and sufficient condition for stability is
that $W<0$, where W is defined as
$W=\int d V \xi^{*} \cdot L(\xi) / \int d V \rho \xi^{*} \cdot \xi$
When $W>0$ for a particular mode, the barocline is unstable to that mode. We split
$\begin{aligned} & L \text { into two parts, the barotropic part } L_{0} \text { and baroclinic part } L_{1}, \quad L=L_{0}+L_{1} \text {, and } \\ & \text { evaluate } W \text { for each mode, noting that } L_{0}(\xi)=-\omega_{2}^{2} \xi \text { for each eigenmode, with the }\end{aligned}$
$\begin{aligned} & \text { evaluate } W \text { for each mode, noting that } L_{0}(\xi)=-\omega_{0}^{2} \xi \text { for each eigenmode, with the } \\ & \text { eigenfrequencies } \omega_{0} \text { already computed by the numerical model. The perturbation }\end{aligned}$
$\begin{aligned} & \text { eigenfrequencies } \omega_{0} \text { arready computed by the numerical model. The perturbation } \\ & \text { due to differential rotation, } L_{1}(\xi) \text {, is calculated by including the effects of the }\end{aligned}$
$\begin{aligned} & \text { due to differential rotation, } L_{1}(\xi) \text {, is calculated by including the effects of the } \\ & \text { latitudinal density gradient and excess centrifugal acceleration associated with the }\end{aligned}$
rotational shear. The values of W calculated for each mode, assuming the optimal
gravity solution for the zonal jet structure (Galanti+2018) are shown in boxes 7 and 8 .

8
The

I-MODE SPECTRUM
The model also produces a dense spectrum of mixed inertia-gravity modes. Normalized $\delta \tau$ (assuming energy equipartition) is shown on the left. W for the jet structure shown above is on the right. In the present calculations, the case with the most stably
stratified outer envelope (red) shows a baroclinically unstable mode with a pattern speed near 831° day ${ }^{-1}$. However, the other cases exhibit local maxima in W between 830° and 832° day $^{-1}$. Modest adjustments to the internal structure model could cause these modes to become unstable as well. Finally, an important caveat: We have not
yet accounted for the small frequency shift induced by the differential rotation yet accounted for the smal frequency shift induced
associated with the baroclinicity. This is work in progress.

9

1. The frequencies of Saturn's r-modes and i-modes fall in the right range to force the slow density waves in the Cring whose pattern speeds lie close to the planetary
rotation rate. Additional work is required before we can unambiguously identify the specific modes responsible for the different density waves observed 2. A few of the computed modes are found to be baroclinically unstable if we assum a zonal jet structure similar to the optimal Cassini gravity solution of Galanti+2018. It seems likely these would have the largest amplitudes and be the best candidates for forcing the slow density waves
2. The presence of observable density
The presence of observable density waves forced by r -modes requires Saturn to possess two statically stable regions, one in the deep interior and the other at
relatively shallow depth relatively smallow depph
Ring seismology applied
relatively subtle features of the density stratification, possibly including the effects of compositional gradients in the interior
