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Abstract

To study the role of the Atlantic meridional overturning circulation (AMOC) in climate change, we perform an abrupt CO2-
doubling experiment using a coupled atmosphere-ocean- ice model with a simple geometry that separates the ocean into small
and large basins. As in observations and high-end climate models, the small basin exhibits a MOC and warms at a faster rate
than the large basin. In our set-up, this contrast in heat storage rates is 0.6 & 0.1 W/m"2, and we argue that this is due to the
small basin MOC. However, the MOC weakens significantly, yet this has little impact on the small basin’s heat storage rate.
We find this is due to the effects of both compensating warming patterns and interbasin heat transports. Thus, although the

presence of a MOC is important for enhanced heat storage, MOC weakening is surprisingly unimportant.
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Abstract

To study the role of the Atlantic meridional overturning
circulation (AMOC) in climate change, we perform an abrupt
CO,-doubling experiment using a coupled atmosphere-ocean-
ice model with a simple geometry that separates the ocean

2. Model set-up

« Coupled atmosphere-ocean-ice model using the MIT general

circulation model code (MITgcm)*on a cubed-sphere grid

« Aquaplanet: flat-bottomed ocean of constant depth (3 km) split

into 15 levels with increasing vertical resolution

"Imperial College London, 2 University of Reading, *peter.s@imperial.ac.uk

3.1 Role of the small basin MOC

Looking at the vertically-averaged
potential temperature response,
we see that below 1 km depth,
the temperature anomaly in the
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3.2 MOC weakening and compensation

The vertical heat flux associated with the SB MOC changes as the MOC
weakens, approximated by AHyoc = poc,A(W,es66) where 66 is the
temperature difference across the downwelling and upwelling branches
of the circulation. Let overlines represent time-mean quantities in the
control climate and As represent changes due to the CO,-doubling. Then,

into small and large basins. As in observations and high-end +Meridional barriers extending from the North Pole to 35°S split small basin flows along a deep 100 0 100
climate models, the small basin exhibits a MOC and warms at a the ocean into small and large basins western  boundary  current, b 3 km“’;f;f‘f_; K) AHoc/Pocy is given by:

faster rate than the large basin. In our set-up, this contrast in
heat storage rates is 0.6 = 0.1 W m2, and we argue that this is
due to the small basin MOC. However, the MOC weakens
significantly, yet this has little impact on the small basin’s heat
storage rate. We find this is due to the effects of both
compensating warming patterns and interbasin heat
transports. Thus, although the presence of a MOC is important
for enhanced heat storage, MOC weakening is surprisingly
unimportant.

1. Introduction

The vast majority (~ 93%) of the excess energy resulting from

« System is perturbed by a step-function doubling of atmospheric

CO,and run for 200 years

Figure 2. Model geometry showing the ‘Double Drake’ (DDrake) configuration®, whereby

coincident with the lower limb of
the small basin’s MOC (Figure 4b).
Note there are no large
temperature anomalies at depth
in the large basin or southern
ocean regions.

Plotting the control residual
overturning over the zonally-
averaged potential temperature
response, we see a distinctive
convective chimney at 60-80°N
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Figure 4. Vertically-averaged potential temperature
response A@ (in K) after 200 years following an
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Plotting these terms in Figure 5a, we see that the control overturning
dominates (blue line), while the 2nd and 3rd terms compensate each other
(yellow and orange lines). Now, although the MOC heat flux increases as
the MOC weakens, the heat storage contrast does not increase (Figure 3¢).
Considering the integrated air-sea heat flux (heat uptake) compared with
the heat storage in the small basin, we find that the small basin leaks heat
to the southern ocean region (Figure 5b). This leakage rate is matched by
the increase in MOC heat flux, ensuring that the heat storage contrast
remains stationary.
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