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Abstract

Observational networks enhance real-time situational awareness for emergency and water resource management during extreme

weather events. We present examples of how a diverse, multi-tiered observational network in California provided insights into

hydrometeorological processes and impacts during a three-day atmospheric river storm centered on 14 February 2019. This

network, which has been developed over the past two decades, aims to improve understanding and mitigation of effects from

extreme storms influencing water resources and natural hazards. We combine atmospheric reanalysis output and additional

observations to show how the network allows for: 1) the validation of record cool season precipitable water observations over

southern California, 2) the identification of phenomena that produce natural hazards and present difficulties for short-term

weather forecast models, such as extreme precipitation amounts and snow level variability, 3) the use of soil moisture data to

improve hydrologic model forecast skill in northern California’s Russian River basin, and 4) the combination of meteorological

data with seismic observations to “observe” a large avalanche on Mount Shasta. This case study highlights the value of

investments in diverse observational assets and the importance of continued support and synthesis of diverse observations to

characterize climatological context and advance understanding of processes modulating extreme weather.

1



Confidential manuscript submitted to Earth and Space Science 

 

Observations of an extreme atmospheric river storm with a diverse sensor network 1 

 2 

 3 

B. J. Hatchett*
1
, Q. Cao

2
, P.B. Dawson

3
, C. J. Ellis

4
, C. W. Hecht

4
, B. Kawzenuk

4
, J. T. 4 

Lancaster
5
, T. Osborne

4
, A. M. Wilson

4
, M. L. Anderson

6
, M. D. Dettinger

4
, J. Kalansky

4
, 5 

M. L. Kaplan
7
, D. P. Lettenmaier

2
, N. S. Oakley

1,4
, F. M. Ralph

4
, D.W. Reynolds

8
, A. B. 6 

White
9
, M. Sierks

4
, E. Sumargo

4
 7 

1
Western Regional Climate Center, Reno, Nevada, USA 8 

2
Department of Geography, University of California, Los Angeles, CA, USA 9 

3
California Volcano Observatory, U.S. Geological Survey, Moffett Field, California, USA 10 

4
Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, 11 

University of California, San Diego, La Jolla, California, USA 12 

5
California Geological Survey, Sacramento, California, USA 13 

6
California Department of Water Resources, Sacramento, California, USA 14 

7
Applied Meteorology Program, Embry-Riddle Aeronautical University, Prescott, Arizona, USA 15 

8
Department of Atmospheric and Oceanic Sciences, Colorado University, Boulder, Colorado, 16 

USA 17 

9
NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado, 18 

USA 19 

 20 

*Corresponding author: Benjamin Hatchett (benjamin.hatchett@gmail.com) 21 

 22 

Key Points: 23 

 A multi-tiered observational network in California is evaluated during an extreme 24 

atmospheric river storm spanning 13-15 February 2019 25 

 The network validates record precipitable water and detects mesoscale atmospheric 26 

processes driving flood, snowfall, and mass wasting events 27 

 Diverse, high frequency observational networks are valuable investments to aid water 28 

resource management and natural hazard mitigation  29 



Confidential manuscript submitted to Earth and Space Science 

 

Abstract 30 

Observational networks enhance real-time situational awareness for emergency and water 31 

resource management during extreme weather events. We present examples of how a diverse, 32 

multi-tiered observational network in California provided insights into hydrometeorological 33 

processes and impacts during a three-day atmospheric river storm centered on 14 February 2019. 34 

This network, which has been developed over the past two decades, aims to improve 35 

understanding and mitigation of effects from extreme storms influencing water resources and 36 

natural hazards. We combine atmospheric reanalysis output and additional observations to show 37 

how the network allows for: 1) the validation of record cool season precipitable water 38 

observations over southern California, 2) the identification of phenomena that produce natural 39 

hazards and present difficulties for short-term weather forecast models, such as extreme 40 

precipitation amounts and snow level variability, 3) the use of soil moisture data to improve 41 

hydrologic model forecast skill in northern California’s Russian River basin, and 4) the 42 

combination of meteorological data with seismic observations to “observe” a large avalanche on 43 

Mount Shasta. This case study highlights the value of investments in diverse observational assets 44 

and the importance of continued support and synthesis of diverse observations to characterize 45 

climatological context and advance understanding of processes modulating extreme weather. 46 

1 Introduction 47 

California’s complex terrain, biogeographical diversity, proximity to the data-sparse North 48 

Pacific Ocean, and large population and economy provide an environment both dependent upon 49 

and highly susceptible to weather and climate extremes (Lundquist & Cayan, 2007; Cayan et al., 50 

2016). These include extreme precipitation events, flooding, land-surface mass wasting, multi-51 

year droughts and pluvials, heat waves, and wildfires (Ralph et al., 2006; Dettinger et al., 2011; 52 

Swain, 2015; Lamjiri et al., 2017; Oakley et al., 2018a,b). Water resources in California rely on 53 

precipitation and snowpack resulting in large part from landfalling atmospheric rivers (ARs) 54 

associated with cool season midlatitude cyclones (Dettinger et al., 2011; Rutz et al., 2014). 55 

However, the extreme precipitation and hydrometeorological impacts associated with many of 56 

these storms bring significant emergency management challenges and expenses (Corringham et 57 

al., 2019; Ralph et al., 2019). Managing and reducing these challenges and costs requires 58 

accurate understanding of what, where, and when the various impacts are taking place. However, 59 

weather models initialized over data-poor locations such as oceans (e.g., Nardi et al., 2018) 60 

provide inadequate information. Other data sources are often limiting as well. This creates a need 61 

for networks of readily-available, high resolution, and diverse observations. Such networks 62 

facilitate tracking, evaluation, and anticipation of storm-related impacts and impact-triggering 63 

thresholds necessary for early warning of natural hazards and achievement of water resource 64 

management objectives (White et al., 2013; Ralph et al., 2014; Moore et al., 2015; Oakley et al., 65 

2017, 2018b; Sterle et al., 2019; Uccellini & Ten Hoeve, 2019). 66 

To accommodate these data needs in California, a multi-tiered network of observations (Table 1) 67 

has been implemented and expanded since the early 2000s (White et al., 2013; Ray & White, 68 

2019). This network evolved from the goal of understanding extreme events in California to a 69 

broader vision aimed at observing the mountainous western United States (Ralph et al., 2014). 70 

The network includes sensors within a particular range of technology levels, novelty, and costs 71 

(Table 1) and is supported by a wide variety of agencies at the federal, state, county, and local 72 
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levels as well as private groups. Some components of the network, such as snow level radars and 73 

AR observatories (AROs), have been installed as part of the jointly-supported National Oceanic 74 

and Atmospheric Administration (NOAA)/California Department of Water Resources 75 

Hydrometeorology Testbed (HMT) and are tracked by the NOAA Observing System Council 76 

(White et al., 2013). Others, like the Global Navigation Satellite Systems/Global Positioning 77 

System (GNSS/GPS) network, leverage sensors with differing primary goals to extend 78 

precipitable water observations over land (e.g., Bevis et al., 1992). Lower tiers of the network 79 

include proven, cost-effective technology augmenting existing standard weather stations. These 80 

measurements are of common variables, such as soil moisture, snow water equivalent, and snow 81 

depth. Higher monitoring tiers, such as snow level radar, targeted dropsondes from offshore 82 

aircraft-based reconnaissance flights, and gap-filling radar, are more novel and costlier (White et 83 

al., 2013; Cordeira et al., 2017; Johnston et al., 2017; Cifelli et al., 2018). 84 

We demonstrate how select data from this network, in conjunction with additional available 85 

atmospheric and hydrologic modeling and observational data, provides a posteriori insight into 86 

processes and impacts resulting from an extreme winter AR event, the “Valentine’s Day Storm” 87 

spanning 13-15 February 2019. Three-day accumulated precipitation ranged from 100 to more 88 

than 200 mm (Figure 1a) and markedly increased soil moisture (Figure 1b-c). Impacts from this 89 

storm included riverine and alluvial fan flash flooding, evacuations from burned areas, 90 

avalanches, landslides, and disruptions to transportation and commerce from road closures. We 91 

focus on three regions of California (Figure 1a): southern California (region I), the southern 92 

Cascades and northern Sierra Nevada (region II), and the Russian River watershed (region III). 93 

We begin with a synoptic meteorological analysis (Section 3). Observations and impacts from 94 

each region are presented as separate sub-case studies (Sections 4-6) intending to highlight the 95 

added value the network provides with respect to understanding storm processes and impacts. 96 

We end with discussion regarding how such networks support the achievement of broader water 97 

resource management and natural hazard mitigation goals (Sections 7-8). 98 

 99 

 100 

Figure 1: Event precipitation and soil moisture conditions prior to and following the storm. (a) 101 

Accumulated 13-15 February 2019 precipitation from the 4 km gridMET product (Abatzoglou, 102 

2013) with focus regions of study: Region I (southern California), Region II (southern Cascades 103 

and northern Sierra Nevada), and Region III (Russian River watershed). (b) Antecedent soil 104 
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moisture percentiles on 12 February 2019 estimated from the Variable Infiltration Capacity 105 

model (Liang et al., 1994). Black contours enclose percentiles within the top tercile (66%) (c) 106 

Change in soil moisture percentile between 12 February and 16 February 2019. The grey and 107 

black contours enclose changes exceeding 10% and 25%, respectively. 108 

2 Observational data and model products used 109 

Our primary focus is on ground-based sensors with real-time data availability (Ralph et al., 110 

2014), however we also utilize observations from aircraft, radiosondes and satellites as well as 111 

seismic observations. In addition, we leverage operational and reanalysis-based atmospheric 112 

model output to support interpretations of observational data. Information about the 113 

observational networks are provided in Table 1. We incorporate 0.5° x 0.625° horizontal 114 

resolution, three-hourly output from the Modern-Era Retrospective Reanalysis Version 2 115 

(MERRA-2; Gelaro et al., 2017) to estimate return intervals of integrated vapor transport (IVT) 116 

and integrated water vapor (IWV). These return intervals are calculated over meteorological 117 

winters (December-February) spanning 1980-2019. We use potential vorticity on the 330 K 118 

surface from the hourly 0.5° Global Forecast System final analysis (GFS; NOAA Environmental 119 

Modeling Center, 2003) to diagnose Rossby wave breaking, a common precursor to extreme 120 

midlatitude weather events (e.g., Hu et al., 2017; Rondanelli et al., 2019), via the overturning of 121 

potential vorticity surfaces (Abatzoglou & Magnusdottir, 2006). Daily soil moisture percentiles 122 

corresponding to the soil root zone depth (1.4-2.53 m) are estimated using the Variable 123 

Infiltration Capacity model (VIC; Liang et al., 1994). Additional observations included: 124 

radiosondes launched from La Jolla, CA, two ALERT tipping bucket precipitation gauges in the 125 

Transverse and Peninsular Ranges, used by local government agencies for real-time flood 126 

management and early warnings, and data from four United States Geological Survey (USGS) 127 

Northern California Seismic Network seismometers installed on Mount Shasta (NCEDC, 2014). 128 

The seismic instruments are used to constrain the timing of a large avalanche event on Mount 129 

Shasta (southern Cascades) during the storm. 130 

 131 

Table 1: Observational data and model output used. 132 

Network Details Additional Information 

Hydrometeorology 

Testbed (HMT) West 

Legacy Observing 

Network 

A California Department of Water Resources 

network installed and operated by NOAA’s 

Oceanic and Atmospheric Research (OAR) 

Physical Sciences Division (PSD). 

Instruments include: precipitation gauges and 

disdrometers, various wind and temperature 

profiling radars, GPS, stream level loggers, soil 

moisture probes, snow pillows, and more. 

https://hmt.noaa.gov/ 

Snow Level Radars NOAA Earth Systems Research Laboratory and 

California Department of Water Resources joint 

radar network allowing for novel measurements 

of bright band heights. 

Johnston et al. (2017) 

Atmospheric River 

Observatories (AROs) 

Evolved from HMT-West, a small network with a 

combination of three to four instruments including 

radar wind profilers, GPS IWV sensors, standard 

surface meteorology stations, and in some cases 

snow level radar. 

White et al. (2009) 

 

GNSS/GPS A global network originally developed for https://www.suominet.ucar.edu/

https://hmt.noaa.gov/
https://www.suominet.ucar.edu/index.html
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positioning, navigation, and time transfer that now 

has many more uses including 

atmospheric/climate studies due to their ability to 

measure zenith tropospheric delay as a function of 

temperature, pressure, and water vapor. 

index.html 

https://hmt.noaa.gov/ 

 

Atmospheric River 

Reconnaissance 

Observations by aircraft dropsondes (flight paths 

shown in Figure 3) and buoys in the Northeast 

Pacific Ocean intended to improve existing 

forecasts of ARs while supporting research to 

improve weather models, data assimilation 

methods, and reconnaissance targeting methods. 

http://cw3e.ucsd.edu/arrecon_o

verview/ 

 

 

Radiosondes Radiosonde observations are made throughout the 

country by NWS and compiled and made 

available by the University of Wyoming. Several 

other research groups, such as CW3E at Scripps, 

also record sounding data. 

http://weather.uwyo.edu/uppera

ir/sounding.html 

 

Automated Local 

Evaluation in Real-Time 

(ALERT) 

Wireless sensor network providing real-time flood 

warnings, but can also monitor wind, temperature, 

humidity barometric pressure, soil moisture, fuel 

moisture, and more. 

https://www.alertsystems.org/in

dex.php/about-us 

 

USGS Water Data Nationwide network of USGS sites with real-time 

or recent and historic stream gage data. 

https://waterdata.usgs.gov/nwis

/sw 

Palomar Observatory 

National Weather Service 

Cooperative Observer 

(COOP) Network 

Long-term, daily observations of temperature, 

precipitation, snowfall, and occasionally 

evaporation or soil temperature. Forms the United 

States component of the Global Historical 

Climatology Network-Daily. 

https://www.ncdc.noaa.gov/dat

a-access/land-based-station-

data/land-based-

datasets/cooperative-observer-

network-coop 

MIMIC-TPW2 IWV 

observations 

An experimental global product of satellite-

derived total precipitable water using 

morphological compositing of microwave 

integrated retrieval system (Liu & Weng, 2005) 

retrievals from operational microwave frequency 

observations. Supplementary Figure 1. 

http://tropic.ssec.wisc.edu/real-

time/mtpw2/ 

Wimmers & Velden (2010) 

gridMET A daily gridded dataset of high-spatial resolution 

(6 km) surface meteorological variables covering 

the contiguous US. 

http://www.climatologylab.org/

gridmet.html 

Abatzoglou (2013) 

USGS Northern 

California Seismic 

Hazards program 

USGS program, including comprehensive 

monitoring of earthquakes, that is part of the 

National Earthquake Hazards Reduction Program 

(NEHRP). 

https://www.usgs.gov/natural-

hazards/earthquake-hazards 

https://ncedc.org/ 

Sub-daily meteorological 

observations 

Sub-daily observations supported by various 

agencies and available from the California Data 

Exchange Center (CDEC) and MesoWest. 

mesowest.utah.edu/ 

http://cdec.water.ca.gov/ 

3 Large-scale atmospheric conditions 133 

At 0600Z 13 February 2019 large-scale atmospheric conditions were characterized by amplified 134 

planetary waves and active cyclonic and anticyclonic Rossby wave breaking (RWB; Thorncroft 135 

et al., 1993; Abatzoglou & Magnusdottir, 2006) over the western and eastern margins of the 136 

North Pacific Basin, respectively (Figure 2a). The cyclonic RWB in the western Pacific induces 137 

cyclogenesis and promotes the formation of a downstream ridge near the dateline (180°W) and a 138 

persistent trough over the eastern Pacific (Moore et al., 2019). AR conditions (IVT exceeding 139 

250 kg m
–1

 s
–1

; Ralph et al., 2019) with strong poleward and eastward transport of moisture were 140 

https://www.suominet.ucar.edu/index.html
https://hmt.noaa.gov/
http://cw3e.ucsd.edu/arrecon_overview/
http://cw3e.ucsd.edu/arrecon_overview/
http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
https://www.alertsystems.org/index.php/about-us
https://www.alertsystems.org/index.php/about-us
https://waterdata.usgs.gov/nwis/sw
https://waterdata.usgs.gov/nwis/sw
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop
http://tropic.ssec.wisc.edu/real-time/mtpw2/
http://tropic.ssec.wisc.edu/real-time/mtpw2/
http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html
https://www.usgs.gov/natural-hazards/earthquake-hazards
https://www.usgs.gov/natural-hazards/earthquake-hazards
https://ncedc.org/
http://mesowest.utah.edu/
http://cdec.water.ca.gov/


Confidential manuscript submitted to Earth and Space Science 

 

observed along the eastern flanks of the high potential vorticity air (Figure 2a), consistent with 141 

RWB and diabatic forcing of cyclogenesis (Hu et al., 2017). 142 

Equatorward of the planetary-scale anticyclonic RWB, a zonally-extended coupled polar and 143 

subtropical trans-Pacific jet stream exceeding 40 m s
-1

 existed with the divergent left jet exit 144 

region positioned over northern-central California. A surface cyclone was located offshore of the 145 

northern California coast under the cyclonic shear side of the jet stream. The zonally-extended 146 

mid-upper tropospheric flow undercutting an amplified ridge with axis near the dateline is a 147 

favorable scenario for heavy precipitation in California (Underwood et al., 2009) with high snow 148 

levels (Hatchett et al., 2017a). The upper level jet, anticyclonic RWB in the polar stream, and 149 

subtropical moisture connection promoted elevated atmospheric moisture and moisture transport 150 

over southern California (Payne & Magnusdottir, 2014; Figure 2b-c). The southwesterly 151 

orientation of moisture transport established by cyclonic RWB in the subtropical jet stream 152 

(Figure 2a; Hu et al., 2017) enhanced upslope water vapor flux and helped produce heavy 153 

orographic precipitation (Ralph et al., 2013). Two plumes of water vapor transport are evident in 154 

the IVT field (Figure 3a). Both displayed modeled IVT values exceeding 1000 kg
 
m

-1 
s

-1
 but very 155 

different IWV values (Figure 3b). The northern plume 1 is wind-dominated due to its lower 156 

values of IWV compared to the southern plume 2. These two branches appear to be the result of 157 

a merged RWB process where smaller-scale barotropic cyclonic wave breaking occurring in the 158 

subtropical jet coincides with the larger scale baroclinic anticyclonic wave breaking associated 159 

with the polar jet (Figure 2a). The result is a deformation zone within the cyclone’s warm 160 

conveyor belt system with two plumes of IVT making landfall in northern and southern 161 

California. Dropsondes from aircraft observations (Figures 3c-e) and satellite-based microwave 162 

observations of IWV (Wimmer & Velden, 2010; Supplementary Figure 1) further highlight the 163 

differing IWV and moisture transport characteristics of the IVT plumes. Both plumes 164 

demonstrated elevated moisture fluxes deep into the mid-troposphere (850-700 hPa; Figures 3c-165 

e; Kaplan et al., 2012), with the deeper moisture in the southerly plume being transported from 166 

the tropics poleward by a northeastward-moving Kona Low (Morrison & Businger, 2001). 167 
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 168 

 169 

Figure 2: Large scale atmospheric conditions over the North Pacific Ocean and western North 170 

America at 06Z 13 February 2019 from the 0.5° Global Forecast System final analysis. Shown in 171 

(a) are: 330 K Isentropic Potential Vorticity (PVU; filled contours), 200 hPa wind speed (solid 172 

maroon contour; m/s), sea-level pressure (solid black contour; hPa), integrated water vapor 173 

(IWV; dashed blue contour; mm), integrated water vapor transport (IVT) vector (plotted 174 
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according to reference vector in upper right; kg m
–1

 s
–1

); (b) Percentiles of 14 February 2019 IVT 175 

based upon 1980-2018 MERRA-2 winter (December-February) climatology (filled contours) and 176 

IVT values (black contours; kg m
–1

 s
–1

); (c) As in (b) but for IWV (IWV contours have units of 177 

mm). 178 

 179 

 180 

Figure 3: Model simulations and aircraft observations of the atmospheric river. (a) Global 181 

Forecast System simulated sea level pressure (open contours), integrated vapor transport (IVT; 182 

filled contours), and IVT vectors for 00Z 13 February 2019. (b) Global Forecast System 183 

simulated sea level pressure (open contours), integrated water vapor (IWV; filled contours), and 184 
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850 hPa wind vectors for 00Z 13 February 2019. (c) Dropsonde-derived vertical cross section 185 

over the two IVT plumes identified in (a). (d) Skew-T (left) and vertical profile of moisture 186 

fluxes (right) from the northern Plume 1 (black star). (e) As in (d) but for the southern Plume 2 187 

(yellow star). 188 

4 Record Southern California atmospheric moisture 189 

The GNSS/GPS network observed integrated water vapor (IWV) exceeding 30 mm throughout 190 

Southern California on Valentine's Day (Figure 4), with Point Loma observing 46 mm at 1715Z 191 

(Figure 5a). The IWV observation from the 1200Z 14 February 2019 radiosonde launched from 192 

Miramar, CA set a cool season (October-April) record at 42.7 mm. This value was supported by 193 

a 1500Z radiosonde launched at the SIO pier in La Jolla that observed 45.4 mm (Supplementary 194 

Figure 2) with offshore dropsonde IWV observations exceeding 50 mm (Figure 3c). The extreme 195 

IVT and IWV (Figure 2b-c) combined with larger-scale dynamics (Figure 2a) to create an 196 

environment conducive to orographically-enhanced extreme rainfall (Ralph et al., 2013) with 197 

mountain precipitation corresponding to elevated upslope water vapor flux (Neiman et al., 2009; 198 

Figures 5b-d). The National Weather Service Cooperative Observer rain gauge at Palomar 199 

Observatory (elevation of 1,702 m), in northern San Diego County, measured 256 mm of rainfall 200 

in 24 hours, the highest 24-hour total since record keeping began in 1943. A co-located, sub-201 

hourly ALERT gauge observed a similar total with periods of intense rainfall (Figure 5c). Many 202 

mountain regions in southern California observed rain rates exceeding United States Geological 203 

Survey general guidance for 15-minute intensity-duration thresholds for triggering post-fire 204 

debris flows (ranging between 12.5 and 21.8 mm hr
-1

; Cannon et al., 2008; Staley et al., 2017). 205 

Hyperconcentrated flows and alluvial fan flash floods were observed in recently burned regions 206 

such as the Holy Fire (Figure 4) where 12-hour precipitation totals exceeded the 200-year return 207 

interval causing widespread flash flood impacts. The extreme precipitation at Snow Valley 208 

(Figure 5b) combined with snow levels exceeding 3 km (Figures 4 and 5b) resulted in full-path 209 

avalanches in the San Gorgonio Mountains and numerous landslides in the San Gabriel 210 

Mountains, including one that closed a 30 km segment of the Angeles Crest Highway for eight 211 

months (Burgess et al., 2019; Figure 4). 212 

To characterize land surface conditions before and after this event, we examined the soil 213 

moisture conditions during the event using data from the University of California Los Angeles 214 

drought monitor (available at 215 

http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor_ca/index.html; Mao et al., 216 

2015; Xiao et al., 2017). Soil moisture in the drought monitor is reconstructed by the VIC model 217 

(Bohn et al., 2013). Precipitation fell on soils nearing saturation throughout Southern California. 218 

Prior to the event, soils were in the upper quartile of modeled soil moisture percentiles relative to 219 

the 1920-2010 climatology of the VIC model (Figures 1b and 4). These conditions favored 220 

runoff generation in both the uplands and lowlands. Ephemeral washes in the Palm Springs 221 

Desert observed the greatest flows since records began in 1987 (Figure 4), including a debris 222 

flow in Chino Canyon that damaged the Palm Springs Aerial Tramway (Desert Sun, 2019). Peak 223 

flows along inland-draining rivers with longer periods of record were notable. For example, the 224 

Mojave River (Figure 4) reached the top 0.2% of flows since observations began in 1930. Many 225 

ocean-draining and urbanized rivers also achieved flow rates that exceeded the top 1% of flow 226 

rates on record (Figure 4). It is worth noting rainfall-triggered mass movements were not 227 

http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor_ca/index.html
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confined to southern California; landslides were documented in the San Francisco Bay area 228 

(Collins & Corbett, 2019) and in the western foothills of the Sierra Nevada. 229 

 230 

Figure 4: VIC-estimated soil moisture percentiles in Southern California on 16 February 2019 231 

(filled contours) and soil moisture percentile changes between 12 and 16 February 2019 (open 232 

contours). Colored dots indicate peak event integrated water vapor (IWV) at GNSS/GPS sensors. 233 

Icons denote observed impacts and red stars indicate observation locations.  234 

 235 
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 236 

Figure 5: Southern California observations during 13-15 February 2019. (a) Time series of 237 

GNSS/GPS-derived IWV at Point Loma, Long Beach, and the Santa Barbara Atmospheric River 238 

Observatory (ARO). (b) Sub-hourly precipitation at Snow Valley ALERT gauge (blue bars) and 239 

cumulative precipitation (red line) with San Bernardino snow levels (blue dots). Image of the Mt. 240 

San Gorgonio avalanches (photo credit: Mike Nobriga via the So Cal Avalanche Center 241 

(http://www.socalsnow.org/avalanche-report-2-19-19-san-gorgonio.html). (c) As in (b) but for 242 

Palomar Mountain ALERT gauge. Newport Beach photograph provided by Royce Hurtain. (d) 243 

Upslope integrated water vapor flux derived from IWV and vertical wind profile at the Santa 244 

Barbara ARO. The shaded bar denotes the approximate time frame of the peak upslope water 245 

vapor flux. 246 

5. Observations and impacts in California’s Sierra Nevada and Southern Cascades 247 

5.1 Snow level variability  248 
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Abrupt changes in snow level often accompany winter storms (White et al., 2019). Rises in snow 249 

level correspond to increases in streamflow as the advection of warm, moist air facilitates 250 

snowmelt and a growing fraction of the watershed receives rainfall (White et al., 2010; Hatchett 251 

et al., 2016; Hatchett, 2018). Snow level oscillations exceeding 1000 m and exceeding durations 252 

of 30 minutes were observed in the Sierra Nevada, with the ultimate snow level rise progressing 253 

from south to north (Figure 6). The varied timing and duration of these oscillations indicates 254 

mesoscale variability in snow level conditions throughout the Sierra Nevada (Minder et al., 255 

2011; Minder & Kingsmill, 2013). Operational weather models have difficulty simulating 256 

variable situations, as demonstrated in the suite of California-Nevada River Forecast Center 257 

(CNRFC) freezing level forecasts (Figures 6c-d). Although some CNRFC ensemble members 258 

correctly approximate snow level rise timing and magnitude (Figures 6a-b), many estimate the 259 

snow level to be more than 1000 m lower than the level observed by the radar. This bias may 260 

lead to errors in streamflow forecasts (e.g., White et al., 2010). 261 

 262 

Figure 6: Snow level oscillations and freezing level forecasts. Time series of snow levels at (a) 263 

Shasta Dam (STD), (b) Oroville (OVL), (c) Colfax (CFF), and (d) New Exchequer (NER) snow 264 

level radar brightband heights (shown as symbols for each site), CNRFC freezing level forecasts 265 

(colored lines), freezing level based on radar brightband heights (computed by adding 200 m to 266 

each brightband value to account for the typical vertical distance between freezing level and 267 

snow level; Lundquist et al., 2008; White et al., 2010) for the period spanning 00Z 13 February-268 

12Z 15 February 2019. Each radar location’s elevation is shown as a dashed black line. 269 
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Expressing snow levels as percentiles provides another perspective of the magnitude of snow 270 

level variability during this event (Figure 7). Percentiles are calculated using 10-minute data for 271 

the December-February period over the respective periods of record for each radar (>5 years). 272 

Consistent with near-freezing temperatures at Shasta Dam (Figure 8a), low snow levels (bottom 273 

10
th

 percentile) were observed before rising into the upper 15
th

 percentile. The lack of brightband 274 

observations (Figure 8b) despite precipitation observations (Figure 8c) is due to the brightband 275 

elevation being below the radar site. In the northern and central Sierra, snow level oscillations 276 

occurred between the upper and lower quartiles at Oroville, Colfax, and New Exchequer (Figure 277 

7) leading to varying snowpack responses with elevation (Figures 8e-f). In the central Sierra 278 

Nevada, the lower elevation Blue Canyon and Greek Store snow pillows showed snow depth 279 

decreases throughout the event whereas depth increased at Mount Rose, a higher elevation 280 

station (Figure 8e). Snow water equivalent increased at all stations except Blue Canyon (Figure 281 

8f). The increased streamflow following the snow level oscillation was realized at the Middle 282 

Forks of the American and Cosumnes River (Figure 8h) at approximately 1600Z 13 February 283 

2019 and 0000Z 14 February 2019, respectively.  284 

Snow level observations in the southern Sierra Nevada showed different responses than those in 285 

the north. Sporadic observations between 1300-1800Z 13 February 2019 at Pine Flat Dam and 286 

Kernville demonstrate the transition region between the northern and southern IVT plumes 287 

(Section 4; Figures 3a-b). We interpret these observations as representing the equatorward 288 

boundary of the initial wave of precipitation associated with the northern moisture plume (Figure 289 

3). The southern moisture plume is characterized by high (top 10
th

 percentile) snow levels 290 

throughout its duration at Kernville and San Bernardino, consistent with 0°C elevations 291 

exceeding 4000 m observed in offshore dropsonde measurements (Figure 3e). Brightband 292 

observations at San Bernardino (located to the south of Kernville) began approximately six hours 293 

before Kernville and no brightband was observed further north until 20Z 14 February 2019 when 294 

cold frontal passage occurred (Figures 8a-b). This suggests the southern plume only impacted 295 

Southern California, and is consistent with the termination of precipitation at NER at 16Z 13 296 

February (Figure 6d).  297 

 298 
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Figure 7: Ten-minute snow level percentiles for seven snow level radars in California spanning 299 

the period 20Z 12 February 2019-00Z 15 February 2019. Ordered from north to south: Shasta 300 

Dam (STD), Oroville (OVL), Colfax (CFF), New Exchequer (NER), Pine Flat Dam (PFD), 301 

Kernville (KNV), and San Bernardino (SBO). 302 

 303 

Figure 8: Time series of southern Cascades/northern Sierra Nevada observations from surface 304 

meteorological stations for the period spanning 20Z 12 February 2019-00Z 15 February 2019. (a) 305 

near-surface (2 m) temperature (left axis, solid lines) and snow level (right axis, points), (b) 306 

accumulated precipitation (left) and 20-minute precipitation (right), (c) wind speed, gust, and (d) 307 
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direction along the Sierra Nevada Crest (Siberia Ridge; in red) and south of Mt. Shasta (Grey 308 

Butte; black), (e) snow depth change, (f) snow water equivalent (SWE) change, and (g) 309 

streamflow. 310 

5.2 Snow impacts on mountain transportation 311 

During 13 February 2019, snow levels were among the lowest 5% of hourly observations during 312 

the past decade (2010-2019; Figure 7) at the Shasta Dam snow level radar site (elevation 202 m) 313 

before the brightband elevation fell below the station elevation (Figure 8b). Over 20 cm of 314 

snowfall was recorded in Redding, California (172 m), an uncommon occurrence in this area. 315 

Mount Shasta City (1000 m) recorded 60 cm of snowfall (Mount Shasta Avalanche Center 316 

(MSAC), 2019). This heavy low elevation snowfall slowed interstate commerce along Interstate 317 

5 from the normal average of ~61,000 vehicles/day to ~24,000 vehicles (Caltrans, 2019). Traffic 318 

restrictions along Interstate 80 over the Sierra Nevada, a major east-west highway (average 319 

annual daily traffic of 35,000), began at 1800Z 13 February 2019 with a full closure from 0200Z 320 

14 February 2019 to 0100Z 16 February 2019. Using average annual daily traffic volumes for 321 

each road with truck percentages of 12%, and a delay cost of $0.46/minute for trucks and 322 

$0.24/minute for cars (Caltrans, 2019), we estimate net commerce loss on the order of $21M 323 

during the Valentine’s Day storm for these two major highways. This value represents a 324 

minimum estimate as delay costs for other impacted roads, such as Highway 50, and costs of 325 

repairs to damaged roads (e.g., Angeles Crest Highway; Section 4) are not included.  326 

5.3 Mount Shasta avalanche timing and triggering 327 

At approximately 1800Z 14 February 2019, evidence of a very large (R4/D4.5; Figures 9a-b) 328 

avalanche with a 5 km path length (Figure 9c) was discovered in the aptly-named Avalanche 329 

Gulch on the southwestern flank of Mount Shasta. Avalanche Gulch is a glacially sculpted 330 

canyon composed of steep sidewalls with numerous start zones at elevations between 3000-4000 331 

m. Avalanche paths converge in the canyon bottom and terminate in gently sloping forested 332 

terrain 1000 m below. Depositional debris from this avalanche was approximately 10-20 m deep 333 

with 10 m tall flanks (Figure 9b). Avalanches of this magnitude on Mount Shasta are relatively 334 

rare, occurring on decadal scales (Hansen & Underwood, 2012). 335 

The addition of over 80 mm of snow water equivalent (Figures 8b and 8e) is consistent with 336 

snowpack instability caused by continuous loading of new snow during atmospheric river events 337 

(Hatchett et al., 2017b). The MSAC advisory for 13 February was ‘high’, indicating naturally 338 

triggered large avalanches are likely. Synoptic conditions (Section 3) were consistent with those 339 

previously linked to large Mt. Shasta avalanche events (Hansen & Underwood, 2012). 340 

Because no human observed the triggering or deposition time of the avalanche, we utilize the 341 

local seismic network (Figures 9c-e) to constrain the avalanche timing. The network recorded a 342 

high-energy spindle-like signal emerging from the background noise at 1022Z 14 February 2019 343 

that lasted for ~2 minutes, followed by ~20 minutes of increased seismic energy. The waveforms 344 

observed at each station are broadband with frequencies ranging from 1-15 Hz and are 345 

dominated by energy between 2-5 Hz. These characteristics have been tied to avalanche activity 346 

by Kishimura & Izumi (1997). The signal duration (~2 min) and avalanche path length (5 km) 347 

yield an avalanche velocity of 42 m/s, consistent with dry or mixed slab avalanches (Vilajosana 348 
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et al., 2007). The two increases in energy within the wavetrain (Figure 8d) suggest distinct pulses 349 

in the avalanche process. Potential cultural origins of the seismic signal, notably train operations, 350 

were ruled out via spectral analysis and a second, smaller avalanche possibly occurred at 1740Z 351 

14 February 2019. 352 

Constraining the avalanche timing provides additional insight into potential triggering 353 

mechanisms. The avalanche occurred many hours after snow levels rose (Figure 8a), however 354 

the “upside-down” nature of the snowpack (more dense snow deposited atop less dense snow) 355 

inferred from lower snow levels followed by high snow levels (section 5.1) favors snowpack 356 

instability. H Regional winds (Figure 8c) and the Oroville and Twitchell Island wind profilers 357 

(Supplementary Figure 3) indicate accelerations in low-level (2-4 km; ~850–700 hPa) winds to 358 

25 m/s at 0400Z 14 February with a turning of upper level winds to a more southeasterly 359 

direction (Figure 8d). These winds are reminiscent of the Sierra Nevada barrier jet that enhances 360 

northward moisture flux in the Central Valley (Parish, 1987; Neiman et al., 2002), increases 361 

precipitation in the northern Sierra Nevada and southern Cascades (Ralph et al., 2016), and helps 362 

establish the Shasta County Convergence Zone (Roberts, 2019; Figure 8b). Although the 363 

avalanche initiated on a southerly aspect normally scoured by prevailing southwesterly winds, 364 

deposition on this slope may have resulted from interactions of more southerly winds aloft 365 

(Figure 8d and Supplementary Figure 3) with Mt. Shasta. The low-level westerly flow at the 366 

Grey Butte (Figure 8d) station on the south flank of Mt. Shasta despite southerly flow aloft 367 

(Supplementary Figure 3) suggests airflow interactions with the mountain. Snow levels did not 368 

rise above 3 km (Figure 8a), rendering it unlikely that free-water introduction (Prowse & Owens, 369 

1987) played a role in avalanche initiation in the start zone of Avalanche Gulch. In contrast, the 370 

San Gorgonio avalanches (Section 4) appeared to have occurred much closer in elevation (within 371 

500 m) to the snow/rain transition level (Figure 5). 372 



Confidential manuscript submitted to Earth and Space Science 

 

 373 

Figure 9: The Mt. Shasta avalanche. (a-b) Images of the avalanche from the runout zone (skiers 374 

for scale; images courtesy of Mike Hupp), c) Avalanche path map provided by the Mount Shasta 375 

Avalanche Center, d-f) Seismic signals from three seismometers located on the southwestern 376 

flank of Mount Shasta, g) location map of the seismic stations and the Grey Butte weather 377 

station. 378 

6 Soil moisture improves Russian River streamflow forecasts 379 

6.1 Hydrologic modeling approach 380 

To provide a direct example of how observations from the Valentine’s Day storm can be used for 381 

hydrologic modeling, we conducted an experiment applying the Distributed Hydrology Soil 382 

Vegetation Model (DHSVM; Wigmosta et al. 1994) to the Russian River watershed in northern 383 

California (Region III in Figure 1). The goal of the experiment is to examine the potential use of 384 

soil moisture sensors in model initialization and flood forecasting. We used the same model 385 

implementation as in Cao et al. (2019), in which calibration was performed for the period 2005-386 

2014 at multiple stream gauges. We used 12 HMT soil moisture sites with at least three years of 387 
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data and included measurements during the Valentine’s Day storm. The DHSVM as applied to 388 

the Russian River basin has three root zone soil layers with depths at 10 cm, 35 cm, and 75 cm.  389 

We used the HMT measurements at depths of 10 cm, 15 cm, and 50 cm (the deepest 390 

measurement depth at most sites) as the corresponding model layers. In order to reconcile the 391 

soil moisture range difference in observations and the model, we converted both to hourly soil 392 

moisture percentiles relative to winter (November-March) 2017-2019 for each layer. We updated 393 

the model throughout the storm at a daily interval at midnight local time (0700Z). The observed 394 

soil moisture percentiles were interpolated over the basin using a Gaspari-Cohn function 395 

(Gaspari & Cohn, 1999) with a radius of 20 km where the weight decreased as the distance 396 

between an observation site and a target model grid cell increased (Figure 10a). We then 397 

interpolated the percentiles back to model values to update the soil moisture initialization state. 398 

We examined the effects of updating for the surface soil layer only, the upper two layers, and all 399 

three layers. We then explored the effects of this procedure at two USGS streamflow gages, the 400 

unimpaired upstream gage above Lake Mendocino (11461500; Figure 10a) and the downstream-401 

most gage (11467000), which is influenced by reservoir operations at Lake Mendocino and Lake 402 

Sonoma (Figure 10a). We obtained the naturalized flows at the latter gage by calculating the 403 

difference of simulated streamflow with and without a reservoir module at this gauge and then 404 

adding the difference back to its observations, following Cao et al. (2019). We used the Kling-405 

Gupta efficiency (KGE; Gupta et al., 2009) to evaluate the goodness-of-fit between hourly 406 

streamflow observations and hourly simulations at these two gages. KGE facilitates analysis of 407 

the various statistical components of the Nash-Sutcliffe efficiency, which is an objective method 408 

to evaluate runoff performance in hydrologic models. 409 

6.2 Modeling Results 410 

Soil moisture observations can provide information for situational awareness and model 411 

initialization on antecedent wetness conditions of a basin, a critical factor for flood forecasting 412 

(e.g., Brocca et al., 2010; Leroux et al., 2016; Zhang et al., 2016) as well as landslide forecasting 413 

(e.g., Godt et al., 2006; Thomas et al., 2018). Results showed that the KGE during the storm 414 

(0800Z 13 February 2019-0800Z 16 February 2019) increased from 0.19 to 0.42 by updating the 415 

surface layer, from 0.19 to 0.54 by updating the top two layers, and 0.19 to 0.66 by updating all 416 

three layers at the upstream USGS Gage 11461500. This heavily instrumented gage is 417 

surrounded by 7 out of 12 HMT sites in the Russian River watershed. Improvements increased as 418 

observations from deeper depths were included. However, the KGE at the downstream-most 419 

USGS Gage 1146700 did not increase with each additional depth. The KGE changed from 0.89 420 

to 0.95, 0.90, and 0.70 respectively with updates of the uppermost layer only, upper two layers, 421 

and all three layers. This result is possibly due to the sparse distribution of the downstream HMT 422 

sites and the influence of historical calibration at different gauge locations. Although these 423 

results are for a single storm, they do have implications for placement of soil moisture stations 424 

and for the manner in which the updating is performed. These results suggest that flood 425 

forecasting is likely to benefit from both measurements at depths beyond the surface layer and a 426 

denser spatial distribution of soil moisture observations in the drainage area of interest. These 427 

measurements also support landslide hazard monitoring (Thomas et al., 2019).  428 
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 429 

Figure 10: Hydrologic modeling results from the Russian River watershed. a) Map of the 430 

Russian River watershed, with locations of USGS stream gauges and Hydrometeorology Testbed 431 

(HMT) soil moisture observation sites shown. Observed and simulated hourly streamflow time 432 

series during the Valentine’s day storm at upstream USGS Gauges (b) 11461500 and (c) 433 

11467000. Gauge 11467000 is impacted by reservoir operations at Lake Mendocino and Lake 434 

Sonoma, the effect of which has been removed in the observed streamflow time series shown. 435 

7 Discussion 436 

Atmospheric rivers commonly drive extreme hydrometeorological events and hydroclimate 437 

variability worldwide (Paltan et al., 2017). Data provided by California’s diverse observational 438 

network facilitates development of conceptual linkages between natural hazards and 439 

meteorological or hydrological precursor and triggering conditions during atmospheric river 440 

conditions. These linkages are deepened by incorporating other observational networks, such as 441 

the GNSS/GPS network (Moore et al., 2015) and ALERT gauges (Section 4) or seismic 442 

networks (Section 5.3). The rise in soil moisture to the upper quartile following the event 443 

(Figures 1b-c and 4a) indicates steepland regions were more likely to produce runoff if closely 444 

followed by additional precipitation events, leading to continued natural hazard risks from 445 

flooding (Cao et al., 2019) and mass wasting (Oakley et al., 2018b). In highly urbanized areas, 446 

like Southern California, extreme runoff (Figure 4) also degrades coastal water quality (Figure 5c 447 

inset) leading to beach closures and public health impacts (Aguilera et al., 2019) in addition to 448 

localized flooding.  449 

Our examination of the 2019 Valentine’s Day storm, using a subset of data from a multi-tiered 450 

observational network and augmented with additional sources of information, illustrates how 451 

these networks help characterize physical processes and their impacts. This effort, as well as 452 

other work utilizing data from the network (e.g., Martin et al., 2018; Ralph et al., 2013; Sterle et 453 

al., 2019; Wang et al., 2019; White et al., 2019), indicates the network is achieving the goals 454 

outlined in White et al. (2013) and Ralph et al. (2014). These goals include providing 455 

information regarding real-time monitoring, hydrologic prediction from minutes to seasons, data 456 
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assimilation, research applications leading to physical process understanding and model 457 

limitations, and climate trend analysis (Ralph et al. 2014). 458 

The high temporal resolution of the network and diverse data sources (e.g., aircraft and in-situ) 459 

allowed observations of processes that would otherwise go un-verified, such as the record 460 

precipitable water in southern California (Section 4) or un-reported, like the dramatic oscillations 461 

in snow level (Section 5.1). Soil moisture observations were demonstrated to improve hydrologic 462 

model output (Section 6). Multi-tiered observations, such as aircraft-based atmospheric river 463 

reconnaissance, use targeting strategies to optimize mission-based observations of key weather 464 

phenomena over the data-sparse North Pacific Ocean to support numerical weather prediction 465 

efforts and supplement interpretations of impacts (Martin et al., 2018; Sections 4-5). These 466 

efforts can be used to identify weaknesses in numerical model output, an example being the case 467 

of the CNRFC freezing level forecasts (Section 5.1).  468 

In other challenging forecast scenarios, such as low or varying snow levels (Sections 5.1-5.2), 469 

model validation is performed in real-time at coastal Atmospheric River Observatories (AROs; 470 

Supplementary Figure 4) and at snow level radar sites (Supplementary Figure 5; Ray & White, 471 

2019). AROs combine numerous observations with short-term high-resolution model simulations 472 

to enhance short-term forecasting for these situations. This combination is colloquially known as 473 

the “Integrated Water Vapor Flux Tool” (Neiman et al., 2009; Supplementary Figure 4). First 474 

used in conjunction with rapidly updating forecast models (White et al., 2012), this tool now 475 

exists with multiple operational and research versions of weather models (cf. Figure 2 in Ray & 476 

White, 2019). The tool provides a recent history of key parameters associated with observed AR-477 

related features such as upslope water vapor flux, precipitation, and recent model forecast 478 

performance. This information can influence forecaster confidence regarding the next 12-hr 479 

forecast period and impact-based decision support (Uccellini & Ten Hoeve, 2019) on issuing or 480 

extending weather-related warnings based on whether or not heavy precipitation is forecast to 481 

continue. We recommend model forecasts and recent verification statistics be expanded to all 482 

suites of instruments, such as the GNSS/GPS sensors and snow pillows, especially as modeling 483 

capabilities move towards ensemble-based, probabilistic forecasts (e.g., National Blend of 484 

Models; Hammil et al., 2017). Discovering model weaknesses in reproducing observed 485 

phenomena motivates targeted improvements in forecast skill (e.g., Olson et al., 2019) leading to 486 

enhanced public and emergency management preparedness and response during, and following, 487 

extreme events.  488 

Capturing snow and freezing level oscillations (Section 5.1) in operational runoff models is one 489 

example of the need for improved forecasts and process-based understanding for water 490 

management, a key aim of a multi-tiered observational network (White et al., 2013; Ralph et al., 491 

2014). Snow level variability at the mountain range scale, especially when considerable model 492 

spread exists (Figure 6), means the water conveyance system must be managed between different 493 

operator groups to ensure release needs can be met with minimal downstream flood impacts and 494 

keeping within operational constraints of reservoir levels (White et al., 2010; Talbot et al., 2019). 495 

Our analysis of the impact of the snow level oscillations and streamflow responses in the 496 

northern Sierra Nevada (Figure 8) is limited by the daily resolution of upstream reservoir storage 497 

data at the Hell Hole and Frenchman’s reservoirs on the Middle Fork of the American River. 498 

This indicates the need for additional sub-daily observations of soil moisture and streamflow on 499 

both impaired and unimpaired river basins to precisely evaluate physical drivers of hydrologic 500 



Confidential manuscript submitted to Earth and Space Science 

 

responses and to calibrate model simulations aimed at reproducing these responses. Such 501 

information could provide additional early warning for landslide hazards (Section 4). 502 

Improving the real-time accessibility of observational data from diverse networks will facilitate 503 

applying the data towards broader goals of achieving water supply resilience, flood risk 504 

management, and the understanding of and resiliency to other extreme events such as mass 505 

movement, wildfire, and heat extremes. The increasing exposure of life and property to natural 506 

hazards amidst climate change and population growth creates opportunities for integrated 507 

observational networks to support long-term management goals (Lundquist et al., 2016). These 508 

networks contribute towards a baseline understanding of current hydroclimate conditions, how 509 

different environments respond to extreme events under varying antecedent conditions, and how 510 

well forecast models perform when initialized with differing initial and boundary conditions. The 511 

complexity of natural systems presents a challenge for quickly characterizing the range of 512 

possible outcomes from a given extreme event. In the case of California’s network, many of 513 

these observations have been collected over varied antecedent conditions in the past decade that 514 

can be placed into the context of past extreme climate conditions over longer timescales (e.g., 515 

Hatchett et al., 2018; Sterle et al., 2019). This confidence to understand potential outcomes 516 

allows focused efforts on mitigating impacts, a key goal of decision support (Uccellini & Ten 517 

Hoeve, 2019).  518 

8 Concluding Remarks 519 

California’s multi-tiered network of diverse observations provides real-time information 520 

pertinent to the analysis of extreme events throughout the state. These observations can help 521 

characterize the triggering mechanisms and impacts of natural hazards. This makes natural 522 

hazard risk mitigation more achievable through improvements in forecasting and decision 523 

support aimed at timely resource positioning for effective emergency response. Our goal was to 524 

explore and illustrate the utility of this unique network in understanding physical origins of 525 

impacts that occurred during the 2019 Valentine’s Day winter storm. We conclude that 526 

California’s observational network is successfully implementing ideas that emerged from many 527 

agency planning efforts (summarized in Ralph et al., 2014) and of testing and demonstration 528 

carried out through the NOAA Hydrometeorology Testbed (White et al., 2012; Ralph et al., 529 

2013). 530 

Components of the network with many years of observations, such as snow level radar, soil 531 

moisture, or GPS, can now be used to place extreme events into climatological context and 532 

establish a baseline state of regional hydroclimate conditions (e.g., Hatchett et al., 2017a; Cao et 533 

al., 2019; Sterle et al., 2019). By helping identify drivers of hydrometeorological impacts in 534 

sensitive ecosystems or on values-at-risk, the network helps prioritize future investments and 535 

studies aimed at mitigating risks and enhancing the resiliency of water resources at local and 536 

regional scales (White et al., 2013; Ralph et al., 2014). Continued investments towards 537 

establishing and maintaining what are now becoming long-term observational networks will be 538 

critical to understand how natural systems are evolving (e.g., Mensing et al., 2013; Lundquist et 539 

al., 2016). Multi-tiered observing and forecast systems should be further integrated with data 540 

display to better serve multiple agencies with different but overlapping missions (e.g., 541 

https://cw3e.ucsd.edu/DSMaps/DS_intro.html). Process-based understanding and subsequent 542 

improvements in forecast confidence at longer lead times will translate towards better decision 543 



Confidential manuscript submitted to Earth and Space Science 

 

support during events and inform longer-term shifts to the water management landscape. With 544 

future weather and climate extremes projected to increase in the western U.S. (Gershunov et al., 545 

2019), continuing to collect and utilize observations from California’s network will help improve 546 

early warning and emergency response times during these events. 547 
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 21 
Figure S1: 12Z 13 February 2019 integrated water vapor (IWV) derived from the MIMIC-22 
TPW2 experimental product (Wimmers & Velden, 2010) showing the landfalling 23 
atmospheric river with copious moisture. The surface cyclone is evident off the coast of 24 
the California/Oregon border and denoted with the blue L.  25 
 26 
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 27 
Figure S2: Skew-T plot (left) and water vapor flux plot (right) derived from the 1459Z 14 28 
February 2019 radiosonde launched from the Scripps Pier in La Jolla, CA validating the 29 
record cool season precipitable water observation of 42.7 mm at 1200Z 14 February at 30 
Miramar, CA. At left, the blue line indicates temperature and the red line indicates 31 
dewpoint temperature. 32 
 33 
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 34 
Figure S3: Time-height cross sections of wind speed and direction from 00Z 13 February 35 
to 00Z 15 February 2019 at a) Oroville, CA and b) Twitchell Island, CA 915-MHz Doppler 36 
wind profilers. 37 
 38 
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 39 
Figure S4: Integrated Water Vapor Flux Tool shown for Bodega Bay, California. Bodega 40 
Bay is located along the coast of California in the southwestern margin of the Russian 41 
River watershed. This plot combines a 449 MHz wind profiler display (top plot), and 42 
profiler indicated freezing levels during precipitation (dots shown in top plot), GPS 43 
integrated water vapor and upslope winds (winds in the defining layer perpendicular to 44 
upwind terrain at Cazadero (CZC; 25 km of Bodega Bay in the North Coastal Ranges. The 45 
bottom panel shows upslope IWV flux (combining winds in defining layer with water 46 
vapor) with observed 3-hourly precipitation at BBY and the downwind mountain 47 
location of Cazadero. The dashed lines shown in the plot are from the NOAA Rapid 48 
Refresh model showing 3-hr lead-time forecasts of freezing level, integrated water 49 
vapor (IWV), upslope wind, upslope IWV flux, and precipitation at Bodega Bay and 50 
Cazadero. To the left of the vertical line in the plot are the next 12-hr forecast of these 51 
same parameters. For a complete description of the tool see: 52 
https://esrl.noaa.gov/psd/data/obs/data/view_data_type_info.php?DataTypeID=67&Sit53 
eID=bby. 54 
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 55 

 56 
 57 
Figure S5: An example of a snow level detection and forecast verification plots for the 58 
High-Resolution Rapid Refresh Model for the Colfax FM-CW snow level radar. The top-59 
most panel provides a time series of brightband height (km) from radar observations 60 
compared to various initializations from 0-18 hrs, shown by colored lines, of the High 61 
Resolution Rapid Refresh Model (HRRR; Benjamin et al., 2017). The middle panel 62 
provides a suite of 24 hr forecasts for different HRRR initialization times. The lower 63 
panel, composed of five square sub-panels, shows forecast verification for the past one 64 
year for varying HRRR initialization times. This information is used by forecasters to 65 
understand model performance over the past two days as well as the past year. Note the 66 
HRRR underestimated the abrupt snow level rise between 11Z-13Z 13 February 2019. 67 


