
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
21
60
/v

3
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

On the contribution of remote sensing-based calibration to model

multiple hydrological variables

Aline Meyer Oliveira1,1,1, Ayan Fleischmann2,2,2, and Rodrigo Paiva1,1,1

1IPH/UFRGS
2Federal University of Rio Grande do Sul

November 30, 2022

Abstract

The accuracy of hydrological model predictions is limited by uncertainties in model structure and parameterization, and obser-

vations used for calibration, validation and model forcing. Conventionally, calibration is performed with discharge estimates.

However, the internal processes in the model might be misrepresented, i.e., the model might be getting the “right results for

the wrong reasons”, which compromises model reliability. An alternative is to calibrate the model parameters with remote

sensing (RS) observations of the water cycle. Previous studies highlighted its potential to improve discharge estimates, but

put much less effort on investigating other variables of the water cycle. In this study, we analyzed in detail the contribution of

five different RS-based variables (water level (h) from Jason-2, flood extent (A) from ALOS-PALSAR, terrestrial water stor-

age (TWS) anomalies from GRACE, evapotranspiration (ET) from MOD16 and soil moisture (W) from SMOS) to calibrate a

hydrological-hydrodynamic model for a tropical study region with floodplains in the Amazon basin. Calibration with TWS, ET,

W, and h+W were able to improve discharge estimates by around 16% to 48%. Water cycle representation was also improved

(e.g., calibration with h improved not only h estimates but also A, TWS and ET). By analyzing differing calibration setups, a

consistent selection of complementary variables for model calibration resulted in better performances than incorporating all RS

variables into the calibration. By looking at multiple RS observations of the water cycle, we were able to found inconsistencies

in model structure and parameterization, which would remain unknown if only discharge observations were considered.
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On the contribution of remote sensing-based calibration to model

multiple hydrological variables in tropical regions
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Abstract

The accuracy of hydrological model predictions is limited by uncertainties in model

structure  and parameterization,  and observations  used  for  calibration,  validation  and

model  forcing.  While  calibration  is  usually  performed with  discharge  estimates,  the

internal model processes might be misrepresented, and the model might be getting the

“right  results  for  the  wrong  reasons”,  thus  compromising  model  reliability.  An

alternative is to calibrate model parameters with remote sensing (RS) observations of

the water cycle. Previous studies highlighted the potential of RS-based calibration to

improve discharge estimates, focusing less on other variables of the water cycle. In this

study, we analyzed in detail the contribution of five RS-based variables (water level (h),

flood  extent  (A),  terrestrial  water  storage  (TWS),  evapotranspiration  (ET)  and  soil

moisture  (W))  to  calibrate  a  coupled  hydrologic-hydrodynamic  model  for  a  large

Amazon sub-basin with extensive floodplains. Single-variable calibration experiments

with all variables were able to improve discharge KGE from around 6.1% to 52.9%

when compared to a priori  parameter sets. Water cycle representation was improved

with multi-variable calibration: KGE for all variables were improved in the evaluation

period.  By  analyzing  different  calibration  setups,  a  consistent  selection  of

*Present address: Department of Geography, University of Zurich, Zurich, Switzerland.
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complementary variables for model calibration resulted in a better  performance than

incorporating  all  RS  variables  into  the  calibration.  By  looking  at  multiple  RS

observations of the water cycle, inconsistencies in model structure and parameterization

were  found,  which  would  remain  unknown  if  only  discharge  observations  were

considered.

Keywords: hydrological modeling, multi-variable calibration, Amazon, hydrodynamic

modeling, large basins.

1 Introduction

The accurate representation of hydrologic processes in mathematical models remains a

key challenge in water resources research and applications (Baroni et al., 2019; Clark et

al.,  2015;  Kirchner,  2006;  Nearing  et  al.,  2016;  Semenova & Beven,  2015) due  to

uncertainties in model structure (Wagener et al., 2003), parameterization (Gharari et al.,

2014; Shafii & Tolson, 2015), and observations  (Di Baldassarre & Montanari, 2009).

These uncertainties might lead to inaccurate predictions of hydrological variables for

water resources and natural hazards management  (Grimaldi et al., 2019; Montanari &

Koutsoyiannis,  2014),  and  for  quantification  of  impacts  of  climate  change  and

anthropogenic  effects  on  the  water  cycle  (Haddeland  et  al.,  2006;  Teutschbein  &

Seibert, 2012; C. Y. Xu et al., 2005). This problem has led for instance to initiatives to

better constrain the terrestrial  water budget by fusing models and Earth Observation

datasets (M. Pan & Wood, 2006; Pellet et al., 2019).

Traditionally, hydrological models are calibrated against gauged streamflow data, which

might hamper predictions in ungauged sites, since it  does not guarantee an accurate
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representation  of  other  water  cycle  components  (e.g.,  soil  moisture  and

evapotranspiration), thus leading to uncertainty in hydrologic predictions (Hrachowitz et

al., 2013). Moreover, many parameter sets can provide equally acceptable performances

for streamflow evaluation (i.e., the equifinality thesis), but they might be “right for the

wrong reasons” (Beven, 2006; Kirchner, 2006). Several solutions have been proposed to

improve process representation and reduce uncertainty in model predictions, such as the

generalized  likelihood  uncertainty  estimation  (Beven  &  Binley,  1992),  dynamic

identifiability  analysis  (Wagener  et  al.,  2003),  multiscale  parameter  regionalization

(Samaniego et al., 2010), and multi-objective calibration (Yapo et al., 1998). However,

these are ongoing developments,  and stand out as one of the twenty-three unsolved

problems in  hydrology (Blöschl  et  al.,  2019):  “how can we disentangle  and reduce

model structural/parameter/input uncertainty in hydrological prediction?”.

In  addition  to  the  presented  solutions,  an  alternative  is  the  use  of  complementary

datasets besides streamflow observations for model calibration (e.g., Crow et al., 2003;

Franks  et  al.,  1998;  Lo  et  al.,  2010;  López  et  al.,  2017;  Rajib  et  al.,  2016),  data

assimilation (e.g., Brêda et al., 2019; Houser et al., 1998; Mitchell et al., 2004; Paiva et

al., 2013; Pathiraja et al., 2016; Reichle et al., 2002; Vrugt et al., 2005), or validation

(e.g.,  Alkama et al.,  2010; Motovilov et al.,  1999; Neal et al.,  2012; Siqueira et al.,

2018).  Such  approaches  are  promising  to  improve  representation  of  processes  in

hydrological models (Clark et al., 2015), reduce uncertainty in hydrological predictions

(Gharari et al., 2014), understand equifinality (Beven, 2006), and perform predictions in

ungauged or poorly-gauged sites (Sivapalan et al., 2003). However, distributed data of

complementary  hydrological  variables  (e.g.,  evapotranspiration,  soil  moisture)  are

scarce, and in-situ measurements present poor spatial and temporal representativeness. 
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In this  context,  remote  sensing (RS) observations  have stood out  in  the last  decade

because of their increasing spatial and temporal resolutions, free availability in many

cases,  and  capability  to  record  less  monitored  hydrological  variables  such  as  soil

moisture, evapotranspiration, and terrestrial water storage (Lettenmaier et al., 2015). For

instance, GRACE mission provided monthly estimates of changes in water storage on a

global coverage with an accuracy of 2 cm when uniformly estimated over land and

oceans  (Tapley et al., 2004). Missions such as SMOS, SMAP, AMSR-E and ASCAT

were estimated to provide soil moisture data with a median RMSE of 0.06-0.10 m³/m³

for the CONUS  (Karthikeyan et  al.,  2017).  Altimeters  such as Envisat,  Jason-2 and

ICESat-1 and ICESat-2 can yield water level data with an accuracy ranging from 0.04 m

to 0.42 m, involving trade-offs between temporal resolution from 10 to 91 days, and

cross-track separation from 15 to 315 km (Jarihani et al., 2013), while the future SWOT

mission will provide at least  one water level measurement every 21 days for global

rivers wider than 100 m (Biancamaria et al., 2016). 

Although  previous  studies  have  analyzed  the  value  of  integrating  RS  data  into

hydrological modeling through calibration or data assimilation (see review by Xu et al.,

2014 and Jiang & Wang, 2019), this topic has not been fully explored to its potential

yet. Therefore, in section 1.1, we present major knowledge gaps in the context of RS-

based  calibration  of  hydrological  models  through  an  extensive  literature  review.  In

section 1.2, we describe the aims and contributions of this study. 

1.1 Literature review on calibration of hydrological models with RS data

A comprehensive, yet non-exhaustive literature review of studies that used RS datasets

for  parameter  estimation  in  hydrological  models  is  presented  in  this  section  and
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summarized  in  Figure 1.  A total  of  62  research  articles  was  found (Supplementary

Material Table S1). Most publications involved large study areas (> 1000 km²), which is

expected because of the usual coarse resolution of RS products. Most studies used RS-

derived evapotranspiration for model calibration, followed by soil moisture (Figure 1b),

but there were also attempts for calibration of up to eight different RS-derived variables

(Nijzink et al., 2018). This indicates a still existent knowledge gap regarding which RS-

derived variables are more useful for model calibration.  Indeed, many recent studies

have investigated the added value of RS-derived information to calibrate hydrological

models (Figure 1d; Table S1). 

Most of the studies (69.35%) used only one RS product for model calibration (Figure

1e, in black), while twelve studies (19.35%) used two products, and five (8.06%) used

three  products.  Only  few  studies  used  more  than  three  RS  products  for  model

calibration (Demirel et al., 2019; Nijzink et al., 2018). Some studies addressed the use

of RS data to estimate discharge in ungauged basins (Kittel  et  al.,  2018; Sun et  al.,

2010),  while  others  focused  on  narrowing  the  parameter  search  space,  and  thus

equifinality reduction, by combining multiple variables for calibration (e.g.,  Nijzink et

al.,  2018;  Pan  et  al.,  2018).  This  is  confirmed  by  Figure  1e  (in  blue),  which

demonstrates that the vast majority of researches used two variables for calibration (in

general,  discharge  and a  RS-derived variable).  Within  these  studies,  some analyzed

model  performance  in  terms  of  discharge  only,  while  others  considered  different

variables  (Figure  1e,  in  red),  providing  a  more  comprehensive  discussion  on

inconsistencies of hydrological models (e.g., Koch et al., 2018; Li et al., 2018). 

Regarding how RS is incorporated into the model calibration procedure (Figure 1h),

65.6% of the articles used RS-based spatially distributed information, thus calibrating

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118



the model  with distributed objective  functions (e.g.,  pixel-by-pixel  or by sub-basin).

Within  these  studies,  bias-insensitive  functions  have  been  recently  introduced  (e.g.,

Koch et al., 2018; Demirel et al., 2018; Zink et al., 2018; Dembele et al., 2020), being

important for reducing the impact of RS data uncertainty on the parameter estimation

procedure. The remaining publications (34.4%) incorporated RS data as an average for

the whole basin. 

Finally,  there  is  still  a  need  for  more  studies  in  tropical  regions  (especially  South

America) (Figure 1c), which have particular hydro-climatic characteristics, and so have

different  requirements  than temperate  regions  on model  process representation  (e.g.,

snow-related  processes  might  not  be so relevant  in  some tropical  areas,  whereas  an

accurate  representation  of  floodplains  might  be).  In  the case of  basin with complex

river-floodplain interactions as in the Amazon, an accurate flood wave routing method

is  required  to  correctly  depict  the  water  transport  along  the  drainage  network.  Our

analysis  shows  that  most studies  used  simple  flood  wave  routing  schemes  such  as

kinematic wave or Muskingum (Figure 1g). Only 10.4% attempted to couple hydrologic

and river hydrodynamic models, highlighting the necessity of better understanding the

applicability of RS-based calibration in basins with major flat regions with wetlands

(Hodges, 2013; Neal et al., 2012; Pontes et al., 2017). 
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Figure 1.  Summary of the literature review on 62 studies that incorporated RS datasets for

parameter estimation in hydrological models (see Table S1 in  Supplementary Material). (a)

Classification of publications based on the drainage area of study sites (an average value was

considered for publications that used multiple study sites); (b) distribution of studies based on

the calibration variable; (c) geographical distribution of study sites; (d) number of publications
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per year; (e) number of RS products involved in calibration (in black), number of independent

calibration variables (in blue), and number of model outputs evaluated (in red); (f) classification

of models based on their spatial configuration; (g) model type; and (h) use of RS data 

1.2 Aims and Contributions of this paper

Our study addresses major knowledge gaps identified in the previous literature review

in  the  context  of  RS-based calibration  of  hydrological  models.  Firstly,  most  of  the

studies analyzed two or less variables (Figure 1e). Here, we used RS observations of a

large  number  of  variables  for  model  calibration,  namely  soil  moisture,

evapotranspiration, terrestrial water storage, flood extent and river water levels, and thus

move  beyond  the  contributions  of  RS  for  improving  only  discharge  estimates.  By

simultaneously  looking  at  different  variables,  we  also  move  towards  an  improved

representation of the water cycle as a whole, enhancing our ability to identify model

limitations and inconsistencies. Furthermore, most studies to date focused on European,

temperate watersheds (Figure 1c), which largely differ from tropical basins in terms of

hydroclimatic characteristics and river-wetland interactions. In this context, large-scale,

coupled  hydrologic-hydrodynamic  models  have  faced  major  developments  in  recent

years  (Yamazaki  et  al  2011,  Paiva  et  al  2013,  Fleischmann et  al  2020),  but  to  our

knowledge  the  complementarity  of  hydrologic  (soil  moisture,  evapotranspiration,

terrestrial  water  storage)  and hydrodynamic  (flood extent  and river  water  level)  RS

observations for model calibration has not yet been addressed in the literature. Here we

present a study case in a tropical basin with extensive floodplains in the Amazon with a

state-of-the-art  coupled  hydrologic-hydrodynamic  model,  which  together  with  the

previously  mentioned  advances  provide  important  contributions  to  the  growing

literature of RS-based calibration of hydrological models. This study aims to investigate
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the applicability of multiple RS observations in an accessible approach to model and

represent the water cycle accurately. 

2 Methods

2.1 Experimental design

A hydrologic-hydrodynamic model (MGB;  (Collischonn et al., 2007)) is set up for a

case study in the Amazon (Purus River Basin) with a priori parameter sets based on

their  variability  as reported in literature  (references  in  Table S2).  The study is  then

divided into two steps. 

Firstly, a sensitivity analysis is performed to understand how different parameter sets

(river hydraulic, soil, vegetation) affect model output variables (river discharge, flood

extent, river water level, soil moisture, evapotranspiration and terrestrial water storage). 

Then, a calibration step is performed in which the model is calibrated with the well-

known  MOCOM-UA  optimization  algorithm  (Yapo  et  al.,  (1998))  considering  six

variables: (1) in-situ streamflow (one gauge at the basin outlet), and RS freely available,

state-of-the-art observations of (2) water level (one satellite altimetry virtual station), (3)

flood extent (sum of flooded areas over the Lower Purus River Basin), (4) terrestrial

water storage (TWS), (5) evapotranspiration, and (6) soil moisture. Variables (4), (5)

and (6) are averaged over the whole basin. The calibration of each variable is performed

individually  (single-variable),  and  evaluated  for  all  variables.  All  calibration

experiments are repeated three times with differing initial parameter sets to ensure that

convergence is not dependent on the initial  parameter sets. Given limitations on the

availability  of simultaneous RS time coverage,  the model  is  calibrated  for one time
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period (2009-2011), and evaluated for: (i) the same time period of calibration; and (ii)

for a different period (2006–2008 for discharge, flood extent, TWS, ET and 2013–2014

for water level and soil moisture). To understand how lumped calibration can retrieve

the remotely sensed spatial patterns, a qualitative evaluation is provided additionally. A

final  test  is  performed  in  which  two  multi-variable  calibration  experiments  are

conducted:  (i)  calibration  with  all  analyzed  variables,  except  discharge;  and  (ii)

calibration with two complementary variables (water level and soil moisture), which are

selected  for  simultaneous  calibration  for  being  complementary  and  having  led  to

satisfactory calibration performance. 

2.2 Study area: Purus River Basin

The Purus River Basin (Figure 2) in Amazon has a drainage area of approximately

236,000 km², and river discharge ranges from around 1,000 (June-December) to 12,000

m³/s (January-July) at Canutama gauge. Because of its large area, it is compatible with

the spatial resolution of RS products (e.g., a pixel of GRACE presents spatial resolution

of  roughly  300-400  km).  Purus  river  has  minor  anthropogenic  influences,  which

simplifies the modeling process. The climate is equatorial (Figure 2d), and mean annual

rainfall is 2147 mm/year (according to in-situ gauges). Purus was selected because of its

representativeness of tropical regions as the Amazon basin, which is the largest river in

the  world  (Holeman,  1968),  and  it  is  characterized  by  extensive  floodplains  (Junk,

1997). For instance, on the lower Purus, the floodplain width is in the order of 30 km,

which  corresponds to  approximately  30 times  the main channel  width  (Paiva et  al.,

2011).  These  floodplains  allow a satisfactory  flood extent  monitoring  by RS image

classification, which contributes to the suitability of Purus River Basin for this study. 
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Figure  2.  Study  area:  Purus  River  Basin.  (a)  drainage  network  (in  blue),  location  of  the

discharge gauge (Canutama, triangle in red), tracks of the spatial altimetry mission Jason 2

(dashed black lines), location of the altimetry virtual station (circle, in black), and the area used

for extraction of flood extent (Lower Purus, pink polygons); (b) Hydrological Response Units

(Fan  et  al.,  2015);  (c)  Bare  Earth  Digital  Elevation  Model  (O’Loughlin  et  al.,  2016);  (d)

Köppen-Geiger Climatic Zones (Kottek et al., 2006). 

2.3 Hydrologic-hydrodynamic model: MGB
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The  MGB (“Modelo  de  Grandes  Bacias”,  a  Portuguese  acronym for  “Large  Basin

Model”)  is  a  semi-distributed,  hydrologic-hydrodynamic  model  (Collischonn  et  al.,

2007; Pontes et al., 2017). It was chosen for this study because (1) it has been widely

and successfully  applied  in several  South American basins (e.g.,  Paiva et  al.,  2013;

Siqueira  et  al.,  2018);  (2)  it  is  representative  and  similar  to  other  conceptual

hydrological models like VIC (Liang et al., 1994) and SWAT; and (3) the hydrological

component  is  tightly  coupled  to  a  hydrodynamic  routing  scheme,  allowing  the

simulation of complex flat, tropical basins. Moreover, the source code of MGB is freely

available at www.ufrgs.br/lsh. 

Within  the  model  structure,  basins  are  discretized  into  unit-catchments,  which  are

further divided into Hydrological Response Units (HRU’s) based on soil type and land

use. Model parameters are specific for each of the HRUs. A vertical water balance is

performed  for  each  HRU,  considering  canopy  interception,  soil  infiltration,

evapotranspiration, and generation of surface, subsurface and groundwater flows. Soil is

represented as a bucket  model  with a  single layer.  Flow generated in  each HRU is

routed to the outlet of the unit-catchment with linear reservoirs. Outflow from each unit-

catchment is then propagated through the stream network by using a 1D hydrodynamic

model based on the inertial approximation proposed by Bates et al. (2010).  The stream

network is derived from Digital Elevation Model (DEM) processing. The model has 19

parameters,  which  are  further  detailed  in  the  next  section.  Other  model  inputs  are

precipitation, climate data, soil type and land use maps, which are further described in

section 2.6 Model Setup.  

2.4 A priori uncertainty of model parameters
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Within MGB model, there are parameters related to vegetation cover (albedo, leaf area

index,  vegetation  height  and  Penman-Monteith  surface  resistance),  river  hydraulics

(Manning’s  roughness,  and width and depth parameters  related to  geomorphological

relationships), and conceptual parameters related to soil water budget (Wm, b, Kbas,

Kint, XL, CAP, Wc, CI, CS, CB), which are further detailed in Supplementary Material

(Table S2).  Out of the 19 model parameters, six are fixed and 13 are calibrated.

The  a  priori  uncertainty  of  MGB  model  parameters  is  estimated  based  on  their

variability  as reported in literature (references in Table S2).  Supplementary Material

(Table  S2)  presents  the  calibration  parameters,  their  initial  values,  range,  and  the

references that support these assumptions. 

2.5 Sensitivity analysis

In order to understand how different parameter sets (river hydraulic, soil, vegetation)

affect  model  output  variables  (river  discharge,  flood  extent,  river  water  level,  soil

moisture,  evapotranspiration and terrestrial  water storage),  multiple  model runs were

conducted considering four uncalibrated model setups: (1) varying only soil parameters;

(2)  varying  only  vegetation  parameters;  (3)  varying  only  hydraulic  parameters;  (4)

varying all parameters together. One hundred runs were conducted in triplicate to ensure

that convergence is not dependent on the initial parameter sets, thus resulting in 300

runs for each setup. In this step, no RS-based calibration is performed yet.

Parameters were varied considering a uniform distribution, and results were analyzed in

terms of mean RMSD (root mean square deviation) of each variable, by comparing each

run with a reference one (i.e., the initial run with the initial parameter set as defined in
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Supplementary  Material  Table  S2).  This  was  performed  in  order  to  understand  the

sources of model uncertainties related to different sets of parameters (e.g., are flood

extent  estimates  sensitive  to  vegetation  parameters,  or are  ET estimates  sensitive  to

hydraulic  parameters?).  The  dispersion  of  model  outputs  was  also  compared  to

uncertainty in the observations, as derived from literature. 

To understand which variables are inter-related in the model, we further analyzed the

results  of  setup  “(4)  varying  all  parameters  together”.  This  was  done  by  firstly

computing the Kling-Gupta Efficiency metric (KGE; Gupta et al., (2009)) between the

perturbed runs and  a reference one (i.e., run with the initial parameter set) for each

variable, and then calculating the Pearson correlation (r) between KGE values for each

pair of variables (e.g.,  discharge and water level,  discharge and flood extent, and so

forth). This experiment is relevant to evaluate whether two variables get improved or

get worsened together, or whether a variable improvement impacts on the deterioration

of another. In other words, this approach allows to evaluate the correlation between the

variables.  

2.6 Model setup

The Bare Earth Digital Elevation Model  (DEM; O’Loughlin et al., 2016) (Figure 2c)

was  used  for  stream  network  computation  and  basin  discretization  with  the  IPH-

HydroTools GIS package (Siqueira et al., 2016). The original DEM resolution is 90 m,

and it was resampled to 500 m to facilitate GIS processing. An upstream area threshold

of 100 km2 was adopted to delineate the drainage network, and unit-catchments were

discretized by dividing the stream network into fixed reach length of 10 km, resulting in
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2957 unit-catchments for the whole basin. Soil type and land cover maps were extracted

from the HRU discretization developed by Fan et al. (2015) (Figure 2b): (1) deep and

(2) shallow forested areas, (3) deep and (4) shallow agricultural areas, (5) deep and (6)

shallow pasture,  (7) wetlands, (8) semi-impervious areas, and (9) open water, where

“deep soils” refer to soils  with high water storage capacity,  and “shallow soils” are

those with low water storage capacity. In the Purus River Basin, 57.4% of the region is

covered by forest with deep soils, 26.9% by forest with shallow soils, and 13.7% by

wetlands (i.e.,  river  floodplains).  Daily  precipitation  data  were derived from TMPA

3B42  (version  7),  with  spatial  resolution  of  0.25º  x  0.25º  (Huffman  et  al.,  2007;

available  at:  <https://gpm.nasa.gov/data-access/downloads/trmm>),  and  were

interpolated with the nearest neighbor method for the centroid of each unit-catchment.

Long  term  climate  averages  for  mean  surface  air  temperature,  relative  humidity,

insolation,  wind  speed  and  atmospheric  pressure  were  obtained  from  the  Climatic

Research  Unit  database  (New  et  al.,  2000;  available  at:

<http://www.cru.uea.ac.uk/data>), at a spatial resolution of 10’, and also interpolated

with the nearest neighbor method. 

2.7 Model calibration

The  MOCOM-UA  calibration  algorithm  (Yapo  et  al.,  1998;  Multi-objective  global

optimization for hydrologic models) was adopted due to its satisfactory performance

when coupled with hydrological models (e.g.,  Collischonn et al., 2008; Maurer et al.,

2009; Naz et al., 2014). MOCOM-UA is an evolutionary algorithm, based on SCE-UA

(Duan et al., 1992), that simultaneously optimizes a model population with respect to

different  objective  functions.  The algorithm converges  towards  the Pareto  optimum,
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when  all  points  in  the  population  become  non-dominated.  The  model  population

consists of randomly distributed points within the parameter search space, and it reflects

the a priori uncertainty of model parameters. Here, the population size was set to 100

individuals. The altered model parameters and their respective ranges are described in

Supplementary Material Table S2. All calibration experiments are repeated three times

(totaling 300 initial runs) with differing initial parameter sets to ensure that convergence

is not dependent on the initial parameter sets. Initial parameters are set as the mean of

their literature-based range (Table S2). 

Objective  functions  to  be optimized  depend on the  calibration  setup.  In  the  single-

variable calibration, for each variable, three objective functions (OF) that summarize

the  agreement  between  simulated  and  observed  (RS)  time-series  are  simultaneously

optimized: Pearson correlation  (r),  ratio  of  averages  (μ¿ /μobs),  and ratio  of  standard

deviations (σ ¿/σ obs), which are associated to the individual terms of KGE metric. These

3 objective functions are depicted in Equations 1 to 3, where X denotes the assessed

variables (Q, h, A, TWS, ET or W).

OF1=(
μ¿

μobs )X (1 );OF 2=(
σ¿

σ obs )X (2 );OF3=r X(3)

For the multi-variable calibration, the objective functions are the KGE of each variable

considered:  firstly,  five  objective  functions  were  considered  (KGE  of  all  variables

except discharge), as depicted in Equations 4 to 8.

OF1=KGEh (4 );OF2=KGEA (5 ) ;OF3=KGETWS (6 ) ;OF4=KGEET (7 ) ;OF 5=KGEW (8)

Secondly, two objective functions were adopted and simultaneously calibrated (KGE of

selected variables 1 (x) and 2 (y)), as depicted in Equations 9 and 10.

OF1=KGEx (9 ) ;OF2=KGE y (10)
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Results are expressed in terms of a Skill Score (S) (Equation 11; Zajac et al., 2017),  in

order to evaluate the improvement (or deterioration) in the representation of a variable

when the model is calibrated with a given variable, compared to the uncalibrated setup.  

S=
KGEcalibrated−KGEinitial

1−KGE initial
(11)

KGEcalibrated  is  the  mean  KGE  resulting  from  running  the  model  with  the

calibrated parameters. KGEinitial is the mean KGE resulting from running the model with

the a priori parameter sets (i.e., randomly selected parameters within an a priori range of

parameter values).

2.8 Calibration/Evaluation Data 

In the next paragraphs we introduce the data used for model calibration and evaluation, 

as well as how MGB outputs were evaluated in comparison to them.

-In-situ  discharge  measurements were  obtained  from  the  Brazilian  Water  Agency

Hidroweb  database  (available  at:

<http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf>),  at  the  gauge

“Canutama” (code: 13880000; location: S ° 32' 20.04''; W 64° 23' 8.88''; drainage area:

236,000  km²,  period  of  data  availability:  1973  to  2016).  Uncertainty  in  discharge

observations can be estimated as ranging from 6.2% to 42.8% at the 95% confidence

level, with an average of 25.6%  (Di Baldassarre & Montanari, 2009). Discharge was

evaluated on a daily basis. 
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- Remotely sensed water level data were obtained from Jason-2 mission, which presents

an orbit cycle of approximately 10 days, and tracks separated by approximately 300 km

at the equator  (Lambin et al., 2010). It presents an accuracy of approximately 0.28 m

(Jarihani et al., 2013), and data are available since 2008. The virtual station presented in

Figure  1  corresponds  to  Track  number  165.  Processed  data  for  this  study  were

downloaded from the Hydroweb/Theia database (available at: <http://hydroweb.theia-

land.fr>). Water level was computed in MGB at the unit-catchment associated to the

altimetry  virtual  station,  being an advantage  of  using the hydrodynamic  scheme for

flood routing instead of the Muskingum simplification. Simulated and RS water level

data were compared every 10 days in terms of anomaly (values subtracted from long

term average).

-  Satellite  flood  extent  data were  derived  from  ALOS-PALSAR  imagery,  which

presents  a  ground  resolution  of  100  m  (Rosenqvist  et  al.,  2007).  Images  were

downloaded from Alaska Satellite Facility (available at: <https://www.asf.alaska.edu/>)

in processing level 1.5, which already presents geometric and radiometric corrections. A

3 x 3 median filter was used to remove speckle noise (Lee et al., 2014). Images were

classified into water (backscattering coefficient less than -14 dB), non-flooded forest

(between  -14  dB  and  -6.5  dB),  and  flooded  forest  (higher  than  -6.5  dB)  classes,

according to  Hess et al. (2003) and Lee et al. (2014). The uncertainty of flood extent

estimates was estimated based on the RMSE between the resulting classification of this

study, and the dual-season mapping developed by Hess et al. (2003). Simulated and RS

flood extent data were compared for the pink area depicted in Figure 1, in order to avoid

spurious  flood extent  data  in  regions  that  are  known to  be  not  subject  to  flooding.

ALOS-PALSAR presents a recurrence cycle of 46 days (from 2006 to 2011), and flood

extent data were available and compared to MGB for 21 dates. 
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-  Satellite-based  terrestrial  water  storage  (TWS)  anomalies were  extracted  from

GRACE mission, launched in March 2002. GRACE provides monthly TWS estimates

based on anomalies in gravitational potential,  at  a resolution of 300-400 km, with a

uniform accuracy of 2 cm over the land and ocean regions (Tapley et al., 2004). TWS

anomalies were retrieved from three processing centers - GFZ (Geoforschungs Zentrum

Potsdam, Germany), CSR (Center for Space Research at University of Texas, USE),

and JPL (Jet  Propulsion Laboratory,  USA), available at <https://grace.jpl.nasa.gov/>,

and then the mean value based on the three products was averaged for the whole basin.

In MGB, TWS values were computed as the sum of water storage of all hydrological

compartments: river, floodplains, soil, groundwater and vegetation canopy. Simulated

and RS-based TWS were compared in terms of anomaly (values subtracted from long

term average) at a monthly time-scale.

- Satellite-based evapotranspiration estimates were retrieved from the MOD16 product,

derived by an algorithm presented by Mu et al. (2011) based on the Penman-Monteith

equation. The dataset covers the period 2000-2010 with a spatial resolution of 1 km for

global vegetated land areas. Because of that, even though MGB evapotranspiration is

calculated for flooded areas (open water evaporation in main channel and floodplains)

and vegetation for water balance purposes, only the vegetation-ET output was compared

to MOD16.  MOD16 products are provided in 8-days, monthly and annual intervals.

Monthly  intervals  were  used  here  and  averaged  for  the  whole  basin.  Accuracy  of

MOD16 along the Amazon basin is estimated as 0.76 mm/day  (Gomis-Cebolla et al.,

2019).  MOD16  data  is  available  at:  <

https://www.ntsg.umt.edu/project/modis/mod16.php>.  In  MGB,  evapotranspiration  is

computed via Penman-Monteith equation, based on the climate input variables. 
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- Satellite-based soil moisture is derived from the SMOS mission  (Kerr et al., 2001),

processed  by  the  Centre  Aval  de  Traitement  des  Données  SMOS  (CATDS),  and

downloaded in processing level 4, which combines lower level products with data from

other sensors and modeling/data assimilation techniques. The daily L4 root zone soil

moisture product at 0-1 m soil depth (Al Bitar et al., 2013) were used (available at:

<https://www.catds.fr/Products/Available-products-from-CEC-SM/L4-Land-research-

products>), and data from ascending and descending orbits were averaged for the whole

basin. In MGB, soil moisture as a saturation degree was computed as the water in the

soil compartment divided by the maximum water capacity of the soil (Wm parameter).

Since MGB estimates saturation degree values for a soil bucket reservoir, SMOS values

were rescaled for the range 0 - 100% according to the Min/Max Correction method

described by  Tarpanelli  et al.  (2013) and applied by some studies (e.g.,  Rajib et al.,

2016; Silvestro et al., 2015), and them compared to MGB on a daily time-scale as an

average for the whole basin. 

3 Results and discussion

Results  are  structured  as  follows.  Firstly,  the  sensitivity  analysis  is  presented  with

discussions on model uncertainties (Section 3.1). Then, results for model calibration are

presented, with discussions on how RS-based model calibration can improve discharge

and the water cycle representation as a whole (Section 3.2).
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3.1 Sensitivity analysis

A sensitivity analysis was carried out to understand how different parameter types (river

hydraulic, soil, vegetation, and all together) affect the variation of different hydrological

processes in MGB (Figure 3a). This was performed by analyzing the dispersion of six

output variables (discharge, water level, flood extent, TWS anomalies, vegetation ET,

and soil moisture). These results are also compared with an estimate of the uncertainties

of observations (values provided in section  2.8 Calibration/Evaluation Data), and are

discussed in the subsequent sections.

 

Figure 3. a) Sensitivity analysis of different model output variables to varying sets of 

parameters (hyd=hydraulics, soil, veg=vegetation, and all together). The a priori dispersion of 

the model parameters, for each output variable, is compared to the reported uncertainty for the 

in-situ / RS product estimates, previously described in the Cal/Eval data section (no uncertainty 
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estimation is provided for the soil moisture root zone product given absence of this estimate for 

the Amazon region). b) Correlation matrix (Pearson coefficient) between performance metrics 

(KGE) for the six analyzed variables, by varying all parameters together. KGE values are 

computed by comparing multiple runs with the reference simulation (i.e., the initial run with 

the initial parameter set as defined in Supplementary Material Table S2). Q = discharge,

h = water level, A = flood extent, TWS = total water storage anomalies, ET = vegetation

evapotranspiration, W = soil moisture.

3.1.1 How do varying model outputs relate to uncertainty in the observations?

Some  variables  present  in-situ/RS  observations  that  have  uncertainties  significantly

lower than the overall dispersion of the model, e.g., 25 % for discharge observations,

while model overall parameter dispersion is ~160%. This pattern is also found for water

level  and  TWS  estimates,  and  implies  that  these  observations  might  be  useful  to

constrain the model. Nonetheless, uncertainties in RS products of flood extent (~50%)

and  vegetation  ET  (~23%)  are  in  the  same  order  of  magnitude  of  model  overall

parameter dispersion, which might hamper their contribution for model calibration, due

to their high uncertainties. 

3.1.2 Which sets of parameters are related to which variables?

The overall  model  dispersions  are  related  to  different  sets  of parameters:  discharge,

water level, and TWS are more strongly related to hydraulics and soil parameters, and to

a lesser extent to vegetation parameters. Flood extent estimates are strongly related to

hydraulic parameters, and less to soil and vegetation. As expected, soil moisture and

vegetation ET estimates relate to vertical water balance processes, being insensitive to

hydraulic  parameters.  Soil  moisture  (W) is  more sensitive  to  soil  parameters,  while
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vegetation ET is more sensitive to vegetation parameters. These results are very useful

to  understand  the  RS-based  calibration  experiments  addressed  in  section  3.2.  For

instance,  if  model  calibration  with  ET  or  W  is  achieved  through  optimization  of

hydraulic parameters, it would highlight that the model would have “gotten the right

results  for  the  wrong  reasons”.  The  same  would  occur  if  flood  extent  calibration

targeted soil or vegetation parameters.

3.1.3 Which variables are inter-related?

By varying all parameters together, there is a high correlation (greater or equal to 0.4)

between the performance of discharge and flood extent, water level and flood extent,

flood  extent  and  TWS,  and  ET  and  TWS  (Figure  3b).  High  correlations  between

discharge, water level and flood extent are expected because of their strong association

through river transport processes. However, correlation between discharge and water

level is not too high (0.30), and this is probably due to high uncertainties in hydraulic

parameters, and to the large distance separating the water level virtual station and the

streamflow gauge. Furthermore, high correlations between TWS and flood extent might

be related to surface water storage dynamics which are especially relevant in regions

with floodplains. 

In general,  a high correlation between variables  in Figure 3b should be reflected  in

positive results when calibrating with a given variable and evaluating with the other

highly  correlated  variable  (single-variable  calibration).  This  may  also  indicate  that

observations  of  these  variables  are  redundant  if  used  simultaneously  in  a  multi-

calibration  framework.  However,  high  correlations  in  Figure  3b  followed  by

deterioration after the single-variable calibration process might indicate structural errors

in the model, or in the observations. We stress however that this study did not attempt to
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quantify  structural  errors.  Conversely,  low  correlations  in  Figure  3b,  followed  by

improvement  in  performances  with  the  calibration  with  multiple  variables,  might

indicate complementarity between variables. 

3.2 Model calibration

3.2.1 How RS-based model calibration improves discharge estimates?

For the evaluation time period (2006–2008 for discharge, flood extent, TWS, ET and

2013–2014 for water level and soil moisture), calibration with all RS products led to

improvements in discharge estimates (Figure 4a). For the calibration time period (2009-

2012), TWS, ET and soil moisture RS products also led to improvements in discharge

estimates,  while water level and flood extent led to discharge overestimation in wet

periods (Figure 4a). This could be due to high uncertainties in the observations (Figure

3a), but if this was the case, it would also be reflected in a poor performance for water

level and flood extent when discharge is the target variable for calibration (Figure 4b),

which  does  not  occur.  Therefore,  calibration  with  discharge  leads  to  reasonable

parameter sets for the performance of discharge itself, and also water level and flood

extent. However, it does not lead to the best hydraulic arrangement, which might be

achieved more successfully when calibrating with water level or flood extent. 

Nonetheless,  both  water  level  and flood extent  observations  are  representative  of  a

specific location in the basin (Figure 2), and calibration with these variables might lead

to the best parameter arrangement for these locations, but not for the whole watershed.

A more spatially-consistent use of these observations should improve their usability to

constrain models and improve discharge estimates, such as the studies of Kittel et al.
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(2018), that used radar altimetry measurements at 12 locations in the basin, Schneider et

al. (2017), that used data from 13 virtual stations, or Liu et al. (2015), that used water

level  measurements  at  four virtual  stations,  and flood extent  for stream segments  at

different locations in the basin.

RS variables as TWS, ET, and soil moisture were able to improve discharge estimates

by S =13.7% (KGEcal=0.36), S= 52.9% (KGEcal=0.64), and S = 27.0% (KGEcal=0.45)

(Figure 5-I, calibration period) or S = 27.4% (KGEeval=0.52), S= 6.1% (KGEeval=0.37),

S= 12.3% (KGEeval=0.43) (Figure 5-II, evaluation period), which is especially relevant

in the context of the Prediction in Ungauged Basins initiative (Hrachowitz et al., 2013;

Sivapalan et al., 2003). These results agree with previous studies, such as López et al.

(2017) that found good performances in discharge estimates by model calibration with

GLEAM  ET  and  ESA  CCI  soil  moisture,  or  Nijzink  et  al.  (2018),  that  found

improvements in discharge by using soil moisture products (AMSR-E, ASCAT) and

TWS from GRACE.

The multi-variable  calibration  experiment  considering  all  variables  except  discharge

(Figure 5b) resulted in a Skill Score of S = 17.4% (KGEeval=0.45) for discharge in the

evaluation period. This is relevant  for estimating discharge in poorly gauged basins.

Nonetheless,  for  the  calibration  period,  Skill  Score  had  a  low  value  (S  =  1.7%,

KGEcal=0.25), reflecting some limitations when retrieving discharges, probably because

of potential trade-offs between variables (Koppa et al., 2019). RS uncertainties can be

reduced  in  model  calibration,  for  instance  by  using  bias-insensitive  metrics  (e.g.,

Demirel et al., 2018; Zink et al., 2018; Dembele et al., 2020), or explicitly including

them into the objective functions (Aires, 2014; Croke, 2009; Foglia et al., 2009; Peña-

Arancibia et al., 2015). 
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Figure 4.  (a)  Daily time series  of  discharge,  when calibrating the model  with six different

variables.  (b)  Time  series  of  the  six  variables  when  calibrating  the  model  with  discharge

observations only (discharge, water level, flood extent and soil moisture are at a daily time step,

while  TWS and ET are  at  a  monthly time step).  KGEini  is  the  mean KGE of  initial  runs,

KGEcal  is the  mean KGE of  calibrated runs,  evaluated for  the  same period of  calibration,

KGEeval is the mean KGE of calibrated runs, evaluated for a different period than calibration.

Time  series  for  all  variables  by  calibrating  the  model  with  all  setups  is  presented  in

Supplementary Material (Figure S1).
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Figure 5. Boxplots of mean KGE for the evaluation of multiple variables with different 

calibration strategies. (I) Evaluation for the period of calibration (2009 – 2012); (II) Evaluation 

for a different period than calibration (2006 – 2008 for Q, A, TWS, ET; 2013 – 2014 for h and 

W). “Initial guess” refers to model runs with the a priori parameter sets. (a) Single-variable 

(discharge, water level, flood extent, TWS, vegetation ET, soil moisture) and (b) multi-variable 
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calibration (all except discharge, water level + soil moisture). The spread of the values in the 

boxplots stems from 300 model runs (100 for each of three calibration experiments). Numbers 

next to the boxplots represent Skill Score (%). Colors refer to classes of skill score. Please note 

that the KGE scales are different for each variable. Asterisks refer to cases when the evaluation 

period resulted in a different performance than the calibration period (i.e., positive Skill Score in

calibration followed by negative Skill Score in evaluation, or vice-versa). Please note that Skill 

Score values are computed based on mean values, while the boxplots depict median values. 

3.2.2 How does RS-based model calibration improve the water cycle 

representation?

When performing a single-variable calibration,  the performance of the variable itself

always  improves,  which  is  evidenced  by  the  positive  values  in  the  main  diagonal

(Figure  5-I-a,  for  calibration  period,  and  Figure  5-II-a,  for  evaluation  period).

Calibration with water level was also able to improve estimates of flood extent, TWS,

ET and soil moisture (cal period), and all variables (eval period). Calibration with flood

extent  improved  water  level,  TWS,  ET  and  soil  moisture.  Calibration  with  TWS

improved all variables. Calibration with ET was able to improve discharge and flood

extent.  Calibration  with  soil  moisture  improved  all  variables  but  ET.  Results  for

calibration  and evaluation  periods  agree (i.e.,  improvement  (positive  Skill  Score)  or

deterioration (negative Skill  Score) for both cal and eval)  in 43 out of the 48 cases

(89.6%). In the five remaining cases (10.4%), results between calibration and evaluation

periods differ: three of them are in the evaluation with TWS, and two of them are in the

discharge evaluation (calibration with water level and flood extent).

In  the  best  modeling  scenario,  calibration  with  any  variable  should  improve  the

performance of all other variables. However, we have identified that this did not happen
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in  our  experiments.  This  can  be  due  to  uncertainties  in  model  structure,  in

parameterization, in the observations, or the integration techniques in model calibration

(Dembele et al., 2020). Previous studies have also found significant advantages in using

RS-based model calibration to identify structural model issues (e.g., Werth et al., 2009;

Willem Vervoort et al., 2014; Winsemius et al., 2008), detect uncertainties in input data

(e.g., Milzow et al., 2011), identify deficiencies in model parameterization (e.g., Franks

et al., 1998; Koppa et al., 2019), or increase model reliability (e.g.,  Koch et al., 2018;

Manfreda et al., 2018). 

According  to  Figure  4b  and  Supplementary  Material  (Figure  S1),  calibration  with

discharge  improved  estimates  of  almost  all  variables.  However,  calibration  with

discharge deteriorated the performance for vegetation ET time series.  Vegetation ET

estimated  by  MOD16  varies  at  maximum  30mm/month.  MGB  calibration  with

discharge led to ET variations of 100 mm/month, reaching around 30 mm/month in the

driest periods, while MOD16 estimates are limited to a minimum of 100 mm/month in

these periods (time series in Figure 4b). However,  one can notice that  not even the

seasonality  between  MGB  and  MOD16  time  series  agree.  This  could  be  due  to

relatively high uncertainties in vegetation ET estimates from MOD16 for the Amazon

basin (around 23 mm/month, according to Gomis-Cebolla et al., 2019). Nonetheless, it

could also be related to model structural and/or parameter deficiencies, in which case

the model might be “right for the wrong reasons”. In order to identify the source of this

ET inconsistency, we have compared MOD16 and MGB results to in-situ measurements

of ET in Purus River Basin, provided by Gomis-Cebolla et al. (2019) and Maeda et al.

(2017). We found a much stronger agreement both in seasonality and in amplitude of in-

situ observations with MOD16 observations than with MGB model output.  Hasler &

Avissar (2007) and Pan et al (2020) have already warned about the overestimation of
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dry  season  water  stress  in  hydrological  models,  probably  related  to  the

misrepresentation of soil water availability for plants. This was also found by Maeda et

al.  (2017),  which  highlighted  that  ET was  not  water-limited  because  of  the  plants’

access to deep soil water, which has also been previously documented by Nepstad et al.

(1994). They found that, in the Southern Amazon ecotone, deep root water intake plays

a key role in maintaining ecosystem productivity  during dry season. MGB model is

probably misrepresenting these processes, which would remain unknown if it were only

compared to discharge time series. 

Even though the  calibration  with  discharge  observations  was not  able  to  accurately

estimate ET, calibration with the remaining variables (except for soil moisture) was able

to improve ET estimates. For instance, in Figure 3b, ET and water level presented low

correlation (r = 0.08), but calibration with water level improved ET estimates by S =

16.9% (cal period) and S = 25.6% (eval period). However, in Figure 3b, ET and TWS

presented high correlation (r=0.47), but calibration with TWS improved ET estimates

by only S = 7.9% (cal period) and S = 13.1% (eval period). 

In general, calibration with TWS did not present much influence on any of the variables.

In  spite  of  some  improvements,  skill  scores  were  usually  low.  Consistently,  TWS

estimates got relatively easily improved by calibration with any variable (except for ET,

for  cal  period;  or  discharge,  for  eval  period).  These  results  for  TWS contrast  with

previous  work  from  Lo et  al.  (2010),  Nijzink  et  al.  (2018),  Rakovec  et  al.  (2016),

Schumacher et al. (2018), and Werth & Güntner (2010), which highlighted the value of

GRACE data when incorporated into hydrological modeling.  This can be due to the

high  seasonality  of  Purus  River  Basin,  in  which  TWS  does  not  aggregate  much

information,  biasing the calibration with high correlation values.  Even for the initial

guess (uncalibrated)  setup TWS performances  were already very good:  KGE values
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were around 0.8, while for all other variables, except for ET (for which KGE values

were negative), KGE values were around 0.3 for the uncalibrated setup. 

Flood  extent  and  water  level  performances  were  improved  by  calibration  with

discharge, water level and flood extent, but it did not affect much ET (which actually

was degraded with discharge calibration) and soil moisture. This is probably due to the

relationship between water level and flood extent with river transport processes (e.g.,

flood routing and floodplain storage), while ET and soil moisture are more related to

vertical  hydrological  processes  (e.g.,  soil  water  balance).  This  highlights  the

complementarity between variables that relate to different processes.  

Calibration with soil moisture improves performances of all variables (water level to a

lesser extent), except for ET. Consistently, calibration with all variables (except ET) are

able to improve soil moisture to some extent. 

3.2.3 What is the added value of complementary RS observations?

By calibrating with all variables together except Q (Figure 5b), we found improvements

for almost  all variables, with the most significant improvements for flood extent (S =

25% for cal and eval periods) and ET (S = 20% for cal and eval periods). For discharge,

performance for the evaluation period was improved (S = 17.4%), which is important

for estimating discharge in poorly gauged basins. However, for the calibration period,

Skill  Score  for  discharge  performance  was  S  =  1.7%,  which  might  reflect  some

limitations in retrieving discharge based on the calibration of the RS-derived variables,

as discussed previously.

Therefore, we chose a specific arrangement of two complementary variables in order to

check if this calibration setup might lead to better retrievals for discharge and the other
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variables.  The chosen variables were soil  moisture and water level,  because of their

complementarity. Based on the Skill Score values in Figure 5-I, calibration with water

level only improves all variables but discharge (and soil moisture to a lesser extent),

while calibration with soil moisture only improves all variables, but ET (and water level

to a lesser extent). 

The calibration arrangement of water level and soil moisture led to improvements not

only to soil moisture and water level themselves, but also to all other variables (ET to a

lesser extent). For instance, flood extent was improved by S = 52.6% and S = 34.1%

(cal and eval period,  respectively).   Discharge was improved by S = 59.9%, with a

resulting mean KGE = 0.70 for the calibration period (S = 45.0% and mean KGE = 0.35

for  evaluation  period).  These  results  agree  with  previous  works  that  found  an

improvement in model performances by multi-variable calibration of soil moisture and

evapotranspiration  (e.g.,  Koppa  et  al.,  2019;  López  et  al.,  2017),  discharge  and

evapotranspiration  (e.g., Herman et al., 2018; Pan et al., 2018; Poméon et al., 2018),

discharge and soil moisture (e.g., Li et al., 2018; Rajib et al., 2016), discharge and TWS

(e.g.,  Rakovec et  al.,  2016; Schumacher  et  al.,  2018; Werth & Güntner,  2010),  and

discharge and water level (e.g., Kittel et al., 2018; Schneider et al., 2017; W. Sun et al.,

2012). However, it is difficult to compare this study to previous works, because most of

them used discharge observations as constraints. In this study, we avoided the use of

discharge  observations  for  multi-variable  calibration,  in  order  to  analyze  the

applicability of the RS-based calibration method for poorly-gauged regions. 

Calibration with water level and soil moisture did not present much influence on ET

performance, because of the specificities regarding ET in this watershed, i.e., given that

the  model  setup  does  not  represent  deep  root  water  intake  during  dry  season,  as

discussed previously. 
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By comparing the two frameworks for multi-variable calibration (all except Q versus

h+W calibration), we found that calibration with all variables except Q is useful to some

extent,  but  consistently  selecting  complementary  variables  for  model  calibration

resulted in best overall performance. 

3.3 Are we getting the right results for the right sets of parameters? 

When analyzing the dispersions of parameters before and after calibration with each

variable (Figure 6 for a few selected parameters, Supplementary Material Figure S2 for

all calibrated parameters), it can be observed that the range of parameters varies largely

depending on the calibration variable. For instance, Wm is a soil conceptual parameter

related  to  maximum  water  storage  in  the  soil.  In  the  calibration  based  on  single

variables (except ET) it converged to low values (300 mm), while in the calibration with

ET it reached high values (2000 mm). This probably occurred in order to compensate,

by overparameterization,  a  structural  error  in  the  model,  i.e.,  the model  inability  to

represent  deep  root  water  uptake  in  dry  season.  These  trade-offs  between  model

parameters  during calibration  has also been reported  and discussed by  Koppa et  al.

(2019).

The surface resistance parameter also resulted in a wide range of values depending on

the calibration target variable. When calibrated with water level, flood extent, or ‘all

except Q’ experiments, it reached median values higher than 150 s/m, but calibration

with h+W led to median values lower than 50 s/m. Surface resistance is a vegetation

parameter directly related to ET dynamics, so it is important to note that calibration with

ET was able to reduce the dispersion of this parameter,  reaching a median value of

about 80 s/m (similar to calibration with Q and W).
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Another  interesting  result  relates  to  channel  Manning’s  coefficient,  which  presented

different  values  for  each  calibration  experiment.  This  agrees  with  previous  findings

about Manning parameter being often used as an effective parameter that compensates

for  neglected  hydrodynamic  processes  as  localized  channel  head  losses,  poor  cross

section representation, or non-represented 2D processes (Neal et al 2015). 

Many previous studies have highlighted the use of multi-variable calibration to narrow

parameters’ search space  (Nijzink et al., 2018; W. Sun et al., 2018), but this was not

observed in  our  results.  Based on the limited  multi-variable  calibration  experiments

performed here (‘all except Q’ and h+W), no narrowing in parameters’ search space

was found. For most parameters (except for Wm), calibration with ‘all except Q’ and

h+W resulted in a wide range of values. This can be due to differing convergence sets of

parameters between each of the triplicate runs. A more robust experiment comparing

more multi-variable calibration strategies (e.g., Q + different R-based variables) might

provide better understanding on this topic. 

Figure 6. Boxplots of dispersion of three model parameters before (Initial) and after the single-

variable calibration (Q – discharge; h – water level; A – flood extent;  TWS – total water 

storage anomalies; ET -  vegetation ET; W – soil moisture), and multi-variable calibration (All 

– variables except discharge; h+W – water level and soil moisture). The spread of the values in 

the boxplots stems from 300 model runs (100 for each calibration experiment). Description of 
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parameters is presented in Supplementary Material Table S2. A complete figure with boxplots

for all parameters is presented in Supplementary Material Figure S2. 

3.4 Spatial Evaluation

For model calibration, we used one streamflow gauge for discharge, one virtual station

for  water  level,  and  averaged  RS  data  for  the  whole  basin  for  TWS,  ET  and  soil

moisture. However, many recent studies investigated the potential for using RS spatially

distributed information in model calibration, for instance with bias-insensitive metrics

(Demirel et al., 2018; Zink et al., 2018; Dembele et al., 2020). Here we further analyze

how the lumped calibration affected the simulated spatial patterns (Figure 7; Figure S3

in Supplementary Material).

For discharge, water level, flood extent and TWS, spatial patterns are well reproduced

even when running the model with the initial parameter set, because the spatial patterns

of these variables are determined by intrinsic characteristics of the basin. Nonetheless,

for ET, the spatial patterns are completely different between the initial parameter set and

the calibrated setup. In this case, the calibration with spatially aggregated ET was able

to recover the spatial  representation of MOD16. A similar  result  was found for soil

moisture spatial representation by Demirel et al. (2019), that calibrated a model with

spatially aggregated soil moisture and TWS data. 

In  summary,  these  results  highlight  the  overall  model  capability  to  retrieve  the  ET

spatial  pattern  even  by  using  a  lumped  calibration  approach.  However,  for  other

variables,  the  spatial  pattern  was  not  considerably  affected  by  the  differing  model

calibration strategies.

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760



Figure 7. Spatial distribution of variables. Columns: RS observation, model run with the

initial parameter set, model run with the best parameter set (calibrated for each

variable), model run with the best parameter set (when calibrated with discharge).

Complete figure is presented in Figure S3 (Supplementary Material).
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4 Conclusion

We calibrated and evaluated a hydrologic-hydrodynamic model with five different RS-

based observations  of  the  water  cycle:  water  levels  (Jason-2),  flood extent  (ALOS-

PALSAR), TWS (GRACE), vegetation ET (MOD16), and soil moisture (SMOS), for a

study basin in a tropical region with floodplains (Purus River Basin in the Amazon), and

analyzed  the  redundancy  and  complementarity  between  different  variables  and

processes.

Results  showed  that  calibration  with  current  RS  observations  was  able  to  improve

discharge estimates.  For instance,  in the uncalibrated setup (a priori  parameter  sets),

average performances for discharge were around KGE = 0.30. By calibrating the model

with ET from MOD16 (and evaluating for the same time period),  discharge average

performance was improved to KGE = 0.64, representing a Skill Score of S = 52.9%.

Also in the calibration  period,  a joint  scheme of calibration  with water level  + soil

moisture led to discharge improvements of S = 59.9%. When evaluating for a different

time period, discharge performance was improved by calibration with water level, TWS

and  a  joint  scheme  of  all  RS-variables  (S  =  25.9%,  S  =  27.9%  and  S  =  17.4%,

respectively).  We  conclude  that  RS  observations  are  useful  to  predict  discharge

estimates.  However,  the utility  of each RS variable  might  depend on the study area

characteristics and the time period considered. 

Our results also showed that RS-based calibration led to an overall improvement of the

water  cycle  representation.  For  instance,  calibration  with  water  level  was  able  to

improve estimates of water level itself, but also flood extent, TWS and ET; calibration

with  soil  moisture  was  able  to  improve  estimates  of  soil  moisture  itself,  but  also

discharge, flood extent and TWS. 
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Moreover, calibration with multiple RS variables was able to highlight deficiencies that

might be related to model structure, parameterization, observations, and data integration

techniques  in  model  calibration.  In  the  context  of  model  structure,  for  instance,

calibration with ET highlighted the model inability to represent the root water intake in

dry season in this region, thus compensating it by misrepresenting other variables. In the

context of model parameterization,  for instance,  we found a wide range of different

parameters by varying the calibration target variable. 

Besides individual calibration with each RS variable, we conducted two multi-variable

calibration experiments: calibration with all variables except discharge, and calibration

with water level and soil moisture. Calibration with all variables was useful to some

extent, but appropriately selecting complementary variables for model calibration may

result  in  a  better  overall  performance.  Even  though  we  used  a  lumped  calibration

approach, results highlighted the overall model capability to retrieve ET spatial pattern,

but not for TWS and soil moisture. 

The  main  conclusions  presented  here  are  of  great  interest  for  the  hydrological

community,  and agree with previous works in that RS–based calibration is useful to

improve the water cycle representation in hydrological models. To further investigate

the potentiality of RS data, future developments should test the methodology presented

here for multiple  basins at  contrasting hydro-climatic  regions. Here,  we assessed an

Amazonian Equatorial basin, with particular climate and land cover characteristics and

an overall spatial homogeneity of rainfall-runoff processes. Other basins with different

hydroclimatic regimes could be also assessed, e.g., in arid basins subject to long dry

periods, more erratic precipitation patterns, and different runoff generation mechanisms

than the Amazon, which require different model structures. 

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816



Finally,  here  we  used  one  state-of-the-art  RS  product  for  each  variable,  but  future

developments should explore other missions like SWOT for surface water observation

(Biancamaria et al., 2016), as well as considering different products for representing

each  variable  (e.g.,  ET  could  be  estimated  by  GLEAM,  MODIS,  SSEBop,  SEBS,

ALEXI, METRIC, etc., besides MOD16). 
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