Spectral Characterization for Small Clusters of Silicon and Oxygen: SiO, SiO3, Si2O3, & Si2O4

Mason B. Gardner¹, Brent R. Westbrook¹, and Ryan C. Fortenberry²

¹University of Mississippi ²Unviersity of Mississippi

November 23, 2022

Abstract

Infrared spectra of evolved stars have a rise in signal between the 7.0 μ m and 8.0 μ m wavelengths; the antisymmetric Si-O stretches of small silicon oxide clusters fall in this range and have large intensities. Hence, this quantum chemical analysis provides data for such molecules that may be of significance for astrochemical classification and could play a role in the formation or degradation of mineral nanocrystals from or into their constituent atoms. Both explicitly computed anharmonic fundamental vibrational frequencies and those determined from scaled harmonic frequencies agree well with known experimental data, and spectroscopic constants are provided herein such that astronomical rotational spectral characterization may also be possible for the C2v SiO3 and Si2O3 molecules.

Spectral Characterization for Small Clusters of Silicon and Oxygen: SiO₂, SiO₃, Si₂O₃, & Si₂O₄

Mason B. Gardner¹, Brent R. Westbrook¹, and Ryan C. Fortenberry¹

¹Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848

Key Points:

3

4

5

7

- Small silicon oxide clusters have bands in detectable IR ranges.
- These may be intermediates between atoms and mineral nanocrystals.
- The spectral data produced here agree well with known experimental values and extend beyond it.

Corresponding author: Ryan C. Fortenberry, r410@olemiss.edu

10 Abstract

Infrared spectra of evolved stars have a rise in signal between the 7.0 μ m and 8.0 11 μ m wavelengths; the antisymmetric Si–O stretches of small silicon oxide clusters fall in 12 this range and have large intensities. Hence, this quantum chemical analysis provides 13 data for such molecules that may be of significance for astrochemical classification and 14 could play a role in the formation or degradation of mineral nanocrystals from or into 15 their constituent atoms. Both explicitly computed anharmonic fundamental vibrational 16 frequencies and those determined from scaled harmonic frequencies agree well with known 17 18 experimental data, and spectroscopic constants are provided herein such that astronomical rotational spectral characterization may also be possible for the C_{2v} SiO₃ and Si₂O₃ 19 molecules. 20

21 Plain Language Summary

²² Rocky bodies are made of minerals comprised largely of silicon and oxygen. How ²³ these minerals are formed from their constituent atoms is not fully known. The IR data ²⁴ produced in this work may help to observe small molecules containing silicon and oxy-²⁵ gen so that these potential molecular intermediates can be observed. These molecules ²⁶ have strong aborption features between 7.0 μ m and 8.0 μ m, most notably, and are now ²⁷ fully characterized in the IR.

²⁸ 1 Introduction

Quartz, sand, and silica are all forms for the most abundant material in the Earth's crust and mantle. Crystalline SiO₂ gives way to the molten form deeper into the mantle, and it mixes with magnesium, iron, and aluminum to form most of the material present between the crust and core (White, 2013). Similar processes likely played out all over the early Solar System and even beyond since both oxygen and silicon are two of the most abundant atoms in the Universe (Savage & Sembach, 1996; McCall, 2006; Fortenberry, 2020). Consequently, there are few inorganic materials as common as silicon dioxide.

Silicon dioxide boils at nearly 3300 K and becomes isovalent with carbon dioxide 36 in its triatomic molecular form. Such would likely be a necessary signature of silicon-based 37 metabolism in exobiology. With regards to less exotic applications, silicates are known 38 to condense under cold conditions creating rocky material in the first place (Rouillé et 39 al., 2014), and these small molecules likely aggregate from silicon and oxygen atoms or 40 the SiO monomer which has been observed in astrophysical environments since 1971 (Wilson 41 et al., 1971). At the other end of the star's lifetime, the ablation of rocky materials as 42 a star dies (McCarthy et al., 2019) or the stellar infall of most solid materials at any stage 43 in a star's evolution will likely vaporize the crystalline or even molten silicates and quartzes 44 creating small silicon oxide molecules for which little spectral data are well-known. A 45 similar vaporization process would also take place terrestrially in foundries when high 46 temperatures are utilized in large-scale industrial processes. Regardless of the circum-47 stance, further spectral analysis of small silicon oxide clusters in the gas phase is nec-48 essary to produce data for the classification of silicon dioxide and its derivatives (Wang 49 et al., 1997) such that the evolution of silicate materials from atoms to solids can be ob-50 served geophysically or industrially. 51

Argon matrix experiments have provided vibrational frequencies for the antisymmetric stretch and bending fundamentals of isolated SiO₂ at 1416 cm⁻¹ and 273 cm⁻¹, respectively (H. Schnöckel, 1978; V. H. Schnöckel, 1980; Andrews & McCluskey, 1992; Jacox, 1994). Five of the six fundamental frequencies of SiO₃ have been tentatively assigned from similar experiments in conjunction with density functional theory analysis (DFT) (Tremblay et al., 1996), but follow-up work has not conclusively confirmed such

attributions. Most notably, the a_1 O–O stretch could not be attributed experimentally 58 from the DFT computations. The larger structures have been observed through photo-59 electron spectroscopy (Wang et al., 1996, 1997), but the fundamental vibrational frequen-60 cies have not been conclusively determined in the laboratory. Three modes of Si_2O_4 have 61 been reported in the literature again from argon matrix experiments (Mehner et al., 1980), 62 but there has been no experimental or high-level theoretical follow-up in the interven-63 ing 30 years. Granted, the gas phase data are likely similar to the argon matrix results 64 in each of these studies since the argon should interact far less with the silicon and oxy-65 gen atoms than they would with hydrogens, for instance, but corroboration of some va-66 riety for these modes is still lacking. While some are better understood than others, the 67 full vibrational spectra and especially gas-phase rotational constants for each these molecules 68 are not fully classified. 69

Consequently, high-accuracy spectroscopic predictions for the vibrational frequen-70 cies of these molecules will enhance spectral models of environments where they may be 71 found both in the laboratory and in nature. Quartic force fields (QFFs) are fourth-order 72 Taylor series approximations to the potential portion of the internuclear Hamiltonian 73 (Fortenberry & Lee, 2019). These have been shown to produce exceptional accuracy for 74 determining anhamronic vibrational frequencies for relatively low computational cost, 75 provided that a sufficient electronic structure method can be used to compute this spe-76 cialized potential energy surface (Fortenberry & Lee, 2019), most often coupled cluster 77 theory at the singles, doubles, and perturbative triples [CCSD(T)](Raghavachari et al., 78 1989; Shavitt & Bartlett, 2009) level. The most accurate QFFs have produced vibrational 79 frequencies to within 1 cm^{-1} on occasion and most often within 5-10 cm⁻¹. The accu-80 racy of the rotational constants vary, but most are within 30 MHz of gas phase exper-81 iment (Huang & Lee, 2008, 2009; Huang et al., 2011; Fortenberry et al., 2011a, 2011b, 82 2012; Huang et al., 2013; Fortenberry et al., 2014; Zhao et al., 2014; Fortenberry et al., 83 2015; Kitchens & Fortenberry, 2016; Fortenberry, 2017; Bizzocchi et al., 2017). 84

However, the computational cost of this involved CCSD(T) approach including cor-85 rections for core electron correlation and complete basis set extrapolations is prohibitive 86 for molecules containing more than five atoms. Recent work has shown that vibrational 87 frequencies of closed-shell molecules utilizing explicitly correlated CCSD(T)-F12b(Adler 88 et al., 2007; Knizia et al., 2009) for the QFF energy points are within 7 $\rm cm^{-1}$ of the more 89 expensive computations and cost orders of magnitude less time (Agbaglo et al., 2019; 90 Agbaglo & Fortenberry, 2019a, 2019b). Some CCSD(T)-F12b anharmonic vibrational 91 frequencies are actually closer to experiment than their more costly counterparts (Agbaglo 92 & Fortenberry, 2019a). This approach has been utilized to predict anharmonic spectral 93 data for $MgSiO_3$ and two isomers of Mg_2SiO_4 (enstatite and forsterite monomers, re-94 spectively) for which no previous vibrational or rotational spectroscopic data, theoret-95 ical or otherwise, exist (Valencia et al., 2020). Most notably these inorganic oxides produce very large infrared intensities implying that relatively small amounts of material 97 could still be observed (Kloska & Fortenberry, 2018; Palmer & Fortenberry, 2018; Valencia et al., 2020; Westbrook & Fortenberry, 2020). Furthermore, other studies have pro-99 duced scaling factors for harmonic frequencies of small, inorganic oxides that promise 100 to reduce the computational time further for similar species in the production of accu-101 rate, anharmonic vibrational frequencies (Westbrook & Fortenberry, 2020). 102

Regardless, the present work will extend the data for these geophysically- and astrochemically-103 relevant silicon oxides by computing the anharmonic vibrational frequencies and spec-104 troscopic constants for four silicon oxide structures: SiO₂, SiO₃, Si₂O₃, and Si₂O₄. The 105 D_{3h} structures of both CO₃ and SiO₃ have proven problematic in the past (Beste & Bartlett, 106 2002). Here, only the C_{2v} SiO₃ structure, akin to its carbon analogue which performed 107 well in recent QFF examination (Fortenberry et al., 2019), is considered. The D_{2h} struc-108 ture of Si_2O_4 has also been previously imposed to explain the results of photoelectron 109 experiments (Wang et al., 1996) and the known vibrational frequencies thereof (Mehner 110

Figure 1. The optimized geometries and atom labels of A) SiO₂, B) SiO₃, C) Si₂O₃, and D) Si₂O₄.

et al., 1980). The rovibrational data provided herein will help to classify the building blocks or end products of silicates in regions where the solid form is known to exist (Rho et al., 2018; McCarthy et al., 2019) especially with the growth in telescopic power most notably signified in the upcoming launch of the *James Webb Space Telescope (JWST)*.

¹¹⁵ 2 Computational Details

Precise optimization of the reference geometry is the first step to computing QFF-116 based anharmonic rovibrational data. The geometry optimization and all subsequent en-117 ergy computations use CCSD(T)-F12b with the cc-pVTZ-F12 (Hill & Peterson, 2010; 118 Prascher et al., 2011) basis set (abbreviated as F12-TZ from here on) in MOLPRO2015.1 119 (Werner et al., 2015, 2012). The optimized geometry is then used to compute the har-120 monic vibrational frequencies within MOLPRO for comparison to those that result from 121 the QFF. From the reference geometry of each silicon oxide molecule, coordinates are 122 constructed to define the QFF with the bond lengths displaced by 0.005 Å and the bond 123 angles and dihedrals displaced by 0.005 radians. Each of the four molecules has its own 124 unique coordinate system since each has a different number of bond lengths, angles, and 125 dihedrals giving different numbers of total points necessary for the QFF. SiO_2 has 57; 126 SiO_3 has 413; Si_2O_3 has 1585; and Si_2O_4 has 1973 points. The coordinates for each sys-127 tem are defined below with atom labels in Figure 1. The out-of-plane torsional modes 128 are labeled as OPB. The coordinates for SiO₂: 129

$$S_1(\sigma_q) = \frac{1}{\sqrt{2}} [(Si - O_A) + (Si - O_B)]$$
(1)

$$S_2(\sigma_u) = \frac{1}{\sqrt{2}} [(Si - O_A) - (Si - O_B)]$$
(2)

$$S_3(\pi_u) = \qquad \angle (O_A - Si - O_B) \tag{3}$$

$$S_4(\pi_u) = \qquad \angle (O_A - Si - O_B); \tag{4}$$

 SiO_3 130

$$S_2(a_1) = \frac{1}{\sqrt{2}} [(O_B - Si) + (O_C - Si)]$$
(6)

$$S_3(a_1) = \frac{1}{\sqrt{2}} [\angle (O_B - Si - O_A) + \angle (O_C - Si - O_A)]$$
(7)

$$S_4(b_2) = \frac{1}{\sqrt{2}} [(O_B - Si) - (O_C - Si)]$$
(8)

$$S_5(b_2) = \frac{1}{\sqrt{2}} [\angle (O_B - Si - O_A) - \angle (O_C - Si - O_A)]$$
(9)

$$S_6(b_1) = OPB(O_A - Si - O_B - O_C);$$
(10)

 Si_2O_3 131

S

$$S_{i_1}(a_1) = S_{i_1} - S_{i_2}$$
 (11)

$$S_2(a_1) = \frac{1}{\sqrt{2}} [(O_A - Si_A) + (O_A - Si_B)]$$
(12)

$$S_3(a_1) = \frac{1}{\sqrt{2}} [(Si_A - O_B) + (Si_B - O_C)]$$
(13)

$$S_{4}(a_{1}) = \frac{1}{\sqrt{2}} [\angle (O_{B} - Si_{A} - O_{A}) + \angle (O_{C} - Si_{B} - O_{A})]$$
(14)
$$S_{5}(b_{2}) = \frac{1}{\sqrt{2}} [(O_{A} - Si_{A}) - (O_{A} - Si_{B})]$$
(15)

$$f_5(b_2) = \frac{1}{\sqrt{2}} [(O_A - Si_A) - (O_A - Si_B)]$$
(15)

$$S_6(b_2) = \frac{1}{\sqrt{2}} [(Si_A - O_B) - (Si_B - O_C)]$$
(16)

$$S_7(b_2) = \frac{1}{\sqrt{2}} [\angle (O_B - Si_A - O_A) - \angle (O_C - Si_B - O_A)]$$
(17)

$$S_8(b_1) = \frac{1}{\sqrt{2}} [\tau (O_B - Si_A - O_A - Si_B) - \tau (O_C - Si_B - O_A - Si_A)]$$
(18)

$$S_9(a_2) = \frac{1}{\sqrt{2}} [\tau (O_B - Si_A - O_A - Si_B) + \tau (O_C - Si_B - O_A - Si_A)];$$
(19)

and Si₂O₄ 132

$$S_{1}(a_{g}) = \frac{1}{\sqrt{2}} [(O_{A} - O_{B}) + (Si_{A} - Si_{B})]$$
(20)

$$S_{2}(a_{g}) = \frac{1}{\sqrt{2}} [(O_{A} - O_{B}) - (Si_{A} - Si_{B})]$$
(21)
$$S_{2}(a_{g}) = \frac{1}{\sqrt{2}} [(Si_{A} - O_{B}) + (Si_{B} - O_{B})]$$
(22)

$$S_{3}(a_{g}) = \frac{1}{\sqrt{2}} [(Oi_{A} - Oi_{C}) + (Oi_{B} - Oi_{D})]$$

$$S_{4}(b_{1u}) = \frac{1}{2} [(O_{A} - Si_{A}) - (O_{A} - Si_{B}) - (O_{B} - Si_{A}) + (O_{B} - Si_{B})]$$
(23)

$$S_{5}(b_{1u}) = \frac{1}{2} [\angle (O_{C} - Si_{A} - O_{A}) - \angle (O_{C} - Si_{A} - O_{B}) - \angle (O_{D} - Si_{2} - O_{A}) + \angle (O_{D} - Si_{B} - O_{B})]$$

$$S_{6}(b_{2u}) = \frac{1}{2} [(O_{A} - Si_{A}) + (O_{A} - Si_{B}) - (O_{B} - Si_{A}) - (O_{B} - Si_{B})]$$
(25)

$$S_{7}(b_{2u}) = \frac{1}{2} [\angle (O_{C} - Si_{A} - O_{A}) + \angle (O_{C} - Si_{A} - O_{B}) - \angle (O_{D} - Si_{2} - O_{A}) - \angle (O_{D} - Si_{B} - O_{B})]$$

$$S_{8}(b_{3g}) = \frac{1}{\sqrt{2}} [(Si_{A} - O_{C}) - (Si_{B} - O_{D})]$$

$$(25)$$

$$S_{9}(b_{3g}) = \frac{1}{2}[(O_{A} - Si_{A}) - (O_{A} - Si_{B}) + (O_{B} - Si_{A}) - (O_{B} - Si_{B})]$$
(28)
$$S_{10}(b_{3u}) = \frac{1}{\sqrt{2}}[(O_{C})_{z} + (O_{D})_{z}]$$
(29)

$$\frac{1}{\sqrt{2}}[(O_C)_z + (O_D)_z] \tag{29}$$

$$S_{11}(b_{3u}) = \frac{1}{2}[(O_A)_z + (O_B)_z - (Si_A)_z - (Si_B)_z]$$
(30)

$$S_{12}(b_{2u}) = \frac{1}{\sqrt{2}} [(O_C)_z - (O_D)_z], \tag{31}$$

where the last of these three has exhibited some questionable results in the low-frequency 133 range for the magnesium fluoride dimer (Palmer & Fortenberry, 2018). The other coor-134 dinate systems have been utilized successfully in previous studies on the magnesium hy-135 dride monomer, HeHHe⁺, carbon dioxide, CO_3 , NCNCN⁻, and C_2O_3 (Palmer & Forten-136 berry, 2018; Stephan & Fortenberry, 2017; Fortenberry et al., 2019; Dubois et al., 2019). 137

The resulting energies are fit to a least-squares polynomial giving a sum of squared residuals on the order of 10^{-17} a.u.² for all molecules but Si₂O₄ which is 10^{-13} a.u.² This 138 139 fit determines the actual minimum, or equilibrium, geometry. The final set of force con-140 stants are generated by refitting the points to this new minimum; these are given in the 141 supplemental information (SI). The INTDER program (Allen & coworkers, 2005) trans-142 forms these force constants into Cartesian coordinates for more general implementation. 143 Then, the SPECTRO program (Gaw et al., 1991) computes the harmonic and anhar-144 monic frequencies including anharmonic zero-point vibrational energies (ZPVEs) using 145

	SiO_2	SiO_3	$\mathrm{Si}_2\mathrm{O}_3$	$\mathrm{Si}_2\mathrm{O}_4$
$\overline{r_0 (\mathrm{Si}_A - \mathrm{O}_A)}$	1.51249	1.50567	1.50675	1.50045
$r_0 (\mathrm{Si}_A - \mathrm{O}_B)$		1.62024	1.67351	1.66525^{a}
$\angle_0(O_A - Si_A - O_B)$		148.675	137.445	90.544
$r_0 (\mathrm{Si}_A - \mathrm{Si}_B)$			2.21681	2.36644
$\angle_0(\mathcal{O}_A - \mathcal{Si}_A - \mathcal{O}_C)$				135.326
$\overline{r_e (\mathrm{Si}_A - \mathrm{O}_A)}$	1.51066	1.50395	1.50726	1.50337
$r_e (\mathrm{Si}_A - \mathrm{O}_B)$		1.61659	1.66903	1.66135^{a}
$\angle_e(O_A - Si_A - O_B)$		148.814	137.313	90.673
$r_e (\mathrm{Si}_A - \mathrm{Si}_B)$			2.21069	2.36327
$\angle_e(\mathcal{O}_A - \mathcal{Si}_A - \mathcal{O}_C)$				135.337

Table 1. The F12-TZ Geometrical Parameters (in Å or Degrees) as Defined from Figure 1.

^aThis is actually the r_0 (Si_A-O_C), but is placed here for consistency of bond type.

vibrational perturbation theory at second-order (VPT2) as well as spectroscopic constants
making use of rotational perturbation theory at second-order (Mills, 1972; Watson, 1977;
Papousek & Aliev, 1982) and Fermi resonance polyads (Martin & Taylor, 1997).

The B3LYP/aug-cc-pVDZ double-harmonic intensities and dipole moments are com-149 puted with Gaussian09 (Becke, 1993; Yang et al., 1986; Lee et al., 1988; Dunning, 1989; 150 Frisch et al., 2009). These have been shown to be in good agreement with higher-level 151 computations previously (Yu et al., 2015; Finney et al., 2016). Additionally, the scaling 152 factors for the Si-O stretching (0.98242) and bending (0.99261) frequencies determined 153 previously (Westbrook & Fortenberry, 2020) are applied to the harmonics computed di-154 rectly in MOLPRO for comparison of their performance in these related but not iden-155 tical systems. 156

157 **3 Results & Discussion**

The geometries for each of the four molecules examined here are given in Table 1 158 with labels from Figure 1. Most notably, the $Si_A - O_A$ bond lengths, those that have the 159 oxygen atom in a silaketone moiety (external Si=O group) are largely consistent with 160 a bond length on the order of 1.5 Å. SiO_2 is the exception to this where the longer bond 161 length likely arises from the weakening of the silicon atom's electron donation due to hav-162 ing two Si=O bonds instead of just one, and its magnitude here is in line with that com-163 puted previously (Tremblay et al., 1996). The $Si_A - O_{B/C}$ bonds can be thought of as 164 single bonds from a carbon analogue (Fortenberry et al., 2019) and are notably and con-165 sistently longer. The Si–Si bonds are longer in Si_2O_4 than in Si_2O_3 , but the additional 166 oxygen atom in the former naturally increases the size of the ring thus making for a longer 167 diagonal distance between silicon atoms. 168

169

3.1 Anharmonic Frequencies

The F12-TZ vibrational frequencies for SiO_2 are given in Table 2. While the gas 170 phase values for this molecule are not known, the argon matrix results correlate excep-171 tionally well with the explicit QFF values for the 1420.7 $\rm cm^{-1}$ and 289.0 $\rm cm^{-1}$ funda-172 mentals compared to the 1416 cm^{-1} and 273 cm^{-1} experimental frequencies (Jacox, 1994). 173 Interestingly, the scaled 1414.4 cm⁻¹ and 288.5 cm⁻¹ frequencies for the same modes 174 are in slightly closer agreement with experiment. Even so, the difference in the explicit 175 QFF anharmonic frequencies and the scaled values are within the accuracy (7 cm^{-1}) of 176 the F12-TZ approach implying that either is a valuable choice of method. The vibrationally-177

Mode	Description	Symmetry	Frequency	$\operatorname{Exp.}^{a}$	Δ (QFF-Scaled)	
$egin{array}{c} \omega_1 \ \omega_2 \ \omega_3 \end{array}$	Si–O antisymm. stretch Si–O symm. stretch O–Si–O bend	$\begin{array}{c} (\sigma_u) \\ (\sigma_g) \\ (\pi_u) \end{array}$	$\begin{array}{c} 1439.7 \ (67) \\ 992.4 \ (0) \\ 290.6 \ (79) \end{array}$			
ZPVE			1501.9			
$egin{array}{c} u_1 \ u_2 \ u_3 \end{array}$	Si–O antisymm. stretch Si–O symm. stretch O–Si–O bend	$egin{array}{c} (\sigma_u) \ (\sigma_g) \ (\pi_u) \end{array}$	1420.7 984.2 289.0	1416 273	$ \begin{array}{r} 1414.4 \\ 975.0 \\ 288.5 \end{array} $	6.3 9.2 0.5

Table 2. The F12-TZ Vibrational Frequencies (in cm^{-1}) and Intensities (in km/mol) for SiO₂.

^aArgon matrix experimental data from (H. Schnöckel, 1978; V. H. Schnöckel, 1980; Andrews & McCluskey, 1992; Jacox, 1994)

Table 3. The F12-TZ QFF Vibrational Frequencies (cm⁻¹) and Intensities (km/mol) for C_{2v} SiO₃.

Mode	de Description Symmetry Frequency			$\operatorname{Exp.}^{a}$	Scaled	Δ (QFF-Scaled)
$\overline{\omega_1}$	$Si-O_A$	a_1	1391.4 (114)			
ω_2	$Si-O_B + Si-O_C$	a_1	894.2(5)			
ω_3	$Si-O_B$ - $Si-O_C$	b_2	868.5(90)			
ω_4	$\angle O_A$ -Si- $O_B + \angle O_A$ -Si- O_C	a_1	515.0(25)			
ω_5	Si OPB	b_1	309.7(82)			
ω_6	$\angle O_A$ -Si- O_B - $\angle O_A$ -Si- O_C	b_2	299.3(60)			
ZPVE			2129.5			
ν_1	$Si-O_A$	a_1	1371.0	1363.5(100)	1366.9	4.1
ν_2	$Si-O_B + Si-O_C$	a_1	885.3	877.1 (12)	878.5	6.8
ν_3	$Si-O_B$ - $Si-O_C$	b_2	857.1	855.3(53)	853.2	3.9
$ u_4$	$\angle O_A$ -Si- $O_B + \angle O_A$ -Si- O_C	a_1	497.0	_	511.2	-14.2
ν_5	Si OPB	b_1	305.3	287.8(96)	307.4	-2.1
ν_6	$\angle O_A$ -Si- O_B - $\angle O_A$ -Si- O_C	b_2	298.0	292.0(62)	297.1	0.9

^aArgon matrix data from (Tremblay et al., 1996).

dark symmetric stretch has a larger difference between the two anharmonic frequencies,
but no experimental data can verify which is more accurate. The F12-TZ QFF produces
nearly identical values as gas-phase experimental CO₂ frequencies (differences of less than
2 cm⁻¹ in every case) (Fortenberry et al., 2019), and similar accuracies appear to be present
in the silicon analogue, as well.

The strong correspondence between theory and argon matrix experiments contin-183 ues with C_{2v} SiO₃. As shown in Table 3, the difference between the F12-TZ SiO₃ an-184 harmonic frequencies and that for the argon matrix experiments(Tremblay et al., 1996) 185 is never more than 8 cm⁻¹, and ν_3 at 857.1 cm⁻¹ is within 2 cm⁻¹ of experiment. Granted, 186 the matrix will shift these values relative to the gas phase values that would be observed 187 in astrophysical contexts, but, again, these shifts should be small. Furthermore, the B3LYP/aug-188 cc-pVTZ double-harmonic intensities are in at least semi-quantitative agreement with 189 experiment showing which bands could be considered strong and which could be con-190 sidered weak. Unsurprisingly, the ν_1 terminal Si=O_A stretch at 1371.0 cm⁻¹ is the bright-191 est vibrational mode, and the OPB bend for O_A is also bright lining up with experiment. 192

Mode	Description	Symmetry	Frequency	Scaled	Δ (QFF-Scaled)
$\overline{\omega_1}$	$Si_A - O_B + Si_B - O_C$	a_1	1331.0 (17)		
ω_2	Si_A - O_B - Si_B - O_C	b_2	1274.0(152)		
ω_3	Si_A - O_A + Si_B - O_A	a_1	859.1(122)		
ω_4	Si_A - O_A - Si_B - O_A	b_2	663.2(52)		
ω_5	$\mathrm{Si}_A\operatorname{-Si}_B$	a_1	440.7(21)		
ω_6	$\angle \operatorname{O}_A\operatorname{-Si}_A\operatorname{-O}_B$ - $\angle \operatorname{O}_A\operatorname{-Si}_B\operatorname{-O}_C$	b_2	248.7(16)		
ω_7	$\tau(O_B-Si_A-O_A-Si_B) + \tau(O_C-Si_B-O_A-Si_A)$	b_1	245.7(62)		
ω_8	$\angle O_A$ -Si _A -O _B + $\angle O_A$ -Si _B -O _C	a_1	189.8(30)		
ω_9	$\tau(O_B-Si_A-O_A-Si_B) + \tau(O_C-Si_B-O_A-Si_A)$	a_2	153.4(0)		
ZPVE			2679.5		
$\overline{\nu_1}$	$Si_A - O_B + Si_B - O_C$	a_1	1303.3	1307.6	-4.3
ν_2	Si_A - O_B - Si_B - O_C	b_2	1245.6	1251.6	-6.0
ν_3	Si_A - O_A + Si_B - O_A	a_1	836.2	844.0	-7.8
ν_4	Si_A - O_A - Si_B - O_A	b_2	637.6	651.6	-14.0
ν_5	$\mathrm{Si}_A\operatorname{-Si}_B$	a_1	432.5	437.5	-5.0
ν_6	$\angle \operatorname{O}_A\operatorname{-Si}_A\operatorname{-O}_B$ - $\angle \operatorname{O}_A\operatorname{-Si}_B\operatorname{-O}_C$	b_2	245.0	246.9	-1.9
ν_7	$\tau(O_B-Si_A-O_A-Si_B) + \tau(O_C-Si_B-O_A-Si_A)$	b_1	244.6	243.9	0.7
ν_8	$\angle O_A$ -Si _A -O _B + $\angle O_A$ -Si _B -O _C	a_1	188.2	188.4	-0.2
ν_9	$\tau(O_B-Si_A-O_A-Si_B) + \tau(O_C-Si_B-O_A-Si_A)$	a_2	153.7	152.3	1.4

Table 4. Si_2O_3 F12-TZ Harmonic and Fundamental Vibrational Frequencies (in cm⁻¹) and B3LYP Intensities (in km/mol).

The previous SiO₃ experiment could not identify the $a_1 \nu_4$ symmetric bend (equiv-193 alently described as the O-O stretch). This fundamental has an intensity greater than 194 the ν_2 Si–O symmetric stretch previously characterized in the argon matrix experiments 195 (Tremblay et al., 1996). The reason is likely that the previous DFT computations sug-196 gested that the fundamental should lie higher in frequency close to 582 cm^{-1} . However, 197 the present work strongly suggests that this fundamental is much lower in frequency at 198 497.0 cm^{-1} . Unfortunately, this region of the IR spectrum is not reported in this pre-199 vious work negating any *ex post facto* analysis. Regardless, the F12-TZ QFF values con-200 firm the other argon matrix fundamental vibrational frequency assignments for C_{2v} SiO₃(Tremblay 201 et al., 1996) and show that the last remaining band is most likely lower in frequency than 202 previously believed. 203

The F12-TZ QFF fundamental vibrational frequencies for Si_2O_3 have not been pre-204 viously explored experimentally or theoretically and are given here in Table 4. The silake-205 tone stretches (ν_1 and ν_2) are in the same frequency range as that for SiO₃, and the an-206 tisymmetric ν_2 stretch at 1245.6 cm⁻¹ has the greatest intensity of all the fundamen-207 tals. This is also true for the related C_2O_3 and $C_2N_3^-$ molecules (Fortenberry et al., 2019; 208 Dubois et al., 2019). The $a_1 \nu_3$ stretching of the central O_A atom produces the next-brightest 209 fundamental at 836.2 cm^{-1} . The permanent dipole moment is being extended in this case, 210 giving a larger charge separation upon vibration. The remaining frequencies are dim-211 mer but still non-negligible, and the five lowest frequency fundamentals are all below 500 212 cm^{-1} , as is common for such heavy atoms like silicon (Kloska & Fortenberry, 2018; Palmer 213 & Fortenberry, 2018; Valencia et al., 2020). 214

The 12 fundamental vibrational frequencies for D_{2h} Si₂O₄ are given in Table 5. The silaketone stretches are blue-shifted in this molecule compared to Si₂O₃ and are present above 1300 cm⁻¹. The $b_{3g} \nu_2$ antisymmetric stretch, again, has the largest intensity of

Mode	le Description		Frequency	$\operatorname{Exp.}^{a}$	Scaled	Δ (QFF-Scaled)
$\overline{\omega_1}$	$\mathrm{Si}_A - \mathrm{O}_C + \mathrm{Si}_B - \mathrm{O}_D$	\mathbf{a}_g	1354.4(0)			
ω_2	Si_A - O_C - Si_B - O_D	b_{3g}	1316.9(382)			
ω_3	$Si_A-O_B + Si_B-O_B - Si_A-O_A - Si_B-O_A$	b_{2u}	904.8(259)			
ω_4	O_A - O_B + Si_A - Si_B	\mathbf{a}_g	871.6(0)			
ω_5	O_B -Si _A - O_B -Si _B + O_A -Si _A - O_A -Si _B	b_{3g}	804.0(252)			
ω_6	O_B -Si _A - O_B -Si _B - O_A -Si _A + O_A -Si _B	b_{1u}	718.7(0)			
ω_7	O_A - O_B - Si_A - Si_B	\mathbf{a}_g	488.0(0)			
ω_8	Symm. O_A - O_B OPB	b_{3u}	465.4(99)			
ω_9	O_C -Si _A - O_B - O_C -Si _A - O_A + O_D -Si _B - O_B + O_D -Si _B - O_A	b_{1u}	313.3(0)			
ω_{10}	O_C -Si _A - O_B - O_C -Si _A - O_A + O_D -Si _B - O_B - O_D -Si _B - O_A	b_{2u}	295.5^{\dagger} (43)			
ω_{11}	Antisymm. O_C/O_D OPB	b_{2u}	236.6(0)			
ω_{12}	Symm. O_C/O_D OPB	b_{3u}	121.5^{\dagger} (26)			
ZPVE			3796.3			
$\overline{\nu_1}$	$Si_A-O_C + Si_B-O_D$	\mathbf{a}_g	1338.2		1330.6	7.6
ν_2	Si_A -O _C - Si_B -O _D	b_{3g}	1303.6	1293.3	1293.7	9.9
ν_3	$Si_A - O_B + Si_B - O_B - Si_A - O_A - Si_B - O_A$	b_{2u}	911.7	889.2	888.9	22.8
$ u_4$	O_A - O_B + Si_A - Si_B	\mathbf{a}_g	861.3		856.3	5.0
ν_5	O_B -Si _A - O_B -Si _B + O_A -Si _A - O_A -Si _B	b_{3g}	856.8	786.4	789.9	66.9
ν_6	O_B -Si _A - O_B -Si _B - O_A -Si _A + O_A -Si _B	b_{1u}	658.1		706.1	-48.0
$ u_7$	O_A - O_B - Si_A - Si_B	\mathbf{a}_g	485.9		479.4	6.5
ν_8	Symm. O_A - O_B OPB	b_{3u}	456.1		462.0	-5.9
ν_9	O_C -Si _A - O_B - O_C -Si _A - O_A + O_D -Si _B - O_B + O_D -Si _B - O_A	\mathbf{b}_{1u}	281.7		311.0	-29.3
ν_{10}	O_C -Si _A - O_B - O_C -Si _A - O_A + O_D -Si _B - O_B - O_D -Si _B - O_A	b_{2u}			293.3	
ν_{11}	Antisymm. O_C/O_D OPB	b_{2u}	230.5		234.9	-4.4
ν_{12}	Symm. O_C/O_D OPB	b_{3u}			120.6	

Table 5. Si₂O₄ F12-TZ Harmonic and Fundamental Vibrational Frequencies (in cm^{-1}) and B3LYP Intensities (in km/mol).

 a Argon matrix experimental results from (Mehner et al., 1980). † Denotes a MOLPRO harmonic frequency

all the fundamental frequencies for this molecule. Stretches within the ring (ν_3 and ν_5) 218 are the next-brightest with intensities above 250 km/mol, more than 3.5 times that of 219 the antisymmetric stretch in water. Comparison to argon matrix data from (Mehner et 220 al., 1980) gives good agreement between the 1293.3 $\rm cm^{-1}$ value and the F12-TZ QFF 221 ν_2 frequency at 1303.6 cm⁻¹. This deteriorates slightly for ν_3 where experiment places 222 this at 889.2 cm⁻¹ and the QFF is 911.7 cm⁻¹. The correlation is completely off for ν_5 223 with experiment attributing this ring deformation to a band at 786.4 $\rm cm^{-1}$ and the QFF 224 at 856.8 cm⁻¹. Either the band has been misassigned in the experiment, or the compu-225 tations are off. 226

In this case, the latter is most likely correct. The fitting of the points was the worst 227 for Si_2O_4 of the silicon oxides studied. Furthermore, two harmonic vibrational frequen-228 cies computed via the QFF do not align with those computed from within MOLPRO's 229 standard harmonic frequency computation, ω_{10} and ω_{12} . The OPB coordinate struggles 230 to define the proper motion within the constraints of the QFF and VPT2, and this sub-231 sequently affects the fitting of the force constants for the other coordinates. The poten-232 tial for the OPB is likely flat reducing the capabilities of VPT2 as defined by the QFF. 233 The ν_{10} and ν_{12} fundamentals could not even be computed from the QFF data. Hence, 234 the F12-TZ QFF VPT2 anharmonic vibrational frequencies for Si_2O_4 below the silake-235 tone stretches should be treated as suggestions. 236

However, all is not lost in the prediction of these anharmonic frequencies. The re-237 cent determination of scaling factors for M–O stretches and bends (where M is a second-238 row atom) can be applied to Si_2O_4 . Doing so actually produces a fundamental frequency 239 for ν_3 at 888.9 cm⁻¹ and ν_5 at 789.9 cm⁻¹. Both are within 3.5 cm⁻¹ of the argon ma-240 trix experiment. Furthermore, the ν_2 antisymmetric stretch is 1293.7 cm⁻¹ from the scaled 241 values, 9.9 cm^{-1} below the explicit QFF, and only 0.4 cm^{-1} below the experimental value. 242 Consequently, the scaled harmonics are likely producing more meaningful fundamental 243 vibrational frequencies for this molecule than the QFF. The harmonic force field is much 244 better behaved and less likely to suffer from noise contamination in these numerical deriva-245 tives (Huang & Lee, 2008, 2009), and the amount of absolute anharmonicity is relatively 246 small in the first place. 247

The scaled harmonic frequencies are also listed for the other three molecules giv-248 ing slightly better correlation with experiment for SiO_2 (Table 2) as discussed previously. 249 Agreement between experiment and scaled harmonics of SiO_3 (Table 3) is comparable 250 with the F12-TZ QFF VPT2 results. Some modes are better with the scaled values (ν_1) 251 and some with the explicit anharmonicity computed (ν_3) implying that either is appro-252 priate. Both also demonstrate that ν_4 is still lower in frequency than previous experi-253 ments explored. Since there are no experimental data for Si_2O_3 , comparison between the 254 QFF VPT2 results and the scaled harmonics both with F12-TZ is necessary, but both 255 are quite comparable with one another (Table 4). All modes agree to within 8 $\rm cm^{-1}$ save 256 for the $b_2 \nu_4$ antisymmetric stretch. The mean absolute error (MAE) between the QFF 257 and scaled harmonics for the stretching frequencies is 5.8 cm⁻¹ when removing ν_4 and 258 8.0 cm^{-1} when including it. The bends and torsions are much closer with the MAE at 259 1.8 cm^{-1} , but, again, the magnitudes of the frequencies are smaller in the first place. Hence, 260 these scaling factors are comparable to the QFF VPT2 fundamental vibrational frequen-261 262 cies implying that these heuristics could be used as a first-order guess to the fundamental vibrational frequencies of Si_2O_4 and potentially even for larger silicon oxide clusters 263 where QFFs or any anharmonic vibrational frequency computations are prohibitively large. 264

3.2 Rotational and Spectroscopic Constants

The spectroscopic constants for each of the molecules examined are given in Table 6. These include the pure rotational constants, the vibrationally-averaged rotational constants, the quartic and sextic (Watson S Hamiltonian) distortion constants, and even

	0.0	a:0	a: 0	a: 0
	S_1O_2	S_1O_3	$S_{12}O_3$	$S_{12}O_4$
A_0 (MHz)		22360.3	21364.6	11474.0
$B_0 (\mathrm{MHz})$	6907.7	5489.9	1766.6	1636.1
C_0 (MHz)		4400.5	1630.8	1433.1
A_1 (MHz)		22333.1	21390.3	11469.1
B_1 (MHz)	6872.3	5466.1	1761.6	1632.6
C_1 (MHz)		4384.4	1626.6	1430.4
A_2 (MHz)		22292.4	21361.1	11465.8
B_2 (MHz)	6888.1	5480.1	1762.9	1633.0
C_2 (MHz)		4392.0	1627.6	1430.8
$\overline{A_3}$ (MHz)		22446.5	21282.1	11497.3
B_3 (MHz)	6920.3	5469.6	1764.8	1633.3
C_3 (MHz)		4391.4	1628.1	1430.4
A_4 (MHz)		22001.5	20997.0	11458.5
B_4 (MHz)		5518.5	1768.1	1635.0
C_4 (MHz)		4392.3	1629.6	1431.8
A_5 (MHz)		22310.3	21576.9	11442.8
B_5 (MHz)		5493.9	1761.6	1635.2
C_5 (MHz)		4409.0	1627.2	1431.5
A_6 (MHz)		22408.0	21370.4	11446.5
B_6 (MHz)		5504.1	1768.2	1633.6
C_6 (MHz)		4400.9	1631.2	1430.7
A_7 (MHz)			21368.9	
B_7 (MHz)			1767.8	
C_7 (MHz)			1632.6	
A_8 (MHz)			21507.1	
B_8 (MHz)			1767.9	
C_8 (MHz)			1630.7	
A_9 (MHz)			21279.8	
B_9 (MHz)			1768.2	
C_9 (MHz)			1633.4	
$\overline{\Delta_{I}(\text{Hz})}$	1 500	941 78	120.62	56 658
$\Delta_{\mathcal{V}}$ (kHz)	1.000	133.62	363.47	9 985
Δ_{IK} (kHz)		15.616	-4.444	0.389
δ_{I} (Hz)		227.57	18.119	8.426
δ_{κ} (kHz)		11.708	1.065	0.484
$\Phi_I (\mu Hz)$	-8.885	518.99	2.540	2.770
Φ_K (Hz)		-0.240	9.387	0.022
Φ_{IK} (mHz)		80.382	0.920	0.242
Φ_{KJ} (mHz)		-233.60	-127.77	-4.098
ϕ_i (µHz)		261.21	4.481	1.058
ϕ_{ik} (mHz)		45.749	0.152	0.152
ϕ_k (Hz)		1.292	0.502	0.009
μ (D)	_	0.87	0.66	_

 $\label{eq:Table 6. The F12-TZ QFF Spectroscopic Data for the Four Silicon Oxides.$

the dipole moments of the two C_{2v} molecules. While these may not be as accurate as methods including core electron correlation or other additive factors (Agbaglo & Fortenberry, 2019a, 2019b), these rotational constants should serve as a good starting point for assessing the rotational spectra of these molecules. Strangely, a search of the literature did not yield any experimental rotational constants for SiO₂ which are provided here for this nonpolar molecule. The other three molecules are all clearly near-prolate rotors especially for Si₂O₃.

The vibrationally-excited rotational constants (numbered in the same order as the 276 fundamental vibrational frequencies) for Si_2O_4 are given for the modes with the least 277 questionable vibrational frequencies. While the pure rotational transitions of this molecule 278 will not be observed since it has no dipole moment, the A_2 , B_2 , and C_2 values, however, 279 will likely be important for rovibrational modeling since ν_2 of this molecule has the largest 280 infrared intensity computed of the set. Finally, the dipole moments are reported at the 281 bottom of Table 6. SiO_3 is the most polar, but Si_2O_3 has a smaller but similar magni-282 tude dipole moment. This differs from the carbon analogues where C_2O_3 is almost ap-283 olar (Fortenberry et al., 2019) likely due to the larger electronegativity difference bewtween 284 oxygen and silicon as well as the longer Si–O bonds. 285

286 4 Conclusions

The small silicon oxide clusters SiO₂, SiO₃, Si₂O₃, and Si₂O₄ are shown here to 287 be stable species with notably bright mid- to far-IR active fundamental vibrational fre-288 quencies. The antisymmetric silaketone stretch in the silicon dioxide dimer has the largest 289 intensity of the set. The range between 1420 cm⁻¹ and 1250 cm⁻¹ (7.0 μ m and 8.0 μ m) 290 contains this most intense band and its counterparts from the other three oxides. The 291 other infrared bands typically fall below 700 cm⁻¹ (>14.3 μ m) with many of the silicon 202 oxides analyzed here having one or two bands around 850 cm⁻¹ (~11.8 μ m). Each of 293 these regions have notable bumps from astronomical spectra (Molster et al., 2001), im-294 plying that small, geochemically-relevant silicon oxides may be present in circumstellar 295 media and protoplanetary disks. Upcoming JWST spectra could potentially resolve such 296 peaks. The polar SiO_3 and Si_2O_3 clusters could be observed from the ground with ra-297 diotelescopes, and the present data will aid in the experimental characterization neces-298 sary to provide reference data for such observations. 299

Additionally, the previously derived scaling factors (Westbrook & Fortenberry, 2020) 300 show promise in treating similar inorganic oxides that are intractable for QFF compu-301 tations. Comparison to experimental spectra for SiO_2 and SiO_3 shows that both the ex-302 plicit anharmonic computations and the scaled harmonics are similarly accurate partly 303 due to the small magnitudes of the anharmonicities of the molecules examined. How-304 ever, these scaled harmonics also do not suffer from coordinate issues observed in Si_2O_4 305 making them also potentially useful for future exploration of larger mineralogically-relevant 306 inorganic oxides. 307

308 Acknowledgements

The authors acknowledge funding from the NSF (OIA-1757220), NASA (NNX17AH15G), and the University of Mississippi start-up funds. Datasets for this research are included in this paper (and its supplementary information files).

312 References

- Adler, T. B., Knizia, G., & Werner, H.-J. (2007). A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys., 127, 221106.
- Agbaglo, D., & Fortenberry, R. C. (2019a). The performance of CCSD(T)-F12/aug-

316	cc-pVTZ for the computation of anharmonic fundamental vibrational frequen-
317	cies. Int. J. Quantum Chem., 119, e25899.
318	Agbaglo, D., & Fortenberry, R. C. (2019b). The performance of explicitly correlated
319	wavefunctions [CCSD(T)-F12b] in the computation of anharmonic vibrational
320	frequencies. Chem. Phys. Lett., 734, 136720.
321	Agbaglo, D., Lee, T. J., Thackston, R., & Fortenberry, R. C. (2019). A small
322	molecule with pah vibrational properties and a detectable rotational spectrum:
323	c-(C)C ₃ H ₂ , cyclopropenylidenyl carbene. Astrophys. J., 871, 236.
324	Allen, W. D., & coworkers. (2005). (INTDER 2005 is a General Program Writ-
325	ten by W. D. Allen and Coworkers, which Performs Vibrational Analysis and
326	Higher-Order Non-Linear Transformations.)
327	Andrews, L., & McCluskey, M. (1992). Bending modes of SiO ₂ and GeO ₂ in solid
328	argon. J. Mol. Spectrosc., 154, 223-225.
329	Becke, A. D. (1993). Density-functional thermochemistry. iii. the role of exact ex-
330	change. J. Chem. Phys., 98, 5648-5652.
331	Beste, A., & Bartlett, R. J. (2002). The electronic structure of SiO ₃ : A problematic
332	example for coupled cluster methods. Chem. Phys. Lett., 366, 100-108.
333	Bizzocchi, L., Lattanzi, V., Laas, J., Spezzano, S., Giuliano, B. M., Prudenzano, D.,
334	Caselli, P. (2017). Accurate sub-millimetre rest frequencies for HOCO ⁺
335	and DOCO ⁺ ions. Astron. Astrophys., 602, A34.
336	Dubois, D., Sciamma-O'Brien, E., & Fortenberry, R. C. (2019). The fundamental
337	vibrational frequencies and spectroscopic constants of the dicyanoamine anion,
338	$ncncn^{-}(c_2n_3^{-})$: Quantum chemical analysis for astrophysical and planetary
339	environments. Astrophys. J., 883, 109.
340	Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calcu-
341	lations. i. the atoms boron through neon and hydrogen. J. Chem. Phys., 90,
342	1007-1023.
343	Finney, B., Fortenberry, R. C., Francisco, J. S., & Peterson, K. A. (2016). A spec-
344	troscopic case for SPSi detection: The third-row in a single molecule. J. Chem.
345	Phys., 145, 124311.
346	Fortenberry, R. C. (2017). Quantum astrochemical spectroscopy. Int. J. Quant.
347	Chem., 117, 81-91.
348	Fortenberry, R. C. (2020). The case for gas-phase astrochemistry without carbon.
349	Mol. Astrophys., 18, 100062.
350	Fortenberry, R. C., Huang, X., Crawford, T. D., & Lee, T. J. (2014). Quartic force
351	field rovibrational analysis of protonated acetylene, $C_2H_3^+$, and its isotopo-
352	logues. J. Phys. Chem. A, 118, 7034-7043.
353	Fortenberry, R. C., Huang, X., Francisco, J. S., Crawford, T. D., & Lee, T. J.
354	(2011a). The <i>trans</i> -HOCO radical: Fundamental vibrational frequencies,
355	quartic force fields, and spectroscopic constants. J. Chem. Phys., 135, 134301.
356	Fortenberry, R. C., Huang, X., Francisco, J. S., Crawford, T. D., & Lee, T. J.
357	(2011b). Vibrational frequencies and spectroscopic constants from quartic
358	force fields for <i>cis</i> -HOCO: The radical and the anion. J. Chem. Phys., 135,
359	214303.
360	Fortenberry, R. C., Huang, X., Francisco, J. S., Crawford, T. D., & Lee, T. J.
361	(2012). Fundamental vibrational frequencies and spectroscopic constants of
362	HOCS ⁺ , HSCO ⁺ , and isotopologues via quartic force fields. J. Phys. Chem.
363	A., 116, 9582-9590.
364	Fortenberry, R. C., & Lee, T. J. (2019). Computational vibrational spectroscopy for
365	the detection of molecules in space. Ann. Rep. Comput. Chem., 15, 173-202.
366	Fortenberry, R. C., Lee, T. J., & Müller, H. S. P. (2015). Excited vibrational level
367	rotational constants for SiC_2 : A sensitive molecular diagnostic for astrophysi-
368	cal conditions. Molec. Astrophys., 1, 13-19.
369	Fortenberry, R. C., Peters, D., Ferari, B. C., & Bennett, C. J. (2019). Rovibrational
370	spectral analysis of CO_3 and C_2O_3 : Potential sources for O_2 observed in comet

371	67P/Churyumov-Gerasimenko. Astrophys. J. Lett., 886, L10.
372	Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheese-
373	man, J. R., Fox, D. J. (2009). Gaussian 09 Revision D.01. (Gaussian Inc.
374	Wallingford CT)
375	Gaw, J. F., Willets, A., Green, W. H., & Handy, N. C. (1991). SPECTRO: A pro-
376	gram for the derivation of spectrscopic constants from provided quartic force
377	fields and cubic dipole fields. In J. M. Bowman & M. A. Ratner (Eds.), Ad-
378	vances in molecular vibrations and collision dynamics (p. 170-185). Greenwich,
379	Connecticut: JAI Press, Inc.
380	Hill, J. G., & Peterson, K. A. (2010). Correlation consistent basis sets for explicitly
381	correlated wavefunctions: Valence and core-valence basis sets for Li, Be, Na,
382	and Mg. Phys. Chem. Chem. Phys., 12, 10460-10468.
383	Huang, X., Fortenberry, R. C., & Lee, T. J. (2013). Protonated nitrous oxide,
384	NNOH ^{$+$} : Fundamental vibrational frequencies and spectroscopic constants
385	from quartic force fields. J. Chem. Phys., 139(8), 084313.
386	Huang, X., & Lee, T. J. (2008). A procedure for computing accurate <i>ab initio</i> quar-
387	tic force fields: Application to HO_2^+ and H_2O . J. Chem. Phys., 129, 044312.
388	Huang, X., & Lee, T. J. (2009). Accurate <i>ab initio</i> quartic force fields for NH_2^-
389	and CCH^- and rovibrational spectroscopic constants for their isotopologs. J.
390	Chem. Phys., 131, 104301.
391	Huang, X., Taylor, P. R., & Lee, T. J. (2011). Highly accurate quartic force field, vi-
392	brational frequencies, and spectroscopic constants for cyclic and linear $C_3H_3^{-1}$.
393	J. Phys. Chem. A, 115, 5005-5016.
394	Jacox, M. E. (1994). Vibrational and electronic energy levels of polyatomic transient
395	Molecules. J. Phys. Chem. Ref. Data, 23, 1-401.
396	aboli third new triaternice, HOX and HXO X = C^{+}_{1} D C^{+}_{2} and C^{-}_{1}
397	shell third-row triatomics: HOA and HAO, $A = 51^{\circ}$, P, S ⁺ , and Cl. <i>Chem.</i>
398	F Rys., 412, 113-121. Klocka K A & Extenderry R C (2018) Cas phase spectra of McO moleculos: A
399	nossible connection from gas phase molecules to planet formation Man Net
400	Royal Astron Soc 171 2055-2063
401	Knizia G Adler T B & Werner H I (2009) Simplified CCSD(T)-F12 Methods:
402	Theory and benchmarks <i>J. Chem. Phys.</i> 130, 054104
403	Lee C Vang W T & Parr B G (1988) Development of the colle-salvetti
405	correlation-energy formula into a functional of the electron density. <i>Phys. Rev.</i>
406	<i>B.</i> , 37, 785-789.
407	Martin, J. M. L., & Taylor, P. R. (1997). Accurate <i>ab initio</i> quartic force field
408	for trans-hnnh and treatment of resonance polyads. Spectrochim. Acta A, 53,
409	1039-1050.
410	McCall, B. J. (2006). Dissociative recombination of cold h_3^+ and its interstellar im-
411	plications. Phil. Trans. Royal Soc. A, 364, 2953-2963.
412	McCarthy, M. C., Gottlieb, C. A., & Cernicharo, J. (2019). Building blocks of dust:
413	A coordinated laboratory and astronomical study of the archtype AGB carbon
414	star IRC+10216. J. Molec. Spectrosc., 356, 7-20.
415	Mehner, T., Göckes, H. J., Schunck, S., & Schnöckel, H. (1980). Dimeres SiO ₂
416	matrix-ir-untersuchungen und ab initio scf-rechnungen. Z. Anorg. Allg. Chem.,
417	580, 121-130.
418	Mills, I. M. (1972). Vibration-rotation structure in asymmetric- and symmetric-
419	top molecules. In K. N. Rao & C. W. Mathews (Eds.), Molecular spectroscopy
420	- modern research (p. 115-140). New York: Academic Press.
421	Molster, F. J., Lim, T. L., Sylvester, R. J., Waters, L. B. F. M., Barlow, M. J., Bein-
422	tema, D. A., Schmitt, B. (2001). The complete iso spectrum of ngc 6302.
423	Astron. Astrophys., 372, 165-172.
424	Palmer, C. Z., & Fortenberry, R. C. (2018). Rovibrational considerations for the
425	monomers and dimers of magnesium hydride (MgH_2) and magnesium fluoride

426	(MgF ₂). J. Phys. Chem. A, 122, 7079-7088.
427	Papousek, D., & Aliev, M. R. (1982). Molecular vibration-rotation spectra. Amster-
428	dam: Elsevier.
429	Prascher, B. P., Woon, D. E., Peterson, K. A., Dunning, T. H., & Wilson, A. K.
430	(2011). Gaussian basis sets for use in correlated molecular calculations. vii.
431	valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg.
432	Theor. Chem. Acc., 128, 69-82.
433	Raghavachari, K., Trucks, G. W., Pople, J. A., & Head-Gordon, M. (1989). A fifth-
434	order perturbation comparison of electron correlation theories. Chem. Phys.
435	Lett., 157, 479-483.
436	Rho, J., Gomez, H. L., Boogert, A., Smith, M. W. L., Lagage, PO., Dowell, D.,
437	Cami, J. (2018). A dust twin of Cas A: Cool dust and 21 μ m silicate dust
438	feature in the supernova remnant G54.1+0.3. Mon. Not. Royal Astron. Soc.,
439	479, 5101-5125.
440	Rouille, G., Jager, C., Krasnokutski, S. A., Krebszb, M., & Henning, I. (2014). Cold
441	Condensation of dust in the ISW. Furule. Discuss., 100, 449-400.
442	line observations with the Hubble Space Telescone Annu Rev Astron Astro-
443	nhus 3/ 270-320
444	Schnöckel H (1078) Ir spectroscopic detection of molecular SiO ₂ Angew Chem
445	Int Ed Engl 17 616-617
440	Schnöckel V H (1980) Matrixreaktionen von SiO ir-spektroskopischer nachweis
448	der molekeln SiO ₂ und OSiCl ₂ , Z. Anora, Alla, Chem., 460, 37-50.
449	Shavitt, I., & Bartlett, R. J. (2009). Manu-body methods in chemistry and physics:
450	Mbpt and coupled-cluster theory. Cambridge: Cambridge University Press.
451	Stephan, C. J., & Fortenberry, R. C. (2017). The interstellar formation and spectra
452	of the noble gas, proton-bound HeHHe ⁺ , HeHNe ⁺ and HeHAr ⁺ complexes.
453	Mon. Not. Royal Astron. Soc., 469, 339-346.
454	Tremblay, B., Roy, P., Manceron, L., Alikhani, M. E., & Roy, D. (1996). Vibrational
455	spectrum and structure of silicon trioxide SiO_3 : A matrix isolation infrared
456	and density functional theory study. J. Chem. Phys., 104, 2773-2781.
457	Valencia, E. M., Worth, C. J., & Fortenberry, R. C. (2020). Enstatite (MgSiO ₃) and
458	forsterite (Mg_2SiO_4) monomers and dimers: Highly-detectable infrared and
459	radioastronomical molecular building blocks. Mon. Not. Royal Astron. Soc.,
460	<i>492</i> , 276-282.
461	Wang, LS., Desai, S. R., Wu, H., & Nicholas, J. B. (1997). Small silicon oxide clus-
462	ters: Chains and rings. Z. Phys. D, 40 , 36-39.
463	Wang, LS., Wu, H., Desai, S. R., Fan, J., & Colson, S. D. (1996). A photoelectron
464	spectroscopic study of small sincon oxide clusters: $51O_2$, 51_2O_3 , and 51_2O_4 . J.
465	I hys. Chem., 100, 8097-8100. Wetcom I. K. C. (1077) Accords of quartic and cartic contributed affects on re-
466	tational operate lovels. In L.B. During (Ed.) Vibrational energy and structure
467	(p. 1-80) Amsterdam: Elsevier
400	Werner H-I Knowles P I Knizia G Manby F B & Schütz M (2012) Mol-
409	pro: A General-Purpose Quantum Chemistry Program Package. WIREs Com-
471	put. Mol. Sci., 2, 242–253.
472	Werner, HJ., Knowles, P. J., Knizia, G., Manby, F. R., Schütz, M., Celani, P.,
473	Wang, M. (2015). Molpro, version 2015.1, a package of ab initio programs.
474	Cardiff, UK. (see http://www.molpro.net)
475	Westbrook, B. R., & Fortenberry, R. C. (2020). Anharmonic frequencies of (MO) ₂
476	and related hydrides for $M = Mg$, Al, Si, P, S, Ca, & Ti and heuristics for
477	predicting anharmonic corrections of inorganic oxides. J. Phys. Chem. A.
478	(submitted)
479	White, W. M. (2013). <i>Geochemistry</i> (1st ed.). Hoboken, NJ: Wiley.

480	Wilson, R. W., Penzias, A. A., Jefferts, K. B., Kutner, M., & Thaddeus, P. (1971).
481	Discovery of interstellar silicon monoxide. Astrophys. J., 167, L97-L100.
482	Yang, W. T., Parr, R. G., & Lee, C. T. (1986). Various functionals for the kinetic
483	energy density of an atom or molecule. Phys. Rev. A, 34, 4586-4590.
484	Yu, Q., Bowman, J. M., Fortenberry, R. C., Mancini, J. S., Lee, T. J., Crawford,
485	T. D., Francisco, J. S. (2015). The structure, anharmonic vibrational fre-
486	quencies, and intensities of NNHNN ⁺ . J. Phys. Chem. A, 119, 11623-11631.
487	Zhao, D., Doney, K. D., & Linnartz, H. (2014). Laboratory gas-phase detection of
488	the cyclopropenyl cation $(c-C_3H_3^+)$. Astrophys. J. Lett., 791, L28.

Supplemental Information for "Spectral Characterization for Small Clusters of Silicon and Oxygen: SiO₂, SiO₃, Si₂O₃, & Si₂O₄"

Mason B. Gardner¹, Brent R. Westbrook¹, and Ryan C. Fortenberry¹

¹Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848
 Introduction

⁷ The explicit CCSD(T)-F12b/cc-pVTZ-F12 force constants for each of the molecules

explored. They are given in units of $mdyne/(Å^n \cdot rad^m)$ numbered from the symmetry-

⁹ internal coordinates given in the text.

1

2

3

4

Table S1. CCSD(T)-F12b/cc-pVTZ-F12 force constants for SiO₂

4	4	0	0	0.423766259855
3	3	0	0	0.423766211032
2	2	0	0	9.112568406691
1	1	0	0	9.280510189762
4	4	1	0	-0.561596903890
3	3	1	0	-0.561596082870
2	2	1	0	-38.726137784528
1	1	1	0	-39.471154081588
4	4	4	4	0.359773378775
4	4	3	3	0.683611533991
3	3	3	3	0.361891002070
4	4	2	2	-0.804604628590
3	3	2	2	-0.803545817450
2	2	2	2	136.514960010751
4	4	1	1	0.027162155485
3	3	1	1	0.028407813978
2	2	1	1	135.909598842323
1	1	1	1	137.129507870339

Corresponding author: Ryan C. Fortenberry, r410@olemiss.edu

1	1	0	0	9.593251755369	3	2	2	2	-10.841399942476
2	1	0	0	0.020317264205	3	3	1	1	-0.928709892230
2	2	0	0	6.175872995167	3	3	2	1	0.709080890870
3	1	0	0	0.027966975167	3	3	2	2	36.402882897569
3	2	0	0	-1.879514109745	3	3	3	1	0.489792625850
3	3	0	0	6.154725332648	3	3	3	2	-150.627489211387
4	4	0	0	5.400667716233	3	3	3	3	748.599740366254
5	4	0	0	0.060071158680	4	4	1	1	0.044880119037
5	5	0	0	0.338878981838	4	4	2	1	0.216627388092
6	6	0	0	0.500633887434	4	4	2	2	77.105244430278
1	1	1	0	-56.875124864289	4	4	3	1	1.058300987324
2	1	1	0	-0.286271769474	4	4	3	2	12.268129236786
2	2	1	0	-0.061126772121	4	4	3	3	-43.701877754418
2	2	2	0	-24.448452284040	4	4	4	4	78.487904596218
3	1	1	0	-0.249791618390	5	4	1	1	0.000908224868
3	2	1	0	-0.166115607672	5	4	2	1	-0.056241596139
3	2	2	0	6.455600817448	5	4	2	2	-0.168252544859
3	3	1	0	-0.341875325469	5	4	3	1	0.200987409404
3	3	2	0	-21.780762781098	5	4	3	2	-0.043598136539
3	3	3	0	80.965619208057	5	4	3	3	-0.871788790145
4	4	1	0	-0.247019715133	5	4	4	4	0.897134819534
4	4	2	0	-22.141561198732	5	5	1	1	-0.092708702622
4	4	3	0	-2.083042459491	5	5	2	1	0.220987201935
5	4	1	0	-0.115963170075	5	5	2	2	0.008959291030
5	4	2	0	0.010349296600	5	5	3	1	0.166719095925
5	4	3	0	-0.324048573980	5	5	3	2	-0.042676575777
5	5	1	0	-0.344488100188	5	5	3	3	-0.144496289900
5	5	2	0	-0.165531828561	5	5	4	4	-0.281554039784
5	5	3	0	-0.096202691644	5	5	5	4	0.089697331009
6	6	1	0	-0.436942519454	5	5	5	5	0.237161089921
6	6	2	0	-4.626097373435	6	6	1	1	-1.133182657608
6	6	3	0	14.379198844142	6	6	2	1	-0.172767409510
1	1	1	1	279.489567735293	6	6	2	2	14.834754840529
2	1	1	1	-0.003138098573	6	6	3	1	-0.781460413976
2	2	1	1	0.159693594846	6	6	3	2	-57.037475106406
2	2	2	1	-0.269591553292	6	6	3	3	231.184327712308
2	2	2	2	79.322436459600	6	6	4	4	-4.600652854360
3	1	1	1	-0.265877807624	6	6	5	4	-0.421052504480
3	2	1	1	0.336226531556	6	6	5	5	2.021540456128
3	2	2	1	0.094799152526	6	6	6	6	98.159664984538

Table S2. CCSD(T)-F12b/cc-pVTZ-F12 force constants for SiO₃

Table S3. CCSD(T)-F12b/cc-pVTZ-F12 force constants for Si_2O_3

1	1	0	0	2.393458	7	7	3	0	-0.307534	6	5	2	1	-0.123382	7	7	7	5	0.054256
2	1	0	0	-0.373099	7	7	4	0	-0.149339	6	5	2	2	0.180493	7	7	7	6	0.043820
2	2	0	0	4.352402	8	8	1	0	-0.072243	6	5	3	1	0.124254	7	7	7	7	0.320433
3	1	Õ	Ő	-0.019765	8	8	2	Õ	-0.003489	6	5	3	2	0.154773	8	8	1	1	-0.220340
3	2	0	0	-0.008746	8	8	3	Õ	-0.074989	6	5	3	3	-0 137814	8	8	2	1	0 118423
3	2	0	0	0.472136	8	8	4	0	0.012075	6	5	4	1	0.208211	8	8	2	1 0	0.102851
3	1	0	0	9.472150	0	0	-11 E	0	-0.012975	G	5	4	1	-0.236211	0	0	2	1	-0.192801
4	1	0	0	0.040037	9	0	о С	0	0.007517	C	5	4	2	0.279404	0	0	ა ი	1	0.061792
4	2	0	0	-0.047857	9	8	0	0	-0.068297	0	5	4	3	-0.071500	8	8	3	2	-0.015052
4	3	0	0	0.069924	9	8	7	0	-0.058418	6	5	4	4	0.266195	8	8	3	3	-0.082325
4	4	0	0	0.707882	9	9	1	0	-0.107954	6	5	5	5	1.363429	8	8	4	1	-0.001338
5	5	0	0	2.916534	9	9	2	0	0.004304	6	6	1	1	-0.128485	8	8	4	2	-0.000903
6	5	0	0	0.007948	9	9	3	0	-0.093272	6	6	2	1	0.184040	8	8	4	3	0.055237
6	6	0	0	9.426143	9	9	4	0	-0.017659	6	6	2	2	-0.154850	8	8	4	4	-0.176750
$\overline{7}$	5	0	0	0.395335	1	1	1	1	28.956240	6	6	3	1	0.054543	8	8	5	5	-0.237260
$\overline{7}$	6	0	0	0.093038	2	1	1	1	1.362428	6	6	3	2	-0.007459	8	8	6	5	0.008520
7	7	0	0	0.469356	2	2	1	1	-2.993502	6	6	3	3	137.841087	8	8	6	6	-0.073964
8	8	0	0	0.132335	2	2	2	1	0.295727	6	6	4	1	-0.049306	8	8	7	5	0.095446
9	9	0	0	0.142333	2	2	2	2	57.510846	6	6	4	2	0.151114	8	8	7	6	0.008743
1	1	1	0	-10 363249	3	1	1	1	0.028078	6	6	4	3	-0.071467	8	8	7	7	-0 130868
1 2	1	1	0	0.832672	3	2	1	1	0.174634	6	6	-1	4	0 180758	8	8	8	8	0.026261
2 0	1	1	0	0.852072	0	2 0	1	1	0.174034	G	e	4 E	-1 E	-0.169756		0	5	1	-0.020201
2	4	1	0	0.304943	3	2	2	1	-0.203743	0	0	о С	5	0.200072	9	0	5	1	-0.010027
2	2	2	0	-16.704375	3	2	2	2	0.148937	6	6	6	5	-0.071918	9	8	5	2	0.025286
3	1	1	0	-0.277536	3	3	1	1	-0.141811	6	6	6	6	137.984264	9	8	5	3	-0.029210
3	2	1	0	0.110273	3	3	2	1	0.217927	7	5	1	1	0.041686	9	8	5	4	0.002615
3	2	2	0	-0.084054	3	3	2	2	-0.129616	7	5	2	1	-0.269436	9	8	6	1	0.129486
3	3	1	0	-0.241230	3	3	3	1	-0.003561	7	5	2	2	0.292064	9	8	6	2	-0.036186
3	3	2	0	-0.036442	3	3	3	2	0.084328	7	5	3	1	-0.143873	9	8	6	3	-0.057985
3	3	3	0	-39.629940	3	3	3	3	137.837264	7	5	3	2	0.113791	9	8	6	4	0.053189
4	1	1	0	0.232653	4	1	1	1	-0.297422	7	5	3	3	-0.070671	9	8	7	1	0.045778
4	2	1	0	-0.048263	4	2	1	1	0.018656	7	5	4	1	0.293851	9	8	7	2	-0.007847
4	2	2	0	-0.168580	4	2	2	1	-0.170870	7	5	4	2	0.045778	9	8	7	3	0.020055
4	3	1	Ő	0 110421	4	2	2	2	0 758728	7	5	4	3	0 244149	g	8	7	4	-0.071936
4	3	- - -	0	0.105756		2	1	1	0.004170	7	5	4	4	0.160574	o o	õ	1	1	0.266283
4	2	2	0	-0.103730		3	2	1	-0.034170	7	5	5	5	0.103374	0	0	2	1	0.2400285
4	ე ⊿	ວ 1	0	-0.012020	4	ა ი	2	1	-0.038300	7	0	1	1	0.041177	9	9	2	1	0.240934
4	4	1	0	-0.296048	4	3	2	2	0.194763	-	0	1	1	-0.126975	9	9	2	2	-0.295263
4	4	2	0	-0.151536	4	3	3	1	-0.013219	1	6	2	1	0.013951	9	9	3	1	0.136290
4	4	3	0	-0.478874	4	3	3	2	0.112968	7	6	2	2	0.121907	9	9	3	2	-0.025080
4	4	4	0	-0.216592	4	3	3	3	-0.070169	7	6	3	1	-0.057985	9	9	3	3	-0.074787
5	5	1	0	-0.817291	4	4	1	1	-0.466444	7	6	3	2	0.164364	9	9	4	1	-0.008750
5	5	2	0	-16.579513	4	4	2	1	0.381995	7	6	3	3	-0.109951	9	9	4	2	0.034410
5	5	3	0	-0.176111	4	4	2	2	-0.322601	7	6	4	1	0.203603	9	9	4	3	0.045209
5	5	4	0	-0.492544	4	4	3	1	0.133592	7	6	4	2	0.115535	9	9	4	4	-0.140147
6	5	1	0	-0.154152	4	4	3	2	0.201700	7	6	4	3	-0.089376	9	9	5	5	-0.191065
6	5	2	0	0.040981	4	4	3	3	-0.136067	7	6	4	4	0.146073	9	9	6	5	0.008084
6	5	3	0	-0.102121	4	4	4	1	-0.154005	7	6	5	5	-0.104533	9	9	6	6	-0.091616
6	5	4	0	-0.232735	4	4	4	2	0.370248	7	6	6	5	-0.021639	9	9	7	5	0.039641
6	6	1	Ő	-0.189097	4	4	4	3	0.322628	7	6	6	6	-0 148786	g	ğ	7	6	0.035338
6	6	2	0	-0.039021		4	4	4	0.043179	7	7	1	1	-0.270117	q	ğ	7	7	-0.078860
6	6	2	0	20 422886	5	- 1	1	1	0.120112	7	7	1 0	1	0.210117	0	0	0	0	0.006225
e	e o	J 4	0	-59.452880		5	1	1	0.130113	7	7	2 0	1	0.210085	9	9	0	0	-0.000233
0	5	4	0	-0.000308		5	2	1	0.090500		7	2	2	-0.204243	9	9	9	9	0.120551
7	5	1	0	0.457745	5	5	2	2	61.435452	1	7	3	1	0.261198					
7	5	2	0	-0.392158	5	5	3	1	-0.429202	7	7	3	2	0.130117					
7	5	3	0	-0.151860	5	5	3	2	0.659301	7	7	3	3	0.040517					
7	5	4	0	-0.278160	5	5	3	3	0.048027	7	7	4	1	-0.094842					
7	6	1	0	0.119511	5	5	4	1	-0.696981	7	7	4	2	0.335970					
7	6	2	0	-0.124389	5	5	4	2	0.292178	7	7	4	3	0.115132					
7	6	3	0	-0.119890	5	5	4	3	0.205913	7	7	4	4	0.286891					
7	6	4	0	-0.310597	5	5	4	4	-0.495095	7	7	5	5	0.069345					
7	7	1	0	-0.382576	5	5	5	5	57.935564	7	7	6	5	0.306510					
7	7	2	0	-0.100966	6	5	1	1	0.260963	7	7	6	6	0.065356					
-			-		1	-				1 °	-	-	-		1				

Table S4. CCSD(T)-F12b/cc-pVTZ-F12 force constants for Si_2O_4

12	12	0	0	1.5052177	6	6	1	0	-10.8955301
11	11	0	0	3.4380046	5	5	1	0	-0.1769573
11	10	0	0	1.6085544	5	4	1	0	-0.1344538
10	10	0	0	1.4861017	4	4	1	0	-13.2745196
9	9	0	0	4.7880909	3	3	1	0	-0.2114673
9	8	0	0	0.2305831	3	2	1	0	0.0426781
8	8	0	Ő	9.5984462	2	2	1	Õ	-2.4634107
7	7	Õ	Õ	0.4874767	3	1	1	Õ	-0.1104480
7	6	Õ	Õ	-0.0153111	2	1	1	Õ	0.3392645
6	6	0	0	4.4563956	1	1	1	Õ	-13.5017494
5	5	Õ	Ő	0.3862562	12	12	12	12	-60.5367835
5	4	0	Ő	0.3156321	12	12	11	11	-5.2442897
4	4	0	0	3.1459507	11	11	11	11	16.9170223
3	3	0	0	9.6515276	12	12	11	10	-12.0536259
3	2	0	0	-0.0367923	11	11	11	10	-4.3405671
2	2	0	0	2.5458314	12	12	10	10	-26.9068233
3	1	0	0	0.0198368	11	11	10	10	-3.0261947
2	1	0	0	-0.2676806	11	10	10	10	-6.7489281
1	1	0	0	4.9711604	10	10	10	10	-13.8197903
12	11	9	0	-1.0666611	12	12	9	9	-0.4256177
12	10	9	0	-0.3821905	11	11	9	9	-17.3925953
12	11	8	0	-1.8473227	11	10	9	9	0.6057806
12	10	8	0	-1.9713577	10	10	9	9	-0.5366798
12	12	3	0	-1.8895568	9	9	9	9	12.4008141
11	11	3	0	-1.7806184	12	12	9	8	0.4400029
11	10	3	0	-1.7734222	11	11	9	8	1.2760603
10	10	3	0	-1.7677520	11	10	9	8	0.9857538
9	9	3	0	-0.5732631	10	10	9	8	0.3291087
9	8	3	0	-0.3637721	9	9	9	8	0.7429297
8	8	3	0	-40.2930191	12	12	8	8	1.2515269
7	7	3	0	-0.3695357	11	11	8	8	-0.2294819
7	6	3	0	-0.0931883	11	10	8	8	0.9048638
6	6	3	0	-0.0080361	10	10	8	8	1.4965264
5	5	3	0	-0.2740490	9	9	8	8	0.1401472
5	4	3	0	-0.2180328	9	8	8	8	-0.1735030
4	4	3	0	-0.2760485	8	8	8	8	140.1888729
3	3	3	0	-40.3875189	12	11	9	7	-0.0366224
12	12	2	0	-0.5724076	12	10	9	7	0.0021799
11	11	2	0	0.1741417	12	11	8	7	0.0209271
11	10	2	0	0.2190144	12	10	8	7	0.0344425
10	10	2	0	-0.5099257	12	12	7	7	0.5598222
9	9	2	0	1.7294489	11	11	7	7	1.4604507
9	8	2	0	0.1170418	11	10	7	7	1.9644730
8	8	2	0	0.0312180	10	10	7	7	1.7362410
7	7	2	0	0.1757038	9	9	7	7	0.2997647
7	6	2	0	0.0986588	9	8	7	7	0.2535532
6	6	2	0	-0.4822610	8	8	7	7	-0.1066505
5	5	2	0	0.1242985	7	7	7	7	0.2006736
5	4	2	0	0.1166824	12	11	9	6	-0.0379303
4	4	2	0	0.7144730	12	10	9	6	-0.0021799
3	3	2	0	0.0705488	12	11	8	6	-0.0034878
3	2	2	0	-0.0955508	12	10	8	6	0.0170032
2	2	2	0	0.1699830	12	12	7	6	-0.9139685
12	12	1	0	0.0622657	11	11	7	6	-1.1572764
11	11	1	0	5.5537311	11	10	7	6	-0.2733603
11	10	1	0	-0.3252612	10	10	7	6	-0.0699389
10	10	1	0	-0.0309021	9	9	7	6	0.3680479
9	9	1	0	-11.7737133	9	8	7	6	0.1953196
9	8	1	0	-0.2848449	8	8	7	6	0.1212824
8	8	1	0	-0.1776558	7	7	7	6	0.1756657
7	7	1	0	-0.1778230	12	12	6	6	-1.3918542
7	6	1	0	-0.0917942	11	11	6	6	-20.7202227
					•				

Table S5. CCSD(T)-F12b/cc-pVTZ-F12 force constants for Si_2O_4 contd.

11	10	6	6	-1.0847806	7	7	3	3	-0.0495594	10	10	2	1	0.1199264
10	10	6	6	-0.7618291	7	6	3	3	0.1069137	9	9	2	1	-1.1132032
9	9	6	6	22.8318894	6	6	3	3	-0.0445515	9	8	2	1	-0.1822402
9	8	6	6	-0.1671688	5	5	3	3	0.0117510	8	8	2	1	0.1123403
8	8	6	6	-0.0105761	5	4	3	3	0.0489730	7	7	2	1	-0.1596248
7	7	6	6	-0.1256472	4	4	3	3	0.0624784	7	6	2	1	0.0422901
7	6	6	6	-0.0035225	3	3	3	3	139.9007595	6	6	2	1	-0.6736468
6	6	6	6	8.4062955	12	11	9	2	-0.2737962	5	5	2	1	-0.1547418
12	11	9	5	-0.0095915	12	10	9	2	0.4346734	5	4	2	1	-0.5768033
12	10	9	5	0.0130794	12	11	8	2	-0.1630570	4	4	2	1	-0.8850106
12	11	8	5	-0.0265948	12	10	8	2	0.6975701	3	3	2	1	0.0429104
12	10	8	5	-0.0217990	12	12	3	2	0.7942119	3	2	2	1	-0.0489036
12	12	5	5	1 1787742	11	11	3	2	-0 7329291	2	2	2	1	-1 5685296
11	11	5	5	1 3014890	11	10	3	2	-0 1704687	12	12	1	1	-0 4674084
11	10	5	5	1 7212389	10	10	3	2	0 7097331	11	11	1	1	-14 8873326
10	10	5	5	1.7212005	0	0	3	2	-0.3591187	11	10	1	1	-0.1126210
0	0	5	5	0.1282888	a	8	े २	2	-0.1286145	10	10	1	1	-0.3073503
9	9 0	5	5	0.1282888	0	0	5 9	2	-0.1200145		10	1	1	-0.3973393
9	0	5 E	5 E	0.2011626		07	ა ი	2	0.2124526	9	9	1	1	20.4259900
0 7	0 7	5	5	0.0371393		í c	ა ი	2	-0.0707000	9	0	1	1	0.1957724
7	(C	э г	Э г	0.2099587		0 C	3	2	-0.1177149	8	8	1	1	0.0225191
(0	э -	э -	0.2203975	0	0	3	2	0.1049398		í c	1	1	0.0108889
6	6	5	5	-0.0715429	5	5	3	2	-0.2044325	1	6	1	1	0.0867209
5	5	5	5	0.2269462		4	3	2	-0.8846061	6	6	1	1	25.0526085
12	11	9	4	0.0187471	4	4	3	2	-0.0984891	5	5	1	1	0.1028190
12	10	9	4	0.0148233	3	3	3	2	0.1909926	5	4	1	1	0.5953724
12	11	8	4	0.0418542	12	12	2	2	-0.1244722	4	4	1	1	35.9583554
12	10	8	4	-0.0122074	11	11	2	2	-1.6415210	3	3	1	1	0.0621003
12	12	5	4	1.5234718	11	10	2	2	-0.7655843	3	2	1	1	0.0698978
11	11	5	4	0.4546069	10	10	2	2	-0.2286635	2	2	1	1	2.5511729
11	10	5	4	0.7215491	9	9	2	2	-2.5925774	3	1	1	1	-0.0718655
10	10	5	4	1.1744121	9	8	2	2	0.1984342	2	1	1	1	-0.0444305
9	9	5	4	0.3825392	8	8	2	2	-0.1801460	1	1	1	1	30.6720701
9	8	5	4	0.2097070	7	7	2	2	0.0566748					
8	8	5	4	0.0878158	7	6	2	2	0.2737798					
$\overline{7}$	7	5	4	0.2131604	6	6	2	2	-4.2422336					
7	6	5	4	0.0222350	5	5	2	2	0.0153139					
6	6	5	4	-0.0305531	5	4	2	2	0.1479179					
5	5	5	4	0.2803003	4	4	2	2	-5.5748232					
12	12	4	4	-0.1449868	3	3	2	2	-0.1857288					
11	11	4	4	-21.2976080	3	2	2	2	0.0399136					
11	10	4	4	0.8828468	2	2	2	2	6.2780710					
10	10	4	4	0.3297905	12	11	9	1	0.2057832					
9	9	4	4	31.6385350	12	10	9	1	-0.0326986					
9	8	4	4	0.3666903	12	11	8	1	0.3016991					
8	8	4	4	0.1059420	12	10	8	1	0.0034878					
7	7	4	4	-0.0075751	12	12	3	1	-0.0565573					
7	6	4	4	0.1832354	11	11	3	1	0.2790852					
6	6	4	4	30.5400374	11	10	3	1	0.3147785					
5	5	4	4	0.0852797	10	10	3	1	-0.0618522					
5	4	4	4	0.3448255	9	9	3	1	0.4928468					
4	4	4	4	54.9654774	9	8	3	1	0.2663846					
12	11	9	3	0.8113613	8	8	3	1	-0.0176873					
12	10	g	3	0.0928640	7	7	3	1	0.1346881					
12	11	8	3	0.5327692	7	6	3	1	0.1312303					
12	10	8	3	1.0223763	6	6	2	1	0.1373641					
12 19	10	2 2	ე გ	0 5019478	5	5	2 2	1 1	0.1313041					
14 11	14 11	ე	ა ი	0.0914410	5	1	ე	1	0.2110241					
11	10	ა ი	ა ი	-0.2043077	o A	4	ა ი	1	0.00/1009					
11	10	ა ი	ა ე	0.07700010	4	4	ა ი	1	0.2790845					
10	10	ა ე	ა ი	0.7799912) う 10	び 10	ა ი	1	-0.0098185					
9	9	ა ი	ა ე	0.0037292	12	12	2	1	-0.0301054					
9	8	3	3	-0.2179968		11	2	1	0.3182979					
8	8	3	3	139.9578700	11	10	2	1	-0.0174392					
								-5-						
								9						