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Abstract

Water volume estimates of shallow desert lakes are the basis for water balance calculations, important both for water resource

management and paleohydrology/climatology. Water volumes are typically inferred from bathymetry mapping; however, being

shallow, ephemeral and remote, bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method

to derive the bathymetry of such lakes using the relation between water occurrence, during >30-yr of optical satellite data, and

accurate elevation measurements from the new Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). We demonstrate our

method at three locations where we map bathymetries with ˜0.3 m error. This method complements other remotely sensed,

bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, (b) remote lakes with no

in-situ records, and (c) flooded lakes. The proposed method can be easily implemented in other shallow lakes as it builds on

publically accessible global data sets.
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Key Points: 

 A new methodology to produce bathymetry maps of shallow desert lakes was developed, 

based on globally available datasets 

 The methodology enables mapping the bathymetry of lakes with sub-basins or partially 

flooded lakes; both major limitations of other methods 

 The derived bathymetry error is ~30 cm, rather than ~2.5 m for other globally available 

data 
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Abstract 1 

Water volume estimates of shallow desert lakes are the basis for water balance calculations, 2 

important both for water resource management and paleohydrology/climatology. Water volumes 3 

are typically inferred from bathymetry mapping; however, being shallow, ephemeral and remote, 4 

bathymetric surveys are scarce in such lakes. We propose a new, remote-sensing based, method 5 

to derive the bathymetry of such lakes using the relation between water occurrence, during >30-6 

yr of optical satellite data, and accurate elevation measurements from the new Ice, Cloud, and 7 

Land Elevation Satellite-2 (ICESat-2). We demonstrate our method at three locations where we 8 

map bathymetries with ~0.3 m error. This method complements other remotely sensed, 9 

bathymetry-mapping methods as it can be applied to: (a) complex lake systems with sub-basins, 10 

(b) remote lakes with no in-situ records, and (c) flooded lakes. The proposed method can be 11 

easily implemented in other shallow lakes as it builds on publically accessible global data sets. 12 

Plain Language Summary 13 

Lakes in desert environments are often remote, shallow, and only get filled once in a long while. 14 

They are an important water resource, and could be used to decipher past environmental 15 

conditions. However, detailed maps of lake-floor terrain, which are required to effectively study 16 

these lakes are typically not available. The deepest parts of the lakes are filled with water more 17 

frequently than their shallow margins. Thus, we suggest here to relate water occurrence in those 18 

lakes with accurate satellite-based elevation measurements, to obtain a valuable lake-floor terrain 19 

map. We demonstrate the usefulness of our method by comparing results with other globally 20 

available data. Previous methods struggle with complex-terrain lakes or lakes that are partially 21 

flooded during their survey; while our method yields high-resolution accurate maps even in such 22 

lakes. 23 

1 Introduction 24 

A major characteristic of drylands is endoreism, internal drainage (de Martonne, 1927). The lower and usually drier 25 

parts of these drylands are often occupied by ephemeral or seasonal shallow desert lakes (Nicholson, 2011). 26 

Thousands of such lakes exist globally with the largest being Lake Eyre (Australia, alias Kati Thanda; surface area 27 

of >9000 km2 when full). Such lakes are significant for opportunistic species that have no other water resources 28 

(e.g., D’Odorico and Porporato, 2006; Noy-Meir, 1973). Mapping of lake floors is key in calculating water balance 29 
(e.g., Cohen et al., 2015; Enzel and Wells, 1997), important in water resources management, and in deciphering 30 

paleoehydrology (e.g., Crétaux et al., 2016; Quade et al., 2018). However, being shallow, dry and remote, 31 

bathymetric surveys (e.g., as in Bye et al., 1978) have been scarce in such lakes.  32 

A different approach to bathymetry mapping is through remote-sensing (Gao, 2015; Jawak et al., 2015). The Shuttle 33 

Radar Topography Mission (SRTM) has provided high resolution (~30m) global digital elevation models (DEMs) 34 

that could, in principal, present bathymetry of such desert lakes. Yet, radar altimetry cannot produce accurate DEMs 35 

if the area is flooded or where lake floors are exceptionally bright and/or smooth (Berry et al., 2007; Brenner et al., 36 

2007), which are common conditions.  37 

To improve lake-bathymetry maps, recent studies either integrate remote-sensing data with a spatial interpolation of 38 

in-situ measurements (Feng et al., 2011; Leon and Cohen, 2012) or combine between optical imaging and radar 39 

(e.g., Sun and Ma, 2019) or laser altimetry (Arsen et al., 2013; Li et al., 2019; Ma et al., 2019). These satellite 40 
imaging methods are based on determining isobaths (equal depth lines) of a lake, through snapshots during different 41 

lake stages. Then, shorelines in each specific image are assigned a height through accurate elevation measurements; 42 

such as laser altimetry. This determines bathymetry only to the depth of the lowest shoreline identified, using a 43 

spatial interpolation of a few isobaths. It also overlooks the possible variance in elevation of a specific shoreline, 44 

which can be significant in large lakes (Arsen et al., 2013; Feng et al., 2011). Li et al. (2019) suggested using a long-45 

term (410 images during >30-yr) water occurrence index, instead of a few specific isobaths, and relating it with 46 

measurements from a limited dataset of airborne lidar altimetry. This overcomes shoreline elevation variations and 47 
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makes spatial interpolation unnecessary. However, they assumed a linear relation between isobath areas, sampled at 48 

specific points, and elevation. Applying their methodology to a deep reservoir (Lake Mead; >100m deep) only 49 

revealed the bathymetry of the upper part of the lake; the deeper bathymetry was extrapolated with geometrical 50 

considerations, calibrated using in-situ data (Li et al., 2019). A further complication arises where water occurrence is 51 

not based directly on elevation, primarily where a lake is composed of a few sub-basins, which yields more than one 52 

possible relation between water occurrence and elevation. Accordingly, present-day methodologies and freely 53 
available datasets cannot provide accurate, high-resolution bathymetry of often-flooded, shallow desert lakes, 54 

especially for lakes having more than one sub-basin. 55 

Thus, to derive the bathymetry of desert lakes, there is a need for: (a) an efficient and reliable way to recognize the 56 

water occurrence at a high resolution, (b) a technique to overcome diverse water occurrences-elevation relations in 57 

different sub-basins, (c) a way to derive the bathymetry when lakes are inundated, and (d) a robust method to 58 

validate the resultant bathymetry. To tackle these challenges, we developed a simple and easily implemented 59 

methodology that derives bathymetry of shallow desert lakes. This paper focuses on three desert lakes, ranging in 60 

area from 0.2×103 km2 to 6×103 km2. Lake bathymetries are acquired using the relation between globally-available 61 

high-resolution (30 m) water occurrence maps, and elevation data from NASA’s new Ice, Cloud, and Land 62 

Elevation Satellite-2 (ICESat-2). 63 

Following is a description of the methodology and its application over Lake Eyre, which consists of a few sub-64 

basins. We show the derivation of a bathymetric map for the lake and validate it versus the global SRTM and the 65 
best bathymetric map available for the region (Section 3). Having better results than the SRTM, we set to derive the 66 

bathymetry of a remote lake in the Sahara (Sabkhat El-Mellah) that has no other bathymetric map (Section 4) and of 67 

Lago Coipasa in the Altiplano for which we separately derive the bathymetry under dry and inundated conditions. 68 

2 Methodology 69 

Desert lakes are often fed by floods with monthly to decadal frequencies. Most of the coarser particles are deposited 70 

upstream, and thus, lake floors are mainly covered with fine low-permeability sediments, making evaporation the 71 
primary output (Nicholson, 2011). Water occurrence in these lakes is <100% of the time, and often <30%. Thanks to 72 

a detailed analysis of 3×106 Landsat images by Pekel et al. (2016), the frequency of water occurrence over 30 m 73 

pixels between 1984 and 2015 is easily accessible worldwide. Water occurs more often over the deeper parts of the 74 

lake, where complete evaporation takes longer, and less often over the higher lake margins. Thus, there should be a 75 

straightforward relation between water occurrences (i.e., the relative frequency of water in a pixel) and lake floor 76 

elevation over such lakes. This, in turn, allows measuring height over specific locations within the lake, from which 77 

we can infer the entire lake floor elevation. 78 

ICESat-2 provides dense and accurate elevation measurements (0.7 m point spacing; accuracy and precision of <5 79 

cm and <13 cm, respectively) over land, and even underwater. Thus it yields accurate, narrow (~14m) height 80 

profiles of Earth surface, since its launch in September 2018, with a 91-day revisiting frequency (Brunt et al., 2019; 81 

Markus et al., 2017). Underwater measurements can penetrate up to ~1 Secchi depth (Parrish et al., 2019), i.e. up to 82 

a few meters or even a few dozens of meters (Ma et al., 2019), depending on the optical properties of the water.  83 
To derive bathymetry maps we rely on the relation between Water Occurrence and Laser Profile elevation (hereon 84 

WOLP) using four (to five) steps (described schematically in the supporting information Figure 1 [S1]): (a) 85 

acquiring a lake water occurrence map from the global water occurrence (Pekel et al., 2016); (b) extracting ICESat-2 86 

elevation data (ATL03 product) that coincide with the lake (defined as regions with >0% water occurrence) (Figure 87 

1a); (c) fitting a mathematical function describing the relation between water occurrence values and elevations 88 

(Figure 1b) based on all available scans in the lake extent; and (d) applying the fitted function areally, to translate 89 

the water occurrence map into lake-floor elevation over the entire lake basin (Figure 1d). For lakes consisting of 90 

sub-basins, an additional step is needed between steps c and d, in which we identify lake sub-basins from water 91 

occurrence, as detailed in Section 3 (e.g., Figure 1c). This methodology provides a bathymetric map of lakes that 92 

were flooded to some extent between 1984 and 2015, with a resolution of ~30 m. 93 

To evaluate our methodology, we use available topographic data to demonstrate differences between our results and 94 
available bathymetric (or topographic) maps. Where the SRTM is the best external source, we use cross-validation, 95 

putting aside one ICESat-2 scan each time and validating the bathymetry based on all other scans. Owing to the high 96 

accuracy of the ICESat-2 data, we demonstrate the small expected error using our methodology.  97 

 98 
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3 Lake Eyre 99 

Lake Eyre (Figure 2c, e) has a watershed covering almost 1% of the global land area (>1.1×106 km2). It has a 100 

complex lake floor with a minimum elevation of -15.2 m relative to the Australian Height Datum (AHD) (Kotwicki 101 

and Isdale, 1991). The great flood of 1974 was utilized to perform bathymetric surveys over the lake, yielding a 0.5-102 

m-contour-interval bathymetric map and detailing features >1 km2 (Bye et al., 1978). Leon & Cohen (2012) (hereon 103 

LC12) combined data from this bathymetric map with SRTM data and ICESat-1 laser altimetry (with 170 m point 104 

spacing) to form the best bathymetric map of the lake that we are aware of. Because of its vast size, complex 105 

bathymetry, and a good reference map, we chose to apply our methodology over Lake Eyre. To have a continuous 106 

map, we only mapped Lake Eyre North (the larger and more frequently flooded part of the lake). 107 

To overcome complexity arising from the different relations of water occurrence and elevation in each of the sub-108 

basins (Figure 1b), we divided Lake Eyre North into five sub-basins using the water occurrence map (Figure 1a, S2). 109 

This enabled identification of pseudo watersheds, similar to determining watersheds in a topographic map 110 

(Supporting Information 1 [SI1]; Schwanghart and Scherler (2014)). We then performed steps b to d of our 111 
methodology, separately for each sub-basin (as exampled in Figure 1c). If more than one ICESat-2 scan intersected a 112 

watershed, we used data from all available scans. To form a single map out of the different sub-basins, regions close 113 

to the pseudo water divide were assigned values using step c from all neighboring sub-basins, inversely weighted 114 

according to their distance from the divide (SI1).  115 

 116 

We validated the WOLP bathymetry map (Figure 1d) against SRTM data and the LC12 bathymetry over the entire 117 

region (Table 1, Figures 2a, 2b), and against ICESat-2 scans over the measured profiles (Figure S3). The WOLP 118 

bathymetry lies within ±0.5 m of LC12 elevations for 74% of the region (90% is within ±1 m), i.e., it lies within one 119 

elevation contour of Bye et al. (1978). Most of the remaining areas (deviating >1 m) are situated next to the lake 120 

margins, where the LC12 map is mostly based on SRTM data, which were acquired during a lake inundation 121 

interval, and are therefore not reliable over major parts of the lake (Leon and Cohen, 2012). In ~83% of the area 122 
SRTM data were replaced by a constant elevation value (-15 m AHD). The root mean square difference (RMSD) of 123 

the SRTM data versus the LC12 map is 1.77 m, and only 25% of the SRTM data are within ±0.5 m of LC12, 124 

whereas the WOLP bathymetry has a RMSD of 0.52 m (Table 1). Moreover, the mean RMSD for each of the sub-125 

basins using cross-validation of the different ICESat-2 scans is 0.21-0.57 m (Figure S4), indicating that the WOLP 126 

map error is even smaller than it seems when comparing it to the LC12 map.  127 

Hypsometric curves emphasize differences between these analyzed bathymetries (Figure 3), and are important for 128 

water volume estimates (SI2). Whereas the SRTM wet area sharply increases above the minimum elevation, because 129 

of the constant (-15 m) elevation polygon, the WOLP and the LC12 wet area curves present a gradual increase with 130 

depth (Figure 3a). Accordingly, water volumes are lower by ~75% both in the WOLP and LC12 bathymetries 131 

compared to the SRTM. Both the WOLP and the LC12 exhibit similar hypsometry in depths of <1 m (dissimilar to 132 

the SRTM). According to these maps, the southwestern sub-basin (Belt Bay) is the first to be filled (in accordance 133 

with MODIS imagery of floods, Supplementary movie 1 [SM1]). Differences between WOLP and LC12 134 
bathymetries increase above lake depths of 1 m, when the southeastern sub-basin (Madigan Gulf) fills according to 135 

WOLP bathymetry. In the LC12 map, the sill between the southern sub-basins is higher and therefore the flooded 136 

area increases only above water depth of 2 m. Large differences exist between WOLP and LC12 at the lake’s 137 

margins; there, LC12 bathymetry rises ~5 m above the lake bottom (Figure 3a). These differences seem to be related 138 

to the SRTM-dependent mapping of the lake margins in LC12. At a depth of 3.1 m, the WOLP flooded area reaches 139 

its maximum extent, featuring an area of 6.1×103 km2 and a volume of 8.9 km3, ~33% higher than the respective 140 

area and volume calculated based on the LC12 map (Figure 3a). Nevertheless, it is important to note that WOLP 141 

bathymetry represents only regions that were flooded between 1984 and 2015, and that the largest flood in recent 142 

history occurred in the 1970’s. Therefore higher shorelines, as in LC12 or Cohen et al. (2018), could not be mapped 143 

with WOLP. 144 

 145 

4 Application for non-mapped and inundated lakes 146 

Sabkhat El-Mellah is a small, northwestern Sahara ephemeral lake (~170 km2) (Figure 2e, f). It is fed in the High 147 

Atlas Mountains and is flooded only once every few years (Mabbutt, 1977). There is no bathymetric map of this lake 148 

that we are aware of. A comparison of the WOLP bathymetry (Figure S5) to the SRTM data (Figures 2d, S6) 149 

indicates generally a similar pattern (location of the deepest part of the lake and its margins, large scale slopes, etc.). 150 

However, variations of the SRTM data over Sabkhat El-Mellah are approximately ±2 m (Figures 3b, S6), while lake 151 
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depth is ~5 m, yielding an uncharacteristic discontinuous and rough lake floor (e.g., Quade et al., 2018). The mean 152 

cross-validation RMSD of WOLP bathymetry is much lower (0.32 m; Table 1, Figure S7). The WOLP map exhibits 153 

a much higher flooded area in comparison with the SRTM data (Figure 3b). E.g., at a 1 m lake depth, the WOLP 154 

lake area is 0.15×103 km2 versus 0.08×103 km2 according to SRTM data. 155 

The same methodology was applied over Lago Coipasa (or Salar de Coipasa; surface area up to 2400 km2), which is 156 

a high altitude (3660 m), shallow saline lake, occasionally filled with water (Placzek et al., 2006) (Figure 2e, i). 157 
However, during February 2019, the lake was flooded (SM2), thus, ICESat-2 scans taken afterward exhibit both the 158 

water surface and the lake floor in its inundated region.  159 

Recent studies highlight the ability of ICESat-2 scans to penetrate water and yield bathymetric profiles (Forfinski-160 

Sarkozi and Parrish, 2016; Ma et al., 2019; Parrish et al., 2019). Therefore, we derived two different bathymetric 161 

maps of Lago Coipasa, one using all available “dry” scans (i.e., before February 2019; Figure S8), and the other 162 

(Figure S9) using only post-flood scans (“wet” scans), manually omitting the ICESat-2’s water surface readings 163 

(SI3). The difference between the “dry” bathymetry and the SRTM data, and the difference between the “dry” and 164 

“wet” maps are shown in Figures 2g and 2h, respectively. Given the difficulty in determining water density, we did 165 

not correct the effect of the changing refraction coefficient between water and air on underwater elevation 166 

measurements. However, to avoid location errors, we used only nadir data, which are expected to have the least 167 

spatial error. The expected vertical error where water depth is ~0.7 m (SI3), as in this 2019 flood, is <0.18 m 168 

(Parrish et al., 2019) or even less (as shown in Ma et al., 2019).  169 
Similar to Lake Eyre, the WOLP-SRTM difference map (Figure 2g) illustrates that Lago Coipasa was inundated 170 

during the SRTM scan, and the wet part of the scan was replaced with a fixed elevation value. The SRTM data over 171 

the lake area varies within ~±5 m (RMSD=2.84 m; Figures 3c and S10), meaning that over a ~1.5 m deep lake, such 172 

as Lago Coipasa, SRTM-based water volume calculations for all practical matters are absurd. In contrast, both the 173 

“dry” and the “wet” WOLP bathymetries yield a much smaller mean cross-validation RMSD value (0.28 m and 0.47 174 

m, respectively; Table 1, Figures S11, S12). 175 

The fixed-elevation polygon in the SRTM data for Lago Coipasa is bounded by high (>2 m) artificial walls. This is 176 

exhibited in the hypsometry by a sharp increase and then a fixed wetted area of 0.87×103 km2 (Figure 3c). In lake 177 

depths of <1 m, the “dry” bathymetry presents a detailed gradual increase in lake area and volume, filling most of 178 

the maximum lake extent. The “wet” WOLP area at 1 m depth is smaller than the “dry” area due to a 1.3 m deeper 179 

lake bottom in the “wet” bathymetry (Figure 3c; SI2). Both the “dry” and “wet” scans did not cross the northernmost 180 
part of the lake, which is characterized by the highest water occurrence (and presumably deepest water column). For 181 

this reason, we stress that future crossing of ICESat-2 over this specific region of the lake could improve its 182 

bathymetry.  183 

Compared with the “dry” bathymetry, 58% of the “wet” lake area lies within ±0.5 m of the “dry” bathymetry 184 

(RMSD = 0.39 m). Thus, relying on the “dry” bathymetric map, which seems reasonable in light of the results 185 

shown for Lake Eyre, we suggest that even when using only the “wet” scans, the WOLP bathymetry yields better 186 

results than the currently available global product (SRTM). This leads us to propose the usage of the methodology 187 

presented here for any of the world’s shallow desert lakes. 188 

5 Discussion 189 

The largest source of uncertainty in the WOLP bathymetry stems from the selected fitting equation between water 190 

occurrence and elevation (step c). However, this selection affects mainly the extremities of data, i.e., the 191 

extrapolation of elevation to values that were not observed by the ICESat-2 (areas with gray dots in Figures 1c, S5, 192 

S8, S9). Thus, in cases where ICESat-2 data covers the water frequency extremities, WOLP bathymetry is accurate, 193 

as demonstrated by the cross-validation results. Large enough lakes should be covered by at least a few ICESat-2 194 

scans (e.g., Figure 1a) and therefore, scans are expected to cover a wide range of water occurrences. This wide range 195 

can yield an accurate bathymetry for almost all of the lake extent.  196 

Laser altimetry errors, estimated to be ~0.3 m for a single photon return, and much lower (0.05-0.07 m) for an 197 

average of neighboring photon returns (Jasinski et al., 2016), are not expected to impact our results significantly. A 198 
larger uncertainty lies between points that have a similar water occurrence but different elevation, as is the case if 199 

there are small and local topographic minima. Using more scans may decrease the variations, although some of them 200 

may be intrinsic, e.g., where transmission-losses or springs are common. Water occurrence minima can be too small 201 

to be identified as a different sub-basin. Thus, our method is limited to sub-basins that are large enough to be 202 

resolved with ICESat-2, as in Lake Eyre (Figure 1, SI1). In deriving the Lake Eyre bathymetry, we used at least four 203 

scans for each sub-basin, yielding an error of only 0.2-0.6 m (Table 1, Figure S4). 204 
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Another limitation to our methodology comes from the maximum water penetration of the ICESat-2 laser. This 205 

limits the ability to derive bathymetry in lakes that have a water depth of tens of meters or more. In such 206 

circumstances, a partial bathymetry could still be derived for the outskirts of the lakes using our methodology, or as 207 

presented in Li et al. (2019) or in Ma et al. (2019) for the shoulders of Lake Mead. However, we focus here on 208 

shallow desert lakes, in which, by definition, this is not a major obstacle.  209 

Sediment deposition could also increase the uncertainty of the derived bathymetry. Here, we use satellite imaging 210 
water occurrence from >30-yr period (Pekel et al., 2016), implying that if the lake floor was altered during this time 211 

interval, present-day ICESat-2 scans can yield only an averaged bathymetry of this period. However, newer global 212 

water occurrence datasets could emerge in the near future, enabling both derivation of newer bathymetries, and 213 

higher resolution maps (e.g., 10-20 m pixels from Sentinel-2). 214 

Apart from these limitations, taking a long series of satellite imagery extends a great opportunity. If only specific 215 

dates are used to identify isobaths (or shorelines), the error propagates to the bathymetric map. Using statistics based 216 

on many years, single image errors diminish. Such errors include water piling-up on one side of the lake due to 217 

winds (Arsen et al., 2013), misclassification of water boundaries or crossing isobaths (Long et al., 2019), and 218 

specific date imaging having only partial coverage of a lake, because of imaging geometry or cloud obscuration. 219 

Moreover, the use of specific date imagery requires a spatial interpolation between isobaths, thus concealing small 220 

features in between isobaths.  221 

Out of the three lakes analyzed above, Lake Eyre is probably the most closely monitored, yet the nearest river gauge 222 
is situated many hundreds of kilometers upstream. Therefore, there is no accurate in-situ data for water input 223 

volumes. ICESat-2’s high spatial resolution (~70 cm) combined with high-resolution water occurrence map (e.g., 30 224 

m in the map of Pekel et al., 2016) yields an accurate, high-resolution bathymetry, even over flooded or complex 225 

desert lakes. Such maps could help in determining the water discharge into remote desert lakes and their evaporative 226 

losses, providing much-needed data in remote areas, serving as a basis for mass and energy balance calculations 227 

over such lakes, and for water management strategies.  228 

6 Conclusions 229 

Using a new methodology which links long-term water occurrence and accurate height measurements, each 230 

independently derived from satellite remote-sensing, we mapped the bathymetry of three shallow lakes in drylands 231 

across the globe. We verified the bathymetries using a previous bathymetric map, SRTM data, and through cross-232 

validation. This easy-to-implement methodology yields a high-resolution bathymetry of shallow desert lakes that 233 

were flooded sometime during 1984-2015, using globally available datasets.  234 

- As an example of a complex shallow lake system, we used Lake Eyre, consisting of multiple sub-basins. 235 

Despite its complexity, verification versus the best available DEM showed that the methodology is 236 

successful, as long as each sub-basin is covered by an elevation measurement scan. 237 

- The methodology was also applied to two lakes with no previous bathymetry maps, one in the Sahara 238 

(Sabkhat El-Mellah) and the other in the Altiplano (Lago Coipasa). Results proved low cross-validation 239 

RMSD values (~0.3 m) compared with the SRTM data (~2.5 m).  240 

- Applying the methodology in Lago Coipasa separately to “dry” and to “wet” ICESat-2 scans, relying on 241 

laser penetrability, we showed that bathymetry can even be produced during lake inundation. 242 

The presented methodology can be applied to a large portion of the shallow lakes around the globe. It enables 243 

mapping of inundated lakes (a major obstacle for widely used methods), small lakes, and large and complex lake 244 

systems. 245 
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Figures and table 332 

 333 

Figure 1. An example of bathymetry derivation in Lake Eyre North (a schematic representation 334 

of this process is in Fig S1). (a) Water occurrence from Pekel et al. (2016) and ten ICESat-2 335 

scans over the lake (labeled) used to derive elevations. Scans are colored by the 5 identified 336 

pseudo-watersheds (SI1). (b) The relation between water occurrence and elevation measurements 337 

from ICESat-2 scan #1 with a two-term gaussian fit and its 95% prediction boundaries. Colors 338 

represent latitude. (c) The same as in b, but for scan #3. The fit here is divided according to the 339 

watersheds. (d) Derived bathymetry map based on the methodology presented in Section 2. Gray 340 

dots represent regions in which water occurrence is greater than the highest occurrence 341 

overpassed by ICESat-2. B = Belt Bay. M = Madigan Gulf. 342 
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 344 

 345 

Figure 2. Comparisons of WOLP bathymetries with SRTM data in Lake Eyre (a), Sabkhat El-346 

Mellah (d), and Lago Coipasa (g). (b) Comparison of Lake Eyre bathymetry with the map of 347 

Leon & Cohen (2012). (e) Location map of the three lakes, and aridity index (UNEP, 1992) from 348 

the Climatic Research Unit of the University of East Anglia (New et al., 2002). True-color 349 

satellite imagery of the lakes from Esri\Digitalglobe, and maximum extent of water occurrence in 350 

black) from Pekel et al. (2016) (c, f, i). (h) Difference between the “wet” and “dry” bathymetries 351 

of Lago Coipasa.  352 
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Figure 3. Hypsometric curves, extent maps and cross-sections for Lake Eyre (a), Sabkhat El-355 

Mellah (b), and Lago Coipasa (c). The maps show filling extent at heights (denoted by a gray 356 

line on the hypsometric curves) that exert major differences between bathymetries. Details of the 357 

preparation of the hypsometries are in SI2. 358 
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Table 1. Validation results across the lakes  360 

Lake Validated map Reference 
Regional / Profile 

validation 
RMSD [m] 

Lake depth 

[m] 

Lake Eyre 

SRTM LC12 Regional 1.77 

3.2 (WOLP) §, 

4.1 (LC12) § 

WOLP (this 

study) 
LC12 Regional 0.52 

SRTM ICESat-2 Profile 0.95-2.30* 

LC12 ICESat-2 Profile 0.20-0.69* 

WOLP ICESat-2 
Profile, cross-

validation 
0.21-0.57* 

Sabkhat El-Mellah 

SRTM ICESat-2 Profile 2.04# 

5.0 (WOLP)§ 
WOLP ICESat-2 

Profile, cross-

validation 
0.32# 

Lago Coipasa 

SRTM ICESat-2 Profile 2.84# 
1.2 (WOLP: 

“dry”)§ WOLP (“dry”) ICESat-2 
Profile, cross-

validation 
0.28# 

WOLP (“wet”) WOLP (“dry”) Regional 0.39 
2.2 (WOLP: 

“wet”)§ 
WOLP (“wet”) ICESat-2 

Profile, cross-

validation 
0.47# 

*Range denotes the average RMSD for each sub-basin, averaged between the different ICESat-2 profiles in it. 361 
#Average among the different ICESat-2 profiles. 362 
§Estimated (see SI2). 363 
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