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Abstract

This study investigates the possibility of using an ocean parameter and state estimation framework to improve knowledge of

mixing parameters in the global ocean. Multiple sources of information about two ocean mixing parameters, the diapycnal

diffusivity and the Redi coefficient, are considered. It is first established that diapycnal diffusivities derived from multiple

observational data sets with a strain-based parameterization of finescale hydrographic structure can be used to ameliorate

model biases in diapycnal diffusivities from the Estimating the Circulation & Climate of the Ocean (ECCO) framework and

the GEOS-5 coupled Earth system model. The evidence is as follows. Adjusting ECCO-estimated and GEOS-5-calculated

diapycnal diffusivity profiles toward profiles derived from Argo floats using the finescale parameterization improves agreement

with independent diapycnal diffusivity profiles inferred from microstructure data. In addition, several aspects of the GEOS-5

model solution, such as mixed layer depths and temperature/salinity/stratification (i.e., hydrographic) fields, improve when the

Argo-derived diapycnal diffusivities from the finescale parameterization are used instead of the model’s diapycnal diffusivities.

The model’s hydrographic changes, which exceed the spread in hydrographic variables from an ensemble of simulations that

use different initial conditions, occur due to the dynamic adjustment that arises when diapycnal diffusivity adjustments are

applied. An adjoint sensitivity analysis with the ECCO framework suggests that the assimilation of biogeochemical tracers,

such as dissolved oxygen concentrations, in future ECCO re-optimizations would improve estimates of the diapycnal diffusivity

field.
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Key Points:12

• Model-calculated diapycnal diffusivities disagree with microstructure observations,13

but this can be improved with multiple data sources14

• Adjusting model-calculated diapycnal diffusivities primarily affects resolved ad-15

vection of heat and salt via dynamic adjustment16

• Adjoint-based data assimilation of biogeochemical tracers could potentially help17

estimate more accurate ocean mixing parameters18

Corresponding author: D. S. Trossman, david.s.trossman@noaa.gov

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract19

Mixing parameters can be inaccurate in ocean data assimilation systems, even if there20

is close agreement between observations and mixing parameters in the same modeling21

system when data are not assimilated. To address this, we investigate whether there are22

additional observations that can be assimilated by ocean modeling systems to improve23

their representation of mixing parameters and thereby gain knowledge of the global ocean’s24

mixing parameters. Observationally-derived diapycnal diffusivities–using a strain-based25

parameterization of finescale hydrographic structure–are included in the Estimating the26

Circulation & Climate of the Ocean (ECCO) framework and the GEOS-5 coupled Earth27

system model to test if adding observational diffusivities can reduce model biases. We28

find that adjusting ECCO-estimated and GEOS-5-calculated diapycnal diffusivity pro-29

files toward profiles derived from Argo floats using the finescale parameterization improves30

agreement with independent diapycnal diffusivity profiles inferred from microstructure31

data. Additionally, for the GEOS-5 hindcast, agreement with observed mixed layer depths32

and temperature/salinity/stratification (i.e., hydrographic) fields improves. Dynamic ad-33

justments arise when we make this substitution in GEOS-5, causing the model’s hydro-34

graphic changes. Adjoint model-based sensitivity analyses suggest that the assimilation35

of dissolved oxygen concentrations in future ECCO assimilation efforts would improve36

estimates of the diapycnal diffusivity field. Observationally-derived products for hori-37

zontal mixing need to be validated before conclusions can be drawn about them through38

similar analyses.39

Plain Language Summary40

How the ocean mixes across space and time is not yet adequately simulated by mod-41

els. One way to estimate this mixing is to use a framework that minimizes a function42

of the disagreements between observations and the model. However, there are many other43

variables the model needs to estimate and there are observations of relatively few vari-44

ables. Currently, this model only constrains ocean mixing with observations of the warmth45

and saltiness of the ocean. To help the model estimate more realistic ocean mixing, some46

theories can be used to quantify ocean mixing from observations. Here, we show evidence47

that at least one of these theories is realistic, but because there are large uncertainties48

with the estimates from these theories, here we test whether there are measured vari-49

ables with relatively small uncertainties that can be used to constrain ocean mixing in50

the model. We find some evidence that aiming to achieve better agreement between a51

model’s oxygen concentrations and those from observations could help reduce the errors52

in ocean mixing in the model.53

1 Introduction54

In this paper, we consider whether additional observations may aid in represent-55

ing mixing in ocean data assimilation systems. Previous studies have documented the56

importance of ocean mixing in setting the general circulation of the ocean and its role57

in global climate variability. Ocean mixing is typically conceptualized in terms of dif-58

fusion along and across isopycnal surfaces, as well as associated with the transport of59

isopycnal thickness (or bolus). Ocean models often represent mixing with three param-60

eters: the across-isopycnal mixing parameter (diapycnal diffusivity; Munk and Wunsch,61

1998), the along-isopycnal mixing parameter (Redi coefficient; Redi, 1982), and the eddy62

isopycnal thickness transport parameter (Gent-McWilliams coefficient; Gent and McWilliams,63

1990). Mixing across isopycnal surfaces is an essential ingredient to explain the observed64

oceanic stratification (Munk & Wunsch, 1998; Gnanadesikan, 1999; J. R. Scott & Marotzke,65

2002). Changes in background mixing across isopycnals (Dalan et al., 2005; Krasting et66

al., 2018; Sinha et al., 2020), mixing along isopycnals (Gnanadesikan et al., 2015; Ehlert67

et al., 2017), and eddy isopycnal thickness transport (Danabasoglu & McWilliams, 1995)68
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each have a profound influence on climate simulations through alterations in the response69

to surface flux perturbations and changes in ventilation rates.70

Ocean models must parameterize the unresolved turbulent diffusion of oceanic trac-71

ers since they are unable to resolve the scales of the processes responsible for mixing. How-72

ever, it has been a challenge to observe, calculate, and assess the three ocean mixing pa-73

rameters mentioned above. The Redi coefficient is still set to be globally constant in many74

ocean models, even though several observational studies have found evidence of substan-75

tial spatial and/or temporal variability in mixing along isopycnals (R. P. Abernathey &76

Marshall, 2013; Forget et al., 2011; Cole et al., 2015; Busecke & Abernathey, 2019). De-77

spite theoretical progress (Bates et al., 2014; Groeskamp et al., 2020), the vertical struc-78

ture of the Redi coefficients remains unknown. The Gent-McWilliams coefficient is known79

to be very similar to the Redi coefficient (Bachman et al., 2020), except in the vicinity80

of intensified jets, where multiple models set the Gent-McWilliams coefficient to be un-81

equal to the Redi coefficient. While complex parameterizations for the diapycnal diffu-82

sivity field (Gaspar et al., 1990; Large et al., 1994) have allowed models to use spatiotemporally-83

varying diapycnal diffusivities for decades now, studies have only begun to use observa-84

tions to improve the diapycnal diffusivities in ocean models. For instance, Zhu and Zhang85

(2020) and Zhu et al. (2020) have shown that diapycnal diffusivities derived from Argo86

floats can be used to improve some variables in ocean models. Also, Pollmann et al. (2017)87

and de Lavergne et al. (2020) have evaluated global internal wave mixing schemes us-88

ing observationally-derived diapycnal diffusivities.89

We use an ocean parameter and state estimation framework to evaluate how near-90

global, observationally-derived estimates of mixing can improve ocean models. The aim91

of this framework is to reconstruct the recent history of the ocean (the “state estimate”)92

by filling in the gaps between incomplete observations–often sparse and aliased ones–through93

data assimilation techniques. The state estimate is much like a reanalysis product, but94

the state estimation framework overcomes some shortcomings by requiring dynamical95

and kinematical consistency (Stammer et al., 2016). The state estimate is achieved by96

fitting a general circulation model to available observations in a weighted least-squares97

sense (Wunsch, 2006). The model-data misfit (objective or “cost function”) is minimized98

by varying (i.e., inverting for) a set of uncertain control variables, all of which are inde-99

pendent inputs to the model equations being solved. Importantly for our goal of param-100

eter estimation, the set of control variables may consist not only of initial and bound-101

ary conditions, but also of (spatially-varying) model parameters, such as the ones used102

to represent ocean mixing. To provide accurate ocean mixing parameter estimates, the103

framework should minimize numerical diffusion.104

Previously, the only available observational information about ocean mixing came105

from tracer release experiments (Ledwell & Watson, 1991; Polzin et al., 1997; Messias106

et al., 2008) and microstructure (i.e., the scales over which molecular viscosity and dif-107

fusion are important) measurements of velocity shear (e.g., Waterhouse et al., 2014). These108

data are infrequently sampled and cover a much smaller portion of the ocean than the109

more recent global mixing data products that have made combined use of finestructure110

data and parameterizations mentioned above. None of these observations have been as-111

similated in existing ocean state estimation frameworks to constrain the diapycnal dif-112

fusivity field. Each of the three ocean mixing parameters have been included as control113

parameters, but the only constraints provided to any of them come from hydrographic114

(i.e., temperature, salinity, and pressure) observations. C. Liu et al. (2012) found that115

including the three ocean mixing parameters as control parameters in the optimization116

of an ocean state estimate can reduce the total cost function, a measure of model per-117

formance relative to observations, over the entire ocean from 1992 to 2001 by 10% com-118

pared with only including surface fluxes as control parameters. However, with a simi-119

lar ocean state estimation framework but different model configuration, Forget et al. (2015)120
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suggests more than twice as large of an effect over the entire ocean from 1992 to 2011121

(see their Table 8).122

An open question is what observations (other than temperature, salinity, and pres-123

sure) can provide useful constraints on ocean mixing parameters. To do this, we must124

first perform comparisons of the ocean mixing parameters from an ocean state estimate125

with observations, which have not previously been performed. We examine whether the126

diapycnal diffusivities from an observationally-derived data product have smaller biases127

relative to microstructure observations than the diapycnal diffusivities from an ocean state128

estimate (Sections 3.1 and 3.2). We argue that because large biases remain in the diapy-129

cnal diffusivities from a recent ocean parameter and state estimate compared with mi-130

crostructure observations, assimilation of hydrographic observations is insufficient to es-131

timate ocean mixing parameters using the ocean parameter and state estimation frame-132

work. We also assess whether a coupled earth system model’s hydrography is improved133

relative to observational climatologies when its diapycnal diffusivities are substituted with134

ones derived from Argo floats (Section 3.3) and what the implications for steric sea level135

are (Section 3.4). We analyze the steric sea level budget for each coupled earth system136

model simulation because this framework provides us with an understanding of how the137

model’s dynamics change upon variation of the diapycnal diffusivity field. Finally, we138

perform model experiments in forward plus backward (“adjoint”) mode to determine whether139

biogeochemical tracer data and observationally-derived diapycnal diffusivities would pro-140

vide similar constraints on ocean mixing when assimilated (Section 3.5). The latter ex-141

ercise is repeated for an Argo-derived Redi coefficient field, but not for the third mix-142

ing parameter, the Gent-McWilliams coefficient, because this parameter cannot be di-143

rectly compared with our model’s Gent-McWilliams coefficient and is known to be very144

similar to the Redi coefficient (Bachman et al., 2020). These experiments allow us to con-145

clude whether biogeochemical tracer data could be assimilated in a future optimization146

of an ocean state estimation framework to better estimate either of the two ocean mix-147

ing parameters considered here.148

2 Methods149

2.1 Observationally-derived data products and measured data150

2.1.1 Diapycnal Diffusivities151

The diapycnal diffusivities in our model simulations use data sets of diapycnal dif-152

fusivities derived from observations. (We distinguish between “observations” that are153

measured quantities using in situ instruments and observationally-derived values, which154

use measured quantities and a theory to derive values. The former data have only mea-155

surement uncertainties, while the latter data have both measurement and structural un-156

certainties.) These data sets contain values equatorwards of 75oS and 75oN–no shallower157

than about about 250 meters because the method does not yield accurate results in the158

presence of strong upper-ocean density variability (e.g., D’Asaro, 2014). The diapycnal159

diffusivities are derived from finestructure observations using a strain-based finescale pa-160

rameterization, which has been developed and implemented in different ways (Henyey161

et al., 1996; Gregg, 1989; Polzin et al., 1995, 2014) but typically assumes a mixing ef-162

ficiency of 0.2 (St. Laurent & Schmitt, 1999; Gregg et al., 2018). The finescale param-163

eterization assumes that 1) the production of turbulent energy at small scales is due to164

an energy transfer driven by wave-wave interactions down to a wave breaking scale; 2)165

nonlinearities in the equation of state, double diffusion, downscale energy transports, and166

mixing associated with boundary layer physics and hydraulic jumps are neglected; and167

3) stationary turbulent energy balance exists where production is matched by dissipa-168

tion and a buoyancy flux in fixed proportions (Polzin et al., 2014). The implementation169

by Whalen et al. (2015) assumes a shear-to-strain variance ratio of 3 and a flux Richard-170

son number, Rf = 0.17, is used to determine the fraction of turbulent production that171
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goes into the buoyancy flux and the rest for dissipation. The finestructure method is not172

expected to be valid in equatorial regions of the ocean, but nevertheless, the diapycnal173

diffusivity product compares well with microstructure near the equator (Whalen et al.,174

2015). We use the 2006-2014 climatology of Whalen et al. (2015)–referred to as κρ,W15175

hereafter–which is a gridded product on an approximately 1o×1o horizontal grid and176

has three vertical levels: 250-500 meters, 500-1000 meters, and 1000-2000 meters depth.177

Whalen et al. (2015) found that 81% (96%) of their Argo-derived diapycnal diffusivities178

from the finescale parameterization are within a factor of two (three) of the microstruc-179

ture measurements. We use this as the basis for the factor of 2-3 uncertainty we cite here-180

after. We also use the implementation of Whalen et al. (2015) to construct a time-varying181

Argo-derived diapycnal diffusivity data set from 2001 to 2016–referred to as κρ,t here-182

after. (In 2001, the Profiling Autonomous Lagrangian Circulation Explorer (PALACE)183

floats (Davis, 1991; Davis et al., 1992) are used, and they supplement the Argo data through184

2006.) In addition to the Argo-derived diapycnal diffusivities, there are ship-based Con-185

ductivity, Temperature, and Depth (CTD) hydrography-derived diapycnal diffusivity field186

(Kunze, 2017)–referred to as κρ,K17 hereafter–that uses the same finestructure param-187

eterization as the κρ,W15 product is included (see Section 2.3). The vertical resolution188

of the κρ,K17 product is 256 meters and horizontal resolution is the spacing between each189

CTD profile.190

Microstructure-inferred diapycnal diffusivities (Osborn, 1980; Lueck et al., 1997;191

Gregg, 1989; Moum et al., 2002; Waterhouse et al., 2014) are used to evaluate each model’s192

diapycnal diffusivities. (We further distinguish “observationally-inferred” values, which193

are from the currently accepted method of observing a quantity such as a diapycnal dif-194

fusivity but are not measured, and “observationally-derived” values because the latter195

data depend on a method that requires additional assumptions.) The microstructure-196

inferred diapycnal diffusivities are based on an expression for the isotropic turbulence197

field, which is proportional to the viscosity of water and the velocity shear resolved to198

dissipative scales (Thorpe, 2007; and references therein). The depth ranges of the data199

collected by Waterhouse et al. (2014)–referred to as κρ,micro hereafter–go from the up-200

per several hundred meters to the full water column. The profiles are seasonally aliased201

at higher latitudes and span decades. There are thousands of vertical profiles that com-202

prise this data set, samples being taken in North Pacific Ocean, North Atlantic Ocean,203

tropical Pacific, near Drake Passage, near the Kerguelen Plateau, and in the South At-204

lantic Ocean. Many of the profiles were taken in regions with both smooth and rough205

bottom topography. To compare the microstructure profiles with model output, the near-206

est neighbors to each model’s grid are selected, which reduces the data set to 42 profiles.207

We use a consistent comparison method for both ECCO and GEOS-5 output by208

accounting for the fact that the GEOS-5-calculated diapycnal diffusivities are time-varying209

and the ECCO-estimated diapycnal diffusivities are not. The comparison method de-210

scribed below nudges each model’s diapycnal diffusivity field closer to the κρ,W15 prod-211

uct at microstructure profile observation locations. Each model’s initial diapycnal dif-212

fusivity profiles and their nudged diapycnal diffusivity profiles are then compared to mi-213

crostructure profile observations at the same locations. This comparison allows us to as-214

sess whether the bias in each model’s diapycnal diffusivity profiles is reduced when nudged215

closer to the κρ,W15 product. We use the below nudging method because there are only216

three points in the vertical in the κρ,W15 product and the nudging effectively simulates217

how a model’s diapycnal diffusivity profile would respond to the assimilation of the κρ,W15218

product. We nudge the model-calculated diapycnal diffusivity field’s temporal mean by219

applying an adjustment derived from the κρ,W15 product to get a new diapycnal diffu-220

sivity field, κ̂ρ, according to Equation (A1) from Zhang et al. (2001),221

κ̂ρ =

{
κρ +

κρ,Argo−κρ
κ0−κρ (κ0 − κρ), if κρ,Argo > κρ

κρ +
κρ,Argo−κρ

κρ
κρ, if κρ,Argo ≤ κρ

(1)
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Here, κ0 is set to be the maximum possible diapycnal diffusivity found in the model, κρ222

is the monthly averaged diapycnal diffusivity for temperature/salinity calculated from223

model output, κρ,Argo has a yearly mean equal to κρ,W15 and seasonal cycle set by the224

model, κρ is the 24-year averaged model output of the diapycnal diffusivity, κρ,Argo =225

κρ,W15, and κ̂ρ is the diapycnal diffusivity field used in the simulations that utilize the226

diapycnal diffusivity increment. Equation (1) nudges the model-based diapycnal diffu-227

sivity field (κρ) so that its long-term mean is closer to the Argo-derived diapycnal dif-228

fusivity field from the finescale parameterization (κρ,W15). Because Equation (1) ensures229

that the extreme values of κ̂ρ are non-negative and never exceed κ0, the distribution of230

κ̂ρ in time at each grid point may be skewed relative to its initial distribution. We leave231

the model’s diapycnal diffusivities unchanged in the mixed layer since if we override the232

diapycnal diffusivities in the mixed layer, the model will cease to convect, even under233

convection-favorable conditions.234

2.1.2 Along-Isopycnal Diffusivities: Redi Coefficients235

An Argo- and ocean state estimate-derived Redi coefficient field from mixing length236

theory Cole et al. (2015), both above and below the mixed layer depth, can also be used237

in our model simulations. The Redi coefficients are computed as the product of a mix-238

ing length scale, characteristic velocity scale, and a mixing efficiency–assumed to be one.239

Cole et al. (2015) used Argo observations to compute the mixing length scale (see Cole240

et al., 2015 - see their Eq. 1a). The mixing length scale is computed as the ratio of the241

temporal standard deviation of the salinity field over the horizontal gradient of the mean242

salinity field from the Argo data. Cole et al. (2015) used output from a nominally 1/4o243

ocean state estimate (ECCO2) to calculate the characteristic velocity scale (equal to the244

ECCO2’s root-mean-square velocity field). The primary differences between ECCO2 and245

the ocean state estimate configuration we run for the purposes of this manuscript are246

that ECCO2 is eddy-permitting, on a cube-sphere grid, runs over 2005-2012, uses a Green’s247

function approach to adjust a small number of control parameters (Menemenlis et al.,248

2005). The final Cole et al. (2015) product–referred to as κRedi,C15 hereafter–is a clima-249

tology with 1 meter vertical resolution between 2000 meters depth and close to the sur-250

face. This product is on an approximately 1o×1o horizontal grid, matching the model251

resolution of the model we compare it to. There are very few independent observationally-252

inferred data sets (e.g., NATRE and DIMES) with which to pursue an assessment of the253

Redi coefficient field (Groeskamp et al., 2020), like we have with microstructure for as-254

sessment of the diapycnal diffusivity field, so we only compare the model output with255

the κRedi,C15 product. Also, while there are Gent-McWilliams coefficients derived from256

Argo observations (Katsumata, 2016), the treatment of the rotational component of their257

estimated eddy transport has a different treatment from that in C. Liu et al. (2012), which258

uses the same treatment as the model we use here. Thus, we exclude consideration of259

the Gent-McWilliams coefficients altogether from this study.260

2.1.3 Biogeochemical constraints261

In addition to the mixing products, we perform similar analyses using oxygen, phos-262

phate, and alkalinity as other potential constraints on ocean mixing. Oxygen has ver-263

tical gradients that can be resolved by ocean models, has future changes projected to be264

dependent upon mixing across and along isopycnals (Palter & Trossman, 2018; Coue-265

spel et al., 2019), and has been shown to depend upon the Redi coefficients (Gnanadesikan266

et al., 2015; Bahl et al., 2019; Rudnickas et al., 2019; Bahl et al., 2020) due to their abil-267

ity to modulate deep wintertime convection. Further, alkalinity is known to be sensitive268

to fresh/salty water perturbations due to the contributing dilution/concentration of charge269

(Jiang et al., 2014; Kakehi et al., 2017), and phosphate is a function of its supply regions,270

which could provide an imprint of how water mixes (Paytan & McLaughlin, 2007). Thus,271
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we choose to include the oxygen, alkalinity, and phosphate climatologies from the World272

Ocean Atlas (2013) in our simulations.273

2.2 Modeling systems274

Details about the model simulations we perform are first summarized in Section275

2.3 and in Table 1. The first modeling system uses time-varying diapycnal diffusivities276

calculated from a suite of parameterizations, where the diapycnal diffusivities associated277

with temperature and salinity differ due to double-diffusive processes, but the Redi co-278

efficient field is constant everywhere for all times. The second modeling system uses time-279

invariant but spatially varying diapycnal diffusivity and Redi coefficient fields, each es-280

timated with an optimization procedure, where the diapycnal diffusivities associated with281

temperature and salinity are assumed to be identical. We describe how each of these mod-282

eling systems are used in combination with several observationally-derived products, listed283

in Table 2, and in situ measurements in Section 2.1.284

2.3 Model experiments285

2.3.1 GEOS-5286

The GEOS-5 modeling system is comprised of multiple components. GEOS-5 in-287

cludes a global, finite volume atmospheric general circulation model that is used for nu-288

merical weather prediction, seasonal-to-decadal forecasts, and as the background field289

for atmospheric reanalyses (Molod et al., 2015). The ocean is represented by the GFDL290

Modular Ocean Model (Griffies et al., 2015), version 5 (MOM5) and the Los Alamos Com-291

munity Ice CodE sea ice model (Hunke et al., 2013), version 4.1 (CICE4.1). We use a292

configuration of the GEOS-5 modeling system with a 1o (0.5o at equator) resolution on293

a tripolar (Murray, 1996) staggered Arakawa B-grid (Mesinger and Arakawa, 1976) and294

50 geopotential levels for MOM5, 2o resolution and 24 pressure levels for the atmospheric295

model, and 1o resolution and 3 layers for CICE4.1. Historical aerosols (sulfate, dust, and296

sea salt) and biomass burning emissions (black and organic carbon) updated from the297

Goddard Chemistry Aerosol Radiation and Transport (GOCART) model (Chin et al.,298

2002) are used over the time period 1992 through 2016. Initial conditions are based on299

a long spin-up that used MOM4 coupled to one version of the GEOS-5 atmosphere model300

(Molod et al., 2012) and hundreds of additional years of spin-up that used MOM4 cou-301

pled to a slightly different version of the GEOS-5 atmosphere model. The differences be-302

tween the two versions of the GEOS-5 atmospheric model used in the two phases of spin-303

up include developments in cloud microphysics and atmospheric chemistry.304

The diapycnal diffusivities, Redi coefficients, and Gent-McWilliams coefficients are305

determined in MOM5 as follows. Diapycnal diffusivities in MOM5 are represented by306

the K-Profile Parameterization (KPP; Large et al., 1994) and a parameterization for mix-307

ing due to internal tides (Simmons et al., 2004). Shear-driven mixing, gravitational in-308

stabilities that can cause vertical convection, and double-diffusive processes, which can309

cause the temperature diffusivity to be different from the salinity diffusivity, are accounted310

for in the interior (Large et al., 1994). The resulting diapycnal diffusivities spatio-temporally311

vary. However, this combination of parameterizations does not make use of an explicit312

energy budget that accounts for conversion between kinetic and potential energy when313

determining the diapycnal diffusivities. The Redi coefficients (Redi, 1982) and Gent-McWilliams314

coefficients of the Gent and McWilliams (1990) parameterization for mesoscale eddies315

are, by default, prescribed to be 600 m2 s−1 everywhere, except for some variation in west-316

ern boundary current regions for the Gent-McWilliams coefficients. The Redi coefficients317

and Gent-McWilliams coefficients are, thus, constant in time and in most locations. A318

mixed layer instability scheme for the submesoscale transport by Fox-Kemper et al. (2011)319

is used.320
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Multiple coupled simulations are run using the GEOS-5 modeling system. We use321

GEOS-5 because it accounts for coupled feedbacks, such as the sea ice-albedo and cloud322

feedbacks, that, in addition to ocean dynamics, contribute to internal variability of the323

Earth system model. We inquire whether the error associated with the diapycnal dif-324

fusivity parameter is an important source of model error, relevant on the timescales of325

our simulation. We take the approach of substituting the diapycnal diffusivities with time-326

varying ones where and whenever they are available for the following reason. Substitu-327

tion of the model-calculated diapycnal diffusivities with κρt allows for spatial as well as328

temporal variations found in the Argo-derived data. The κρ,W15 product does not cap-329

ture temporal variations in the diapycnal diffusivity field, which are likely important in330

locations such as the tropical Pacific Ocean (Warner & Moum, 2019).331

We perform and analyze the following GEOS-5 experiments:332

• G-CTRL - a 25 year in length (1992-2016) hindcast run that substitutes the di-333

apycnal diffusivities computed online with κρ,MOM5334

• DIFF - a 25 year in length (1992-2016) hindcast run that substitutes the diapy-335

cnal diffusivities computed online with κρ,t except where they are not available,336

in which case κρ,MOM5 are used; “DIFF” here stands for diffusivity, not difference337

• BKG - twenty-one background free-running simulations that are each 1 year in338

length and identical except in their initialization; each starts from a different time339

(each month of 1992)340

• GMAO S2S Ocean Analysis - a reanalysis product using the GEOS-5 mod-341

eling system, but with data assimilation from May of 2012 to March of 2019 (see342

Section 2.3.1.2)343

G-CTRL is compared with DIFF instead of the 25 year in length free-running sim-344

ulation because the diapycnal diffusivities are substituted in the same way, but with dif-345

ferent values. Here, G-CTRL is not necessarily the same as the free-running simulation346

because the frequency of variability in the diapycnal diffusivity field differs. Sub-monthly347

variability in the diapycnal diffusivities is suppressed in G-CTRL because κρ,MOM5 is348

an averaged monthly output field from the model that is interpolated in time as the model349

runs. The wind forcing, for instance, could cause sub-monthly variability in the model-350

calculated diapycnal diffusivities. Sub-monthly frequencies in the diapycnal diffusivities351

may be important in the real ocean due to internal tidal breaking during the spring tide,352

but these higher frequency effects are not sufficiently represented by the model. In G-353

CTRL and DIFF, the diapycnal diffusivities associated with temperature and salinity354

are different and have a time-varying components, as calculated using the KPP (Large355

et al., 1994) scheme. In DIFF, the diapycnal diffusivities associated with temperature356

calculated with the GEOS-5 model are substituted with κρ,t, except where there are in-357

sufficient observations, in which case κρ,MOM5 is used. The differences between the di-358

apycnal diffusivities associated with temperature and those associated with salinity in359

G-CTRL are preserved in the DIFF experiment wherever substitutions are made. The360

finescale turbulence parameterization does not distinguish between the diapycnal diffu-361

sivities associated with temperature and those associated with salinity so their differ-362

ence as calculated in G-CTRL is assumed to be the same in DIFF.363

2.3.1.1 Diagnostic for understanding dynamical impacts of diapycnal diffusivity364

changes: steric sea level budget365

In order to better understand how diapycnal diffusivity changes dynamically im-366

pact the ocean in the present study, we analyze a model’s buoyancy budget, which is bro-367

ken down into heat and salt budgets and used to calculate the steric sea level budget.368

The tracer tendency equation terms required for the heat and salt budgets were com-369

puted as the reanalysis was produced. The tracer equations can be broken down into in-370
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dividual contributions (Palter et al., 2014),371

ρ
dΘ

dt
+ ρAΘ = −∇ · JΘ + ρQΘ (2)

ρ
dS

dt
+ ρAS = −∇ · JS + ρQS ,

where d/dt = ∂/∂t+ (v + v∗) · ∇ is the material derivative, v is the resolved velocity372

field, v∗ is the eddy-induced or quasi-Stokes velocity field that represents parameterized373

motions, Θ is the potential temperature, S is the salinity, ρ is the locally referenced po-374

tential density, JΘ and JS are the parameterized along-isopycnal and diapycnal mixing375

fluxes associated with potential temperature and salinity, QΘ and QS are the sums of376

sources and sinks of potential temperature and salinity, and AΘ and AS are the anal-377

ysis increments for potential temperature and salinity due to the assimilation of data by378

a sequential filter-based data assimilation ocean modeling system. The analysis incre-379

ments in the sequential filter-based data assimilation system–such as the one described380

below, in Section 2.3.1.2–obscure the physics so we do not analyze its output.381

The heat and salt budget terms summarized by Equation (2) are computed as fol-382

lows. The resolved, mesoscale, and submesoscale transports are accounted for in the ma-383

terial derivatives Θ and S, the neutral and diapycnal diffusion of Θ and S are accounted384

for by JΘ and JS , and the analysis increments of Θ and S are accounted for by AΘ and385

AS . The neutral diffusion term includes cabbeling, thermobaricity, and a dianeutral con-386

tribution that mixes properties by providing for the exponential transition to horizon-387

tal diffusion in regions of steep isoneutral slopes according to Treguier (1992) and Ferrari388

et al. (2008, 2010) where the surface boundary layer is encountered and following Gerdes389

et al. (1990) next to solid walls. The diapycnal diffusion term is not added to the ver-390

tical component of the along-isopycnal diffusion term, but because of convention (e.g.,391

Palter et al., 2014) is nevertheless referred to as the vertical diffusion term hereafter. The392

vertical diffusion term also includes penetrating shortwave radiation flux. The sources393

and sinks of Θ and S accounted for by QΘ and QS include nonlocal convection (the trans-394

port where turbulent fluxes don’t depend upon local gradients in Θ or S because buoy-395

ant water gets entrained into the mixed layer when the surface buoyancy forcing drives396

convection above a stratified water column); surface buoyancy fluxes (latent, sensible,397

shortwave, longwave, and frazil heat fluxes); precipitation minus evaporation; runoff mix-398

ing (mixes properties associated with river outflows); downslope mixing (mixes proper-399

ties downslope to represent the overflow dense waters from marginal seas); sigma-diffusion400

(mixing properties along terrain-following coordinates in regions with partial bottom cells);401

numerical smoothing of the free surface (intended to reduce B-grid checkerboard noise);402

numerical sponge (intended to absorb the Kelvin waves set off by the assimilation of some403

data); calving of land ice; and frazil ice formation. The runoff mixing, downslope mix-404

ing, and sigma-diffusion terms are considered sources or sinks here because they are as-405

sociated with numerical schemes that aim to resolve problems created by coarse model406

resolution, the vertical coordinate system used near boundary layers, and imperfect bathymetry.407

There is no geothermal heating included in the GMAO S2S Ocean Analysis. The ver-408

tical diffusion term includes a subsurface shortwave heating contribution to a function409

of the diapycnal diffusivity field, the mesoscale transport term assumes constant Gent-410

McWilliams coefficients, and the neutral diffusion term assumes constant Redi coefficients,411

explaining why each of these three terms are non-zero globally (Table 3).412

At each time step, the model evaluates a tendency term for every process that con-413

tributes to (2) from their parameterized or dynamically calculated values, their units are414

converted to W m−2 and kg m−2 s−1 for Θ and S, and their monthly averages are saved415

to the output files used in this analysis. Implicit in these output tendency terms is that416

each term is weighted by the thicknesses of each layer as the model runs and writes the417

output to file. The heat and salt budget terms saved to file are used to calculate the steric418

sea level budget as follows. The steric sea level budget terms are computed by scaling419

the heat tendency terms by α/Cp and the salt tendency terms by −1000β, where Cp (units420
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in J kg−1 K−1) is the specific heat of seawater, α = −[1/ρ](∂ρ/∂T ) (units in K−1 ) is421

the thermal expansion coefficient, and β = [1/ρ](∂ρ/∂S) (units in kg g−1) is the ha-422

line contraction coefficient. In order to get a longitude-latitude map of the terms that423

depend upon depth shown here, we integrate over depth by summing over the depth di-424

mension. We only analyze the steric sea level budgets of G-CTRL and DIFF here in or-425

der to interpret the dynamical changes upon adjusting the diapycnal diffusivities.426

2.3.1.2 Comparison with a reanalysis product427

Before we present some dynamical impacts of perturbed diapycnal diffusivities and428

ultimately examine how to better constrain ocean mixing parameters in ocean data as-429

similation systems, we present an example of why there could be a need for better con-430

straints on ocean mixing parameters. To do this, we compare the diapycnal diffusivities431

from multiple GEOS-5 simulations performed without data assimilation (G-CTRL and432

DIFF) with those from a reanalysis product that uses the same underlying modeling sys-433

tem called the Global Modeling and Assimilation Office sub-seasonal to seasonal (GMAO434

S2S) Ocean Analysis. This comparison highlights how the diapycnal diffusivities can be-435

have due to the disruption of dynamical balance that can be the result of the use of a436

sequential data assimilation system (Stammer et al., 2016; Pilo et al., 2018). The GMAO437

S2S Ocean Analysis is used to demonstrate what can happen to the diapycnal diffusiv-438

ities when only hydrographic information is assimilated using a sequential data assim-439

ilation framework.440

The NASA GMAO has recently updated their GEOS-5 sub-seasonal to seasonal441

forecast system (S2S-v2.1;442

https://gmao.gsfc.nasa.gov/cgi-bin/products/climateforecasts/geos5/S2S 2/index.cgi).443

This new system is the current contribution of the GMAO to the North American Multi-444

Model project445

(http://www.cpc.ncep.noaa.gov/products/NMME/about.html) and NOAA’s ex-446

perimental sub-seasonal ensemble project447

(http://cola.gmu.edu/kpegion/subx/index.html). A configuration of the modeling448

system is used that is nominally 0.5o resolution on a tripolar (Murray, 1996) staggered449

Arakawa B-grid (Mesinger & Arakawa, n.d.) and 40 geopotential levels for MOM5, and450

0.5o resolution and 5 layers for CICE4.1 with atmospheric forcing from MERRA-2 (Modern-451

Era Retrospective analysis for Research and Applications, Version 2) reanalysis (Gelaro452

et al., 2017). The GMAO S2S Ocean Analysis (Molod et al., 2020) is a reanalysis prod-453

uct that uses a system similar to the Local Ensemble Transform Kalman Filter (LETKF)454

data assimilation procedure described by Penny et al. (2013), but where the background455

error is calculated offline using ensemble members of freely coupled simulations. The back-456

ground error does not explicitly account for uncertainties in the ocean mixing param-457

eters, as it is only a function of the observed and background temperatures and salin-458

ities. The temperature and salinity would change and so would the calculated covari-459

ances if the mixing parameterizations were changed, but each of the 21 background free-460

running simulations (BKG) have the same mixing parameterization, as they only differ461

in their initialization.462

The following datasets were used by the GMAO S2S data assimilation modeling463

system. A relaxation procedure, or update, is applied towards the MERRA-2 sea sur-464

face temperatures and sea ice fraction from the NASA TEAM-2 product (Markus & Cav-465

alieri, 2009) at a 5-day assimilation cycle. No ocean mixing parameter data are assim-466

ilated. Assimilated in situ observational data that provide temperatures and salinities467

come from TAO, PIRATA, RAMA, XBT, CTD, and Argo instruments. Satellite altime-468

try data that provide sea level anomalies come from TOPEX, ERS-1+2, Geosat FO, Jason-469

1, Jason-2, Jason-3, Envisat, Cryosat-2, Saral, HY-2A, and Sentinel 3A. The absolute470

dynamic topography is calculated as the sum of the sea level anomaly and the mean dy-471

namic topography, which is estimated using GOCE and GRACE data, all available al-472

timetry, and in situ data. Absolute dynamic topography data are assimilated into the473
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model system using the same method as for the in situ data, except these data are thinned474

along-track and a Gaussian weighted mean using a decorrelation scale of 1000 km is cal-475

culated prior to assimilation. In addition, the global trend was removed from the abso-476

lute dynamic topography before assimilation and zero net input of water was applied.477

Precipitation is corrected using the Global Precipitation Climatology Project version 2.1478

(GPCPv2.1, provided by the NASA/Goddard Space Flight Center’s Laboratory for At-479

mospheres, which calculates the dataset as a contribution to the GEWEX Global Pre-480

cipitation Climatology Project) and Climate Prediction Center (CPC) Merged Analy-481

sis of Precipitation (CMAP, provided by the NOAA/OAR/ESRL PSD, Boulder, Col-482

orado, USA, from their website at http://www.esrl.noaa.gov/psd/), as described by Reichle483

et al. (2011) except for MERRA-2 instead of MERRA data. All other atmospheric forc-484

ing fields used in the construction of the reanalysis came from MERRA-2. The GMAO485

S2S modeling system is an update to the one described in Borovikov et al. (2017). As486

such, the model only ran for the period: May of 2012 to March of 2019.487

2.3.2 ECCO488

The other model system used here is the ECCO-Production, version 4 in revision489

3 (ECCOv4r3; Fukumori et al., 2017). The underlying ocean-sea ice model is based on490

the Massachusetts Institute of Technology general circulation model (MITgcm), which491

is a global finite volume model. The ECCOv4r3 global configuration uses curvilinear Carte-492

sian coordinates (Forget et al., 2015a - see their Figs. 1-3) at a nominal 1o (0.4o at equa-493

tor) resolution and rescaled height coordinates (Adcroft & Campin, 2004) with 50 ver-494

tical levels and a partial cell representation of bottom topography (Adcroft et al., 1997).495

The MITgcm uses a dynamic/thermodynamic sea ice component (Menemenlis et al., 2005;496

Losch et al., 2010; Heimbach et al., 2010) and a nonlinear free surface with freshwater497

flux boundary conditions (Campin et al., 2004). The wind speed and wind stress are spec-498

ified as 6-hourly varying input fields over 24 years (1992-2015). There are 14-day adjust-499

ments to the wind stress, wind speed, specific humidity, shortwave downwelling radia-500

tion, and surface air temperature. These adjustments are based on estimated prior un-501

certainties for the chosen atmospheric reanalysis (Chaudhuri et al., 2013), which is ERA-502

Interim (Dee et al., 2011). The net heat flux is then computed via a bulk formula (Large503

& Yeager, 2009). A parameterization of the effects of geostrophic eddies (Gent & McWilliams,504

1990) is used. Mixing along isopycnals is according to the framework provided by Redi505

(1982). Vertical mixing–diapycnal plus the vertical component of the along-isopycnal tensor–506

is determined according to the Gaspar et al. (1990) mixed layer turbulence closure and507

simple convective adjustment.508

Initial conditions and model parameters for the runs performed here are from EC-509

COv4r3. The least squares problem solved by the ECCO model uses the method of La-510

grange multipliers through iterative improvement, which relies upon a quasi-Newton gra-511

dient search (Nocedal, 1980; Gilbert & Lemarechal, 1989). Algorithmic (or automatic)512

differentiation tools (Griewank, 1992; Giering & Kaminski, 1998) have allowed for the513

practical use of Lagrange multipliers in a time-varying non-linear inverse problem such514

as the one for the ocean because the discretized adjoint equations no longer need to be515

explicitly hand-coded. Contributions of observations to the model-data misfit function516

are weighted by best-available estimated data and model representation error variance517

(Wunsch & Heimbach, 2007). The observational data assimilated into the ECCO state518

estimate are discussed in Forget et al. (2015) and Fukumori et al. (2017). These data519

include satellite-derived ocean bottom pressures, sea ice concentrations, sea surface tem-520

peratures, sea surface salinities, sea surface height anomalies, and mean dynamic topog-521

raphy, as well as profiler- and mooring-derived temperatures and salinities (Fukumori522

et al., 2017). No ocean mixing parameter or biogeochemical tracer data are used in the523

ECCO assimilation. The control variables that are inverted and optimized for by ECCO524

include the initial condition of the sea surface heights, ocean velocities, temperatures,525

and salinities; time-mean three-dimensional distribution of along-isopycnal diffusion (Redi526
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coefficients–Redi, 1982), Gent-McWilliams (Gent & McWilliams, 1990) coefficients, and527

diapycnal diffusivities (Gaspar et al., 1990); and time-varying two-dimensional surface528

forcing fields. Fifty-nine iterations in the optimization run of ECCO were performed to529

arrive at the ECCOv4r3 solution we start from for our adjoint sensitivity experiments.530

ECCO avoids some pitfalls of sequential data assimilation systems because adjustments531

are only applied to the input parameters and ocean-sea ice state evolves through the en-532

tire model trajectory (1992–2015) without added artificial sources/sinks.533

There are three ways to run ECCO: 1) an optimization run of the model in forward534

plus adjoint modes, where data are assimilated and new values of the model’s input “con-535

trol parameters” (ocean mixing parameters, initial conditions, and forcing fields) are es-536

timated; 2) an adjoint sensitivity run of the optimized state estimate in forward plus ad-537

joint modes, where data are included in the cost function but not technically “assimi-538

lated” because the model input parameters do not change; and 3) a re-run of the opti-539

mized state estimate in forward mode, like most ocean models except all control param-540

eters are set to be their estimated values from the optimization run. We perform (2) and541

(3) in this study.542

In order to assess whether the assimilation of a particular data set would lead to543

a more accurate estimate of ocean mixing parameter K (either κρ or κRedi), two con-544

ditions must be satisfied. The first condition is that the observationally-derived ocean545

mixing parameter K has a smaller bias with respect to independent observations than546

the model’s estimate of K. We devote the first portion of our study to determining whether547

this is true for the diapycnal diffusivities. We use microstructure to assess whether the548

model-calculated diapycnal diffusivities (unconstrained) have smaller biases when nudged549

to be closer to κρ,W15 (constrained) than they would without the nudging; i.e.,550

|κρ,unconstrained−κρ,micro|/σκ ≤ |κρ,constrained−κρ,micro|/σκ, for uncertainty in551

the observationally-derived values σκ. We do not assess this first condition for observationally-552

derived Redi coefficients due to the dearth of independent observations and the magni-553

tudes of their uncertainties.554

The second condition is that the “adjoint sensitivities” from two different exper-555

iments have the same sign in the majority of locations. An adjoint sensitivity is essen-556

tially the sensitivity of one variable to another, computed by making use of the model’s557

adjoint. Formally, an adjoint sensitivity is ∂J/∂X, where the cost function J is a sum558

of weighted misfits to observations and a control variable X is a variable that the model559

estimates by making use of its adjoint and observations–see Section 2.3.2.1. The adjoint560

sensitivities provide information about which directions the model should change X in561

order to minimize J (see below). The experiments performed in this study always use562

X = K, one of the ocean mixing parameters, but X could be a different variable. To563

gauge the adjoint sensitivities, we perform new experiments that include observationally-564

derived ocean mixing parameters–from either a finescale parameterization or mixing length565

theory–in ECCO’s cost function. One of these experiments compares observationally-566

derived ocean mixing parameters with the ECCOv4r3 solution’s ocean mixing param-567

eters. The other experiment compares observed with simulated biogeochemical oceanic568

tracer distributions. This is repeated for three different biogeochemical tracers to see whether569

any of these tracers provide information about ocean mixing–along or across isopycnals.570

Several tracers are simulated using Biogeochemistry with Light, Iron, Nutrients and Gases571

(BLING) model (Galbraith et al., 2015). BLING is an intermediate complexity biogeo-572

chemistry model that uses several prognostic tracers and parameterized, implicit rep-573

resentations of iron, macronutrients, and light limitation and photoadaptation. BLING574

has been shown to compare well with the Geophysical Fluid Dynamics Laboratory’s full-575

complexity biogeochemical model, TOPAZ (Galbraith et al., 2015), and has been adapted576

for use in the MITgcm with its adjoint (Verdy & Mazloff, 2017).577

The following is a summary of the ECCO experiments we run:578
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• E-CTRL - a forward ECCOv4 simulation that uses the parameters from ECCOv4r3;579

this simulation can be referred to as a “re-run”580

• Dmisfit - an adjoint sensitivity (with respect to X = log10(κρ)) experiment in581

which only the base-10 logarithm of the κρ,W15 and κρ,K17 products are included582

as observations and compared to the ECCOv4r3 solution’s diapycnal diffusivities583

in J584

• Rmisfit - an adjoint sensitivity (with respect to X = κRedi) experiment in which585

only the κRedi,C15 product is included as observations and compared to the EC-586

COv4r3 solution’s Redi coefficients in J587

• Omisfit - an adjoint sensitivity (with respect to X = log10(κρ) and X = κRedi)588

experiment in which only oxygen concentrations from the World Ocean Atlas (2013)589

climatology are included as observations and compared to those simulated using590

BLING with the ECCOv4r3 solution in J591

• Amisfit - an adjoint sensitivity (with respect to X = log10(κρ) and X = κRedi)592

experiment in which only alkalinities from the World Ocean Atlas (2013) clima-593

tology are included as observations and compared to those simulated using BLING594

with the ECCOv4r3 solution in J595

• Pmisfit - an adjoint sensitivity (with respect to X = log10(κρ) and X = κRedi)596

experiment in which only phosphate concentrations from the World Ocean Atlas597

(2013) climatology are included as observations and compared to those simulated598

using BLING with the ECCOv4r3 solution in J599

We take the ECCOv4r3 solution as initial conditions and perform an adjoint cal-600

culation for each of the five experiments. Only one year was run for each of these sim-601

ulations because we are using time-invariant climatologies, and one year suffices to demon-602

strate the point that the assimilation of a biogeochemical tracer may reduce the bias in603

the ocean mixing parameter estimates. The adjoint sensitivities from Dmisfit and Rm-604

isfit are not sensitive to their initial conditions or run length due to the lack of time-dependence605

of the ocean mixing parameters. While the adjoint sensitivities from Omisfit, Amisft,606

and Pmisfit are sensitive to initial conditions, we begin from a previously-derived prod-607

uct that has been spun-up from an initial GLobal Ocean Data Analysis Project version608

2 (GLODAPv2) climatology (Dutkiewicz et al., 2005) and our results are not qualita-609

tively sensitive to the run length. It is important to note that a base-10 logarithm of the610

diapycnal diffusivities–which are positive definite–is taken in each simulation, which sta-611

bilizes the numerics of the model and reduces the adjoint sensitivities relative to using612

the untransformed diapycnal diffusivities.613

2.3.2.1 Adjoint sensitivity analyses614

In order to further understand whether ocean mixing parameters could be estimated615

more accurately through data assimilation of biogeochemical tracers, we perform mul-616

tiple adjoint sensitivity experiments with ECCO. We define the objective (or cost) func-617

tion here to more formally explain what the adjoint sensitivity is. ECCO calculates the618

cost function to be minimized, J , as (Stammer et al., 2002):619

J =

tf∑
t=1

[y(t)−Ex̃(t)]TW(t)[y(t)−Ex̃(t)] (3)

where tf is the final time step, x̃ is the model-based estimate of the state vector (x), E620

is the observation matrix that relates the model state vector to observed variables (such621

that Ex̃ is the model-based estimate of the observables y), and W is the weight (inverse622

square of the uncertainty) of the observations. In each of our adjoint sensitivity exper-623

iments, the misfit to a single data set is included in the cost function; all other terms in624

the cost function are zero.625

While the adjoint sensitivities from Omisfit, Amisfit, and Pmisfit must be computed626

online using ECCO, the adjoint sensitivities from Dmisfit and Rmisfit can either be com-627
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puted online using ECCO or come from using an analytical equation offline. The adjoint628

sensitivities computed in this study are the derivatives of J in Eq. 3 with respect to one629

of the ocean mixing parameters: the base-10 logarithm of the diapycnal diffusivity (log10(κρ))630

or the Redi coefficient (κRedi). The adjoint sensitivity runs with the ocean mixing pa-631

rameters included in the misfit calculation (Dmisfit and Rmisfit) have adjoint sensitiv-632

ities that can be computed offline (i.e., using the output of E-CTRL instead of running633

Dmisfit or Rmisfit), using:634

∂J

∂K
= −2

(Kobs −Kmodel)

σ2
K

. (4)

Here, K is either κRedi or log10(κρ), y = Kobs is the observationally-derived value of635

K described in the previous section, Ex̃ = Kmodel is the value that ECCO estimates636

for K, and σ2
K (entries of W) is taken to be 3∗Kobs (or the base-10 logarithm of this637

in the case of the diapycnal diffusivities) due to the factor of 2-3 uncertainty. The of-638

fline adjoint sensitivities using Eq. 4 and the adjoint sensitivities using ECCO have been639

verified to be in agreement. Values of κρ,ECCO and κRedi,ECCO from ECCOV4r3 are used640

for Kmodel in these adjoint sensitivity simulations and offline calculations (Eq. 4).641

The main finding of this study comes from our test to see whether ∂J/∂K in Dm-642

isfit and in Rmisfit is of the same sign as ∂J/∂K in Omisfit, Amisfit, and/or Pmisfit. For643

example, say that the κρ,W15 and κρ,K17 products are in close agreement with microstructure-644

inferred diapycnal diffusivities. Then if Dmisfit and Omisfit each show that ∂J/∂log10(κρ)<645

0 (i.e., the diapycnal diffusivities need to be increased to lower the cost) in the same lo-646

cations, then it is preferable to assimilate the more accurately known oxygen concentra-647

tions instead of the diapycnal diffusivities in a new optimization. Pmisfit and Omisfit648

are expected to provide similar information because of the phosphate to oxygen Redfield649

ratio, but we test this expectation by including Pmisfit here. Note that ∂J/∂κRedi =650

0 in Dmisfit and ∂J/∂log10(κρ)= 0 in Rmisfit because J is a function of only one of the651

ocean mixing parameters in each experiment (i.e., no other observations are included in652

the cost function) and each ocean mixing parameter is simply read in, as opposed to dy-653

namically calculated.654

In order to compare the adjoint sensitivities across different experiments, a nor-655

malization factor must be computed. After weighting by the grid cell volume to make656

each grid cell comparable to another, the adjoint sensitivities can be normalized in two657

ways. One way is to non-dimensionalize the sensitivities by multiplying them by a rep-658

resentative value for the variable the sensitivity is taken with respect to and then weight-659

ing by the inverse square of an estimate of the temporal variability in the field computed660

in the misfit calculation. The second way to normalize the adjoint sensitivities is to sim-661

ply divide the adjoint sensitivities by the cost function of each respective experiment.662

We choose to use this second method (results presented in Section 3.5), but the first method663

produces qualitatively similar results. Table 4 tabulates the data sources, described in664

Section 2.1, and cost functions used to normalize the adjoint sensitivities for each ECCO665

experiment, summarized in Table 1 and Section 2.3.666

3 Results667

Our first goal is to determine if using an observationally-derived diapycnal diffu-668

sivity from the finescale parameterization reduces biases in the diapycnal diffusivity field669

with respect to independent observational data. To address this goal, we take one di-670

rect approach–through comparison with microstructure observations–and the other in-671

direct approach–involving the adjustment of the diapycnal diffusivities in the GEOS-5672

simulations. Next, we use the observationally-derived diapycnal diffusivities from the finescale673

parameterization and Redi coefficients from mixing length theory to investigate whether674

biogeochemical tracers could be assimilated to better estimate ECCO’s ocean mixing pa-675

rameters in a future optimization at global 1o resolution. Specifically, we run several ad-676

joint sensitivity experiments in which either an ocean mixing parameter or a biogeochem-677
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ical tracer is included in the misfit calculation to guide constraints on ocean mixing pa-678

rameters.679

3.1 Assessments of diapycnal diffusivities from models and finescale pa-680

rameterization681

Previous studies have shown that κρ,micro and κρ,W15 agree within a factor of 2-682

3 and exhibit no systematic high or low bias in open ocean conditions from below the683

mixed layer to a depth of 2 km (Whalen et al., 2015). Here, we compare the average model-684

calculated profiles–with and without nudging to the κρ,W15 product–and the average κρ,micro685

profile that is comprised of 24 campaigns worth of data Waterhouse et al. (2014 - see686

their Fig. 6; black curve in Fig. 1). A geometric average is taken for each profile because687

a geometric average is more representative than an arithmetic average for a small sam-688

ple size and when the data are not normally distributed (Manikandan, 2011), like the689

log-normal distribution of diapycnal diffusivities.690

In general, a dearth of mixing at intermediate depths (250−1500 meters depth)691

and at abyssal depths (> 3500 meters depth) is found in the ECCO solutions. The ini-692

tial guess (pre-optimized) values (grey curve in Fig. 1) are even smaller than the EC-693

COv4r3 solution: E-CTRL (red curve in Fig. 1). When κρ,ECCO is adjusted towards κρ,W15,694

the average profiles from the model and κρ,micro in the upper 2000 meters agree more695

closely (blue curve in Fig. 1). The blue curve sits on top of the red curve in Fig. 1 be-696

low 2000 meters, by construction.697

κρ,micro is also compared with an averaged diapycnal diffusivity profile from G-CTRL,698

DIFF, and a reanalysis product (the GMAO S2S Ocean Analysis). The diapycnal dif-699

fusivity profiles from the G-CTRL and DIFF simulations (red and blue curves in Fig.700

2) and from the GMAO S2S Ocean Analysis (green curve in Fig. 2) are sampled at the701

same locations as the microstructure observations. Nudging towards κρ,W15 tends to in-702

crease κρ,MOM5 between 750−1750 meters depth. As a result, when nudged towards703

κρ,W15, the model’s average profile does not agree better with κρ,micro between 750−704

1750 meters depth (red and blue curves in Fig. 2), likely due to differences in spatial cov-705

erage between the Argo and microstructure observations. However, on average, the dis-706

agreement with κρ,micro is no worse in the full adjusted model-calculated diapycnal dif-707

fusivity profile than in the full unadjusted model-calculated average diapycnal diffusiv-708

ity profile. The differences between the full adjusted model-calculated and κρ,micro pro-709

files are well within the uncertainty of the κρ,W15 product.710

While the average diapycnal diffusivity profile in the model is fairly accurate, par-711

ticularly below 500 meters depth, in each of the GEOS-5 simulations we ran without the712

GMAO’s data assimilation system (red and blue curves in Fig. 2), the GMAO S2S Ocean713

Analysis product has diapycnal diffusivities that are too small below (large above) about714

500 meters depth (green curve in Fig. 2). Potential reasons for this discrepancy include715

dynamical adjustments due to the analysis increments, or inconsistencies between the716

model’s atmosphere and ocean due to the strong relaxation to sea surface temperatures,717

and fixed zero net water input for global sea level. We only include the GMAO S2S Ocean718

Analysis result here to suggest that data assimilation systems, particularly ones that are719

based on filter-based sequential data assimilation methods, may require stronger con-720

straints on their diapycnal diffusivities to prevent them from becoming too unrealistic.721

One way to do this is to assimilate ocean mixing parameters. Another possible method722

is to assimilate a biogeochemical tracer, which is proposed later in this study.723
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3.2 Model- vs finescale parameterization-derived ocean mixing param-724

eter comparisons725

We next present the κρ,W15 product (Figs. 3a,d,g) and the percent differences be-726

tween their product and ECCO-estimated diapycnal diffusivities (κρ,ECCO; Figs. 3b,e,h).727

Blue regions in Figs. 3b,e,h indicate where κρ,ECCO are too small and red regions in-728

dicate where κρ,ECCO are too large. The regions with the largest disagreement below729

the mixed layer are in the Atlantic and Indian sectors of the Southern Ocean, the trop-730

ical Pacific Ocean, the Atlantic Ocean, and the Kuroshio Extension between 500-1000731

meters depth (Figs. 3b,e,h). The values of κρ,ECCO are smaller than those in the ob-732

servational product in the Kursoshio Extension (500-1000 meters depth), subpolar North733

Atlantic (500-1000 meters depth), Southern Ocean, and equatorial regions in the Atlantic734

and shallow (250-500 meters depth) Indian and eastern Pacific Oceans (Figs. 3b,e,h).735

The errors in κρ,ECCO could be partially compensating for errors in the vertical com-736

ponent of the along-isopycnal diffusivity tensor and/or numerical diffusion (see later).737

The base-10 logarithm of the diapycnal diffusivity field at different depth levels from738

the κρ,W15 product (Figs. 3a,d,g) is also compared with the time-averaged GEOS-5-calculated739

diapycnal diffusivity field (κρ,MOM5; Figs. 3c,f,i). The sign of the discrepancy between740

the values of κρ,MOM5 and the observations varies regionally, but the disagreements tend741

to be smaller than those for κρ,ECCO. The regions with the largest disagreement are along742

the equator, in the Southern Ocean, in the Labrador and Irminger Seas, and in the Gulf743

Stream and Kuroshio Extensions (Figs. 3c,f,i). Along the equator the values of κρ,MOM5744

tend to be larger than the observational product, but the discrepancy changes sign slightly745

poleward in the near-equator tropics. The values of κρ,MOM5 are smaller than the ob-746

servations both in regions where deep convection is prevalent and in the vicinity of the747

Antarctic Circumpolar Current (ACC). In the Gulf Stream Extension region, the Malv-748

inas Current region, part of the Kuroshio Extension region, and the Indian Ocean sec-749

tor of the ACC above 500 meters depth, the values of κρ,MOM5 are too large because750

the mixed layer depth can be deeper than 250 meters. In these regions, the model-calculated751

diapycnal diffusivities can be much increased due to vertical convection. One likely source752

of these errors in the abyssal diapycnal diffusivities is the improper treatment of remote753

internal tide-induced mixing, discussed in Melet et al. (2016), but several other processes,754

such as the wind-driven near-inertial waves (Alford et al., 2016), can impact the diapy-755

cnal diffusivities in the upper water column. MacKinnon et al. (2017) discusses other can-756

didates for more accurate representation of ocean mixing. The values of κρ,ECCO could757

be worse than those of κρ,MOM5 in comparison to κρ,micro and κρ,W15 because κρ,ECCO758

is primarily constrained by assimilated hydrographic observations, which are sparse be-759

low 2000 meters depth and likely insufficient in near-coastal areas, where internal wave-760

induced mixing can be important.761

We next compare the Redi coefficient field from the κRedi,C15 product (Figs. 4a,d,g)762

and the percent differences between their product and the ECCO-estimated Redi coef-763

ficients (κRedi,ECCO; Figs. 4b,e,h). As in Figs. 3b,e,h the regions that are red in Figs.764

4b,e,h are locations where κRedi,ECCO are too small and blue regions are where κRedi,ECCO765

are too large. The regions with the largest disagreement are along the equator, in inten-766

sified jet regions, and in the Labrador and Irminger Seas (Figs. 4b,e,h). The values of767

κRedi,ECCO are too large in the Kuroshio Extension and subpolar North Atlantic Ocean768

(Figs. 4b,e,h). In most other locations, κRedi,ECCO are too small. The exaggeration of769

Redi coefficients in western boundary current regions and underestimates of Redi coef-770

ficients elsewhere in ECCOv4r3 are likely compensating for errors in other model param-771

eters, such as the Gent-McWilliams coefficients, and further arises due to errors in hor-772

izontal gradients of dynamical fields such as salinity. The Gent-McWilliams coefficient773

can impact horizontal gradients due to its impact on the slope of isopycnals, and the hor-774

izontal gradients determine the slope of the tensor that sets the direction in which the775

Redi coefficients diffuse tracers. This makes Redi coefficients susceptible to errors in Gent-776
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McWilliams coefficients and vice-versa; an error in one parameter may be the result of777

a trade-off in errors in another parameter.778

We also present the base-10 logarithm of the Redi coefficient field from the κRedi,C15779

product via mixing length theory (Figs. 4a,d,g) and the base-10 logarithm of the ratios780

of the assumed Redi coefficient field (600 m2 s−1) of the GEOS-5 model to the κRedi,C15781

product (Figs. 4c,f,i). Assuming that the κRedi,C15 product is accurate, the regions that782

are red in Figs. 4c,f,i are locations where the model’s ocean mixing parameters are too783

large and blue regions are where the model’s ocean mixing parameters are too small. The784

values κRedi,MOM5 = 600 m2 s−1 of the GEOS-5 model are too small in the upper 2000785

meters of every region except for the North Pacific Ocean and Weddell Sea. The largest786

disagreements occur in the jets (Figs. 4c,f,i). While it is well-known that the Redi co-787

efficients should not be constant (R. P. Abernathey & Marshall, 2013; Forget et al., 2011),788

the observational bias and uncertainty in the Redi coefficient field is not very well-known.789

For example, Roach et al. (2018) found values for the Redi coefficients that are a fac-790

tor of 2-3 less than those of κRedi,C15 at 1000 meters depth when drifter observations791

were used instead of high resolution ECCO2 output. Because the order of magnitude dis-792

agreement shown in many regions of Figs. 4c,f,i is larger than this approximate factor793

of 2-3 bias and uncertainty in the κRedi,C15 product, the Redi coefficient estimates may794

improve data assimilation if their uncertainties are accounted for.795

3.3 Dynamical impacts on GEOS-5796

We compare the model output from our simulations with and without κρ,t substi-797

tuting the model’s diapycnal diffusivity field to assess whether the diapycnal diffusivi-798

ties derived using the finescale parameterization has smaller biases than the model-calculated799

diapycnal diffusivities. Hereafter, we refer to the difference between the model-calculated800

diapycnal diffusivity field, κρ,MOM5 and κρ,t to be the “adjustment” ∆κρ,MOM5. We next801

show that GEOS-5 is improved by using the adjustment ∆κρ,MOM5, which suggests that802

diapycnal diffusivity products can be derived using the finescale parameterization and803

used to constrain diapycnal diffusivities in models.804

This internal variability of the GEOS-5 modeling system is first shown here and805

compared with the changes from applying ∆κρ,MOM5. The spread in the vertically and806

zonally averaged anomalies in temperature (Fig. 5a) and salinity (Fig. 5b) relative to807

the ensemble mean from the 21 free-running simulations that only differ in their initial808

conditions (BKG) is first compared with the difference in temperature and salinity from809

use of ∆κρ,MOM5. Each of the GEOS-5 simulation results were averaged over their fi-810

nal five years. Finding one time period where the changes in the GEOS-5 simulations811

are larger than the spread in the BKG anomalies is sufficient to show that the internal812

variability associated with initial conditions is smaller than that associated with adjust-813

ing the model’s diapycnal diffusivity field. Changing the diapycnal diffusivities can lead814

to vertically and zonally averaged temperature (salinity) differences in DIFF relative to815

G-CTRL. These differences can be greater than 0.1oC (0.05 PSS-1978) in some high lat-816

itude regions, which is greater than any of the anomalies in BKG (Fig. 5). In the sub-817

polar North Atlantic Ocean, use of ∆κρ,MOM5 induces the largest temperature and salin-818

ity changes, each well beyond the level of internal variability. Use of ∆κρ,MOM5 also al-819

ters the temperature and salinity by more than the level of internal variability in other820

high latitude regions and change the salinity beyond the level of internal variability in821

the tropics. These findings demonstrate that the adjustments in ocean mixing can in-822

duce changes in temperature and salinity that are larger than the internal variability of823

the model.824

Next, we assess whether using ∆κρ,MOM5 causes changes to the temperature and825

salinity that improves the free-running modeling system relative to a number of clima-826

tologies. Local changes in vertical heat and salt transport lead to convergences and di-827
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vergences of heat and salt, which influences the temperature (Fig. 5a), salinity (Fig. 5b),828

and stratification (Hieronymus et al., 2019) but this can lead to greater agreement or dis-829

agreement with observational climatologies. At least three factors explain why the tem-830

perature, salinity, and stratification fields can sometimes disagree more with observations831

at some locations: the spatiotemporal gaps in the diapycnal diffusivity substitutions, feed-832

backs as a result of air-sea flux changes in regions with deep convection (Wang et al.,833

2018; W. Liu et al., 2019; Putrasahan et al., 2019; Kostov et al., 2019), and not account-834

ing for differences in diapycnal diffusivities of temperature and salinity in the finescale835

parameterization. On average, the temperature, salinity, and stratification fields each836

agree more with observational climatologies in DIFF than in G-CTRL over the last 16837

years of each simulation (2001-2016). The mean-square error relative to Levitus and et838

al. (2012) observations in temperature (salinity) over the upper 1500 meters is 0.81oC2
839

(0.010 g2 kg−2) in G-CTRL and 0.27% smaller (1.0% smaller) in DIFF. Also, the mean-840

square error relative to Levitus and et al. (2012) observations in stratification over the841

upper 1500 meters is 1.14 × 10−10s−2 in G-CTRL and 0.36% smaller in DIFF. These842

mean-square errors are dependent on the time period used in our simulations, but over843

most continuous subsets of the final 16 years of our simulations, the mean-square errors844

are smaller in DIFF than in G-CTRL.845

We additionally use diagnostics from our simulations that account for atmosphere-846

ocean feedbacks (G-CTRL shown in Figs. 6a and 7a) and compare them with their equiv-847

alent observational climatologies: the mixed layer depths from Holte et al. (2017) and848

the sea surface temperatures from Reynolds et al. (2007). The sea surface temperature849

changes and coinciding sea level pressure changes due to substituting κρ,MOM5 with κρ,t850

are shown in Fig. 7b. The locations with blue coloring shown in Figs. 6b and 7c are im-851

proved relative to a given observational product when κρ,MOM5 is substituted with κρ,t.852

The maximum yearly mixed layer depths and sea surface temperatures are mostly im-853

proved upon adjustment of the diapycnal diffusivity field (Figs. 6b and 7c). The largest854

maximum yearly mixed layer depths changes occur in the Norwegian Sea–more than 50855

meters deeper in DIFF than in G-CTRL–because deep convection is altered there (not856

shown). These changes and other smaller ones–such as improvements in most equato-857

rial regions, in subtropical gyres, and in the vicinity of intensified jets–are improvements858

almost everywhere in the maximum yearly mixed layer depths (Fig. 6b). Diapycnal dif-859

fusivity changes at depth also have consequences at the surface, even though the diapy-860

cnal diffusivity field is never altered above the mixed layer depth (Fig. 7b). The effects861

on sea surface temperature are particularly pronounced in the Southern Ocean where862

upwelling occurs and the diapycnal diffusivity changes tend to be deeper due to deeper863

mixed layer depths. There is a hemispheric dipole pattern in the sea surface tempera-864

ture changes, which aligns well regionally with sea level pressure changes (Fig. 7b). This865

suggests that some of the surface flux changes (Fig. 8e) due to adjusting the diapycnal866

diffusivities are caused by both sea surface temperature alterations and atmospheric cir-867

culation differences. The sea surface temperature changes are mainly improvements (Fig.868

7c), which tend to lie within distinct regions where the diapycnal diffusivities were changed869

at depth. The margins of these regions of improvement see degraded sea surface tem-870

peratures relative to Reynolds et al. (2007). The gold contours in Fig. 7c indicate the871

depth- and time-averaged ∆κρ,MOM5 field, which tend to line up with the improved/degraded872

agreement patterns more closely in the Northern Hemisphere because these are primar-873

ily regions where deep water formation occurs. Thus, use of ∆κρ,MOM5 improves the mixed874

layer depth and sea surface temperature fields by changing diapycnal diffusion at the base875

of the mixed layer, which alters the sea surface temperatures and can then cause atmosphere-876

ocean feedbacks.877

3.4 Steric sea level impacts in GEOS-5878

Next, we analyze the steric sea level budget, as described earlier, in order to bet-879

ter understand how the diapycnal diffusivity adjustments change the dynamics. Since880
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the thermal expansion coefficient and haline contraction coefficient vary with depth, any881

changes in the diapycnal diffusivities will alter the vertical transport of heat and there-882

fore the steric sea level.883

The simulation that uses κρ,MOM5 (G-CTRL) is first discussed. Similarities be-884

tween the steric sea level budget’s vertical diffusion term and the steric sea level bud-885

gets have been described by previous studies. Using the same ocean model, but differ-886

ent atmospheric and sea ice models, Palter et al. (2014) found that vertical diffusion and887

surface flux terms dominate the steric sea level budget. Consistent with the findings of888

Palter et al. (2014), the resolved advection, neutral and vertical diffusion, and surface889

flux terms are among the most locally important physical terms in the steric sea level890

budget (Figs. 8a-c; vertical diffusion not shown; Table 3). The resolved advection term891

globally volume-averages to nearly zero, but not exactly zero partially due to the down-892

ward resolved heat advection below 2000 meters depth. These findings are also in agree-893

ment with Hieronymus and Nycander (2013). The resolved advection term also has a894

large amount of spatiotemporal variability (Table 3), consistent with the findings of Piecuch895

and Ponte (2011, 2014). The largest regional tendency terms in the GEOS-5 simulation’s896

steric sea level budget are the resolved advection, surface heat flux, vertical diffusion, and897

neutral diffusion terms (Figs. 8a-c). Of lesser importance to the regional steric sea level898

budget are the remaining numerical and parameterized terms, precipitation minus evap-899

oration, and contributions from (land and sea) ice.900

When κρ,t is used in another simulation (DIFF), the resolved advection term lo-901

cally changes by nearly 10% (Fig. 8d), with the other terms changing by less than 1%902

(Figs. 8e-f). The resolved advection and neutral diffusion term changes look similar, as903

they are largest in the vicinity of subtropical gyres (Figs. 8d,f). However, the globally904

averaged resolved advection term changes by about 10% and the globally averaged neu-905

tral diffusion term changes by less than 1%. This is because the resolved advection and906

neutral diffusion terms depend upon the geostrophic velocities, which are altered due to907

the differences in the vertical transport of heat and changes in isopycnal slopes, but the908

neutral diffusion term also depends upon the Redi coefficients, which do not change. While909

locally the steric sea level tendencies can change by > 100% due to use of ∆κρ,MOM5910

(not shown), the globally averaged steric sea level tendency is increased by 5.35% in DIFF911

relative to G-CTRL. This global change is dominated by the changes in the resolved ad-912

vection term. The largest surface flux term changes are in tropical regions and in jet re-913

gions (Fig. 8e) with a globally averaged change of less than 1%. The changes in some914

of these terms due to substituting the diapycnal diffusivity field in a time-varying man-915

ner can be larger than equivalent terms in the GMAO S2S Ocean Analysis (e.g., some916

coastal current regions in Figs. 8d,f; not shown for the reanalysis because the analysis917

increment is comparably large as the resolved advection term, which confounds phys-918

ical interpretation). Thus, the diapycnal diffusivity adjustments primarily affect the re-919

solved advection in the model as a result of mostly redistributing heat and salt, which920

leads to dynamic adjustment, and secondarily impact heat uptake/loss at the sea sur-921

face.922

3.5 Adjoint sensitivities in ECCO923

3.5.1 Diapycnal diffusivity: κρ924

We describe results from the adjoint sensitivity calculation using Eq. 4 for the base-925

10 logarithm of diapycnal diffusivity (log10(κρ)) misfits (Dmisfit). Because κρ,W15 and926

κρ,K17 are not normally distributed, we focus on log10(κρ) misfits. A region with black927

dots with a red plus sign surrounded by a grey contour in Figs. 9-12 implies that the mis-928

fit can be decreased by decreasing the ocean mixing parameter because the adjoint sen-929

sitivity, ∂J/∂ log10(κρ), is positive. The radii of the circles in Fig. 9a indicate the hor-930

izontal extents over which changing κρ,ECCO can influence the model’s misfits, which931
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are primarily determined by the model’s resolution; the model’s dynamics are less im-932

portant in determining these radii over short time intervals such as 1992-2015. When933

physically interpreting the adjoint sensitivities, it should be noted that κρ,W15 and κρ,K17934

can obtain values different from 10−5 m2 s−1, but the default value for κρ,ECCO where935

there are few observational constraints is 10−5 m2 s−1. Simply because of the chosen de-936

fault value for κρ,ECCO, some regions with few observations–such as the Arctic Ocean937

(Chanona et al., 2018)–can have positive adjoint sensitivities and other regions–for ex-938

ample, near the seafloor (Polzin et al., 1997; Waterhouse et al., 2014)–can have negative939

adjoint sensitivities with respect to the base-10 logarithm of the diapycnal diffusivities940

(∂J/∂ log10(κρ)) in Dmisfit.941

κρ needs to be decreased in many regions at depths shallower than 500 meters to942

agree better with κρ,W15 and κρ,K17, but the regions where κρ should be increased (dots943

with red plus signs surrounded by grey contours in Fig. 9a) tend to be in locations where944

microstructure measurements (used for Fig. 1) were taken. These are regions where coastal945

wind-driven mixing occurs and the centers of subtropical gyres. Inadequate resolution946

and parameterization of mixing across isopycnals can cause too little mixing to occur in947

these regions as well as in the Southern Ocean and along mid-ocean ridges (MacKinnon948

et al., 2017). ∂J/∂ log10(κρ) tend to be larger at higher latitudes (Figs. 9a,c). ∂J/∂ log10(κρ)949

are relatively small wherever they are positive, except for regions where the mixed layer950

can get relatively deep (∼ 1000 meters; Fig. 9a). The signs of ∂J/∂ log10(κρ) shown in951

Fig. 9a are consistent with the signs of disagreement shown in Fig. 3b, by construction,952

and those shown in Fig. 9c generally agree with the disagreements with microstructure953

shown in Fig. 1.954

We now compare ∂J/∂ log10(κρ) from Dmisfit with those of the experiments that955

include biogeochemical tracers in the misfit calculation (Omisfit, Amisfit, Pmisfit). The956

locations of the positive/negative signs of ∂J/∂ log10(κρ) are not the same everywhere957

between the Dmisfit and the Omisfit, Amisfit, and Pmisfit experiments, but they gen-958

erally agree in many regions. The percent of ocean volume where sufficient observations959

exist to derive an ocean mixing parameter in which the signs of the adjoint sensitivities960

agree across experiments are tabulated in Table 5. The signs of ∂J/∂ log10(κρ) from Dm-961

isfit and the signs of ∂J/∂ log10(κρ) from Omisfit agree over more than two-thirds of the962

ocean’s volume. This is greater than the percent volume over which there is agreement963

between ∂J/∂ log10(κρ) from Omisfit and ∂J/∂ log10(κρ) from Pmisfit. The percent vol-964

ume over which there is agreement between ∂J/∂ log10(κρ) from Dmisfit and ∂J/∂ log10(κρ)965

from Amisfit and Pmisfit is also smaller. The vast majority of the locations where dis-966

agreements occur in the signs of ∂J/∂ log10(κρ) from Dmisfit and the signs of ∂J/∂ log10(κρ)967

from Omisfit are in places with small differences between κρ,ECCO and κρ,W15 supple-968

mented with κρ,K17. In Omisfit, ∂J/∂ log10(κρ) are negative almost exclusively in coastal969

oxygen minimum zones (Wyrtki, 1962; Schmidtko et al., 2017) (Figs. 9b,d). In Amis-970

fit, ∂J/∂ log10(κρ) are negative in most open ocean (non-coastal) regions in the North-971

ern Hemisphere and in about half of the Southern Hemisphere (Figs. 10a,c). In Pmis-972

fit, ∂J/∂ log10(κρ) are negative in most open ocean and many coastal upwelling loca-973

tions (Figs. 10b,d).974

The zonally averaged ∂J/∂ log10(κρ) patterns alternate between positive and neg-975

ative across latitudes for each experiment, but each experiment tends to agree that di-976

apycnal diffusivities are too small near the seafloor at low Northern Hemisphere latitudes,977

where internal tide breaking is important (Arbic et al., 2004; Nycander, 2005; Melet et978

al., 2013; MacKinnon et al., 2017) and beneath the Antarctic Circumpolar Current (ACC),979

where lee wave breaking is important (Nikurashin & Ferrari, 2011; R. B. Scott et al., 2011;980

Naveira Garabato et al., 2013; Melet et al., 2014; Wright et al., 2014; Trossman et al.,981

2013, 2016; Yang et al., 2018). With the exception of Amisfit in the tropical Pacific Ocean,982

each experiment generally agrees that diapycnal diffusivities are too large in the model’s983

equatorial regions, where the intermittency of tropical instability wave-induced mixing984
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is likely not accounted for with a time-invariant diapycnal diffusivity field. This was un-985

expected because the fidelity of κρ,W15 supplemented with κρ,K17 is unknown near the986

equator. All four experiments also generally agree that diapycnal diffusivities are too large987

in the model’s upper several hundred meters and very high latitude regions, where the988

most pronounced errors in the stratification occur (not shown).989

The magnitudes of the normalized ∂J/∂ log10(κρ) attain their maxima in differ-990

ent locations across experiments. The magnitudes are largest close to the Antarctic coast991

in Amisfit, in many open ocean regions in Dmisfit, and in tropical regions in both Om-992

isfit and Pmisfit. A future optimization of ECCO would not need to change the diapy-993

cnal diffusivity field very much in these locations to achieve better agreement with ob-994

servations, so if both alkalinity and oxygen, for example, were assimilated, then alkalin-995

ity (oxygen) would limit the extent to which the diapycnal diffusivity gets changed near996

the Antarctic coast (coastal oxygen minimum zones). Further, despite expectations, these997

results suggest that oxygen and phosphate concentrations would not provide similar in-998

formation about the diapycnal diffusivities in a future optimization of ECCO, except pos-999

sibly in the tropical ocean’s upper 2000 meters. It is suggested here that dissolved oxy-1000

gen concentrations and possibly other biogeochemical tracers could be used to more ac-1001

curately estimate ocean mixing parameters in a newly optimized ECCO solution.1002

3.5.2 Redi coefficient: κRedi1003

While we currently do not know how realistic the κRedi,C15 product is in the same1004

way as the κρ,W15 product, we repeat the above exercise for the Redi coefficients by first1005

inspecting the adjoint sensitivities with respect to the Redi coefficients (∂J/∂κRedi) in1006

Rmisfit and later comparing ∂J/∂κRedi across experiments. Consistent with Figs. 4b,e,h,1007

the ECCO-estimated Redi coefficients (κRedi,ECCO) are too small almost everywhere (Figs.1008

11a,c), which is a function of the resolution of ECCOv4r3 but also due to factors in the1009

mixing length theory (see below). According to Rmisfit, ∂J/∂κRedi are only positive in1010

the region where deep convection occurs and in the deep Southern Ocean, but we mask1011

out depths deeper than 2000 meters and the highest latitudes because we lack κRedi,C151012

in these regions (Fig. 11c). The values of κRedi,ECCO are too large (i.e., there are pos-1013

itive adjoint sensitivities) in the Southern Ocean, which could be due to eddy-diffusive1014

transport significantly contributing to southward eddy heat transport (Dufour et al., 2015),1015

the enhancement of mesoscale eddy stirring (R. Abernathey et al., 2013), and/or the larger1016

effects from the nonlinearities in the equation of state (Palter et al., 2014) near the fronts1017

of the ACC. The values of κRedi,ECCO are also too large in the subpolar North Atlantic1018

Ocean, which could be related to how the horizontal eddy diffusivity field influences the1019

overturning circulation (Marshall et al., 2017) and the fraction of North Atlantic Deep1020

Water that gets to the deep Pacific (Jones & Abernathey, 2019). The adjoint sensitiv-1021

ities are larger in the tropics near the surface and in the vicinity of intensified jets (Figs.1022

11a). The fact that these patterns emerge in locations where horizontal eddy transport1023

is known to be important suggests that at least the spatial patterns of κRedi,C15 are in-1024

sightful.1025

Lastly, in order to show whether a biogeochemical tracer can be used to help with1026

more accurate estimation of the Redi coefficients in a future optimization of ECCO, we1027

compare the normalized ∂J/∂κRedi from Rmisfit with those from Omisfit, Amisfit, and1028

Pmisfit. The signs of ∂J/∂κRedi from Rmisfit and the signs of ∂J/∂κRedi from Omis-1029

fit, Amisfit, and Pmisfit agree over about half of the ocean’s volume (Table 5). This is1030

greater than the volume over which there is agreement between ∂J/∂κRedi from Om-1031

isfit and ∂J/∂κRedi from Pmisfit. The spatial patterns of the signs of ∂J/∂κRedi are ap-1032

proximately consistent across the experiments with biogeochemical tracer concentrations1033

compared in the misfit calculation (Omisfit, Amisfit, and Pmisfit). However, there are1034

many locations where ∂J/∂κRedi are positive in Omisfit, Amisfit, and Pmisfit are places1035

where ∂J/∂κRedi are negative in Rmisfit.1036
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If the magnitudes of the κRedi,C15 product are reduced by a factor of 2-3, as Roach1037

et al. (2018) suggest, then more agreement in sign between ∂J/∂κRedi in Rmisfit and those1038

in Omisfit, Amisfit, and Pmisfit is found (not shown). This suggests that the magnitudes1039

of the κRedi,C15 product may be inaccurate. The results of Roach et al. (2018) suggest1040

that this may be due to the dearth of kinetic energy that Cole et al. (2015) used from1041

the ECCO2 product. Canuto et al. (2019) further suggest that the mixing efficiency that1042

Cole et al. (2015) may be too large and recommend deriving the mixing use efficiency1043

using sea surface kinetic energy spectra. However, it is also possible that κRedi,C15 are1044

only appropriate for models with horizontal resolutions that are different from 1o. ∂J/∂κRedi1045

in Omisfit are largest in coastal areas, intensified jet regions, and a few other open ocean1046

regions (e.g., the Norwegian Sea, the subpolar North Atlantic Ocean, and North Pacific1047

Ocean; Figs. 11b,d). ∂J/∂κRedi in Pmisfit are largest in similar regions near the surface1048

to ∂J/∂κRedi in Omisfit, but ∂J/∂κRedi in Pmisfit are also largest south of where North1049

Atlantic Deep Water is formed in the deep ocean. In contrast, ∂J/∂κRedi are largest where1050

Antarctic Bottom Water is formed and at high latitudes in Amisfit. It is less clear (than1051

for the diapycnal diffusivities) whether it would be beneficial for placing constraints on1052

the Redi coefficients if dissolved oxygen concentrations and possibly other biogeochem-1053

ical tracers were assimilated in a future optimized state estimate.1054

4 Conclusions1055

This study evaluated the potential to affect the diapycnal diffusivities in multiple1056

ocean modeling frameworks using tracer and observationally-derived information; the1057

Redi coefficients were also considered using an ocean state estimation framework. The1058

fidelity of the diapycnal diffusivities derived from finestructure observations was assessed1059

in a couple of ways, building upon the results of Whalen et al. (2015). Comparisons were1060

performed between the average observed microstructure-inferred diapycnal diffusivity pro-1061

file and the average diapycnal diffusivity profiles from two different models. This com-1062

parison was repeated using the average profiles from the models after adjusting them based1063

on the observationally-derived values from a parameterization. The profiles that included1064

substitutions of the observationally-derived values from the parameterization were in bet-1065

ter, or at least no worse, agreement with the microstructure observations than the model-1066

calculated values with no substitutions. A coupled earth system model’s diapycnal dif-1067

fusivities were overridden by the observationally-derived diapycnal diffusivities from the1068

finescale parameterization as the model ran. On global average, the model showed im-1069

provement in some metrics and no worse disagreement in other metrics. The diapycnal1070

diffusivity substitutions in the coupled model redistribute heat and salt, altering the re-1071

solved advection term in the steric sea level budget and leading to dynamic adjustment.1072

The temperature and salinity changes are significant because they exceed the range ob-1073

served in the model under different initial conditions.1074

Adjoint sensitivity experiments were used to determine if the misfits of either of1075

two ocean mixing parameters could be improved by assimilating biogeochemical trac-1076

ers in a future optimization of an ocean state estimate. While we further established that1077

the diapycnal diffusivities derived from finestructure observations are more realistic than1078

diapycnal diffusivities from each model considered here, the uncertainties in the observationally-1079

inferred ocean mixing parameters are fairly large (here, approximately a factor of 2-3).1080

Therefore, three biogeochemical tracers were proposed as potential constraints on ocean1081

mixing in the ocean state estimate. Three adjoint sensitivity experiments were performed1082

using one biogeochemical tracer at a time in the misfit calculation of the model: oxy-1083

gen concentrations, alkalinities, or phosphate concentrations. These adjoint sensitivity1084

experiments were compared with ones that used one ocean mixing parameter at a time1085

in the misfit calculation: diapycnal diffusivities or Redi coefficients. The spatial distri-1086

butions of the signs of the adjoint sensitivities with respect to the two different ocean1087

mixing parameters from each of the simulations were compared. The signs of the adjoint1088
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sensitivities with respect to the diapycnal diffusivities generally agreed well across one1089

pair of these experiments in the upper ocean and at many deeper depths, but the signs1090

of the adjoint sensitivities with respect to the Redi coefficients did not. These results sug-1091

gest that the assimilation of dissolved oxygen concentrations could improve estimates1092

of the diapycnal diffusivity field in an ocean state estimate optimization, which is the1093

main result of this study. It is less clear whether the Redi coefficient would also be more1094

accurate upon optimization.1095

4.1 Caveats and future directions1096

Many factors–including a dearth of independent observations for assessment, a com-1097

bination of measurement and structural errors, numerical diffusion in our simulations,1098

and unconstrained parameters in the biogeochemical modules–have stymied progress in1099

state estimation of ocean mixing parameters. First, only one ocean mixing parameter–1100

namely, the diapycnal diffusivity–has been compared with independent observational data–1101

specifically, microstructure. The Redi coefficients derived from Argo observations and1102

ECCO2 output have not been independently validated. It is not clear whether the Osborn-1103

Cox diffusivities from R. P. Abernathey and Marshall (2013) and Busecke and Abernathey1104

(2019) could be used to assess the accuracy of the Redi coefficient product, nor is it ob-1105

vious whether the NATRE and DIMES observations Groeskamp et al. (2020) used are1106

sufficient for validation. Second, the ECCO-estimated diapycnal diffusivities account for1107

other (e.g., structural) model error, which explains some of their biases relative to mi-1108

crostructure observations. For instance, the ocean mixing parameters in ECCO should1109

be time-dependent as well as spatially-varying, but they are only spatially-varying. Cur-1110

rently, only numerical diffusion varies in time, which could confound some physical in-1111

ferences about the model (e.g., regarding how sensitive the model’s state is to diapyc-1112

nal diffusion relative to along-isopycnal diffusion). Lastly, there are several unconstrained1113

parameters in biogeochemical modules used to calculate biogeochemical tracers (Verdy1114

& Mazloff, 2017), so some of the disagreements in signs of the adjoint sensitivities found1115

here could be associated with other inaccurate parameters.1116

These challenges can continue to be overcome by allowing models and observations1117

to inform each other. First, the observationally-derived diapycnal diffusivity from the1118

finescale parameterization could be further scrutinized using ship-based CTD data taken1119

concurrently with microstructure velocity shear data. A preliminary analysis suggests1120

that the percent difference between the full depth-averaged microstructure CTD-derived1121

diapycnal diffusivities from the finescale parameterization and the microstructure-inferred1122

diapycnal diffusivities is indistinguishable from zero (1.68%), but the quality of the the1123

microstructure CTD data has not been fully assessed. Second, we will need to account1124

for the time-dependence of each ocean mixing parameter in a future ocean state estimate.1125

The underdetermined nature of the parameter estimation procedure makes this difficult.1126

These efforts would also benefit from minimizing numerical diffusion, but with added com-1127

putational expense. It is possible that we can achieve a more accurate ocean state es-1128

timate if we calculate a time-dependent, dynamically active diapycnal diffusivity field1129

using a suite of parameterizations instead of allowing the diapycnal diffusivity to be treated1130

as a control parameter. However, we showed that it may not be advisable to rely solely1131

on the parameterizations for diapycnal diffusivities in ocean data assimilation systems,1132

as in the case of the GMAO S2S Ocean Analysis. This was either because of the model’s1133

analysis increments or its use of atmospheric forcing fields that were inconsistent with1134

the model’s sea surface conditions. Third, unconstrained parameters in the biogeochem-1135

ical modules could potentially be circumvented. One potential way to do this is by as-1136

similating preformed oxygen (i.e., oxygen without any biological influence, making it a1137

passive tracer) instead of oxygen concentrations. Observationally-derived transit-time1138

distributions with a maximum entropy-based method from previous studies (e.g., Khati-1139

wala et al., 2009; Zanna et al., 2019) can help derive preformed oxygen from oxygen con-1140

centration observations. Lastly, the (imperfectly-known) initial conditions of each bio-1141
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Figure 1. The diapycnal diffusivity profiles averaged over all microstructure observation lo-

cations and over the length of the ECCO simulations from the first iteration of the optimization

(E-CTRL0 - grey curve), from the (final) fifty-ninth iteration of the optimization (E-CTRL - red

curve), and from an ECCO re-run with Argo-derived nudges using Eq. B.1 (blue curve). Also

shown is the average of the diapycnal diffusivity profiles from the 24 full-depth microstructure

observations (black curve) presented in Waterhouse et al. (2014 - see their Fig. 6). At each loca-

tion, the simulated profiles are extracted and the base-10 logarithms of the geometric averages of

the observed and ECCO-estimated diapycnal diffusivities (units in m2 s−1) are shown.

geochemical tracer will also need to be included in the input control vector during op-1142

timization of the ocean state estimate. Our results suggest that the assimilation of bio-1143

geochemical tracers will help build a more complete representation and understanding1144

of ocean mixing, and the next step is to perform another optimization of the ocean state1145

estimate including these tracers observations.1146
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Figure 2. Same as Fig. 1, except for the depth range and shown are the average profiles of

diapycnal diffusivity from the GMAO S2S Ocean Analysis (green curve), from the G-CTRL sim-

ulation (red curve), from the GEOS-5 simulation with Argo-derived nudges using Eq. B.1 (blue

curve), and from the microstructure (black curve), geometrically averaged over the 24 full-depth

microstructure observation locations. The Argo-derived nudges used here are from the Whalen et

al. (2015) climatology, not the time-varying ones used in DIFF.
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Figure 3. Shown are (a,d,g) the base-10 logarithms of the diapycnal diffusivities (units in

m2 s−1) from the Argo observations (Whalen et al., 2015), (b,e,h) the base-10 logarithms of the

ratios of the time-averaged diapycnal diffusivities associated from E-CTRL to those from the

Argo-derived product using the finescale parameterization, and (c,f,i) the base-10 logarithms of

the ratios of the time-averaged diapycnal diffusivities associated from G-CTRL to those from

the Argo-derived product using the finescale parameterization. Panels a-c show an average over

250-500 meters depth. Panels d-f show an average over 500-1000 meters depth. Panels g-i show

an average over 1000-2000 meters depth. White areas in the ocean indicate insufficient Argo data

to derive a diapycnal diffusivity.
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Figure 4. Shown are (a,d,g) the base-10 logarithms of the Redi coefficients (units in m2 s−1)

from the Argo observations and ECCO2 (Cole et al., 2015), (b,e,h) the base-10 logarithms of the

ratios of the Redi coefficients from E-CTRL to the Redi coefficients from the Argo- and ECCO2-

derived product using mixing length theory, and (c,f,i) the base-10 logarithms of the ratios of

the Redi coefficients from G-CTRL to the Redi coefficients from the Argo- and ECCO2-derived

product using mixing length theory. Panels a-c show an average over 250-500 meters depth.

Panels d-f show an average over 500-1000 meters depth. Panels g-i show an average over 1000-

2000 meters depth. White areas in the ocean indicate insufficient Argo data to calculate a Redi

coefficient.
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Table 1. Listed are the model simulations performed and analyzed in the present study as

well as the observationally-derived data or measured data included in each simulation. Only

observationally-derived data are included in the GEOS-5 simulations through substitution, only

measured data are included through assimilation in the case of the GMAO S2S Ocean Analysis,

and either observationally-derived data or measured data are included in the ECCO simulations

through its misfit calculation (Eq. 3). Here, κρ denotes an observationally-derived diapycnal

diffusivity product from the finescale parameteration, κRedi indicates the observationally-derived

Redi coefficient product from mixing length theory, O2 is the climatology of measured oxygen

concentrations, Alk. is the climatology of measured alkalinities, and PO4 is the climatology of

measured phosphate concentrations.

modeling system experiment observationally-derived data measured data

GEOS-5 G-CTRL N/A N/A
GEOS-5 DIFF κρ (Whalen et al., 2015) N/A
GEOS-5 BKG N/A N/A
GEOS-5 GMAO S2S Ocean Analysis N/A see Section 2.3.1
ECCO E-CTRL N/A see Section 2.3.2
ECCO Dmisfit κρ (Whalen et al., 2015; Kunze, 2017) N/A
ECCO Rmisfit κRedi (Cole et al., 2015) N/A
ECCO Omisfit N/A O2 [WOA, 2013]
ECCO Amisfit N/A Alk. [WOA, 2013]
ECCO Pmisfit N/A PO4 [WOA, 2013]

Table 2. The latitude and depth ranges of each observationally-derived product from a param-

eterization used in this study. The longitude range for each dataset spans (180oE, 180oW ). Also

listed is the time period of the observations each product is based on and the range of values in

each product (to the nearest order of magnitude in units of m2s−1).

data source range [m2s−1] latitude range depth range time period

Argo (κρ,W15) (10−7, 10−2) (75oS, 75oN) (250,2000) 2006-2014
(P)ALACE and Argo (κρ,t) (10−7, 10−2) (75oS, 75oN) (125,2000) 2001-2016

Ship-based CTD hydrography (κρ,K17) (10−8, 10−3) (77.35oS, 78.70oN) (173,6044.5) 1981-2010
Argo and ECCO2 (κRedi,C15) (101, 105) (61oS, 62oN) (20, 1920) 2005-2012
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Table 3. The globally volume-averaged steric sea level (units in m yr−1) budget terms (and

their temporal standard deviations in parentheses) over the length of the G-CTRL and DIFF

minus G-CTRL simulations. Here, “surface fluxes” includes shortwave (accounting for the pene-

trating contribution), longwave, latent, sensible, and frazil heat flux contributions. Contributions

not listed here include calving of land ice and frazil ice formation, which approximately equal the

differences between the diagnosed total and total tendencies. The terms in bold are numerical

terms.

term G-CTRL [mm yr−1] DIFF minus G-CTRL [mm yr−1]

resolved advection −0.67 (1.68) −0.13 (0.57)
neutral diffusion −3.30 (0.36) −0.017 (0.052)
vertical diffusion −15.9 (2.29) 0.060 (0.14)

mesoscale transport −1.26 (0.11) −0.0090 (0.010)
submesoscale transport −0.031 (0.14) 0.010 (0.029)

nonlocal convection (KPP) −0.23 (0.15) −0.0077 (0.0079)
sigma-diffusion 0.0015 (0.011) −0.0049 (0.0049)

downslope mixing 0.06 (0.052) 0.0017 (0.0015)
precipitation minus evaporation −2.66 (0.56) −0.16 (0.14)

surface flux 28.1 (52.6) 0.27 (3.38)
runoff mixing 5.04 (1.34) 0.081 (0.19)
smoother −0.015 (0.0086) 0.00087 (0.011)

diagnosed total 9.11 (52.2) 0.095 (3.08)
total 9.11 (52.2) 0.095 (3.08)

Table 4. The cost functions of the five adjoint sensitivity ECCO runs for each data sources.

Listed are the globally computed values, which are used to normalize the adjoint sensitivities

shown in Figs. 9-12, and the number of data points used.

experiment data source cost function number of data points

Dmisfit Argo 1.91× 1017 5.933× 104

Dmisfit Ship-based CTD hydrography 2.89× 1018 7.3806× 104

Rmisfit Argo and ECCO2 5.32× 105 1.5045× 104

Omisfit O2 WOA (2013) 7.71× 104 7.9752× 104

Amisfit Alkalinity WOA (2013) 9.56× 1014 6.7104× 104

Pmisfit PO4 WOA (2013) 6.37× 1011 3.0382× 104
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a) Vertically and zonally averaged temperature [oC]: BKG anomalies and
                          differences between DIFF and CTRL

Latitude [o]

b) Vertically and zonally averaged salinity [PSS-1978]: BKG anomalies and
                             differences between DIFF and CTRL 

Figure 5. Shown are the vertically and zonally averaged temperature (units in oC - panel

a) and salinity (in PSS-1978 - panel b) anomalies from the average of the 21 free-running sim-

ulations (BKG) used to compute the background error covariances, each starting from different

initial conditions (grey curves). Also shown are the differences in vertical and zonally averaged

temperature (panel a) and salinities (panel b) between the simulations with the time-varying

diapycnal diffusivity overrides (DIFF) and without (G-CTRL) (brown/tan-ish curves). An av-

erage from the May of the sixth-to-final year to the September of the final year of the GEOS-5

simulations have been taken.
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b)

Figure 6. Shown are the maximum yearly mixed layer depths (units in meters - panel a) in

G-CTRL, averaged over the final 16 years. Also shown are the ratios of the differences between

the maximum mixed layer depths from the density-based algorithm of Holte et al. (2017) using

Argo observations (panel b) (OBS) and DIFF to the differences between those from OBS and

G-CTRL, averaged over the final 16 years of the simulations. Blue colors in panel b imply that

ocean mixing parameter adjustment results in better agreement with observations.
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a)

b)

c)

Figure 7. Shown are the sea surface temperatures (units in oC - panel a) in G-CTRL, aver-

aged over the final 16 years. Also shown are the changes in the sea surface temperatures (units

in oC - panel b) in DIFF relative to G-CTRL, averaged over the final 16 years The grey contours
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Figure 9. Results from Dmisfit (panels a and c) and Omisfit (panels b and d) are shown.

The base-10 logarithms of the absolute values of the adjoint sensitivities (units in s m−2) with

respect to the diapycnal diffusivities are shown: averaged over 250-2000 meters depth (panels

a-b) and zonally averaged (panels c-d) in the misfit calculation. The black dots with a red plus

sign surrounded by grey contours mean that the adjoint sensitivities are positive (∂J/∂K > 0);

elsewhere show negative adjoint sensitivities. κρ,W15 and κρ,K17 are the only quantities used in

the misfit calculation of an adjoint run shown in panels a and c. The climatological oxygen con-

centrations from the World Ocean Atlantic (2013) are the only observations used in the misfit

calculation of a separate adjoint run shown in panels b and d. The adjoint sensitivities in panels

a and c are computed offline (i.e., not using ECCO, but by plugging in the value the model reads

in for the base-10 logarithm of the diapycnal diffusivities and comparing that with the above

observationally-derived base-10 logarithm of the diapycnal diffusivity products using the finescale

parameterization via Eq. 4). The white regions in panels a and c are locations where there is

insufficient data or where there is bathymetry. The adjoint sensitivities in panels b and d are

computed online (i.e., using ECCO, which computes the misfits between the base-10 logarithm

of the diapycnal diffusivities it reads in and the observationally-derived base-10 logarithm of the

diapycnal diffusivities using the finescale parameterization). The white regions in panels b and d

are locations with bathymetry or insufficient observations. The adjoint sensitivities at each grid

point are divided by the volume of each grid cell and then scaled by the cost function (Table 4)

for each respective experiment in order to make each point more comparable with another. The

adjoint sensitivities are calculated over just one year (1992)
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Figure 10. Same as Figs. 9, except the only observations used in the misfit calculation of

the adjoint runs are the climatological alkalinities (panels a and c) or phosphate concentrations

(panels b and d) from the World Ocean Atlas (2013). Each of these runs compute the adjoint

sensitivities online.

Table 5. Listed are the percent volumes where the signs of the adjoint sensitivities across pair-

wise model simulations agree. The percentages are only calculated where sufficient observations

are available to derive an ocean mixing parameter using a parameterization and where the dif-

ference between the model-calculated and observationally-derived ocean mixing parameter using

a parameterization is greater than the uncertainty (i.e., three times the observationally-derived

ocean mixing parameter using a parameterization). The percentages are smaller (by up to 20%)

if all locations where sufficient observations are available to derive an ocean mixing parameter

using a parameterization are included, suggesting that the disagreements tend to be in locations

where the model’s diapycnal diffusivity bias relative to the observationally-derived value from a

parameterization is insignificant from zero. The adjoint sensitivities with respect to the diapycnal

diffusivity (κρ) or Redi coefficient (κRedi) are specified.

experiments ∂J/∂ log10(κρ) or ∂J/∂κRedi percent of ocean volume with agreement

Dmisfit, Omisfit ∂J/∂ log10(κρ) 70.8%
Dmisfit, Amisfit ∂J/∂ log10(κρ) 41.8%
Dmisfit, Pmisfit ∂J/∂ log10(κρ) 33.2%
Omisfit, Pmisfit ∂J/∂ log10(κρ) 42.3%
Rmisfit, Omisfit ∂J/∂κRedi 47.8%
Rmisfit, Amisfit ∂J/∂κRedi 49.6%
Rmisfit, Pmisfit ∂J/∂κRedi 51.2%
Omisfit, Pmisfit ∂J/∂κRedi 44.8%
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Figure 11. Results from Rmisfit (panels a and c) and Omisfit (panels b and d) are shown.

The base-10 logarithms of the absolute values of the adjoint sensitivities (units in s m−2) with

respect to the Redi coefficients are shown: averaged over 0-2000 meters depth (panels a-b) and

zonally averaged (panels c-d) in the misfit calculation. The black dots with a red plus sign sur-

rounded by grey contours mean that the adjoint sensitivities are positive (∂J/∂K > 0); elsewhere

show negative adjoint sensitivities. κRedi,C15 is the only quantity used in the misfit calculation

of an adjoint run shown in panels a and c. The climatological oxygen concentrations from the

World Ocean Atlantic (2013) are the only observations used in the misfit calculation of a separate

adjoint run shown in panels b and d. The adjoint sensitivities in panels a and c are computed

offline (i.e., not using ECCO, but by plugging in the value the model reads in for the Redi coef-

ficient and comparing that with κRedi,C15 via Eq. 4). The adjoint sensitivities in panels b and d

are computed online (i.e., using ECCO, which computes the misfits between the Redi coefficients

it reads in and the observationally-derived Redi coefficients using mixing length theory). The

adjoint sensitivities at each grid point are divided by the volume of each grid cell and then scaled

by the cost function (Table 4) for each respective experiment in order to make each point more

comparable with another. The adjoint sensitivities are calculated over just one year (1992).
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Figure 12. Same as Figs. 11, except the only observations used in the misfit calculation of

the adjoint runs are the climatological alkalinities (panels a and c) or phosphate concentrations

(panels b and d) from the World Ocean Atlas (2013). Each of these runs compute the adjoint

sensitivities online.
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