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Abstract

In the context of climate change, a clear understanding of the processes and factors driving global warming is a major concern.

During past geological times, Earth suffered several intervals of global warmth but the priming factors remain equivocal. Yet

a careful appraisal of all processes being implied during those past events is essential to evaluate how they can inform future

climates, in order to provide decision makers a clear understanding of the processes at play in a warmer world. In this context,

the global warmth of the Cretaceous era, specifically during the Cenomanian-Turonian, is of particular interest. Here we use

the IPSL-CM5A2 Earth System model to unravel the forcing parameters of the Cenomanian-Turonian greenhouse climate.

We perform six simulations, from the preindustrial to the Cretaceous by implementing one additional boundary condition

change at a time, i.e. (1) polar ice cap retreat, (2) pCO2 increase to 1120 ppm, (3) vegetation and soil parameters, (4) solar

constant reduction (˜ -1%) and (5) paleogeography (90Ma). Between the first preindustrial simulation and the last Cretaceous

simulation, a global warming of more than 11°C is simulated. Most of this warming is driven by the increase in pCO2 to

1120 ppm. Paleogeographic changes represent the second major contributor to the warming while the solar constant reduction

counteracts most of this geographically-driven warming. Finally, changes in vegetation and soil parameters as well as the retreat

of polar ice caps have a minor impact at the global scale. A full assessment of the processes driving warming or cooling under

each boundary condition change will be presented. Ultimately, our work supports the overarching influence of atmospheric

carbon dioxide in driving the Earth’s global climate and global warming.
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Primary climate forcing à CO2
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Role of paleogeography?

CT Paleogeography (90 Ma) – After Scotese and Müller 

Ø Negligible? (Barron et al., 1995)

ØOnly regional? (Lunt et al., 2016; Tabor et al., 2016)

ØAs strong as a doubling of pCO2?
(Crowley et al., 1986, Ladant & Donnadieu, 2016)
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à Surface albedo ? +0.4% = cooling …

à Low-altitude cloudiness decrease ? -12% = warming !
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àGreenhouse gases? 
H20 (+0.3‰)
àHigh-altitude cloudiness increase? 
+1%  = Warming
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Tropics
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àCircumEquatorial surface current
àEnhanced intensity of surface circulation (cf also Hotinski & Toggweiler, 2003) 

MODERN GEOGRAPHY CRETACEOUS

Intensity of surface currents (Sv)
(Annual Mean, 0 to 80 meters of water depth) 27

CENOMANIAN-TURONIAN PALEOGEOGRAPHY (90 MA)
à EQUATORIAL OCEANIC CONNECTION
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CENOMANIAN-TURONIAN PALEOGEOGRAPHY (90 MA)
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CENOMANIAN-TURONIAN PALEOGEOGRAPHY (90 MA)
à EQUATORIAL OCEANIC CONNECTION

CRETACEOUS
MODERN GEOGRAPHY

Ocean Heat
Transport (PW)

àEnhanced ocean heat transport
(cf also Hotinski & Toggweiler, 

2003) 



CENOMANIAN-TURONIAN PALEOGEOGRAPHY (90 MA)
à INCREASED OCEANIC HEAT TRANSPORT
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àEnhanced moisture injection into the upper troposphere
à Increased high-latitude cloudiness

àEnhanced greenhouse effect
(cf also Rose & Ferreira, 2013 – Herweijer et al., 2005)



CENOMANIAN-TURONIAN PALEOGEOGRAPHY (90 MA)
à INCREASED OCEANIC HEAT TRANSPORT
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àEnhanced moisture injection into the upper troposphere
à Increased high-altitude cloudiness

àEnhanced greenhouse effect
(cf also Rose & Ferreira, 2013 – Herweijer et al., 2005)
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Thank you for your attention !
laugie@cerege.fr
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4X-CRETACEOUS SIMULATION - RESULTS
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From C. R. Scotese paleogeography (2014), with ocean ridges of Müller et al. (2008)
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