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Abstract

Oceanic quantities of interest (QoIs), e.g., ocean heat content or transports, are often inaccessible to direct observation, due to

the high cost of instrument deployment and logistical challenges. Therefore, oceanographers seek proxies for undersampled or

unobserved QoIs. Conventionally, proxy potential is assessed via statistical correlations, which measure covariability without

establishing causality. This paper introduces an alternative method: quantifying dynamical proxy potential. Using an adjoint

model, this method unambiguously identifies the physical origins of covariability. A North Atlantic case study illustrates

our method within the ECCO (Estimating the Circulation and Climate of the Ocean) state estimation framework. We find

that wind forcing along the eastern and northern boundaries of the Atlantic drives a basin-wide response in North Atlantic

circulation and temperature. Due to these large-scale teleconnections, a single subsurface temperature observation in the

Irminger Sea informs heat transport across the remote Iceland-Scotland ridge (ISR), with a dynamical proxy potential of 19%.

Dynamical proxy potential allows two equivalent interpretations: Irminger Sea subsurface temperature (i) shares 19% of its

adjustment physics with ISR heat transport; (ii) reduces the uncertainty in ISR heat transport by 19% (independent of the

measured temperature value), if the Irminger Sea observation is added without noise to the ECCO state estimate. With its two

interpretations, dynamical proxy potential is simultaneously rooted in (i) ocean dynamics and (ii) uncertainty quantification

and optimal observing system design, the latter being an emerging branch in computational science. The new method may

therefore foster dynamics-based, quantitative ocean observing system design in the coming years.
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Abstract19

Oceanic quantities of interest (QoIs), e.g., ocean heat content or transports, are often20

inaccessible to direct observation, due to the high cost of instrument deployment and lo-21

gistical challenges. Therefore, oceanographers seek proxies for undersampled or unob-22

served QoIs. Conventionally, proxy potential is assessed via statistical correlations, which23

measure covariability without establishing causality. This paper introduces an alterna-24

tive method: quantifying dynamical proxy potential. Using an adjoint model, this method25

unambiguously identifies the physical origins of covariability. A North Atlantic case study26

illustrates our method within the ECCO (Estimating the Circulation and Climate of the27

Ocean) state estimation framework. We find that wind forcing along the eastern and north-28

ern boundaries of the Atlantic drives a basin-wide response in North Atlantic circula-29

tion and temperature. Due to these large-scale teleconnections, a single subsurface tem-30

perature observation in the Irminger Sea informs heat transport across the remote Iceland-31

Scotland ridge (ISR), with a dynamical proxy potential of 19%. Dynamical proxy po-32

tential allows two equivalent interpretations: Irminger Sea subsurface temperature (i)33

shares 19% of its adjustment physics with ISR heat transport; (ii) reduces the uncertainty34

in ISR heat transport by 19% (independent of the measured temperature value), if the35

Irminger Sea observation is added without noise to the ECCO state estimate. With its36

two interpretations, dynamical proxy potential is simultaneously rooted in (i) ocean dy-37

namics and (ii) uncertainty quantification and optimal observing system design, the lat-38

ter being an emerging branch in computational science. The new method may therefore39

foster dynamics-based, quantitative ocean observing system design in the coming years.40

Plain Language Summary41

To understand the Earth’s changing climate, it is important to estimate how much42

heat the ocean takes up from the atmosphere and how the ocean recirculates the heat43

around the globe. Directly obtaining these estimates from measurements is complicated44

because oceanographers cannot measure the ocean everywhere. Ocean measurements taken45

from ships or freely drifting instruments are expensive and difficult to obtain, especially46

in regions with ice cover or rough weather conditions. To analyze how existing measure-47

ments can be used to estimate unmeasured aspects of the ocean, past studies have used48

statistical correlations, although it is usually unclear whether correlations have a real,49

physical origin. This paper introduces a new method: we replace statistical correlations50

by correlations that have an underlying physical mechanism. As an example, the paper51

reveals that (A) a subsurface ocean temperature measurement in the Irminger Sea helps52

to better estimate (B) poleward ocean heat transport across the Iceland-Scotland ridge,53

hundreds of kilometers away. (A) and (B) are related by physics-based correlation, which54

is created by a similar dynamical response of (A) and (B) to changes in the near- and55

far-field wind. The new method can be used to plan effective instrument placements in56

the future.57

1 Introduction58

Satellite altimetry and the global array of Argo floats have vastly increased the ob-59

servational coverage of the world’s oceans since the early 1990s (Fu et al., 2018; Riser60

et al., 2016). Nevertheless, large parts of the ocean remain undersampled in space and61

time, due to the high cost of instrument deployment, ongoing technical and logistical chal-62

lenges, and the fact that critically relevant processes occur on a wide range of spatial and63

temporal scales (e.g., Weller et al., 2019). Therefore, many oceanographic quantities of64

interest (QoIs) are not directly or continuously measured. Examples are volume, heat,65

and freshwater transports across many oceanographic passages, straits and latitude bands,66

in particular, the Atlantic meridional overturning circulation (AMOC). Additional QoIs67

may be ocean heat and freshwater content in regions not well sampled by Argo floats,68
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e.g., near the margins or the polar ice sheets. Other examples are strongly related to fu-69

ture societal concerns and key targets for climate predictions. These include future Arc-70

tic sea ice cover or regional sea level anomalies. In oceanography, we are therefore on the71

quest for proxies. That is, it is desirable - and an active part of climate research - to em-72

ploy observed quantities as proxies for QoIs that are undersampled or unobserved.73

Examples of past efforts in this direction include studies which found that anoma-74

lies in sea level (available from altimetry) or ocean bottom pressure (available from gravime-75

try) can serve as a skillful proxy for AMOC variability on interannual time scales (e.g.,76

Bingham & Hughes, 2009; Ezer, 2015; Frajka-Williams, 2015; Landerer et al., 2015; Mc-77

Carthy et al., 2015). Other studies suggested that, on decadal and longer time scales,78

North Atlantic surface or subsurface temperature have a characteristic ‘fingerprint’ as-79

sociated with changes in AMOC, and that the (better observed) temperature fingerprint80

can be used as a proxy for (unobserved) AMOC (e.g., Baehr et al., 2007; Caesar et al.,81

2018; Knight et al., 2005; Latif et al., 2004; Vellinga & Wood, 2004; R. Zhang, 2007, 2008).82

Consequently, available sea level and (sub)surface temperature records have been used83

to reconstruct AMOC changes back in time (Ezer, 2015; Frajka-Williams, 2015; Lopez84

et al., 2017; Ritz et al., 2013; Thornalley et al., 2018; X. Zhang et al., 2015). Moreover,85

sea surface height, ocean bottom pressure, and hydrographic observations at selected lo-86

cations have been proposed as a useful observing system to detect AMOC changes in the87

present ocean and under future climate change scenarios, complementing or substitut-88

ing current direct North Atlantic trans-basin transport measurements, which are lim-89

ited in space and time (see Frajka-Williams et al., 2019, for a review).90

Proxy potential is typically assessed by means of statistical regression or correla-91

tion (e.g., see all AMOC proxy studies referenced in the previous paragraph), including92

regression using statistical modes of variability obtained e.g., via principal component93

analysis (von Storch & Zwiers, 1999). Fig. 1(a) sketches the concept of evaluating sta-94

tistical proxy potential: one assesses covariability between an observable quantity (pink95

time series) and an unobserved QoI (purple time series), often in model output. This method96

provides an empirical measure for proxy potential, but does not identify causal relations.97

Without dynamical underpinnings, reported dependency on model choice, forcing sce-98

nario and time period considered (Alexander-Turner et al., 2018; Little et al., 2019; Roberts99

& Palmer, 2012) complicates robust identification of proxy potential. The goal of this100

work is to overcome the limitations of statistical proxy potential. Here, we establish a101

new methodology that quantifies dynamical, rather than statistical, proxy potential.102

Our goal is to unambiguously identify shared dynamical processes and pathways103

that provide a mechanistic underpinning for what we will refer to as dynamical proxy104

potential. To do so, we take advantage of the adjoint of an ocean general circulation model105

(GCM). The adjoint can efficiently uncover the dynamical cause of variations in observed106

and unobserved ocean quantities, extracted from the equations of motion and conser-107

vation laws governing the underlying GCM (Marotzke et al., 1999). For instance, adjoint-108

derived sensitivities have been used to study the dynamical cause of the following QoIs:109

Atlantic meridional heat transport (Heimbach et al., 2011; Köhl, 2005; Marotzke et al.,110

1999), AMOC (Czeschel et al., 2010; Heimbach et al., 2011; Pillar et al., 2016; Smith &111

Heimbach, 2019), Labrador Sea heat content (Jones et al., 2018), temperature in the east112

equatorial Pacific (Galanti et al., 2002; Galanti & Tziperman, 2003), and sea level on the113

Californian coast (Verdy et al., 2013). Building on previous studies, we exploit the ad-114

joint in a novel fashion, as sketched in Fig. 1(b): we identify forcings (green shading) af-115

fecting both an observed quantity (e.g., temperature in the pink box) and an unobserved116

QoI (e.g., heat transport across the purple section). By this approach, we find dynam-117

ical causes and controls of covariability between the observed and unobserved quantity.118

Moreover, we establish a link between the notion of dynamical proxy potential and119

two existing quantitative frameworks: representer methods (Bennett, 1985, 2002) and120

Hessian-based uncertainty quantification (Bui-Thanh et al., 2012; Thacker, 1989). Within121

–3–
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(a) Statistical proxy potential
(conventional approach)

time

observed quantity
unobserved QoI

(b) Dynamical proxy potential
(approach introduced in this work)

(c) Two interpretations of dynamical proxy potential

Ocean state estimation framework

control variables x = (x1, . . . , xN ), prior covariance B

initial conditions atmospheric forcing model parameters

x1 x2 xN

equations of motion/
ocean general

circulation model

observed quantity
Obs

unobserved quantity
QoI

Figure 1. (a),(b) Two approaches to assess proxy potential of an observed quantity (pink)

for an unobserved quantity of interest (QoI, purple): (a) statistical proxy potential assesses co-

variability based on empirical evidence; (b) dynamical proxy potential assesses causes (green

shading) of covariability based on dynamical laws. (c) Two equivalent interpretations of dy-

namical proxy potential (see section 2): via (i) shared ocean adjustment physics (pink & purple

arrows) and (ii) uncertainty quantification in ocean state estimation (black arrows).
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the latter framework, dynamical proxy potential can be interpreted to measure uncer-122

tainty reduction in the QoI, given the new dynamical information provided by the ob-123

servation, independent of the measurement value. This second interpretation of dynam-124

ical proxy potential is further developed in a forthcoming paper.125

We illustrate the new concept of dynamical proxy potential for a case study in the126

North Atlantic, choosing heat transport across the Iceland-Scotland ridge as our exem-127

plary QoI. The Iceland-Scotland ridge (ISR) is the key gateway for poleward heat pro-128

gression from the North Atlantic toward the Arctic Ocean (Hansen & Østerhus, 2000).129

Warm Atlantic waters are carried across the ridge by the Norwegian Atlantic Current130

(NwAC), one of the main branches of the North Atlantic Current (NAC, see Fig. 2). While131

observational estimates for ISR heat transport since the mid 1990s exist (e.g., Berx et132

al., 2013; Hansen et al., 2015; Østerhus et al., 2005, 2019), cross-ridge heat transport es-133

timates remain uncertain, due to a sparse array of current meter moorings and the sen-134

sitivity to the choice of calculation method (Berx et al., 2013; McCarthy et al., 2019).135

In contrast, upper ocean temperatures are well constrained throughout the larger part136

of the North Atlantic basin via remote sensing and in situ platforms. For this reason,137

we select our representative observed quantities as temperature at the sea surface and138

at 300 m depth, at two locations in the North Atlantic: in the Irminger Current (IC) and139

off the Portuguese coast (Fig. 2), monitored by the OSNAP (Lozier et al., 2017, 2019)140

and OVIDE (Lherminier et al., 2007; Mercier et al., 2015) sections, respectively. These141

locations are intentionally chosen in two branches of the NAC that are distinct from the142

branch crossing the ISR (Fig. 2) and are therefore not expected to be ideal placements143

for monitoring ISR heat transport. We will show that these observations nevertheless144

provide partial constraints on the QoI through shared adjustment physics, which are un-145

covered and quantified by dynamical proxy potential.146

Here, we work within the global ECCO (Estimating the Circulation and Climate147

of the Ocean) version 4 state estimation framework (Forget et al., 2015) and focus on148

monthly to multiannual time scales up to five years, since now approximately five years149

of continuous OSNAP measurements are available. We note that assessment of dynam-150

ical proxy potential does not require actual (here: OSNAP and OVIDE) observational151

data, since it investigates dynamical relationships in the model equations, rather than152

observed covariability. This paper is structured as follows. Section 2 introduces our new153

method that quantifies dynamical proxy potential. Section 3 applies the methodology154

to our North Atlantic case study. In section 4, we discuss our results as well as limita-155

tions and future directions. Section 5 presents the main conclusions.156

2 Quantifying Dynamical Proxy Potential157

We define proxy potential of an observed quantity, Obs, for a quantity of interest,158

QoI, as159

PP(Obs; QoI) =

(
Cov(Obs,QoI)

σObs · σQoI

)2

∈ [0, 1]. (1)160

Here, the operators Cov(♣,♠) and σ♣ denote covariance and standard deviation, respec-161

tively. Conventionally, these operators are evaluated statistically, in which case we re-162

fer to eq. (1) loosely as ’statistical proxy potential’. A statistical evaluation can be per-163

formed, for instance, if time series (e.g., from model output) are available, as sketched164

in Fig. 1(a); the right hand side of eq. (1) is then equal to the squared Pearson corre-165

lation coefficient, often referred to as r2. To define and assess dynamical proxy poten-166

tial, we require a dynamics-based evaluation of the operators in eq. (1). For this, we lever-167

age the framework of ocean state estimation and inbuilt adjoint capability, as described168

in the following.169

Ocean state estimation seeks to infer a best estimate from uncertain (and often sparse)170

ocean observations and an ocean model with uncertain inputs. The uncertain inputs are171

–5–
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also referred to as the control variables, collected in the vector x = (x1, . . . , xN ), and172

typically consist of spatio-temporal varying atmospheric forcing, initial conditions and173

certain model parameters (green box in Fig. 1(c), or Forget et al., 2015). An assigned174

N×N covariance matrix B spells out assumptions on the prior uncertainty in the con-175

trol variables (Tarantola, 2005; Wunsch, 1996). Ocean state estimation then fits the model176

to the available observations, by adjusting (or ‘inverting’ for) the control variables within177

their prescribed uncertainty. In contrast, the model state variables (within the white cen-178

tered box in Fig. 1(c), e.g., temperature and velocity) adjust freely in response to the179

adjusted control variables, following the model dynamics to ensure dynamical and kine-180

matic consistency. An implicit assumption in ocean state estimation is that the control181

variables comprise all possible sources of changes in the ocean state and circulation.182

Ocean state estimation offers a comprehensive framework to quantify proxy poten-183

tial (eq. (1)) and its dynamical origins, where the candidates for proxy origin are formally184

provided by the control variables. Within this framework, the covariance between Obs185

and QoI is the scalar186

Cov(Obs,QoI) = [∇xQoI]T B∇xObs. (2)187

Here, the gradient ∇x(♣) = [∂(♣)/∂x1, . . . , ∂(♣)/∂xN ]T is the vector whose ith com-188

ponent is the linearized sensitivity of the scalar ♣ ∈ {QoI,Obs} to the control variable189

xi, and [∇x(♣)]T is its transpose, i.e., the associated row vector. The covariance in eq. (2)190

can be thought of as being computed from right to left (from the observed quantity via191

the controls to the QoI), following the black arrows in Fig. 1(c), by means of the adjoint192

and tangent linear models (Errico, 1997). Importantly, the resulting covariance is con-193

sistent with ocean dynamical laws. These dynamical laws are baked into the gradients194

in eq. (2) via the chain rule, which passes through the equations of motion that are en-195

coded in the underlying ocean GCM (white centered box, Fig. 1(c)). Similarly to eq. (2),196

the standard deviation of the quantity ♣ ∈ {Obs,QoI} is197

σ♣ =
√

[∇x(♣)]T B∇x(♣). (3)198

The fact that the expressions in eqs. (2),(3) are the dynamics-based analogue of purely199

statistically derived covariance and standard deviations was established by Bennett (1985,200

1990). The values computed in eqs. (2),(3) would be entries in the so-called represen-201

ter matrix (Bennett, 2002), if both quantities, Obs and QoI, were part of the model state202

variables.203

In this work, we shed new light on the concept of dynamics-based covariances (or204

‘representers’). To this aim, we introduce the notion of dynamical proxy potential (DPP).205

Inserting eqs. (2),(3) into eq. (1), and rearranging terms, we obtain the following def-206

inition of DPP:207

DPP(Obs; QoI) =
( [
σ−1QoI ·B1/2∇xQoI

]
︸ ︷︷ ︸

=q

•
[
σ−1Obs ·B1/2∇xObs

]
︸ ︷︷ ︸

=v

)2
∈ [0, 1], (4)208

where B1/2 is the N×N matrix which satisfies B1/2 B1/2 = B, and • denotes the dot209

product in RN . The bounds in eq. (4) correspond to the cases for which Obs provides210

no information (DPP = 0), and serves as a perfect proxy for the QoI (DPP = 1), sim-211

ilar to the statistics-derived r2. DPP is fully determined by the projection (•) of the vec-212

tors q and v (defined in eq. (4)). q and v contain the sensitivities of QoI and Obs to all213

controls, allowing for two equivalent interpretations: (i) q and v reveal the dynamical214

adjustment mechanisms of QoI and Obs, respectively (sections 3.2 and 3.3); (ii) q spec-215

ifies the information required to recover the QoI, while v is the information captured by216

the observed quantity. Interpretation (ii) is rooted in Hessian-based uncertainty quan-217

tification (UQ) and optimal observing system design within ocean state estimation. This218

link to UQ is derived in the supporting information (Text S1) and further explored in219

a forthcoming paper. In the definition of q,v (eq. (4)), multiplication with the matrix220

–6–
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B1/2 (prior-)weights the sensitivity vectors ∇x(♣), and division by the scalar σ♣ acts221

as normalization. Indeed, eq. (3) can be rewritten as the l2-norm of the weighted sen-222

sitivity vector:223

σ♣ =
∥∥∥B1/2∇x(♣)

∥∥∥ . (5)224

Just like an entry in the representer matrix (eq. (2) or Bennett, 2002), DPP quan-225

tifies the dynamical information content of an observation for a QoI with a single num-226

ber (eq. (4)). However, DPP places emphasis on unfolding this information content (col-227

lapsed into a single number via the dot product •) and illuminating its dynamical causes228

(see Figs. 6, 7), through inspection of q and v.229

Fig. 1(c) offers a schematic summary of understanding DPP(Obs; QoI) (eq. (4)) in230

line with our two equivalent interpretations. Dynamical proxy potential of an observed231

quantity, Obs (pink box), for an unobserved quantity of interest, QoI (purple box), mea-232

sures233

(i) the similarity between the ocean adjustment physics for the observed vs. unob-234

served quantity (pink vs. purple arrows) in response to changes in forcing (green235

box), on a scale from 0% (no similarity) to 100% (identical);236

(ii) the relative uncertainty reduction in the QoI that would be achieved if the obser-237

vation were to be added without noise to the state estimation framework in Fig. 1(c)238

(see Text S1). The flow of information and uncertainty reduction within the state239

estimation framework - from the observation via the controls to the QoI - is de-240

lineated by the black arrows in Fig. 1(c).241

3 Application to the North Atlantic242

This section illustrates our method for a case study in the North Atlantic. Section 3.1243

describes the experimental setup, including our choice of QoI and observations. Sections 3.2244

and 3.3 present the adjustment mechanisms of the QoI and observations. Section 3.4 as-245

sesses the degree to which these adjustments are shared, and quantifies the dynamical246

proxy potential of the observations for the QoI.247

3.1 Experimental Setup248

We perform our experiments using the ECCO version 4 release 2 (ECCOv4r2, For-249

get et al., 2015) solution. The Massachusetts Institute of Technology general circulation250

model (MITgcm, J. Marshall, Adcroft, et al., 1997; J. Marshall, Hill, et al., 1997), serves251

as the dynamical core in ECCO and is configured at a nominal horizontal resolution of252

1◦ with 50 vertical levels. The optimized state provides an acceptable fit to most avail-253

able oceanographic data and has been used extensively for mechanistic investigations of254

ocean variability, including in the North Atlantic (e.g., Buckley et al., 2014; Jones et al.,255

2018). We refer the reader to Forget et al. (2015) for details on the model configuration256

and estimated ocean state.257

To quantify dynamical proxy potential and its origins, one requires the linear sen-258

sitivities of the QoI and observed quantities to all control variables (∇xQoI and ∇xObs,259

eq. (4)). To perform these sensitivity calculations, we take advantage of the flexible EC-260

COv4 adjoint modeling framework (Forget et al., 2015). Algorithmic differentiation, through261

source-to-source code transformation with the commercial tool Transformation of Algo-262

rithms in Fortran (TAF, Giering & Kaminski, 1998), produces the code for our adjoint263

models. Ice-covered regions are masked in the sensitivity calculation.264

–7–
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Figure 2. Schematic of the North Atlantic quantities examined in our case study. The quan-

tity of interest (QoI) is heat transport across the Iceland-Scotland ridge (ISR, green line). The

temperature observations ✓A, ✓B and ✓C are located inside the green dots. ✓A and ✓B are sub-

surface (at 300 m depth), ✓C at the sea surface. The arrows represent approximate pathways of

major near-surface currents carrying warm, saline Atlantic waters (orange) and cold, fresh Arctic

waters (yellow): NAC = North Atlantic Current; NwAC = Norwegian Atlantic Current; IC =

Irminger Current; EGC = East Greenland Current.
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tity of interest (QoI) is heat transport across the Iceland-Scotland ridge (ISR, green line). The

temperature observations θA, θB and θC are located inside the green dots. θA and θB are sub-
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Irminger Current; EGC = East Greenland Current.
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3.1.1 QoI and Observations265

The QoI in our case study is heat transport across the Iceland-Scotland ridge, de-266

noted by HTISR. We investigate three different temperature observations in the North267

Atlantic, located inside the green dots in Fig. 2 and labeled by θA, θB , and θC . Obser-268

vations θA and θC are located in the Irminger Sea at (40 ◦W, 60 ◦N), while observation269

θB is situated in the eastern North Atlantic off the Portuguese coast at (12 ◦W, 41 ◦N).270

θA and θB are subsurface observations, situated at 300 m depth, and θC is a surface ob-271

servation.272

We quantify the dynamical proxy potential of the five-year mean of the observa-273

tions for the five-year mean of our QoI, for zero lag. Sensitivities of the QoI and obser-274

vations (eq. (4)) are computed from the final five years (2007-2011) of the ECCOv4r2275

state estimate. Dependence on the specific evaluation period and background state is276

weak, given that HTISR, θA, θB , and θC depend approximately linearly on the control277

variables (Appendix A).278

The QoI, as simulated by the model, is diagnosed as follows:279

HTISR =
ρ0 cp
∆t

∫ 2011

2007

∫ top

bottom

∫
L

(θ − θref) v⊥ dLdz dt [W]. (6)280

L denotes the Iceland-Faroe-Scotland line segment, ∆t =
∫ 2011

2007
dt the length of the in-281

tegration period, ρ0 = 1029 kg/m3 the reference density, and cp = 3994 J/(kg ·K) the282

specific heat capacity of water. θ denotes potential temperature, and v⊥ the velocity per-283

pendicular to the line segment L; sign convention is such that positive v⊥ corresponds284

to positive north- and eastward velocity. Note that since L is only a partial line segment,285

rather than a closed boundary, heat transport in eq. (6) has to be defined relative to a286

reference temperature θref (Schauer & Beszczynska-Möller, 2009). Consistent with many287

observational studies (e.g., Berx et al., 2013; Hansen et al., 2015; Østerhus et al., 2005),288

we choose θref = 0 ◦C, motivated by the observation that southward flow across the ISR289

is close to this temperature (Hansen et al., 2003).290

For ? ∈ {A,B,C}, the observation θ? is diagnosed as the mean potential temper-291

ature292

θ? =
1

∆t · V?

∫ 2011

2007

∫ h?
1

h?
0

∫
A?

θ dx dy dz dt [◦C]. (7)293

(h0)?, (h1)?, and A? denote the lower and upper boundaries, and the horizontal area,294

of the model grid cell in which the respective observation θ? is located. For the subsur-295

face observations (? = A,B), we have (h0)? = −325 m and (h1)? = −275 m. For the296

surface observation, we choose the uppermost two model grid cells as a representative297

depth range, corresponding to (h0)C = −20 m and (h1)C = 0 m. The area of AA =298

AC is approximately (52 km)2 and the area of AB is approximately (84 km)2. In eq. (7),299

θ(x, y, z, t) denotes potential temperature, ∆t =
∫ 2011

2007
dt the length of the integration300

period and V? =
∫ h?

1

h?
0

∫
A? dx dy dz the volume of interest.301

3.1.2 Control Variables and Weights302

Table 1 lists the set of control variables that is chosen in this work: the spatially-303

varying forcing fields Fm(i, j) of net upward surface heat flux, Qnet,↑, net surface fresh-304

water flux, EPR, and zonal and meridional wind stress, τx and τy, respectively. Con-305

sistent with assessing dynamical proxy potential of the five-year mean of the observa-306

tions for the five-year mean of the QoI, only adjustments to changes in the five-year mean307

of the forcing fields are considered (fourth column in Table 1). For the sake of a simpler308

presentation, initial conditions and model parameter fields are omitted, even though they309

are part of the uncertain inputs in a full ocean state estimation framework (green box,310

Fig. 1(c)). The four two-dimensional forcing fields are flattened and concatenated into311
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Table 1. Control Variables and Weights in our Case Study.

m Forcing Fm(i, j) Symbol Time average ∆Fm

1 Net upward surface heat flux Qnet,↑ five years 50 W/m2

2 Net surface freshwater flux EPR five years 5 · 10−8 m/s
3 Zonal wind stress τx five years 0.05 N/m2

4 Meridional wind stress τy five years 0.05 N/m2

a long vector, x = (x1, . . . , xN ). The length of the vector, N , is O(106), equal to 4 times312

the number of model surface grid cells covering the global ocean.313

For each of the four forcing fields, Fm, we set a spatially constant prior standard314

deviation, ∆Fm (last column in Table 1). Further, we assume the decorrelation length315

in the surface forcing to be less than the grid scale (∼ 1 ◦). Meanwhile, ECCOv4r2 uses316

spatially varying prior standard deviations, estimated based on the spread between dif-317

ferent reanalysis products (Chaudhuri et al., 2013), and sets a decorrelation length of318

3 times the grid scale within the same forcing field (but no cross-correlations between319

distinct forcing fields, Forget et al., 2015). Our choices correspond to a diagonal prior320

covariance B, and its square root is the diagonal N ×N matrix321

B1/2 = diag(∆F1, . . . ,∆F1︸ ︷︷ ︸
N/4 times

,∆F2, . . . ,∆F2︸ ︷︷ ︸
N/4 times

,∆F3, . . . ,∆F3︸ ︷︷ ︸
N/4 times

,∆F4, . . . ,∆F4︸ ︷︷ ︸
N/4 times

). (8)322

Our assumption of spatially uniform weights ∆Fm and no prior spatial cross-correlations323

implies that the sensitivity projection (eq. (4)) for each individual forcing field is fully324

determined by the adjustment physics, and not by the forcing weights. Our simplified325

choice of forcing covariance therefore adds clarity to the presentation in this paper, whose326

primary goal is to explain the new concept of dynamical proxy potential.327

3.2 Adjustment Mechanisms of the QoI328

Figs. 3(a)-(d) show the weighted and normalized sensitivities of the five-year mean329

heat transport across the Iceland-Scotland ridge (HTISR):330

q|Fm(i,j) = σ−1HT

∂(HTISR)

∂Fm(i, j)
∆Fm, m = 1, 2, 3, 4. (9)331

Here, Fm(i, j) are the five-year mean atmospheric forcing fields from Table 1, and ∆Fm332

their spatially uniform weights. The normalization factor, σHT = 11 TW, is computed333

according to eqs. (5),(8), with ♣ = HTISR. The weighted and normalized sensitivities334

of HTISR in eq. (9) (or Figs. 3(a)-(d)) assemble the vector q (cf. eqs. (4),(8)), which has335

two equivalent interpretations (section 2): (i) q reveals all adjustment mechanisms of HTISR,336

as will be discussed in the following paragraphs; (ii) q is the information required to re-337

cover HTISR, our QoI. The bar chart in Fig. 3(e) shows the relative importance of the338

four forcings Fm for impacting HTISR. Relative importance is measured by the ratios339 ∥∥q|Fm

∥∥2 = σ−2HT

∑
i,j

(
∂(HTISR)

∂Fm(i, j)
∆Fm

)2

, m = 1, 2, 3, 4, (10)340

equivalent to integrating the sensitivities in Figs. 3(a)-(d) around the globe (in the l2-341

norm). Fig. 3(e) demonstrates that the influence of wind stress, τx and τy, prevails over342

the influence of buoyancy forcing, Qnet,↑ and EPR.343

The positive sensitivity of HTISR to τy along the western African and European344

coast (Fig. 3(d)) is consistent with the following dynamical mechanism. An increase in345
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Figure 3. Sensitivities of five-year mean heat transport across the Iceland-Scotland ridge

(HTISR), to changes in the five-year mean (a) upward surface heat flux Qnet,", (b) surface fresh-

water flux EPR, (c) zonal wind stress ⌧x and (d) meridional wind stress ⌧y. The sensitivities are

weighted and normalized, and assemble the vector q (eq. (9)). Red (blue) colors indicate that an

increase in (a) heat loss to the atmosphere, (b) surface salinification, (c) eastward wind stress and

(d) northward wind stress would lead to a subsequent increase (decrease) in HTISR on a five-year

time scale. The solid black-yellow contour in (a)-(d) delineates the ISR. The bar chart in (e)

shows the relative contributions of Qnet,", EPR, ⌧x and ⌧y to HTISR sensitivity, when integrating

the sensitivities in (a)-(d) around the globe (eq. (10)).
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Figure 3. Sensitivities of five-year mean heat transport across the Iceland-Scotland ridge

(HTISR), to changes in the five-year mean (a) upward surface heat flux Qnet,↑, (b) surface fresh-

water flux EPR, (c) zonal wind stress τx and (d) meridional wind stress τy. The sensitivities are

weighted and normalized (thus unitless), and assemble the vector q (eq. (9)). Red (blue) colors

indicate that an increase in (a) heat loss to the atmosphere, (b) surface salinification, (c) east-

ward wind stress and (d) northward wind stress would lead to a subsequent increase (decrease) in

HTISR on a five-year time scale. The solid black-yellow contour in (a)-(d) delineates the ISR. The

bar chart in (e) shows the relative contributions of Qnet,↑, EPR, τx and τy to HTISR sensitivity,

when integrating the sensitivities in (a)-(d) around the globe (eq. (10)).
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northward wind stress along the western African and European coast induces Ekman on-346

shore convergence and a positive pressure anomaly along the coast. Boundary waves (e.g.,347

D. P. Marshall & Johnson, 2013) propagate the positive pressure anomaly cyclonically348

around the North Atlantic basin (Fig. 5(a)). When the positive pressure anomaly reaches349

the eastern end of the ISR (within a month, see Movie S1), it leads to an increased along-350

ridge pressure gradient and, by geostrophic balance, a strengthened HTISR. While the351

HTISR anomaly develops rapidly (after a few months, Fig. A1(b)), it persists for as long352

as the wind stress perturbation is maintained (here: for 5 years). The sensitivity to zonal353

wind stress along the western African and European coastline (Fig. 3(c)) is due to the354

same mechanism. Here, the sensitivity sign alternates because it is determined by the355

orientation of the coastline.356

The wind stress sensitivities of HTISR around Iceland and the United Kingdom (UK)357

that emerge in Figs. 3(c),(d) can be explained similarly. By way of illustration, negative358

sensitivity of HTISR to τy along the western coast of Iceland (Fig. 3(d)) is consistent with359

the following mechanism. An increase in northward wind stress along the western Ice-360

landic coast drives Ekman onshore convergence, resulting in a positive pressure anomaly361

at the Icelandic coast. Through clockwise wave propagation around the Icelandic coast-362

line, the positive pressure anomaly is rapidly communicated to the western end of the363

ISR (Fig. 5(b), Movie S7). The resulting negative anomaly in the along-ridge pressure364

gradient leads to a weakening of HTISR and, consequently, colder temperatures in the365

Norwegian Sea (Fig. 5(d)). As before, the HTISR anomaly develops rapidly, but persists366

for 5 years (Fig. A1(d)). This mechanism also explains the sign of the τx sensitivities around367

Iceland: increased eastward (westward) wind stress along the southern (northern) coast368

of Iceland (Fig. 3(c)) drive Ekman offshore divergence, resulting in a negative pressure369

anomaly at the Icelandic coast and a subsequent increase in HTISR. Since the UK coast-370

line delivers pressure signals to the eastern (rather than the western) end of the ISR, UK-371

originated pressure anomalies increase HTISR if they are positive (rather than negative).372

This explains the fact that the sensitivity dipoles around Iceland and the UK are of op-373

posite sign (Figs. 3(c),(d)).374

HTISR shows positive sensitivity to Qnet,↑ and EPR to the west of the ISR, around375

Iceland, and negative sensitivity to the east of the ISR, along the western European coast376

(Figs. 3(a),(b)). This sensitivity dipole across the core of the NAC is consistent with a377

strengthening of the cross-ridge geostrophic transport in response to a negative pertur-378

bation of the density gradient along the section. The sensitivity of HTISR to Qnet,↑, rel-379

ative to the remaining forcing fields, is surprisingly small: only 3% (Fig. 3(e)). We note380

that even if we tripled ∆Qnet in Table 1, while keeping the weights for the remaining forc-381

ings unchanged, HTISR would still be less sensitive to Qnet,↑ than to any of the remain-382

ing three forcing fields in Fig. 3(e). This is consistent with previous observation- and model-383

based studies, which found that on seasonal to multiannual time scales ISR heat trans-384

port variability is predominantly driven by velocity fluctuations, rather than tempera-385

ture fluctuations (Årthun & Eldevik, 2016; Asbjørnsen et al., 2019; Orvik & Skagseth,386

2005).387

3.3 Adjustment Mechanisms of the Observations388

The weighted and normalized sensitivities of the five-year mean temperature ob-389

servations θ?, ? = A,B,C, are given by390

v?
|Fm(i,j) = σ−1?

∂θ?

∂Fm(i, j)
∆Fm, m = 1, 2, 3, 4, (11)391

similar to eq. (9). The normalization factors σ? are computed according to eqs. (5),(8),392

with ♣ = θ?, giving σA = 0.05 ◦C, σB = 0.06 ◦C, and σC = 0.23 ◦C. Note that σC is393

much larger than σA and σB since the surface temperature θC is more sensitive to at-394

mospheric forcing than the subsurface temperatures θA, θB . Figs. 4(a)-(f) show the weighted395
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Figure 4. (a)-(c): Sensitivities of five-year mean (a) subsurface temperature in the Irminger

Sea (✓A), (b) subsurface temperature o↵ the Portuguese coast (✓B), and (c) surface temperature

in the Irminger Sea (✓C) to changes in five-year mean upward surface heat flux Qnet,". (d)-(f):

Same as (a)-(c), but sensitivities to meridional wind stress ⌧y. The sensitivities are weighted and

normalized, and assemble the vector v? (eq. (11)). Red (blue) colors indicate that an increase

in (a),(b),(c) heat loss to the atmosphere and (d),(e),(f) northward wind stress would lead to a

subsequent increase (decrease) in (a),(d) ✓A, (b),(e) ✓B , and (c),(f) ✓C on a five-year time scale.

The yellow dots mark the respective locations of the temperature observation. The bar charts in

(g)-(i) show the relative contributions of Qnet,", EPR, ⌧x and ⌧y to (g) ✓A, (h) ✓B , and (i) ✓C

sensitivity, computed as in Fig. 3.
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Figure 4. (a)-(c): Sensitivities of five-year mean (a) subsurface temperature in the Irminger

Sea (θA), (b) subsurface temperature off the Portuguese coast (θB), and (c) surface temperature

in the Irminger Sea (θC) to changes in five-year mean upward surface heat flux Qnet,↑. (d)-(f):

Same as (a)-(c), but sensitivities to meridional wind stress τy. The sensitivities are weighted and

normalized (thus unitless), and assemble the vector v? (eq. (11)). Red (blue) colors indicate that

an increase in (a)-(c) heat loss to the atmosphere and (d)-(f) northward wind stress would lead to

a subsequent increase (decrease) in (a),(d) θA, (b),(e) θB , and (c),(f) θC on a five-year time scale.

The yellow dots mark the respective locations of the temperature observation. The bar charts in

(g)-(i) show the relative contributions of Qnet,↑, EPR, τx and τy to (g) θA, (h) θB , and (i) θC

sensitivity, computed as in Fig. 3.
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and normalized sensitivities (eq. (11)) for two of the four forcings, F1 = Qnet,↑ and F4 =396

τy. The vector v?, composed of the weighted and normalized sensitivities in eq. (11), has397

again two equivalent interpretations: (i) v? reveals the adjustment mechanisms of θ?,398

which will be discussed in the following; (ii) v? is the information captured by the ob-399

servation θ?. The bar charts in Figs. 4(g)-(i) show the relative importance of the four400

forcings Fm for impacting θ?, for ? = A,B,C. Relative importance is measured as in401

Fig. 3(e), by the ratios in eq. (10), where q is substituted by v?.402

The relative importance of Qnet,↑ is high for the surface observation θC (Fig. 4(i)),403

but low for the subsurface observations θA and θB (Figs. 4(g),(h)). The high sensitiv-404

ity of θC to Qnet,↑ is concentrated at the observed site (Fig. 4(c)), due to the strong in-405

fluence of local air-sea heat fluxes on surface temperature. All temperature observations406

show weak negative Qnet,↑ sensitivity upstream of the respective observed sites (Figs. 4(a)-407

(c)), as an increased upward heat flux locally cools surface waters which are then advected408

(Fig. 2) to the observed locations. For all three temperature observations, the relative409

importance of EPR is very small (Figs. 4(g)-(i)). Wind stress is important for all three410

observations (Figs. 4(g)-(i)), and the remainder of this section is devoted to wind stress411

sensitivities. For the sake of brevity, we focus on τy sensitivities, which can be regarded412

as representative for τx sensitivities, too. Indeed, τx and τy sensitivities emerge along413

the same pathways (not shown) due to the same wind-driven adjustment mechanisms.414

All observations are characterized by a sensitivity dipole local to the observed site,415

consistent with Ekman dynamics. For instance, at (12 ◦W, 41 ◦N), right where θB is lo-416

cated, a sensitivity dipole is visible, with positive sensitivities to the west and negative417

sensitivities to the east (Fig. 4(e)), interrupting the otherwise positive sensitivities along418

the eastern boundary of the North Atlantic. Here, Ekman theory predicts that a wind419

stress perturbation matching the sensitivity dipole (i.e., increased northward wind stress420

to the west and increased southward wind stress to the east) causes Ekman downwelling421

and pumps warm surface waters down to the subsurface observation, which increases θB .422

The large-scale wind stress sensitivity patterns of θC (Fig. 4(f)) are very similar423

to the ones of θA (Fig. 4(d)), except that they are of much weaker amplitude. The sim-424

ilarity of the patterns suggests that the surface observation θC is sensitive to similar re-425

mote wind-driven adjustment mechanisms as the subsurface observation θA. However,426

local forcing massively dominates the surface temperature response, as indicated by the427

strong sensitivities concentrated near (40 ◦W, 60 ◦N) in Figs. 4(c),(f).428

For all three temperature observations, positive sensitivity to northward wind stress429

emerges along the western African and European coastline (Figs. 4(d)-(f)), similar to what430

was seen for HTISR in section 3.2. To explain the underlying mechanism, we perform a431

perturbation experiment, in which the final five years of the ECCOv4r2 solution serve432

as our control simulation. We increase northward wind stress in the region highlighted433

in Figs. 5(a),(c), along the western African coast, by 0.05 N/m2, and maintain the per-434

turbation over the full five-year period. Fig. 5(c) shows the response anomalies in sub-435

surface temperature, at a depth of 300 m, time-averaged over the five-year experiment.436

We see that, in response to the positive northward wind stress anomaly along the west-437

ern African coast, the northeast Atlantic (north of 25 ◦N) experiences anomalous high438

temperatures.439

The responsible mechanism operates exactly as demonstrated by Jones et al. (2018),440

see their Fig. 10. The northward wind stress anomaly creates a positive pressure anomaly441

along the eastern boundary of the North Atlantic, which, after cyclonic propagation around442

the basin, sets up an anomalous pressure gradient between the Nordic Seas and the North443

Atlantic (Fig. 5(a), Movie S1). The basin-scale pressure gradient along the northern bound-444

ary of the North Atlantic spins up the subpolar gyre (Movie S2), leading to a warming445

of the subpolar North Atlantic after 1-2 years (Figs. 5(c), A1(a), Movie S3). The large-446

scale warming in the subtropical North Atlantic, north of 25 ◦N (Fig. 5(c)), is the result447
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Figure 5. Anomaly in North Atlantic (a),(b) bottom pressure (normalized by density, p/⇢)

and (c),(d) potential temperature at 300 m depth, in response to a positive northward wind stress

anomaly of amplitude 0.05 N/m2 along the (a),(c) western African coast and (b),(d) western Ice-

landic coast. The wind stress perturbations are imposed inside the green contour in (a)-(d), and

maintained over five years. The anomalies shown are time-averaged over the same five-year time

period. The black line marks the (a),(b) 1000 m, (c),(d) 300 m depth contour. The yellow dots

and black-yellow line show the locations of the temperature observations ✓A, ✓B , and the Iceland-

Scotland ridge. Movies of the monthly evolution of these anomalies are shown in the supporting

information (Movies S1, S7, S3, S9).
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Figure 5. Anomaly in North Atlantic (a),(b) bottom pressure (normalized by density, p/ρ)

and (c),(d) potential temperature at 300 m depth, in response to a positive northward wind stress

anomaly of amplitude 0.05 N/m2 along the (a),(c) western African coast and (b),(d) western Ice-

landic coast. The wind stress perturbations are imposed inside the green contour in (a)-(d), and

maintained over five years. The anomalies shown are time-averaged over the same five-year time

period. The black line marks the (a),(b) 1000 m, (c),(d) 300 m depth contour. The yellow dots

and black-yellow line show the locations of the temperature observations θA, θB , and the Iceland-

Scotland ridge. Movies of the monthly evolution of these anomalies are shown in the supporting

information (Movies S1, S7, S3, S9).
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of baroclinic Rossby waves propagating a warm temperature anomaly from the eastern448

boundary westward (Movies S3, S4). The anomalous warming includes the locations of449

the temperature observations θA, θB , and θC (yellow dots, Fig. 5(c)), explaining the con-450

sistently positive sensitivities along the western African coast in Figs. 4(d)-(f). Other451

accompanying temperature adjustments - most notably, the cooling in the subtropical452

gyre south of 20 ◦N (Fig. 5(c), Movies S3, S6) - do not impact the temperature obser-453

vations (nor the QoI, HTISR) on a five-year time scale, but may come into play on longer454

time scales.455

The Irminger Sea observations also show sensitivity to wind stress in the north-456

eastern Atlantic, between 50 ◦N and 70 ◦N (Figs. 4(d),(f)). In this region, τy sensitiv-457

ities of θA, θC (Figs. 4(d),(f)) have a similar pattern as τy sensitivities of HTISR (Fig. 3(d)),458

except that sensitivities of θA, θC are of opposite sign to those of HTISR (see Figs. 6(c),(d)459

for a side-by-side comparison). To explain the opposite signs, we perform a second per-460

turbation experiment similar to the one presented in Figs. 5(a),(c). In the second exper-461

iment, we increase northward wind stress along the western Icelandic coast, in the re-462

gion highlighted in Figs. 5(b),(d), where θA and θC show positive sensitivity (Figs. 4(d),(f))463

and HTISR shows negative sensitivity (Fig. 3(d)). Fig. 5(d) shows the response anomaly464

in subsurface temperature, at a depth of 300 m. The Irminger and Labrador Seas expe-465

rience a warming, while the Norwegian Sea cools.466

The underlying mechanism is the following: the northward wind stress anomaly467

along the western Icelandic coast drives Ekman onshore convergence and a positive pres-468

sure anomaly, as discussed in section 3.2. The positive pressure anomaly is rapidly com-469

municated along the entire Icelandic coastline, resulting in an across-bathymetry pres-470

sure gradient (Fig. 5(b), Movie S7), which drives an anomalous clockwise barotropic cir-471

culation around Iceland (Movie S8). The anomalous clockwise circulation around Ice-472

land weakens the northward transport across the ISR by the NwAC as well as the south-473

ward transport through Denmark Strait by the EGC, while strengthening the IC (cf. Fig. 2).474

The weakened northward transport of warm Atlantic waters across the ISR leads to the475

anomalous cold temperatures that are seen in the Norwegian Sea in Fig. 5(d) (and Movie476

S9), and is consistent with a reduced HTISR, as predicted by the negative sensitivities477

in Fig. 3(d). The weakened southward transport of cold Arctic waters through Denmark478

Strait, together with the strengthened IC, results in the anomalous warming that is seen479

in the Irminger and Labrador Seas in Fig. 5(d) (see also Fig. A1(c), Movie S9). The in-480

creased temperature in the Irminger Sea is consistent with the positive sensitivities along481

the western Icelandic coast in Figs. 4(d),(f).482

The perturbation experiment presented in Figs. 5(b),(d) explains the opposite sign483

in the sensitivities along the western Icelandic coast in Fig. 3(d) vs. Fig. 4(d). The fact484

that in Fig. 3(d) vs. Fig. 4(d), sensitivities are consistently of opposite sign in the north-485

east Atlantic between 50 ◦N and 70 ◦N can be understood similarly. The sensitivity pat-486

terns in this region are characterized by topographically steered bands, which connect487

to Iceland or the ISR (Figs. 3(d), 4(d)). The sensitivity patterns have opposite sign in488

Fig. 3(d) vs. Fig. 4(d) because wind stress in this region creates pressure anomalies that489

are transported to the Icelandic coastline. Once there, the pressure anomalies drive a490

simultaneous strengthening (or weakening) of the NwAC and EGC, as described before,491

which results in opposite temperature responses in the Irminger vs. Norwegian Sea, sim-492

ilarly as in Fig. 5(d).493

3.4 Assessing Shared Adjustment Mechanisms494

This section quantifies the dynamical proxy potential (DPP) of each of the three495

temperature observations, θA, θB , and θC , for our QoI, heat transport across the Iceland-496
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Figure 6. Projection (•) of weighted and normalized sensitivities (eq. (12)) of the QoI, HTISR

(q, left column), and the observed quantity, ✓A (vA, right column). All shown sensitivity maps

are replots of subpanels in Fig. 3 and 4, as indicated by the yellow labels, and are composed of

patterns that are established by the dynamical adjustment mechanisms of HTISR and ✓A, re-

spectively. Shared adjustment physics result in a strong projection (or ‘pattern correlation’),

elucidating the dynamical origins of proxy potential. The color shading in each of the shown

model grid cells (inlets in (c),(d)) corresponds to an entry in either of the two sensitivity vectors,

q and vA, associated with the forcing variable ⌧y. The three cases (+), (�), and (0), resulting

from the elementwise projection, are discussed in the text.
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Figure 6. Projection (•) of weighted and normalized sensitivities (eq. (12)) of the QoI, HTISR

(q, left column), and the observed quantity, θA (vA, right column). All shown sensitivity maps

are replots of subpanels in Figs. 3 and 4, as indicated by the yellow labels, and are composed

of patterns that are established by the dynamical adjustment mechanisms of HTISR and θA,

respectively. Shared adjustment physics result in a strong projection (or ‘pattern correlation’),

elucidating the dynamical origins of proxy potential. The color shading in each of the shown

model grid cells (inlets in (c),(d)) corresponds to an entry in either of the two sensitivity vectors,

q and vA, associated with the forcing variable τy. The three cases (+), (−), and (0), resulting

from the elementwise projection, are discussed in the text.
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Scotland ridge (HTISR). Quantification is via the pointwise projection of sensitivities:497

q • v? =

4∑
m=1

∑
i,j

(
σ−1HT

∂(HTISR)

∂Fm(i, j)
∆Fm

)
·
(
σ−1?

∂θ?

∂Fm(i, j)
∆Fm

)
, (12)498

for ? = A,B,C, cf. eqs. (4),(9),(11). Shared adjustment physics results in strong pro-499

jections, elucidating the dynamical origins of proxy potential.500

Fig. 6 shows the projection in eq. (12) for the case ? = A. Note that the projec-501

tion can be regarded as a pattern correlation, where the patterns in Fig. 6 are established502

by dynamical adjustment mechanisms and pathways (sections 3.2, 3.3). We highlight three503

cases (Figs. 6(c),(d)) resulting from the pointwise projection in eq. (12):504

(+) overlapping sensitivities of equal sign, resulting in a positive contribution to the505

projection q • vA;506

(−) overlapping sensitivities of opposite sign, resulting in a negative contribution to507

q • vA;508

(0) non-overlapping sensitivities, resulting in no contribution to q • vA.509

Fig. 7(i) is a quantitative summary of Fig. 6, showing total positive (case (+)) and neg-510

ative (case (−)) contributions to the projection q • vA, for the four different forcings.511

The maximum absolute value for the projection is equal to 1, due to normalization by512

σHT, σ? (eq. (12)).513

For all observations considered, the generation of proxy potential is dominated by514

existence of wind-driven adjustments that are shared with those for HTISR (Figs. 7(i)-515

(k)). Minor importance of Qnet,↑ and EPR is not surprising when recalling the fact that516

HTISR is relatively insensitive to Qnet,↑ and EPR (Fig. 7(a)). Note that even for the sur-517

face temperature observation θC , which is highly sensitive to surface heat fluxes (Fig. 7(d)),518

the Qnet,↑ contribution to the projection in eq. (12) is negligible (Fig. 7(k)).519

Positive τy contributions to q • vA arise along the eastern boundary of the sub-520

tropical North Atlantic (solid box, Fig. 7(f)), where both HTISR and θA exhibit a band521

of positive sensitivity along the western African and European coast (Figs. 7(e),(f)), due522

to the shared pressure adjustment mechanism discussed in sections 3.2, 3.3 and Figs. 5(a),(c).523

Negative τy contributions to q•vA arise in the northeast Atlantic (dashed box, Fig. 7(f)),524

where wind stress sensitivities are of large amplitude and of opposite sign for HTISR (Fig. 7(e))525

and θA (Fig. 7(f)), as discussed in section 3.3 and Fig. 5(d). The negative projection in526

the northeast Atlantic exceeds the positive projection in the eastern Atlantic waveguide527

(Fig. 7(i)). Total positive and negative contributions sum to q•vA = −0.44 (Fig. 7(i)).528

Here, partial cancellation between the positive and negative projections leads to a value529

reduced by cA = 0.29. For ? = A,B,C, cancellation is quantified as530

c? = |q| • |v?| − |q • v?| ≥ 0, (13)531

where |w| denotes the vector whose entries are the absolute values of the respective en-532

tries of the vector w, for w = q,v?. As an example, if all contributions shown in Fig. 7(i)533

were either consistently positive or consistently negative (in which cases no cancellation534

occurred), the absolute value of the projection q•vA would be increased by the addi-535

tion of cA, resulting in an absolute value of 0.44 + 0.29 = 0.73.536

Positive wind stress contributions to q • vB (Fig. 7(j)) are of similar magnitude537

as positive wind stress contributions to q • vA (Fig. 7(i)), due to the pressure adjust-538

ment mechanism in the eastern Atlantic waveguide, shared among θB , HTISR (and θA).539

The total overlap of HTISR sensitivity with θB sensitivity (Fig. 7(j)) is much smaller than540

with θA sensitivity (Fig. 7(i)), since θB does not show any sensitivity north of 55 ◦N (Fig. 7(g)).541

For the Irminger Sea surface observation θC , proxy origins are similar as for the Irminger542
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Figure 7. (a)-(h): Replots of subpanels in Figs. 3 and 4, as indicated by the yellow labels. (i)-

(k): Contributions from the forcings F = Qnet,", EPR, ⌧x, ⌧y to the projection q • v? (eq. (12)),

where (i) ? = A, (j) ? = B, and (k) ? = C. The projections are computed as shown in Fig. 6.

That is, in each of the subpanels (i)-(k), the ⌧y contribution is computed by projecting the sen-

sitivity map ��1
HT

@(HTISR)
@⌧y(i,j)

�⌧y (shown in (e)) onto the respective sensitivity map ��1
?

@✓?

@⌧y(i,j)
�⌧y

(shown in (f) for ? = A, (g) for ? = B, (h) for ? = C). Positive (negative) ⌧y contributions,

arise in the Atlantic subregion inside the black solid (dashed) box in (f) for ? = A, (g) for ? = B,

(h) for ? = C, inside which sensitivities correlate (anticorrelate) with those in subpanel (e). The

value for q • v? (bottom of subpanels (i)-(k)) is obtained by summing up all upward- and down-

ward pointing bars in the respective subpanel. Here, destructive interference is quantified by c?

(eq. (13)). (l)-(n): Dynamical proxy potential of (l) ✓A, (m) ✓B , (n) ✓C for HTISR, computed by

DPP(✓?; HTISR) = (q • v?)2 (see eq. (4)).
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Figure 7. (a)-(h): Replots of subpanels in Figs. 3 and 4, as indicated by the yellow labels. (i)-

(k): Contributions from the forcings F = Qnet,↑, EPR, τx, τy to the projection q • v? (eq. (12)),

where (i) ? = A, (j) ? = B, and (k) ? = C. The projections are computed as shown in Fig. 6.

That is, in each of the subpanels (i)-(k), the τy contribution is computed by projecting the sen-

sitivity map σ−1
HT

∂(HTISR)
∂τy(i,j)

∆τy (shown in (e)) onto the respective sensitivity map σ−1
?

∂θ?

∂τy(i,j)
∆τy

(shown in (f) for ? = A, (g) for ? = B, (h) for ? = C). Positive (negative) τy contributions,

arise in the Atlantic subregion inside the black solid (dashed) box in (f) for ? = A, (g) for ? = B,

(h) for ? = C, inside which sensitivities correlate (anticorrelate) with those in subpanel (e). The

value for q • v? (bottom of subpanels (i)-(k)) is obtained by summing up all upward- and down-

ward pointing bars in the respective subpanel. Here, destructive interference is quantified by c?

(eq. (13)). (l)-(n): Dynamical proxy potential of (l) θA, (m) θB , (n) θC for HTISR, computed by

DPP(θ?; HTISR) = (q • v?)2 (see eq. (4)).
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Sea subsurface observation θA (boxes in Figs. 7(f),(h)), but contributions from each forc-543

ing are reduced by a factor of about 0.25 (Figs. 7(i),(k)), due to relatively weaker exci-544

tation of surface temperature by remote forcing, as discussed in section 3.3.545

The dynamical proxy potential (eq. (4)) of θ? for HTISR is given by DPP(θ?; HTISR) =546

(q • v?)2, i.e., computed by taking the square of the values obtained in Figs. 7(i)-(k).547

The result is shown in Figs. 7(l)-(n): the DPP of θA for HTISR is 19%, while the DPPs548

of θB and θC for HTISR are only 1%. These values can be interpreted either in terms549

of (i) shared ocean adjustment physics or (ii) uncertainty quantification (cf. Fig. 1(c)).550

As for (i), HTISR shares 19% of its dynamical causes with θA, but only 1% with θB and551

θC . As a result, θA (θB , θC) captures 19% (1%, 1%) of the variability of HTISR, taking552

into account all potential forcing scenarios. As for (ii), DPP predicts that uncertainty553

in HTISR would get reduced by 19% (1%, 1%), if a noise-free measurement value of θA554

(θB , θC) was added to the state estimation framework that was described in section 3.1.555

4 Discussion556

The design of effective climate observing systems relies on a both physical and quan-557

titative understanding of which quantities of interest (QoIs) that capture important as-558

pects of the climate system can be informed by existing or future observations. Toward559

this goal, we introduced the concept of dynamical proxy potential (DPP) by establish-560

ing a parallel between (i) ocean dynamical principles and (ii) Hessian-based uncertainty561

quantification (UQ). Hessian-based UQ is currently being explored in the computational562

sciences as a tool for optimal observing system design (Alexanderian et al., 2016; Bui-563

Thanh et al., 2012, 2013; Flath et al., 2011; Isaac et al., 2015), but has so far not been564

applied in the context of global ocean state estimation. With its two interpretations, DPP565

provides a means to optimally design climate observing systems, while giving insight into566

the governing physical mechanisms. In order to clarify the link between interpretations567

(i) and (ii), this work considered DPP of a single, noise-free observation. Forthcoming568

work will generalize this concept to full observing systems and account for observational569

noise (section 4.4).570

In the following, we summarize the results from our North Atlantic case study (sec-571

tion 4.1), discuss our method in the context of related work in oceanography (section 4.2),572

point out limitations (section 4.3), and provide directions for future work (section 4.4).573

4.1 Summary of Shared Pathways574

In our case study, we chose heat transport across the Iceland-Scotland ridge (HTISR)575

as our exemplary QoI. We explored the potential for three example observed quantities576

to serve as proxies for this QoI: two temperature observations, θA, θC , in the Irminger577

Sea, and one temperature observation, θB , off the Portuguese coast. Here, θA, θB were578

assumed subsurface, and θC at the sea surface. Examination of adjoint-derived sensitiv-579

ities of QoI and observations revealed the following. On a five-year time scale, HTISR580

and θA are most sensitive to changes in wind forcing in two main regions: (I) along the581

eastern boundary of the subtropical North Atlantic and (II) in the northeast Atlantic582

and the Nordic Seas. Wind forcing in region (I) excites a pressure adjustment mecha-583

nism, which strengthens (or weakens) both the ISR geostrophic transport and the Irminger584

Current, leading to anomalies in HTISR and θA of equal sign. Wind forcing in region (II)585

drives an anomalous barotropic circulation around Iceland which simultaneously strength-586

ens (or weakens) the Norwegian Atlantic and East Greenland Currents, leading to anoma-587

lies in θA and HTISR of opposite sign.588

DPP is computed by projecting the sensitivities of the QoI and observation under589

consideration, by way of eq. (4). This projection measures the degree of shared adjust-590

ment physics, taking into account the effects of constructive and destructive interference591
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of information propagation. Destructive interference of information occurs because wind592

forcing in region (I) leads to responses in HTISR and θA of equal sign, while wind forc-593

ing in region (II) leads to responses in HTISR and θA of opposite sign. Considering the594

five-year mean of the two quantities, we find that the DPP of θA for HTISR is 19%. DPP595

allows two equivalent interpretations: θA (i) shares 19% of its adjustment physics with596

HTISR; (ii) reduces the uncertainty in HTISR by 19%, if θA is added without noise to the597

ECCO state estimate.598

4.2 Relation to Previous Work599

Complete sensitivity information, enabled by the adjoint of an ocean GCM, is the600

cornerstone of quantifying DPP. In previous work, adjoint-derived sensitivity informa-601

tion has been proposed to support observing system design in a distinct fashion: Marotzke602

et al. (1999), Köhl and Stammer (2004), and Heimbach et al. (2011) suggest that regions603

in which a given QoI shows highest sensitivity to hydrographic state variables are to be604

prioritized when deploying new hydrographic observations. The philosophy of these stud-605

ies is to discover direct cause and effect relationships between changes in observations606

and changes in the QoI. DPP looks further: by employing sensitivity information of not607

only the QoI, but also of the observations, DPP quantifies dynamics-based covariabil-608

ity of the QoI and observations, driven by local or remote forcings. As a result, DPP can609

exploit that multiple distinct QoIs may be connected by basin-wide dynamical adjust-610

ments and thus well constrained by limited instrumentation in this shared adjustment611

pathway. Moreover, unlike DPP, the adjoint-based studies referenced above do not pro-612

vide a quantitative estimate on how well the QoI is constrained by the suggested obser-613

vations (and how much information is missing). Instead, the previous studies provide614

only a relative estimate by suggesting that some observations may be more informative615

than others.616

A similar description to DPP can be obtained through the method of representers617

(Bennett, 1985, 2002, see also our section 2). In the context of variational data assim-618

ilation, a representer assesses the impact of an assimilated observation on the estimated619

model state (e.g., Bennett, 1985, 1990; Kurapov et al., 2009). Representer-based meth-620

ods have been used to evaluate observing systems and strategies in regional settings on621

short (daily to weekly) time scales (e.g., Moore et al., 2017; W. G. Zhang et al., 2010).622

DPP, as introduced in this work, views representers from a new perspective, with the623

merit to highlight the important role of dynamical pathways and adjustment processes624

in establishing and quantifying the information content of an observation, in relation to625

the information required to recover a QoI. Moreover, DPP operates - for the first time626

- within global ocean state estimation, focusing on climate observing systems, longer (monthly627

to multiannual) time scales, and large-scale ocean circulation.628

In the context of Arctic observing system design, Kaminski et al. (2015, 2018) uti-629

lized a method related to DPP. A key difference is that the authors handle sensitivity630

information averaged over large regions (e.g., Fig. 2 in Kaminski et al., 2015). While spa-631

tially averaged sensitivity enables numerically efficient quantification of the constraint632

from large-scale data acquisitions (e.g., from satellite or aircraft), it could entail large633

aggregation errors (Kaminski et al., 2001). Furthermore, we argue that it inhibits clear634

understanding of proxy origins, by grouping information from dynamically distinct re-635

gions. This is especially true for harnessing proxy potential from shared wind-driven ad-636

justments, for which resolution of the coastal waveguides is key.637

4.3 Limitations638

While the adjoint model provides comprehensive sensitivity information through-639

out the entire model space-time domain, adjoint-derived sensitivity is limited by the lin-640

ear approximation and inexactness of the adjoint (Czeschel et al., 2010; Errico, 1997; Hoteit641
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et al., 2005). Nevertheless, perturbation experiments with the full nonlinear model dy-642

namics in Appendix A show that the adjoint-derived sensitivities in our case study re-643

liably capture the basin-wide adjustment mechanism that are excited by wind stress per-644

turbations in regions (I) and (II). However, estimation errors in the predicted response645

amplitudes can reach up to 20% - partly due to the linear approximation, and partly due646

to the inexactness of the adjoint. This emphasizes that we must keep validating the ac-647

curacy of adjoint-derived sensitivity information and that improving the exactness of the648

adjoint would add great value to dynamics-based observing system design.649

A second shortcoming of the methodology presented here is that DPP may be de-650

pendent on the underlying ocean GCM. Global ocean GCMs are typically too coarse (here:651

nominally 1 ◦ horizontal resolution) to accurately represent important processes includ-652

ing density-driven gravity currents (e.g., across overflow regions in the subpolar North653

Atlantic), deep convection, and narrow boundary currents. Inability to test model de-654

pendency, due to unavailable adjoints for almost all GCMs, is a limiting factor.655

As a third drawback, important limiting assumptions entering the calculation of656

DPP are the choice of control variables and associated prior covariance (or weights). The657

control variables should include all uncertain elements in the model, i.e., the parts that658

are not determined by the known governing equations (Fig. 1(c)). The associated weights659

reflect prior uncertainties in the control variables. In the choice of uncertain control vari-660

ables and weights, DPP follows the assumptions of ocean state estimation (while in our661

case study, we simplified controls and weights, for the sake of adding clarity to our pre-662

sentation, see section 3.1.2). It is important to note that, while the sensitivities, utilized663

for the computation of DPP, uncover all dynamical adjustment processes (independent664

of the weights), the relative importance of these mechanisms is determined by the weights.665

4.4 Future Directions666

In our case study, we investigated how changes in time-mean forcing affect the time-667

means of temperature observations (e.g., θA) and QoI (HTISR), on five-year time scales.668

Thereby, we identified key forcings, adjustment pathways, and mechanisms for observa-669

tions and QoI, but did not disentangle whether the dominating mechanisms operate on670

weekly, monthly, seasonal, annual, or multiannual (< five years) time scales. Future work671

should consider time-variable changes in forcing and investigate the variability of obser-672

vations and QoIs on shorter (e.g., interannual) time scales. This will enable us to not673

only disentangle the dominant time scales of the operating mechanisms, but also to as-674

sess the predictive skill of observations for a QoI, if the QoI’s response to certain forc-675

ings is lagged behind the observations’ response. In view of the recently deployed OS-676

NAP mooring array, it will be exciting to explore the DPP of the OSNAP observations677

for remote oceanic quantities that are not readily accessible to direct observation but have678

important climatic repercussions.679

An important extension of the work presented here is to account for observational680

noise as well as data redundancy and complementarity between multiple observations.681

This objective will be pursued in a forthcoming paper. In our case study, destructive in-682

terference of competing adjustment mechanisms in regions (I) and (II) prevents DPP of683

θA for HTISR from exceeding 19% (section 4.1). Moreover, we found that θB is sensi-684

tive to wind forcing in region (I), but entirely insensitive to wind forcing in region (II).685

We will show that considering θA and θB in combination, will help to extract some of686

the information which is lost in destructive interference when viewing θA in isolation.687

An interesting question is that of an optimal observing strategy, for instance: what688

is the value of surface (possibly remotely sensed) vs. subsurface (in situ) observations689

for QoIs that are inaccessible to direct observation? In our case study, we found that the690

surface temperature observation θC is too sensitive to local air-sea heat exchanges. The691

strong sensitivity to local processes overrides the sensitivity to the large-scale basin-wide692
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adjustment mechanisms that are relevant for HTISR - and potentially many other QoIs.693

The fact that the efficiency of observing systems depends on the targeted QoIs highlights694

the importance of an ongoing community discussion on which climate QoIs are most im-695

portant to constrain.696

5 Conclusions697

The oceanographic community would strongly benefit from a synergistic, quanti-698

tative approach to co-design a cost-effective, long-term, and sustained ocean observing699

system (National Academies of Sciences, Engineering, and Medicine, 2017). Motivated700

by this objective, we have introduced the concept of dynamical proxy potential (DPP),701

a dynamics-based alternative to statistical correlation analysis and conventional observ-702

ing system simulation experiments (OSSEs). Our main conclusion are the following.703

(1) In contrast to statistical proxy potential, DPP only accounts for covariability that704

has a dynamical underpinning. It employs sensitivity information that is encap-705

sulated in the equations of motion and that traces variability back to common causal706

forcings. The dominant regions and shared wind-driven adjustment mechanisms707

discussed in this study (section 4.1) have been shown to be key for many distinct708

oceanic quantities (see adjoint-based investigations referenced in the introduction),709

reflecting the ubiquitous nature of basin-scale adjustment processes (D. P. Mar-710

shall & Johnson, 2013). By identifying these common dynamical pathways and mech-711

anisms via DPP assessment, we elucidate the physical cause of observed covari-712

ability in the North Atlantic.713

(2) Our method accounts for all dynamically feasible pathways between observation714

and QoI, and with the potential for constructive & destructive interference of in-715

formation propagation. Unraveling constructive and destructive contributions to716

DPP, as performed here, paves the way for extracting complementary informa-717

tion from observations. By targeting information that is complementary to ex-718

isting observing systems, the notion of DPP can support the design of efficient and719

effective future observing systems.720

(3) In order to evaluate DPP, one does not require actual observational data, since721

DPP investigates the dynamical relationships between observation and QoI in the722

model. DPP gains its full power for observing system design through the follow-723

ing fact. Independent of the measurement value (potentially taken by a future ob-724

serving system), inclusion of the observation in the underlying state estimation725

framework will reduce uncertainty in the QoI by the pre-determined value of DPP.726

While ocean state estimation is a well-established method for optimally combin-727

ing ocean observations with an ocean GCM (Stammer et al., 2016), characteriz-728

ing and quantifying the way in which observations constrain climate-related QoIs729

in the ocean state estimate has remained unexplored. The framework introduced730

here provides the first clear and dynamical interpretation of uncertainty quantifi-731

cation (UQ) in global ocean state estimation.732

(4) Based on endpoint geostrophy, moorings that are to be informative for cross-section733

transports would be located along the section itself. Here, we demonstrated that734

remote hydrographic observations can provide strong constraints on cross-section735

transports due to large-scale oceanic teleconnections. This result highlights the736

importance of further probing the dynamical constraints contained within the ex-737

isting observational database.738
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Appendix A Linear Approximation and Inexactness of the Adjoint739

The adjoint of an ocean GCM provides comprehensive sensitivity information which740

is the key ingredient of DPP (eq. (4)). Caveats are that (i) adjoint-derived sensitivities741

provide only a linear approximation, and that (ii) the adjoint may be inexact, e.g., due742

to artificially increased viscosity compared to the forward model, which is often a require-743

ment to stabilize the adjoint (Hoteit et al., 2005, 2010; Forget et al., 2015). Here, we ver-744

ify adjoint-derived sensitivities against perturbation experiments with the nonlinear for-745

ward model. Our control simulation covers the final five years of the ECCOv4r2 state746

estimate. We focus on meridional wind stress perturbations inside the two green regions747

in Fig. 5, along the western African coast and the western Icelandic coast.748

For each of the two chosen regions, we perform two separate perturbation exper-749

iments, imposing meridional wind stress anomalies of ∆τy = ±0.05 N/m2 inside the re-750

gion, respectively. We maintain the wind stress perturbation over the full five-year pe-751

riod. For J ∈ {θA, θB ,HTISR} (eqs. (6),(7)), we then compute the differences752

∆±fwdJ := J± − J0. (A1)753

Here, J0 denotes the quantity J in the control simulation, and J+ and J− the same quan-754

tity in the simulation with the positive and negative perturbation, respectively. ∆+
fwdJ755

and −∆−fwdJ are identical if J depends linearly on τy inside the chosen perturbation re-756

gion. Even if a resemblance of ∆+
fwdJ and −∆−fwdJ suggests a linear response, the adjoint-757

derived anomalies can still deviate from the forward anomalies, due to inexactness of the758

adjoint. Therefore, we next compare the forward anomalies ∆+
fwdJ and −∆−fwdJ to the759

adjoint estimate760

∆+
adjJ :=

∂J

∂τy
·∆τy, (A2)761

where ∆τy now denotes the positive meridional wind stress anomaly (+0.05 N/m2 in-762

side the chosen region).763

In Fig. A1, we see notable deviations between ∆+
fwdJ and −∆−fwdJ in two cases: for764

the anomalies in J = θB in response to a τy perturbation along the western African765

coast (green solid vs. dashed horizontal lines, Fig. A1(a)), and for the anomaly in J =766

θA in response to a τy perturbation along the western Icelandic coast (orange solid vs.767

dashed horizontal lines, Fig. A1(c)). In both cases, the amplitudes of the time-evolving768

forward anomalies start to develop an offset after 1-2 years. Since anomalies in θA and769

θB are the time-integrated result of ocean transport anomalies, the offset tends to be-770

comes larger over time. In contrast, ∆+
fwdHTISR and −∆−fwdHTISR coincide (Figs. A1(b),(d)),771

suggesting that HTISR is linear as a function of τy forcing in the tested perturbation re-772

gions. Note however that, despite the suggested linearity, ∆+
adjHTISR slightly differs from773

the forward anomalies in Fig. A1(d), due to an inexact adjoint. A similar situation oc-774

curs in Fig. A1(a) for the response anomalies in θA. In all cases shown in Fig. A1, the775

adjoint estimate ∆+
adjJ predicts the response anomalies in J with the correct sign. More-776

over, predicted amplitudes are generally close to those of the forward anomalies, although,777

in few cases, they can be off by up to 20%.778
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Figure A1. Anomalies in (a),(c) J = ✓A, ✓B , and (b),(d) J = HTISR, in response to mer-

dional wind stress (⌧y) perturbations along the (a),(b) western African coast and (c),(d) western

Icelandic coast. The solid and dashed horizontal lines show the anomalies �+
fwdJ and ���

fwdJ

from the nonlinear forward perturbation experiments (computed as the five-year mean of the thin

solid and dashed time-evolving lines, respectively). The horizontal lines with triangles show the

adjoint-derived anomalies �+
adjJ .
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Figure A1. Anomalies in (a),(c) J = θA, θB , and (b),(d) J = HTISR, in response to merid-

ional wind stress (τy) perturbations along the (a),(b) western African coast and (c),(d) western

Icelandic coast. The solid vs. dashed, thick, horizontal lines show the five-year mean of the

anomalies ∆+
fwdJ vs. −∆−fwdJ (eq. (A1)), diagnosed from the nonlinear forward perturbation

experiments. The corresponding thin lines present the monthly evolution of ∆+
fwdJ vs. −∆−fwdJ ,

as a function of years since the start of the perturbation. The thick, horizontal lines with black

triangles show the adjoint-derived (five-year mean) anomalies ∆+
adjJ (eq. (A2)). In (c), the re-

sponse anomaly in θB is invisible because it is two orders of magnitude smaller than the response

anomaly in θA.
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Carl Wunsch, and Daniel Jones for helpful discussions.790

References791

Alexanderian, A., Petra, N., Stadler, G., & Ghattas, O. (2016). A Fast and Scal-792

able Method for A-Optimal Design of Experiments for Infinite-dimensional793

Bayesian Nonlinear Inverse Problems. SIAM Journal on Scientific Computing ,794

38 (1), A243–A272. doi: 10.1137/140992564795

Alexander-Turner, R., Ortega, P., & Robson, J. I. (2018). How Robust Are the796

Surface Temperature Fingerprints of the Atlantic Overturning Meridional797

Circulation on Monthly Time Scales? Geophysical Research Letters, 45 (8),798

3559–3567. doi: 10.1029/2017GL076759799
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Text S1. Uncertainty Quantification in Ocean State Estimation. In ocean state

estimation, one optimizes a vector of control variables, x = (x1, . . . , xN), such as to

minimize a least-squares cost function J (Tarantola, 2005; Wunsch, 1996). For the simple

case of a single available observation, J takes the form

J(x) =
1

2

(
y −Obs(x)

ε

)2

︸ ︷︷ ︸
Jmisfit(x)

+
1

2
(x− x0)T B (x− x0)︸ ︷︷ ︸

Jprior(x)

. (S.1)
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The first term in eq. (S.1), Jmisfit(x), measures the misfit between the observation y and

the observation counterpart, Obs(x), simulated by the model. The second term, Jprior(x),

penalizes deviations from a first-guess x0. Observational noise and prior uncertainties are

assumed to be Gaussian, with distributions N (0, ε2) and N (x0,B).

The solution of the inverse problem is the minimizer of the cost function (S.1), xmin =

minx J . The posterior uncertainty in xmin can be approximated by the Gaussian covariance

matrix (Bui-Thanh et al., 2012; Thacker, 1989),

P =
(
ε−2 (∇xObs) (∇xObs)T︸ ︷︷ ︸

=Hmisfit

+B−1
)−1

, (S.2)

with ∇xObs = [(∂(Obs)/∂x1)|xmin
, . . . , (∂(Obs)/∂xN)|xmin

]T . The matrix P in eq. (S.2) is

equal to H−1
J , the inverse of the linearized Hessian matrix of J at xmin. The linearized

Hessian HJ , in turn, is the sum of two matrices: first, the misfit Hessian, Hmisfit, which

as the linearized Hessian of the model-data misfit term Jmisfit (eq. (S.1)) characterizes the

observational constraints on the control variables; and second, B−1, which is the Hessian

of the regularization term Jprior (eq. (S.1)).

By means of the matrix inversion lemma (e.g., Section 2.7.3 in Press et al., 2007),

eq. (S.2) can be rewritten as

P = B−
(
ε2 + σ2

Obs

)−1
(B∇xObs) (B∇xObs)T , (S.3)

with σ2
Obs = (∇xObs)T B (∇xObs). Eq. (S.3) describes uncertainty reduction in all con-

trol variables x, which is achieved by the uncertainty propagation via the first two black

arrows in Fig. 1(c), from the pink box to the green box. Eq. (S.3) phrases the posterior

May 24, 2020, 7:39pm



LOOSE ET AL.: QUANTIFYING DYNAMICAL PROXY POTENTIAL X - 3

uncertainty P as the prior uncertainty B, less any information obtained from the obser-

vation.

To assess uncertainty reduction in a QoI, the uncertainty propagation along the first

two black arrows in Fig. 1(c) has to be followed by a subsequent uncertainty propagation

along the last two black arrows, from the green box to the purple box. The subsequent

propagation is achieved by projecting the prior and posterior error covariance matrices

B and P onto the QoI, resulting in the prior variance σ2
QoI = (∇xQoI)T B (∇xQoI) and

posterior variance (σP
QoI)

2 = (∇xQoI)T P (∇xQoI) . The relative uncertainty reduction is

given by

∆̃σ2
QoI :=

σ2
QoI − (σP

QoI)
2

σ2
QoI

∈ [0, 1]. (S.4)

Due to the observational information that is propagated through the model dynamics,

(σP
QoI)

2 is smaller than σ2
QoI, i.e., uncertainty gets reduced. ∆̃σ2

QoI = 0 represents the case

(σP
QoI)

2 = σ2
QoI, when the observation does not add any information for the QoI. The other

extreme is ∆̃σ2
QoI = 1, which corresponds to σP

QoI = 0, i.e., a perfectly constrained QoI by

the observation. By means of identity (S.3), relative uncertainty reduction in eq. (S.4)

can be re-written as

∆̃σ2
QoI =

(
σ2

QoI · (ε2 + σ2
Obs)

)−1 (
B1/2∇xQoI •B1/2∇xObs

)2
, (S.5)

where B1/2 is the square root of the matrix B, and • denotes the dot product of two

vectors in RN . In the limit of vanishing observational noise, ε2 ↘ 0, relative uncertainty

reduction (i.e., the expression in eq. (S.5)) converges to

∆̃σ2
QoI ↗

( [
σ−1

QoI ·B
1/2∇xQoI

]︸ ︷︷ ︸
q

•
[
σ−1

Obs ·B
1/2∇xObs

]︸ ︷︷ ︸
v

)2

. (S.6)
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The limit in eq. (S.6) is equal to the definition of dynamical proxy potential (eq. (4)).

In the limit of vanishing observational noise, relative uncertainty reduction, ∆̃σ2
QoI, is

solely determined by the vectors q and v (eq. (S.6)). q is the direction of interest within

the control space, i.e., the information required to recover the QoI. On the other hand, v is

the eigenvector of the non-dimensionalized misfit Hessian, B1/2 Hmisfit B1/2 (cf. eq. (S.2)),

and fully characterizes the information captured by the observation. (Note that in the

case of only one observation, the misfit Hessian and the non-dimensionalized misfit Hes-

sian are matrices of rank one.)

Movie S1. Time-evolving monthly mean anomaly in North Atlantic bottom pressure

(normalized by density, p/ρ) in response to a positive northward wind stress anomaly of

amplitude 0.05 N/m2 along the western African coast. The final five years of the EC-

COv4r2 solution serve as our control simulation. The wind stress perturbation is imposed

inside the green contour, and maintained over the full five-year time period. As for the

time label, t = 0 corresponds to the (simultaneous) start of the simulation and perturba-

tion. The black lines mark the contours of the 500 m, 1000 m, 1500 m, 2000 m, 3500 m,

4000 m, 4500 m, and 5000 m isobaths. Time averaging of the monthly mean anomalies

shown in this movie (over the full five-year time period) generates Fig. 5(a).

Movie S2. As Movie S1, but anomaly in the barotropic stream function. Negative values

indicate anomalous counterclockwise rotation.
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Movie S3. As Movie S1, but anomaly in North Atlantic potential temperature at 300 m

depth. The black line marks the 300 m depth contour. Time averaging of the monthly

mean anomalies shown in this movie generates Fig. 5(c).

Movie S4. As Movie S3, but anomaly in potential temperature along the trans-Atlantic

section at 41 ◦N, in longitude-depth space. The green circle marks the location of θB.

Baroclinic Rossby waves propagate a positive temperature anomaly from the eastern

boundary westward.

Movie S5. As Movie S4, but anomaly in vertical velocity along the trans-Atlantic

section at 15 ◦N. The green bar marks the longitudinal extent (20 ◦W - 17 ◦W) of the im-

posed northward wind stress anomaly (whose latitudinal extent is 10 ◦N - 20 ◦N). Ekman

convergence/pumping occurs to the east of the wind stress anomaly, and Ekman diver-

gence/suction to the west of the wind stress anomaly. Maintenance of the wind stress

anomaly locks this vertical velocity dipole in place.

Movie S6. As Movie S5, but anomaly in potential temperature. Ekman pumping to the

east of the wind stress anomaly (Movie S5) creates warming, while Ekman suction to the

west (Movie S5) creates cooling. The negative thickness anomaly associated with shoaling

of the thermocline (and cooling) to the west is propagated into the interior by baroclinic

Rossby waves. Note that the positive thickness anomaly associated with deepening of the

thermocline (and warming) to the east propagates northward along the North Atlantic

boundary and then into the interior, once it is past the latitude band in which the wind
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anomaly is applied (Movies S3 and S4).

Movie S7. As Movie S1, but anomaly in response to a positive northward wind stress

anomaly along the western Icelandic coast, imposed inside the green contour. Time aver-

aging of the monthly mean anomalies shown in this movie generates Fig. 5(b).

Movie S8. As Movie S2, but anomaly in response to a positive northward wind stress

anomaly along the western Icelandic coast, imposed inside the green contour.

Movie S9. As Movie S3, but anomaly in response to a positive northward wind stress

anomaly along the western Icelandic coast, imposed inside the green contour. Time aver-

aging of the monthly mean anomalies shown in this movie generates Fig. 5(d).
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