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Abstract

The North Pacific Ocean is the largest basin and is located at the end point of the thermohaline circulation of deep water. Few

concurrent data of Cd, Ni, Zn, and Cu in seawater have been reported in this area so far. Herein, we report the basin-scale

full-depth sectional distributions of the total dissolvable, dissolved, and labile particulate Cd, Ni, Zn, and Cu along the 160°W,

165°E, and 47°N GEOTRACES transects. Our data reveal that the relations of the four dissolved metals (dMs) with Si(OH)

and PO considerably differ from those in other oceans. The plot of the preformed Cd vs. the preformed PO exhibits strong

linearity and passes an origin.The dCd/PO ratio is 0.34±0.02 mmol/mol at a depth lower than 800 m, which is in the range of

the phytoplankton Cd/PO ratio, thus indicating the dominant effect of the biogeochemical cycling on the dCd distribution. The

dMs/POratios of the other examined metals are partially or completely out of the phytoplankton ratios and generally increase

with depth in waters deeper than 800 m. Specifically, the increase is the strongest for Cu and moderate for Ni and Zn. The

dMs/PO ratios below 800 m decrease with the apparent oxygen utilization increasing from 150 to 300 mmol/kg by 4% for Cd,

21% for Zn and Ni, and 69% for Cu. We thus demonstrate that scavenging is an important factor that significantly affects the

distributions of Zn, Ni, and Cu, whereas the effect increases in the order Cd < Ni, Zn < Cu.
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Key Points: 10 

• Basin-scale full-depth sectional distributions of total dissolvable, dissolved, and labile 11 
particulate Cd, Ni, Zn, and Cu are observed in the North Pacific Ocean. 12 

• Cd is predominantly controlled by biogeochemical cycling, and the stoichiometry with 13 
major nutrients is modified via ocean circulation. 14 

• Ni, Zn, and Cu are accumulated in the Pacific Deep Water due to scavenging and 15 
redissolution from sinking particles and sediments. 16 

  17 
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Abstract 18 

The North Pacific Ocean is the largest basin and is located at the end point of the thermohaline 19 
circulation of deep water. Few concurrent data of cadmium (Cd), nickel (Ni), zinc (Zn), and 20 
copper (Cu) in seawater have been reported in this area so far. Herein, we report the basin-scale 21 
full-depth sectional distributions of the total dissolvable, dissolved, and labile particulate Cd, Ni, 22 
Zn, and Cu along the 160°W, 165°E (GP18), and 47°N (GP02) GEOTRACES transects. Our 23 
data reveal that the relations of the four dissolved metals (dMs) with Si(OH)4 and PO4 24 
considerably differ from those in other oceans. The plot of the preformed Cd vs. the preformed 25 
PO4 exhibits strong linearity and passes an origin. Moreover, the dCd/PO4 ratio is 0.34 ± 0.02 26 
mmol/mol (n = 296) at a depth lower than 800 m, which is in the range of the phytoplankton 27 
Cd/PO4 ratio, thus indicating the dominant effect of the biogeochemical cycling on the dCd 28 
distribution. The dMs/PO4 ratios of the other examined metals are partially or completely out of 29 
the phytoplankton ratios and generally increase with depth in waters deeper than 800 m. 30 
Specifically, the increase is the strongest for Cu and moderate for Ni and Zn. The dMs/PO4 ratios 31 
below 800 m decrease with the apparent oxygen utilization increasing from 150 to 300 µmol/kg 32 
by 4% for Cd, 21% for Zn and Ni, and 69% for Cu. We thus demonstrate that scavenging is an 33 
important factor that significantly affects the distributions of Zn, Ni, and Cu, whereas the effect 34 
increases in the order Cd < Ni, Zn < Cu. 35 

 36 

1 Introduction 37 

Trace metals that have nutrient-type distributions are actively taken up by phytoplankton in 38 
surface waters, sink to the depth with settling particles, and are released from the particles via the 39 
oxidative decomposition of organic matter and the dissolution of minerals, such as silica and 40 
carbonates (Broecker & Peng, 1982; Elderfield, 2003). This mechanism is called as marine 41 
biogeochemical cycling. Cadmium (Cd), nickel (Ni), zinc (Zn), and copper (Cu) are classified as 42 
nutrient-type or recycle-type trace metals (Bruland, Orians, & Cowen, 1994; Whitfield & Turner, 43 
1987), which act as essential cofactors in metalloenzymes and thus control the metabolism of 44 
organisms (Sunda, 1989; Twining & Baines, 2013). In turn, the oceanic phytoplankton 45 
community significantly affects the concentrations and cycling of the trace metals in the ocean 46 
(Sunda, 2012). 47 

The concentration of the nutrient-type metals generally increases with the age of deep water from 48 
the Atlantic Ocean through the Southern Ocean and ultimately to the Indian Ocean and Pacific 49 
Ocean. For example, the bottom water concentration of dissolved Cu (dCu) increases with the 50 
flow path of deep water and reaches ca. 1.3 nmol/kg in the Northeast Atlantic Ocean 51 
(Danielsson, Magnusson, & Westerlund, 1985), ca. 3 nmol/kg in the Southern Ocean (Heller & 52 
Croot, 2015; Monteiro & Orren, 1985), and ca. 5 nmol/kg in the Indian Ocean (Vu & Sohrin, 53 
2013) and the Pacific Ocean (Bruland, 1980). The concentration of dCu increases from surface to 54 
bottom by around five times in the Pacific Ocean (Bruland, 1980) and only by 10% in the 55 
Atlantic Ocean (Danielsson et al., 1985). The oceanic circulation affects not only the 56 
concentrations of the nutrient-type metals but also their ratios against major nutrients. The mole 57 
ratio of dCd/PO4 exhibits significant spatial variations (Löscher, de Jong, & de Baar, 1998; van 58 
der Loeff, Helmers, & Kattner, 1997). In this paper, Cd/PO4 is employed to indicate a spot ratio, 59 
and Cd:PO4 to denote either a slope of the regression line in the Cd vs. PO4 plot, which indicates 60 
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an uptake, or a remineralization ratio in accordance with the definition reported in the literature 61 
(Middag, van Heuven, Bruland, & de Baar, 2018; Quay, Cullen, Landing, & Morton, 2015). 62 
Elderfield and Rickaby (Elderfield & Rickaby, 2000) compiled global data and found that the 63 
dCd/PO4 (mmol/mol) ratio in surface water increases with latitude. Whereas this ratio in deep 64 
water increases with the deep water circulation: ca. 0.23 in the North Atlantic Ocean, ca. 0.30 in 65 
the Indian and Southern Ocean, ca. 0.31 in the equatorial Pacific Ocean, and ca. 0.35 in the 66 
North Pacific Ocean (Abe, 2001; de Baar, Saager, Nolting, & van der Meer, 1994; Löscher, van 67 
der Meer, de Baar, Saager, & de Jong, 1997; Quay et al., 2015). It was also proposed that the 68 
variations in the dCd/PO4 ratio of deep water are associated with the different ballast of sinking 69 
biogenic particles: the Cd/PO4 ratio of the silica ballast in the North Pacific is presumed to be 70 
higher than that of the CaCO3 ballast in the North Atlantic (Wu & Roshan, 2015).  71 

The concentration variations of dissolved metals (dMs), dMs/nutrient ratios, and the 72 
relationships between dMs and major nutrients among different ocean basins cannot be fully 73 
interpreted based only on biogeochemical cycles. For instance, the vertical distribution of dCd 74 
has been found highly similar to that of PO4, exhibiting a linear relationship over the global 75 
ocean (Boyle, Sclater, & Edmond, 1976; Bruland, 1980; Roshan & Wu, 2015a; Zhang, Jensen, 76 
Fitzsimmons, Sherrell, & John, 2019). A slope change, denoted as a “kink,” was observed in the 77 
North Atlantic upper water with PO4 < 1.3 µmol/kg and in the South Atlantic and Pacific upper 78 
waters with PO4 > 1.3 µmol/kg (Boyle, 1988). Furthermore, the linear relationship in deep 79 
waters indicates the dominant effects of water mass mixing on the distribution of dCd in the 80 
North Atlantic (Quay et al., 2015), the South Atlantic (Xie et al., 2015), and the Southern Oceans 81 
(Baars, Abouchami, Galer, Boye, & Croot, 2014). This explanation, however, could not 82 
completely elucidate the relatively low surface slope in the surface-to-subsurface water. 83 
Elderfield and Rickaby (Elderfield & Rickaby, 2000) proposed a preferential uptake of Cd over 84 
PO4 by phytoplankton in the surface water, especially under iron-limited conditions in high-85 
nutrient, low-chlorophyll (HNLC) areas (Cullen, 2006; Quay et al., 2015). The dCd vs. PO4 86 
regression line in the North Pacific is linear throughout the water column, being thus different 87 
from that observed in other oceans (Bruland, 1980; de Baar et al., 1994). A decoupling of dCd 88 
and PO4 revealing a relative depletion of dCd was also observed in the oxygen minimum zone 89 
(OMZ) in the Northeast Pacific and North Atlantic Ocean (Janssen et al., 2014), where 90 
suspended particles were enriched with lighter isotopes of Cd (Conway & John, 2015). The 91 
authors interpreted these results by precipitation of CdS in an euxinic microenvironment around 92 
sinking particles. However, Wu and Roshan (Wu & Roshan, 2015) did not observe a relative 93 
dCd depletion in the sectional distribution of dCd/PO4 in the OMZ in the North Atlantic, but a 94 
dCd depletion relative to PO4 in the dCd vs. PO4 plot. The observed depletion was ascribed to a 95 
low dCd/PO4 ratio in shallow seawater and an enhanced regeneration of the low dCd/PO4 ratio in 96 
the OMZ. 97 

Dissolved Zn (dZn) has a stronger correlation with Si(OH)4 than PO4 in the global ocean 98 
(Bruland, 1980; Janssen & Cullen, 2015; Kim, Obata, Nishioka, & Gamo, 2017; Wang, Archer, 99 
Bowie, & Vance, 2019). The observed dZn/Si(OH)4 ratio in seawater in the Pacific and Atlantic 100 
Oceans is approximately 0.058 mmol/mol. However, Zn uptake experiments using the marine 101 
diatom Thalassiosira pseudonana indicated that only 1%–3% of cellular Zn was incorporated 102 
into the silica frustule and that the dissolution of the silica resulted in a regeneration ratio of 0.3–103 
3.2 ´ 10–3 (Ellwood & Hunter, 2000). Thus, diatom silica is not a major mechanism to control 104 
the dZn distribution. In fact, a decoupling of the dZn vs. Si(OH)4 relationship occurs, whereas 105 
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the plot is upwards curved through the global ocean (Janssen & Cullen, 2015; Vance, de Souza, 106 
Zhao, Cullen, & Lohan, 2019; Vance et al., 2017). Janssen and Cullen (Janssen & Cullen, 2015) 107 
proposed that the plot of Zn vs. Si(OH)4 in the eastern North Pacific Ocean is divided in the 108 
oxygenated upper waters and the relatively low oxygen deep waters, which could be ascribed to 109 
the preferential removal of ZnS. In contrast, Vance and co-authors (Vance et al., 2019) proposed 110 
that the preferential regeneration of Zn in a shallow water and the preferential dissolution of 111 
silica in deep water could lead to this distribution. In addition, it was suggested that the physical 112 
ocean circulation from the Southern Ocean plays an important role in the distribution of dZn 113 
(Vance et al., 2017). Moreover, it has been suggested that the scavenging of nutrient-type metals 114 
in deep water is negligible (Elderfield, 2003). However, recently, the crucial role of the 115 
reversible Zn scavenging on sinking particles was demonstrated by model calculations (Weber, 116 
John, Tagliabue, & DeVries, 2018). 117 

Boyle and co-authors (Boyle, Sclater, & Edmond, 1977) reported full-depth profiles of Cu using 118 
unfiltered seawaters with a surface maximum of approximately 3 nmol/kg and a monotonic 119 
increase to the bottom in the central North Pacific Ocean. They also suggested that this unique 120 
distribution is maintained by the aeolian input to the surface waters, the ubiquitous scavenging in 121 
the subsurface and deep water, and a strong bottom source. In contrast, the linear distribution of 122 
dCu with depth was explained by the reversible scavenging between dissolved (d) and suspended 123 
particulate species (Little, Vance, Siddall, & Gasson, 2013). A sediment trap experiment in the 124 
North Pacific Ocean revealed that around 65% of the total Cu flux in the deepest trap was 125 
derived from primary flux from the upper water, resuspension, and hydrothermal inputs, whereas 126 
the source of the remaining 35% of the total Cu was not clarified and was mentioned as a 127 
residual flux input, implying the coexistence of alternative processes (Fischer, Dymond, Lyle, 128 
Soutar, & Rau, 1986). The authors attributed this residual to the lateral transport of particles or 129 
the re-adsorption of dCu released from bottom sediments. A recently developed box model, 130 
based on the isotope ratio and concentration of dCu, confirmed the release of dCu from the upper 131 
layer of sediments during early diagenesis (Takano, Tanimizu, Hirata, & Sohrin, 2014).  132 

The interaction of dMs with particles in seawater has been suggested as a major control factor of 133 
the trace metal distribution in the global ocean (Goldberg, 1954; Sherrell & Boyle, 1992). Hence, 134 
a series of recent studies have focused on the role of Zn and Cu scavenging (John & Conway, 135 
2014; Little et al., 2013; Weber et al., 2018). The suspended particulate Cd at VERTEX-IV 136 
(28°N, 155°W) decreased rapidly with depth from 2.5 to 0.2 pmol/kg, whereas the concentration 137 
of Zn was about 10 times higher than that of Cd (Bruland et al., 1994). Besides, the 138 
concentrations of the suspended particulate Cd and Zn were enriched in the North Pacific Ocean 139 
compared with those in the North Atlantic Ocean, suggesting the enhanced association of dMs 140 
with particles (Bruland et al., 1994; Sherrell & Boyle, 1992). Sediment trap experiments 141 
demonstrated that the Cd flux increases with the total particulate flux, whereas that of Ni and Cu 142 
decreases (Noriki & Tsunogai, 1992). The observed findings were attributed to the different 143 
carrier particles. Namely, it was suggested that Ni and Cu are transferred by non-biogenic 144 
inorganic and biogenic particles, whereas Cd is almost completely transferred from the latter. 145 
However, there are only limited data on the four nutrient-type metal concentrations in suspended 146 
and sinking particles in the Pacific Ocean (Bruland et al., 1994; Janssen, Abouchami, Galer, 147 
Purdon, & Cullen, 2019; Noriki & Tsunogai, 1992; Yang, Zhang, Sohrin, & Ho, 2018).  148 

The concurrent and basin scale sectional distributions of Cd, Ni, Zn, and Cu in the North Pacific 149 
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Ocean have not been reported yet. We observed the distributions of total dissolvable (td) and d 150 
species of aluminum (Al), manganese (Mn), iron (Fe), cobalt (Co), Ni, Cu, Zn, Cd, and lead (Pb) 151 
during three GEOTRACES Japan cruises, using a multi-element analytical method (Minami et 152 
al., 2015) without ultraviolet (UV) irradiation. The difference between the td and d 153 
concentrations was defined as the labile particulate (lp) concentration. The data regarding the 154 
distribution of Al, Mn, Fe, Co, and Pb have been previously reported (Zheng et al., 2019; Zheng 155 
& Sohrin, 2019). Herein, we report a comprehensive dataset of td, d, and lp species of the 156 
nutrient-type trace metals (Cd, Ni, Zn, and Cu) to elucidate the major factors that control their 157 
distribution and their correlation with the major nutrients PO4 and Si(OH)4. The data that refer to 158 
the other metals are also used for the discussion of the current findings. The simultaneous 159 
observation of the trace metals will help to improve our understanding of scavenging and other 160 
processes relative to the nutrient-type trace metals. 161 

2 Materials and Methods 162 

2.1 Materials and sampling 163 

Clean seawater samples were collected during three GEOTRACES cruises of R/V Hakuho Maru; 164 
KH-05-2 (Aug–Sep 2005), KH-11-7 (Jul 2011), and KH-12-4 (Aug–Sep 2012) (Figure 1). The 165 
details of the used materials and the sampling process have been reported in previous studies 166 
(Zheng et al., 2019; Zheng & Sohrin, 2019). The KH-11-7 and KH-12-4 cruises were formal 167 
studies of GEOTRACES Japan, which occupied the GEOTRACES sections of GP18 (165°E) 168 
and GP02 (47°N). The samples used to estimate the total dissolved trace metals (tdMs) were 169 
acidified to pH 2.2 with ultrapure HCl (Tamapure AA-10, Tama Chemicals) immediately after 170 
collection. A portion of the seawater samples was collected and filtered on board using 0.2 µm 171 
filters to acquire the dMs samples. Nuclepore polycarbonate membrane filters (Whatman) were 172 
used for KH-05-2 and KH-11-7, whereas for KH-12-4, AcroPak capsule filters (Pall) were 173 
applied. The filtered seawater samples were also acidified to pH 2.2 with ultrapure HCl and 174 
stored at room temperature for at least 1 year prior to analysis. The Ocean Data View software 175 
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was applied for the data analysis and the preparation of the figures (Schlitzer, 2015). 176 

Figure 1. Map of the study area and the sampling stations in the North Pacific Ocean. White 177 
solid lines indicate the surface currents. The background color represents the annually averaged 178 
surface Si(OH)4 concentrations obtained in 2018 (www.nodc.noaa.gov). 179 

2.2 Analytical methods 180 

An offline automated solid-phase extraction system (SPE-100, Hiranuma Sangyo) with a column 181 
of Nobias Chelate-PA1 resin (Hitachi High-Technologies) was used to preconcentrate the trace 182 
metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in seawater (Minami et al., 2015). The applied 183 
analytical methods were presented in our previous studies in detail (Zheng et al., 2019; Zheng & 184 
Sohrin, 2019). The collected seawater samples were adjusted to pH 6.00 ± 0.05 in a clean room 185 
(class 1000) and immediately introduced to the SPE-100 system. Procedural blanks were 186 
measured using ultrapure water between the analyses of the seawater samples. A high-resolution 187 
inductively coupled plasma mass spectrometer (HR-ICP-MS, Element 2, Thermo Fisher 188 
Scientific) was used to determine the concentrations of the investigated trace metals by the 189 
calibration curve method. The detection limits (DL) for the tdMs and dMs samples were 190 
calculated as three times the standard deviation (sd) of the procedural blank, whereas those for 191 
lpMs were defined using the equation 𝟐 × √𝟐 × 𝟎. 𝟎𝟓 × 𝑪ave, considering the propagation of 192 
uncertainty, where Cave represented the average concentration of dMs. The procedural blanks and 193 
the DL for all the species are summarized in Table S1. 194 

A series of certified reference materials for trace metals CASS-5, 6 and NASS-6, 7 and the 195 
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GEOTRACES open-ocean reference samples GS, GD, GSP, and GSC were measured to ensure 196 
the accuracy of the applied method (Table S2). The concentrations found for Ni, Zn, and Cd 197 
were in good agreement with the certified and/or consensus values, whereas the Cu 198 
concentrations were in line with the certified values of CASS and NASS, which were gamma 199 
irradiated. In contrast, the Cu concentrations were slightly lower than the consensus values of the 200 
GEOTRACES reference samples. The consensus values were obtained after UV irradiation, 201 
whereas the current samples were not subjected to UV irradiation, meaning that a portion of dCu 202 
that forms strong complexes with organic ligands might not be measured. Given that the 203 
application of UV irradiation led to unexpected contamination of some metals (Zheng et al., 204 
2019) and that the data obtained for Cu in the current study were sufficiently reproducible, UV 205 
irradiation was not applied in this study. 206 

2.3 Cross-over stations 207 

Cross-over stations stipulated by GEOTRACES provide a measure of data consistency 208 
(http://www.geotraces.org). Stations TR16 from KH-11-7 and BD07 from KH-12-4 are located 209 
at the same position and serve as internal cross-over stations in this study. The vertical profiles of 210 
tdMs, dMs, Si(OH)4, PO4, and nitrate (NO3) fit well between TR16 and BD07 within analytical 211 
uncertainty (Figure S1). Although all the regression lines have coefficients of determination(r2) 212 
higher than 0.89 (Figure S2), they have positive intercepts. Moreover, the surface water at BD07 213 
has lower salinity, higher temperature, and lower Si(OH)4 and PO4 concentrations than TR16, 214 
suggesting the higher influence of the Kuroshio Waters. Our data indicate also that the 215 
concentrations of tdMs and dMs are lower in the Kuroshio Waters. 216 

Stations ST13, ST14 of the KH-05-2 cruise are located 100 km south and 300 km north of the 217 
station BD15 of KH-12-4, respectively. The vertical profiles of tdMs, dMs, Si(OH)4, PO4, and 218 
NO3 fit well among ST13, ST14, and BD15 within analytical uncertainty (Figure S3). All the 219 
regression lines between ST13 and BD15 have r2 values higher than 0.96 (Figure S4). The Ni, 220 
Cd, Si(OH)4, and PO4 concentrations in the surface water are lower at BD15 compared with 221 
ST13, possibly due to the higher chlorophyll a (Chl. a) content that allowed for a higher Ni, Cd, 222 
and nutrient uptake. In previous papers, we reported that the concentrations of Al, Mn, and Fe 223 
substantially decrease from ST14 to ST13 due to boundary scavenging (Zheng et al., 2019; 224 
Zheng & Sohrin, 2019). Nevertheless, the data in this work do not reveal that boundary 225 
scavenging significantly affects the distribution of nutrients and the nutrient-type trace metals. 226 
Only Cu exhibits a surface maximum at ST14, where the Alaskan Stream flows and the surface 227 
maxima of Mn and Co occur (Zheng et al., 2019). In conclusion, it is indicated that the analytical 228 
precision of tdMs and dMs is comparable to that of nutrients. 229 

3 Results 230 

3.1. Hydrography 231 

Figure 1 presents the sampling stations of this study with the annually averaged surface Si(OH)4 232 
concentrations as obtained in 2018 (www.nodc.noaa.gov). The white solid lines indicate the 233 
surface currents. The Oyashio Current, the North Pacific Current, the Alaska Current, and the 234 
Alaskan Stream form the anticlockwise upwelling North Pacific subarctic gyre to the north of 235 
40°N. The North Pacific subtropical gyre to the south of the Subarctic Front consists of the 236 
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Kuroshio Extension, the North Pacific Current, and the North Equatorial Current (Yuan & 237 
Talley, 1996). 238 

There are three major water masses at the intermediate depth in the North Pacific Ocean: the 239 
North Pacific Intermediate Water (NPIW), the Antarctic Intermediate Water (AAIW), and the 240 
Equatorial Pacific Intermediate Water (EqPIW). NPIW originates from the Okhotsk Sea Mode 241 
Water and is formed to the east of Hokkaido, Japan, and spreads to the southeast (Talley, 1993). 242 
NPIW is characterized by low salinity and low density with a potential density anomaly (sq) of 243 
26.4–27.2 (average: 26.8) (Yasuda, 1997). AAIW originates from the north of the Subantarctic 244 
Front (Bostock, Opdyke, & Williams, 2010; Talley, Pickard, Emery, & Swift, 2011) and extends 245 
to ca. 15°N in the tropical–subtropical transition (Talley et al., 2011). EqPIW is formed by a 246 
combination of AAIW and the Pacific Deep Water (PDW). Among the three water masses, 247 
NPIW is the shallowest (200–800 m in depth), followed by EqPIW (700–1000 m in depth) and 248 
AAIW (600–1100 m in depth) (Bostock et al., 2010; Talley et al., 2011). 249 

Two distinct deep waters exist in the North Pacific Ocean: the Circumpolar Deep Water (CDW) 250 
and the PDW. The upper CDW (UCDW) and the lower CDW (LCDW) are two branches of 251 
CDW that are formed by mixing the North Atlantic Deep Water and other deep waters in the 252 
Southern Ocean. PDW is formed internally in the North Pacific by mixing upwelled bottom 253 
waters with the UCDW. PDW and UCDW appear in almost the same density range, whereas 254 
UCDW flows northwards and PDW southwards (Talley et al., 2011). LCDW flows at the 255 
deepest depth into the Pacific Ocean and is characterized by high salinity (S = 34.72). 256 

3.2 Distributions 257 

All the data for tdMs, dMs, lpMs, nutrients, and oceanographic properties are listed in Table S3. 258 
The statistical summary of tdMs, dMs, and lpMs is presented in Table S4. lpCd, lpNi, and lpZn 259 
are not further discussed, because they were detected in only a few of the samples collected near 260 
the continents. The concentrations of dZn and tdZn collected from the KH-05-2 cruise were 261 
removed from the dataset because of their contamination from the sacrificial Zn electrode that 262 
was attached to the seawater sampling system. Not detected (ND) data below the DL were 263 
assigned to a value of 𝑫𝑳 × (𝟏/√𝟐) (Croghan & Egeghy, 2003) for further analysis and the 264 
preparation of the corresponding figures. 265 

The full-depth sectional distributions of Si(OH)4, PO4, NO3, the apparent oxygen utilization 266 
(AOU), dCd, dNi, dZn, and dCu at 160°W, 165°E, and 47°N are presented in Figures 2, S5, and 267 
3, respectively. The concentration of Si(OH)4 in the surface water is 25 µmol/kg in the western 268 
subarctic gyre and almost zero in the subtropical gyre and around the Juan de Fuca Ridge (JdFR) 269 
(Figure S6). The surface concentration of PO4 and NO3 in the subarctic gyre, which is known as 270 
one of the HNLC regions, exceeds 0.5 and 7 µmol/kg, respectively. The surface concentrations 271 
of major nutrients at ST14 are extremely low, where Chl. a reaches the maximum of 2.7 µg/kg. 272 
Si(OH)4, PO4, NO3, and AOU generally increase with depth and latitude. PO4, NO3, and AOU 273 
exhibit maximum concentrations in a depth range of 1000–2000 m (Figures 2, 3, S5). In contrast, 274 
Si(OH)4 increases along the flow of LCDW in the North Pacific Ocean and exhibits a maximum 275 
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in the depth range of 1500–5000 m at 30–40°N. 276 

Figure 2. Full-depth sectional distribution of (a) silicate [Si(OH)4], (b) phosphate (PO4), (c) 277 
nitrate (NO3), (d) apparent oxygen utilization (AOU), (e) dCd, (f) dNi, and (g) dCu at 160°W. 278 
The white solid lines indicate potential density anomalies. NPIW: North Pacific Intermediate 279 
Water; EqPIW: Equatorial Pacific Intermediate Water; UCDW: Upper Circumpolar Deep Water; 280 
LCDW: Lower Circumpolar Deep Water; PDW: Pacific Deep Water. 281 
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Figure 3. Full-depth sectional distribution of (a) Si(OH)4, (b) PO4, (c) NO3, (d) AOU, (e) dCd, (f) 282 
dNi, (g) dZn, and (h) dCu at 47°N (GP02). The white solid lines indicate potential density 283 
anomalies. 284 

Based on Figures 2, 3, and S5, dCd is sectionally distributed similarly to PO4 and NO3. In 285 
addition, the horizontal distribution of dCd reveals the existence of sources around the northern 286 
continents like those of Si(OH)4, PO4, and NO3 (Figure S6). dCd exhibits correlation coefficients 287 
(r) higher than 0.98 with both PO4 and NO3. However, dCd has a unique maximum at a 200 m 288 
depth (sq = 27.0) at the subarctic stations (Figures S1, S3). The concentration of dCd is 289 
extremely low in the surface water south to 40°N, whereas it reaches the maximum of 1.22 290 
nmol/kg at a depth of 200 m (47.0°N, 170.6°E). The maximum depth of dCd increases from 200 291 
to 800 m with the latitude decreasing from 47°N to 10°S. Moreover, lpCd is usually lower than 292 
the DL of 0.11 nmol/kg, which is consistent with the previously reported low concentrations of 293 
particulate Cd (0.05–38 pmol/kg) in the North Pacific (Bruland et al., 1994; Janssen et al., 2019). 294 
lpCd reaches a value of 0.16 nmol/kg in the surface layer at the station ST14, where the Chl. a 295 
maximum occurs, and it is 0.24 nmol/kg at a 200 m depth at the station TR15, which is close to 296 
the Kamchatka Peninsula. 297 

The sectional distributions of dNi resemble those of Si(OH)4, PO4, and NO3 (Figures 2, 3, S5). 298 
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The dNi profiles exhibit the lowest concentrations (2.3–5.9 nmol/kg) in surface water, a broad 299 
maximum of 10.5 nmol/kg at a 1500–3000 m depth, and a slight decrease above the bottom. The 300 
horizontal distribution of dNi indicates the presence of sources around the northern continents 301 
like those of Si(OH)4, PO4, NO3, and dCd (Figure S6). The correlation coefficients between dNi 302 
and the major nutrients are >0.91. 303 

Similarly to dNi, the sectional distributions of dZn resemble those of Si(OH)4, PO4, and NO3 304 
(Figures 3, S5). The broad maximum of dZn occurs at a depth of 1000–2000 m, which is deeper 305 
than the maximum of dCd. At the northern stations, a maximum of dZn appears at a depth of 306 
approximately 200 m, like that of dCd (Figures S1, S2). In contrast to dCd, dNi, and major 307 
nutrients, dZn in surface water sharply decreases with the distance from the stations TR16/BD07 308 
near the Kuril–Kamchatka Trench to the eastern stations in the western subarctic gyre (Figure 309 
S6). The correlation coefficients between dZn and the major nutrients are >0.91 similarly with 310 
dNi. 311 

Unlike Cd, Ni, and Zn, the sectional distributions of dCu are apparently not similar to those of 312 
the major nutrients and AOU (Figures 2, 3, S5). dCu has low concentrations in the surface water 313 
except the stations around JdFR and near the Aleutian Islands (Figure S6). The surface 314 
concentration of dCu is the highest at ST14, whereas that of dCd, dNi, and dZn is low compared 315 
with the surrounding stations (Figure S6). dCu increases linearly until a depth of 3000 m is 316 
reached. At stations south to 40°N and at depths of 3000–4000 m, dCu exhibits a maximum of 317 
2.7–4.4 nmol/kg, which remains relatively constant or slightly decreases below this depth. In 318 
contrast, at stations north to 40°N and at the same depth, dCu has a lower concentration (2.4–3.1 319 
nmol/kg), which generally increases to the bottom. On a surface of 4500 m depth, dCu has a 320 
uniformly high concentration in the Northeast Pacific Basin (Figure S6). Among the four metals, 321 
only lpCu is detected in 50% of the samples, indicating a significant contribution of the 322 
suspended particulate matters to the Cu distribution. The sectional distribution of lpCu is 323 
presented in Figure 4. lpCu generally increases with depth, and the highest concentration (1.37 324 
nmol/kg) is achieved in abyssal seawater near the Kuril–Kamchatka Trench. Moreover, the 325 
lpCu/tdCu ratio for all the data is 0.18 ± 0.12 (average ± standard deviation) and is as high as the 326 
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lpM/tdM ratios (ca. 0.2) observed for Mn and Co (Zheng et al., 2019). 327 

Figure 4. Full-depth sectional distribution of lpCu at (a) 160°W, (b) 165°E, and (c) 47°N. The 328 
white solid lines indicate potential density anomalies. 329 

4. Discussion 330 

4.1 Biogeochemical control on the distribution of Cd 331 

4.1.1 Cd vs. PO4 332 

The dCd vs. PO4 plot exhibits a linear relationship for all the data (Figure 5a).  333 
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dCd [nmol/kg] = 0.360 × PO4 [µmol/kg] – 0.058 r2 = 0.971, n = 605. 334 

Figure 5. Plots of (a) dCd vs. PO4, (b) dNi vs. PO4, (c) dZn vs. PO4, and (d) dCu vs. PO4. The 335 
plot color indicates the latitude and the color lines indicate the different regression lines, which 336 
are summarized in Table 1. The gray shadow indicates the plot area, where dZn and dNi increase 337 
independently of PO4. 338 

The slope of 0.360 is in the range of the Cd/P ratio that is observed in phytoplankton (0.20–0.56 339 
mmol/mol) (Collier & Edmond, 1984; Ho, Wen, You, & Lee, 2007; Ho et al., 2009). However, 340 
the dCd vs. PO4 plot at each station significantly varies in the North Pacific Ocean. The data 341 
points generally upshift with the latitude. The regression lines for the typical groups are listed in 342 
Table 1. To the south of 20°N, the points from the upper 800 m are divided into two parts, 343 
whereas the dCd/PO4 slope is 0.0328 for 0–100 m and 0.356 for 100–800 m, resulting in a kink, 344 
which is formed at a lower PO4 concentration (0.5 µmol/kg) than that observed in other oceans 345 
(Baars et al., 2014; Boyle, 1988; Frew & Hunter, 1992, 1995). By moving to the north in the 346 
North Pacific Ocean, the kink disappears except the stations around JdFR. The concentration of 347 
dCd is less than the DL down to 150 m at ST01. The depth of depletion in dCd becomes 348 
shallower at northern stations and is 50 m at ST11 (40°N). To the north of 40°N, the surface 349 
concentration of dCd becomes higher than the DL. Probably, the disappearance of the kink in the 350 
subarctic North Pacific Ocean is a consequence of supply of dCd to the surface water from the 351 
northern continents. The data points for deep waters (>800 m) in the whole North Pacific Ocean 352 
converge on a single line with a slope of 0.278. This could be attributed to the mixing, which is 353 
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the major factor to determine the dCd concentration in deep waters. 354 

4.1.2 The effect of regeneration and water circulation on the dCd distribution 355 

The fractionation factor (FF) is defined to investigate the preferential uptake of dCd over PO4 356 
based on the following equation (Elderfield & Rickaby, 2000; Quay et al., 2015):  357 

FF(dCd) = (Cd:PO4, particles)/(dCd/PO4, seawater) 358 

where the Cd:PO4, particles ratio is estimated by the dCd vs. PO4 slope in nutricline, because the 359 
slope represents the regeneration ratio from biogenic particles. The nutricline depth is defined as 360 
the shallowest depth where the nutrient concentration exceeds the mixed layer value of 0.5 361 
µmol/kg for Si(OH)4 and 0.05 µmol/kg for PO4 (Laanemets, Kononen, Pavelson, & Poutanen, 362 
2004). The FF(dCd) in this study varies from 0.7 at northern stations to 44.9 at southern stations 363 
with an average of 9.3 ± 13.6 (Figure 6a), which is much higher and more scattered than the 364 
reported value of 1.8 ± 1.0 in the North Pacific (Quay et al., 2015). Moreover, the FF(dCd) is 365 
extremely high at stations to the south of 20°N and around JdFR, where a kink appears on the 366 
dCd vs. PO4 plot. The strong depletion of dCd is probably the results of the preferential uptake of 367 
dCd by phytoplankton at these stations. High contents of dCd in the surface water and low 368 
FF(dCd) values are observed at the stations to the north of 20°N and especially to the north of 369 
40°N, indicating that the preferential uptake of dCd is not an important factor at these stations. 370 
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Figure 6. (a) Horizontal distribution of the Cd fractionation factor (FF). (b) preformed Cd (Cd0) 371 
vs. preformed phosphate (PO40) plot. The red circle indicates data obtained from JdFR. (c) 372 
Latitude vs. Cd0/dCd. The red circles indicate the data obtained from water at a depth of 500–373 
2500 m at stations ST14 and BD21. The plot color in (b) denotes the depth, and that in (c) 374 
denotes the FF(dCd). 375 

The preformed nutrient concentration has been used as a tracer for water masses because of their 376 
conservative nature (Sarmiento & Gruber, 2006). Redfield et al. established the respiratory 377 
equation of the average phytoplankton and indicated that the ratio of dissolved PO4 and O2 is 378 
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1:138 (Redfield, Ketchum, & Richards, 1963). Thus, the preformed phosphate (PO40) can be 379 
defined as follows (Emerson & Hedges, 2008; Kudo, Kokubun, & Matsunaga, 1996): 380 

PO40 [µmol/kg] = PO4 – AOU/138 381 

In this study, we used the slope of PO4 vs. AOU in the upper 800 m instead of the Redfield ratio, 382 
whereas the data of AOU < 0 in surface water were removed from the calculation. Assuming that 383 
the Redfield ratio can be extended to dCd (Kudo et al., 1996), the preformed dCd (Cd0) is 384 
defined as follows: 385 

Cd0 [nmol/kg] = dCd – AOU ´ (a ´ b) 386 

where a and b denote the ratio of Cd:PO4 and PO4:AOU using the data in the upper 800 m, 387 
respectively. The Cd0 data that are lower than zero are not included in the discussion. The plots 388 
of Cd0 vs. PO40 have a strong linear relationship with an intercept of almost zero (Figure 6b): 389 

Cd0 [nmol/kg] = 0.341 × PO40 – 0.000 r2 = 0.931, n = 379. 390 

The zero intercept indicates that the Cd0/PO40 ratio is constant among the water masses. 391 
Moreover, the slope of 0.341 is equal to the observed Cd/PO4 ratio in deep water. This linearity 392 
also supports the dominant effect of biogeochemical cycling on the distribution of dCd. In 393 
addition, plots deviate from the regression line are marked in a red circle in Figure 6b, which 394 
represent data from JdFR. This is probably due to removal of CdS near hydrothermal vents. 395 

The distribution of Cd0/dCd against the latitude is presented in Figure 6c, where the plot color 396 
indicates the FF(dCd). The plot demonstrates that the stations to the south of 35°N have 397 
FF(dCd) > 2.4 and Cd0/dCd < 0.4, whereas the stations to the north of 45°N generally have 398 
FF(dCd) < 1.6 and Cd0/dCd > 0.4. Thus, the regeneration is proven important for stations south 399 
to 35°N. As an exception, the samples collected from depths ranging between 500 and 2500 m at 400 
ST14 and BD21 have low Cd0/dCd ratios (plots in red circles). These stations are nearest to the 401 
continent, implying that apart from the mixing of water masses, the supply from the northern 402 
continents may also be important.  403 

4.2 Effects of water circulation, scavenging, and remineralization on the distribution of Cu, 404 
Ni, and Zn 405 

4.2.1 Water circulation: dMs vs. Si(OH)4  406 

The correlation of Cu and Si(OH)4 in the ocean has been studied since the 1980s (Monteiro & 407 
Orren, 1985; Roshan & Wu, 2015b; Saager, De Baar, & Howland, 1992). As presented in Figure 408 
7, dCu has a strong correlation with Si(OH)4 from surface to bottom in both the North and South 409 
Atlantic Oceans. In the North Atlantic Ocean, dCu is calculated as dCu [nmol/kg] = 0.0351 × 410 
Si(OH)4 [µmol/kg] + 0.81 (r2 = 0.772, for full depth) (Roshan & Wu, 2015b). In contrast, a 411 
linear relationship is observed at a depth < 1500 m in the Southern Ocean, where dCu is 412 
estimated as dCu [nmol/kg] = 0.0121 × Si(OH)4 [µmol/kg] + 0.74 (r2 = 0.701) (Heller & Croot, 413 
2015; Schlitzer et al., 2018). The plots in waters deeper than 1500 m slightly curve upwards from 414 
the regression line. In the South Pacific Ocean, a linear relationship is also observed above a 415 
1500 m depth, where dCu [nmol/kg] = 0.0142 × Si(OH)4 [µmol/kg] + 0.50 (r2 = 0.943) (Roshan 416 
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& Wu, 2018). Thus, the increase in dCu at depths > 1500 m is stronger than that in the Southern 417 
Ocean. In this study, a more intense increase in dCu is observed at a depth of >1500 m in the 418 
North Pacific Ocean. Except the surface maximum of dCu, the regression line of Cu and Si(OH)4 419 
for depths of 20–1500 m is (Figure S7d):  420 

dCu [nmol/kg] = 0.00773 × Si(OH)4 [µmol/kg] + 0.76 r2 = 0.706, n = 331. 421 

Figure 7. Compilation of global data of dCu vs. Si(OH)4. NA: the North Atlantic Ocean (Jacquot 422 
& Moffett, 2015; Roshan & Wu, 2015b); SA: the South Atlantic Ocean; SO: the Southern Ocean 423 
(Heller & Croot, 2015); SP: the South Pacific Ocean (Roshan & Wu, 2018); NP: the North 424 
Pacific Ocean in this study. Some of the data are from the GEOTRACES Intermediate Data 425 
Product 2017 (Schlitzer et al., 2018). 426 

The slope of the regression line decreases, and the accumulation of dCu over Si(OH)4 in deep 427 
water increases along the route of thermohaline circulation through the global oceans. This 428 
phenomenon is probably due to the redissolution of scavenged dCu from particles and sediments, 429 
whereas the stagnant deep-water circulation in the North Pacific Ocean enhances the 430 
accumulation of dCu more than in any other oceans. 431 

The dZn vs. Si(OH)4 plot in this study depicts an upward convex with a kink at 84 µmol/kg of 432 
Si(OH)4 (Figure S7c). Kim and co-authors (Kim, Obata, Kondo, Ogawa, & Gamo, 2015; Kim et 433 
al., 2017) found the same trend and attributed it to the supply of the intermediate water with a 434 
high dZn/Si(OH)4 ratio. Although the dNi vs. Si(OH)4 in this study exhibits a linearity 435 
throughout the water column at stations to the north of 40°N, an upward convex is also observed 436 
at stations to the south of 40°N and in a depth range of 300–2000 m (Figure S7b), indicating the 437 
effect of intermediate water (EqPIW and NPIW) and UCDW with high dNi/Si(OH)4 ratio (Table 438 
S5). In contrast, dCd and Si(OH)4 does not exhibit a linear relationship (Figure S7a). 439 

4.2.2 Scavenging and remineralization: dMs/PO4 ratios and dMs vs. PO4  440 

Cu, Ni, and Zn are widely utilized as co-factors of enzymes (Twining & Baines, 2013) and will 441 
be incorporated into soft tissues of organisms in a similar manner with Cd. Ellwood and Hunter 442 
(Ellwood & Hunter, 2000) have proved that only a few percentages of Zn is incorporated in the 443 
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silica frustule of a diatom, which may be also valid for Ni and Cu. The plots of dMs vs. AOU 444 
and major nutrients vs. AOU are presented in Figure S8, indicating that each dM uniquely 445 
depends on AOU. 446 

NO3 exhibits strong linearity with the AOU, and this pattern is similar to the PO4 vs. AOU plot 447 
(Figure S8). NO3 and PO4 are mainly influenced by biogeochemical cycles and have similar 448 
vertical profiles with each other. At waters deeper than 800 m, NO3/PO4 decreases by 4% when 449 
the AOU is increased from 150 to 300 µmol/kg (Figure S9). The decrease of dCd/PO4 ratio is 450 
4%, which is comparable with that of NO3/PO4 (Figure 8a). In contrast, both dNi/PO4 and 451 
dZn/PO4 decrease by 21%, whereas dCu/PO4 decreases by 69% (Figure 8b–8d). These results 452 
indicate that an alternative sink, namely specifically scavenging, must be important for Cu, Ni, 453 
and Zn. Otherwise, their ratios would not change with the AOU. 454 

Figure 8. Plots of dMs/PO4 ratios vs. AOU at depths > 800 m; (a) dCd/PO4 vs. AOU, (b) 455 
dNi/PO4 vs. AOU, (c) dZn/PO4 vs. AOU, (d) dCu/PO4 vs. AOU. The plot color indicates the 456 
depth. 457 

The vertical profiles of the dMs/PO4 ratio are presented in Figure 9, where the Ms/PO4 ratio 458 
range in phytoplankton is shown as gray shadow (Bruland, Donat, & Hutchins, 1991; Collier & 459 
Edmond, 1984; Ho et al., 2007; Kuss & Kremling, 1999). Almost all the plots of the dCd/PO4 460 
ratio appear within the range of phytoplankton, indicating that the concept of the Redfield ratio 461 
can be applied to Cd as well (Figure 9a). However, those of Ni, Cu, and Zn are largely out of the 462 
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phytoplankton range. The dMs/PO4 ratios in each water mass are listed in Table 2. The dCd/PO4 463 
ratio is 0.34 ± 0.02 mmol/mol (n = 296) at a depth lower than 800 m, which is consistent with the 464 
reported data (Quay et al., 2015). However, the dCd/PO4 ratio significantly varies in the upper 465 
water. The dCd/PO4 ratio reaches a maximum of 0.93 mmol/mol in the surface water at around 466 
20–30°N, where PO4 is depleted and dCd is probably supplied from the Hawaiian Islands (Figure 467 
10a). In addition, another high Cd/PO4 ratio is identified near the northern continental shelf and 468 
spread to around 30°N along 26.8sq, where intermediate water exists. This trend is similar to that 469 
of dCo (Zheng et al., 2019). 470 

Figure 9. Depth profiles of (a) dCd/PO4, (b) dNi/PO4, (c) dZn/PO4, and (d) dCu/PO4. The x axes 471 
of (b) and (d) are expanded to show details in deep water. The gray shadows mark the range of 472 
the Ms/PO4 ratio in phytoplankton (Bruland et al., 1991; Collier & Edmond, 1984; Ho et al., 473 
2007; Kuss & Kremling, 1999).474 
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Figure 10. Sectional distributions of (a) dCd/PO4, (b) dNi/PO4, and (c) dCu/PO4 at depths of 0–475 
1000 m at 160°W. 476 

The dCu/PO4 ratio reaches a maximum of 82 mmol/mol in the surface water at around 20–30° N 477 
similarly to dCd/PO4 (Figures 10c). The dCu/PO4 ratio sharply decreases with depth and has a 478 
minimum of 0.30 mmol/mol at depths ranging from 150 to 800 m (Figure 9d). The sharp 479 
decrease in the dCu/PO4 ratio in the subsurface water reflects the regeneration of PO4 and the 480 
scavenging of dCu. Then, the dCu/PO4 ratio increases to the bottom, whereas many data points 481 
are outside the range of the dCu/PO4 ratio in phytoplankton. The high dCu/PO4 ratio is due to the 482 
selective accumulation of dCu in deep water through the ocean circulation and the redissolution 483 
from sinking particles and bottom sediments. 484 

Similarly to dCu and dCd, the dNi/PO4 ratio in the surface water is extremely high at around 20–485 
30°N (Figure 10b). The dNi/PO4 ratio decreases from the surface maxima to the subsurface 486 
minima of 2 mmol/kg at a 200 m depth and then slightly increases to 3000 m (Figure 9b). All the 487 
dNi/PO4 ratios are higher than the Ni/PO4 ratio in phytoplankton due to the excess dNi in 488 
seawater throughout the North Pacific Ocean. The dZn/PO4 ratio in the surface water is 0.15–1.2 489 
except 6.0 at BD18 (Figure 9c). The results suggest that the preferential uptake of dZn by 490 
phytoplankton is ubiquitous in the subarctic North Pacific Ocean, which is consistent with the 491 
significant west-to-east gradient in the dZn concentration in the surface water (Figure S6c). The 492 
dZn/PO4 ratio increases with depth in a manner similar to dCd/PO4 (Figures 9c, 9a). However, 493 
the dZn/PO4 ratio in a depth range of 600–1500 m is 3.1 ± 0.3, which is significantly lower than 494 
that of 3.8 ± 0.2 below 3000 m. The low ratio in the intermediate depth could be attributed to the 495 
dZn scavenging. In addition, the ratio in deep water exceeds the range of the Zn/PO4 ratio in 496 
phytoplankton, suggesting that additional dZn is supplied by the redissolution from sinking 497 
particles and bottom sediments. 498 
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The dCu vs. PO4 plot does not exhibit a linear relationship (Figure 5d). Instead, a general kink is 499 
observed at a depth of around 800 m, whereas the slopes are 0.20–0.41 mmol/mol for a depth 500 
range of 20–800 m (Table 1), which is close to the Cu/PO4 ratio in phytoplankton (0.37–1.1 501 
mmol/mol) (Bruland et al., 1991; Collier & Edmond, 1984; Ho et al., 2007; Kuss & Kremling, 502 
1999). Instead, the dNi vs. PO4 plot exhibits a linear relationship only in a depth range of 0–500 503 
m (Figure 5b), and the slopes of 1.37–1.50 mmol/mol are close to the range of the Ni/PO4 ratio 504 
in phytoplankton (0.22–1.4 mmol/mol) (Bruland et al., 1991; Collier & Edmond, 1984; Ho et al., 505 
2007; Kuss & Kremling, 1999). The intercept is significantly higher at stations to the north of 506 
40°N, suggesting a dNi supply from the northern continents (Figure 5b, Table 1). At a depth 507 
range of 500–2000 m, the data points are strongly curved, whereas dNi increases independently 508 
of PO4 in a manner similar to dCu (gray shallow in Figure 5b). In deeper water, dNi decreases 509 
concurrently with PO4 in a manner similar to dCd. However, the dZn vs. PO4 plot exhibits a 510 
depletion of dZn from the surface to a 20 m depth and a linear relationship from 20 to 1000 m 511 
(Figure 5c). In a depth range of 1000–2000 m, dZn increases to its maximum independently of 512 
PO4, like dNi (gray shallow in Figure 5c). Thus, it can be concluded that dNi and dZn at 513 
intermediate depth waters (200–2000 m) are not related to PO4, whereas processes other than 514 
regeneration, such as the redissolution from sinking particles, probably play an important role on 515 
their distribution. 516 

The abundance of lpCu is also a result of scavenging. The lpCu/tdCu ratio is 0.12 ± 0.05 (n = 517 
227) in deep water (>1500 m) of the North Pacific Ocean, exhibiting a smaller deviation in deep 518 
waters than in the upper waters. Moreover, the lpCu/tdCu ratio is comparable to that for 519 
scavenged-type elements of Mn and Co, as discussed above. Cu is the only element among the 520 
four nutrient-type metals, whose lp species are broadly detected in the North Pacific Ocean. The 521 
large lpCu percentage can be explained by the adsorption of Cu onto particles, which is mainly 522 
controlled by the surface complexation (Li, 1981). The stability of the surface complexes 523 
exhibits a linear relationship with the first hydrolysis constant for the metal ion. Because the four 524 
metal ions in this study form divalent cations and Cu2+ has the highest first hydrolysis constant 525 
(Li, 1981), Cu exhibits the highest lpM/tdM ratio and the strongest scavenging. In contrast, Cd2+ 526 
has the lowest first hydrolysis constant, resulting in the weakest scavenging effect. 527 

The scavenging of Ni has not been widely accepted yet. However, the residence time of dMs in 528 
the world ocean has been estimated to be 5,000 y for dCu (Boyle et al., 1977), 10,000–30,000 y 529 
for dNi (Cameron & Vance, 2014; Sclater, Boyle, & Edmond, 1976), 18,000 y for Zn (Bewers & 530 
Yeats, 1977), and 50,000 y for Cd (Boyle et al., 1976; Bruland, 1980). In addition, the 531 
scavenging residence time has been estimated to be 385 y for Cu, 15,850 y for Ni, and 177,800 y 532 
for Cd (Balistrieri, Brewer, & Murray, 1981). In the near-ridge environment, sedimentary Ni 533 
concentrations are increased due to the scavenging of Ni from seawater by Mn and Fe 534 
(oxyhydr)oxides (Costa et al., 2018; Dunk & Mills, 2006; Metz, Trefry, & Nelsen, 1988). Thus, 535 
we propose that scavenging is an important factor for Ni as well as for Cu and Zn. 536 

4.3 Systematics in enrichment factor 537 

The enrichment factor (EF) of dMs in seawater has been proposed in our previous reports 538 
(Zheng et al., 2019; Zheng & Sohrin, 2019) to clarify the sources/sinks of dMs: 539 

EF(dM) = (dM/dAl)seawater/(M/Al)upper crust 540 
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where (M/Al)upper crust represents the mole ratio in the upper crust (Rudnick & Gao, 2005). The 541 
box plots of EF for dFe, dissolved nutrient-type metals, and major nutrients in depths >300 m are 542 
presented in Figure 11. The median is 6.4 for dFe, 6.3 ´ 104 for dNi, 3.2 ´ 104 for dCu, 7.4 ´ 104 543 
for dZn, 6.6 ´ 106 for dCd, 7.7 ´ 104 for Si(OH)4, 7.1 ´ 105 PO4, and 3.5 ´ 107 for NO3. dCd 544 
exhibits the highest EF value among the four nutrient-type metals, which is one order of 545 
magnitude lower than that of NO3, thus reflecting the lowest influence of scavenging on Cd. 546 
Furthermore, EF(dFe) is the lowest among the five metals, because dFe has been proven to be 547 
strongly affected by scavenging (Zheng & Sohrin, 2019). EF(dNi), EF(dCu), and EF(dZn) are in 548 
the same order of magnitude, which are two orders of magnitude lower than EF(dCd) but three 549 
orders of magnitude higher than EF(dFe). These results suggest that dNi, dCu, and dZn have a 550 
moderate interaction with particles. 551 

Figure 11. Box plots of EF for dFe, dNi, dCu, dZn, dCd, and major nutrients at depths > 300 m. 552 
The middle line of the box represents the median; the top and bottom lines of the box represent 553 
the upper and lower quartiles, respectively; and circles represent potential outliers. 554 

It is possible that the solubility of Ms affects the EF(dMs). The solubility of the four metals and 555 
Al from aerosols deposited to the sea surface differs significantly depending on a series of 556 
factors, such as the aerosol sources (Chester et al., 1993) and the distance from the continent 557 
(Chester et al., 1993; Hsu et al., 2010; Mahowald et al., 2018). For example, the average 558 
solubility of the four metals and Al from the East China Sea aerosols are within a factor of 20 559 
(Hsu et al., 2010). Thus, the solubility may not significantly affect the trend in Figure 11. 560 

The horizontal distribution of EF(dCu) in the surface water implies that EF(dCu) is significantly 561 
high at stations within the North Pacific subarctic gyre (Figure S10a), whereas at stations ST14 562 
and BD15, nearest to the Alaska Peninsula, EF(dCu) has a relatively low value compared with 563 
the surrounding stations. Moreover, the sectional distribution of EF(dCu) at 160°W reveals that 564 
the maximum occurs from the surface to a depth of 4000 m above 35°N (Figure S10b). EF(dNi), 565 
EF(dZn), and EF(dCd) also have similar distributions. dAl is as low as 0–0.5 nmol/kg in the 566 
surface water to the north of 40°N and is uniformly low through the water column above 26°N 567 
(Zheng et al., 2019), indicating the weak effect of the lithogenic sources in this area. The dCu vs. 568 
Si(OH)4 plot with EF(dCu) in plot color shows that only data with EF(dCu) typically higher than 569 
80,000 had a high correlation with Si(OH)4 with a low slope of 0.00541 mmol/mol (Figure 570 
S10c). These samples are from waters shallower than 1500 m at stations to the north of 40°N. It 571 
has been reported that Cu from urban aerosols is more soluble than that from lithogenic aerosols 572 
(Chester et al., 1993). These results suggest that a large amount of anthropogenic Cu is supplied 573 
as aerosols to the northern North Pacific Ocean and is intensively scavenged from the water 574 
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Fe         Ni          Cu         Zn        Cd     Si(OH)4 PO4 NO3
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column. 575 

Consequently, we demonstrate that EF(dMs) can be a promising measure to decide whether or 576 
not an element is effectively scavenged through the water column, especially below the surface 577 
mixed layer. Since EF(dNi), EF(dCu), and EF(dZn) are comparable, we could infer that not only 578 
Cu but also Zn and Ni are affected by scavenging processes.  579 

 580 

5 Conclusions 581 

In this study, concurrent data of dissolved Cd, Ni, Zn, Cu, and labile particulate Cu that were 582 
collected during the GEOTRACES Japan cruises KH-05-2 (160°W), KH-11-7 (165°E), and KH-583 
12-4 (47°N) in the north Pacific Ocean were reported. These data indicated that Cd is controlled 584 
by biogeochemical cycling and water mass circulation. Although Ni, Zn, and Cu are also 585 
controlled by biogeochemical cycling, they are affected by scavenging. Due to the internal 586 
formation of PDW in the North Pacific Ocean and its long residence time, the effects of 587 
scavenging for these metals can be detected. Each metal has a unique relationship with the major 588 
nutrients Si(OH)4 and PO4, whereas the dMs vs. nutrient plots strongly differ from those reported 589 
in other oceans. The dMs/PO4 ratio, the FF(dCd), the preformed dCd (Cd0), and the EF(dMs) 590 
can improve the understanding of the effect of biogeochemical cycles, scavenging, and 591 
redissolution on the distribution of the metals. Therefore, we revealed that among the four 592 
metals, Cu is the most affected by scavenging, whereas Cd is the least affected, and scavenging 593 
plays a significant role also on Ni and Zn. 594 
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